Institut de Mathématiques de Toulouse

Les événements de la journée


1 événement


  • Soutenances de thèse 2017

    Jeudi 14 septembre 15:00-17:00 - Anne Lonjou

    Groupe de Cremona et espaces hyperboliques

    Résumé : Le groupe de Cremona de rang 2 est le groupe des transformations birationnelles du plan projectif. Le but de cette thèse est d’étudier et de construire des espaces hyperboliques sur lesquels le groupe de Cremona agit et qui permettent de mettre en œuvre des méthodes provenant de la théorie géométrique des groupes.
    Il est connu depuis une dizaine d’année que le groupe de Cremona agit sur un espace hyperbolique H analogue au plan hyperbolique classique mais de dimension infinie. Dans un premier temps, nous montrons que le groupe de Cremona défini sur un corps quelconque n’est pas simple en le faisant agir sur cet espace hyperbolique. Ceci prolonge un résultat déjà connu dans le cas d’un corps de base algébriquement clos.
    Nous nous intéressons ensuite à un graphe construit par D. Wright sur lequel agit le groupe de Cremona. Nous montrons qu’il ne possède pas la propriété que nous souhaitions, à savoir qu’il n’est pas hyperbolique au sens de Gromov.
    Nous construisons également un domaine fondamental pour l’action du groupe de Cremona sur H via la méthode des cellules de Voronoï. Nous caractérisons les applications du groupe de Cremona qui correspondent à un domaine adjacent au domaine fondamental. Cela nous permet de prouver que le graphe de Wright est quasi-isométrique au graphe dual à ce pavage. Nous obtenons ainsi une manière de retrouver le graphe de Wright dans H. Nous montrons enfin qu’en modifiant ce graphe dual, nous obtenons un graphe hyperbolique au sens de Gromov.
    Dans une dernière partie, nous nous intéressons à une autre propriété naturelle qui est la propriété CAT(0). Nous construisons un complexe cubique CAT(0) de dimension infinie muni d’une action naturelle du groupe de Cremona.

    Lieu : UPS, bâtiment 1R3, Amphithéâtre Schwartz

    [En savoir plus]