Institut de Mathématiques de Toulouse

Home > Scientific Events > Seminars > Séminaires > Séminaire de Statistique

Séminaire de Statistique

by Dominique Bontemps, Mélisande Albert, Pierre Neuvial - published on , updated on

Organisateurs : Mélisande Albert, Dominique Bontemps, Pierre Neuvial

Jour et lieu habituels : le mardi à 11h15 en salle 106 (bâtiment 1R1).




  • Tuesday 25 June 11:15-12:15 - Agnès Lagnoux - Université Toulouse Jean Jaurès et Institut de Mathématiques de Toulouse

    Sur l’estimation de paramètres de covariance de processus gaussiens

    Résumé : En raison de leur simplicité et de leur flexibilité permettant ainsi de modéliser une large classe de modèles, les processus gaussiens sont devenus très populaires depuis quelques années et largement utilisés en statistique spatiale afin d’interpoler les observations et proposer un métamodèle (de krigeage par exemple). Ils sont caractérisés par leur fonction moyenne et leur fonction de covariance. A des fins statistiques, il s’agit d’estimer sa fonction de covariance. Dans cet exposé, nous supposons que la fonction de covariance appartient à une famille paramétrique de fonctions de covariance. L’estimation de k se résume donc à celle de ses paramètres. Classiquement, les estimées sont obtenues par maximum de vraisemblance. Les estimateurs par maximum de vraisemblance (MLE) ont de bonnes propriétés et ont été largement étudiés dans la littérature. Cependant, ils souffrent d’un coût computationnel parfois prohibitif lorsque la taille de l’échantillon devient grande. Dans certains cas, il arrive aussi que le MLE diverge. Il semble alors pertinent de proposer des méthodes d’estimation alternatives. Nous introduirons donc les estimateurs par vraisemblance composite, les estimateurs par validation croisée ainsi que les estimateurs par variations dans des contextes spécifiques pour lesquels nous déterminerons le comportement asymptotique.

    Lieu : Salle de conférences du 1er étage (1R3)


  • Tuesday 26 November 11:15-12:15 - Joseph Salmon - Institut Montpelliérain Alexander Grothendieck

    Séminaire de Statistique

  • Tuesday 14 January 2020 11:15-12:15 - Benjamin Guedj - University College London

    A primer on PAC-Bayesian learning

    Résumé : Generalized Bayesian learning algorithms are increasingly popular in machine learning, due to their PAC generalization properties and flexibility. I will present a self-contained introduction on generalized Bayesian learning and the PAC-Bayes theory, and discuss their theoretical and algorithmic ins and outs. I will then focus on the recent paper Alquier and Guedj (2018), and present how PAC-Bayesian ideas may be used to efficiently learn with dependent and/or heavy-tailed (aka hostile) data.
    References:


  • 1 | 2 | 3 | 4 | 5

iCal