Institut de Mathématiques de Toulouse

Les événements de la journée


5 événements


  • Rough paths

    Jeudi 18 mai 10:30-11:30 - G. Cébron - IMT

    Théorème du 4 ième moment libre

    [En savoir plus]


  • Tests multiples

    Jeudi 18 mai 13:45-15:15 - Mélisande Albert - IMT

    Contrôle du False Discovery Rate

    Lieu : Salle 106 (1R1)

    [En savoir plus]


  • Analyse des singularités en EDP et Calcul des Variations

    Jeudi 18 mai 15:30-17:00 - Roger Moser - University of Bath

    Geometric flows of maps between manifolds

    Résumé : The harmonic map heat flow, wave maps, and Schrödinger
    maps can be thought of as the analogues of the heat equation, wave
    equation, and Schrödinger equation for maps between manifolds.
    But due to the curvature, they are nonlinear and tools from analysis
    alone will not suffice to understand their behaviour. I will outline
    some ideas for their analysis in a non-technical manner.

    Lieu : salle 207 (Pellos), bât. 1R2

    Notes de dernières minutes : 2 seances : jeudi 11 Mai et jeudi 18 Mai, de 15h30-17h00, salle 207, bât. 1R2

    [En savoir plus]


  • GdT Mathématiques pour la biologie

    Jeudi 18 mai 15:30-16:30 - Sébastien Lion - Centre d'Écologie Fonctionnelle et Évolutive, Montpellier

    Spatial evolutionary ecology : short- and long-term theory

    Résumé : A fundamental question in evolutionary ecology is to understand how dispersal shapes the genetic and epidemiological structure of populations, and how, in turn, population structure may affect the evolution of life-history traits. Using a model of host-parasite interactions, I contrast two approaches for studying this feedback in spatially structured populations.
    First, I present a novel approach to jointly model epidemiological and evolutionary dynamics, using a combination of spatial moment equations and quantitative genetics. A key insight of this approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. This analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation.
    Second, assuming that ecological and evolutionary time scales are decoupled, I recover previous results based on adaptive dynamics theory. The selective pressures on parasite virulence can then be summed up by a simple balance between genetic and epidemiological effects.
    Finally, I discuss the connections with kin selection theory, particularly highlighting that the relevant genetic structure can be captured by relatedness coefficients in both the short- and long-term theories.

    [En savoir plus]


  • Séminaire Info-Math

    Jeudi 18 mai 16:00-17:00 - Arnaud Chéritat - IMT

    Calculabilité des ensembles de Julia d’après Braverman et Yampolsky

    Résumé : Durant la première séance Arnaud nous a expliqué comment définir la notion de calculabilité pour des objets continus (objets définis sur des espaces métriques). Il nous a aussi définit la notion d’ensemble de Julia. Pour la prochaine séance on essayera de voir dans quel cas l’ensemble de Julia est calculable.

    [En savoir plus]