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1 Spectral measure of a fixed graph

In this section, we introduce our main definitions. We refer to Mohar and Woess [66] for an early

survey on the spectrum of graphs. Related monographs include [30, 28, 29, 49, 26].

1.1 Adjacency operator

Let V be countable and G = (V,E) be a non-oriented graph. Assume further that G is locally

finite, i.e. for all v ∈ V ,

deg(v) =
∑
u∈V

1({u, v} ∈ E) <∞.

The adjacency operator, denoted by A, is defined on `c(V ) ⊂ `2(V ), the set of vectors ψ ∈ `2(V )

with finite support, by the formula

Aψ(u) =
∑

v:{u,v}∈E

ψ(v).

By construction A is symmetric. Also, if deg(u) ≤ d for all u ∈ V then A is a bounded operator,

indeed,

‖Aψ‖22 =
∑
u

 ∑
v:{u,v}∈E

ψ(v)

2

≤
∑
u

deg(u)
∑

v:{u,v}∈E

ψ(v)2 ≤
∑
v

ψ(v)2d2.
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For simplicity, we will focus on the sole adjacency operator. Most claims stated here also hold

for the Laplacian operator and the normalized Laplacian operator given respectively by L = D−A
and D−1/2AD−1/2, where D is the multiplication

Dψ(u) = deg(u)ψ(u),

(D−1 is properly defined if no vertex is isolated, i.e. deg(v) ≥ 1 for all v ∈ V ). The Laplacian is

the infinitesimal generator of the continuous time simple random walk on G while the normalized

Laplacian is equal to D1/2PD−1/2 where P is the transition kernel of the discrete time random

walk.

1.2 Spectral measure at a vector

Being symmetric, A is closable. The von Neumanns criterion [70, Theorem X.3] implies its closure

admits self-adjoint extensions. In this paragraph, we assume further that the operator is essentially

self-adjoint (i.e. it has a unique self-adjoint extension).

For example, this assumption is fulfilled if the degrees of vertices are bounded by an integer d.

Indeed, in this case, we have checked that A has norm bounded by d and A is a bounded self-adjoint

operator. Note that there are examples of locally finite graphs whose adjacency operator has more

than one self-adjoint extension, for references see [66, Section 3]. For a criterion of essential self-

adjointness of the adjacency operator of trees, see [22] and for a characterization see Salez [71,

Theorem 2.2].

For any ψ ∈ `2(V ) with ‖ψ‖22 = 1, we may then define the spectral measure with vector ψ,

denoted by µψG, as the unique probability measure on R, such that for all integers k ≥ 1,∫
xkdµψG = 〈ψ,Akψ〉.

For example if |V | = n is finite, then A is a symmetric matrix. If (v1, · · · , vn) is an orthonormal

basis of eigenvectors associated to eigenvalues (λ1, · · · , λn), we find

µψG =
n∑
k=1

〈vk, ψ〉2δλk . (1)

If V is not finite, µψG has a similar decomposition over the (left-continuous) resolution of the

identity of A, say {E(−∞,λ)}λ∈R, we write A =
∫
λdE(λ) and we find, for any λ ∈ R,

µψG((−∞, λ)) = 〈ψ,E(−∞,λ)ψ〉. (2)

For v ∈ V , we denote by ev ∈ `2(V ), the coordinate vector defined by ev(u) = 1(u = v) for all

u ∈ V . Observe that for any u, v ∈ V , 〈eu, Akev〉 is the number of paths of length k from u to v in

G. Consequently, ∫
xkµevG = |{closed paths of length k starting from v}|. (3)
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The resolvent R(z) = (A− z)−1 defined for z ∈ C\R is related to the walk generating function

of the graph G : expanding formally, we find

〈eu, R(z)ev〉 = (−z)−1
∑
k≥0

z−k〈eu, Akev〉.

Observe also that

〈ev, R(z)ev〉 =

∫
dµevG (x)

x− z
(4)

is the Cauchy-Stieltjes transform of µevG . In these notes, we will mostly be interested by the

regularity properties of the measure µevG . For some explicit computation of spectral measures in

regular graphs, see examples below, Hora and Obata [49] and for a recent computation [9].

1.3 Operations on graphs and spectrum

There are algebraic operations on graphs for which it is possible to compute explicitly how they

transform the spectral measures. In this paragraph, we consider two graphs G1 = (V1, E1) and

G2 = (V2, E2) whose adjacency operators, A1 and A2 are essentially self-adjoint.

1.3.1 Cartesian product

We build a new graph G1×G2 on the vertex V1×V2 by putting the edge {(u1, u2), (v1, v2)} if either

u1 = v1 and {u2, v2} ∈ E2 or u2 = v2 and {u1, v1} ∈ E1. In terms of the adjacency operator, say

A, of G1 ×G2, we have

〈e(v1,v2), Ae(u1,u2)〉 = 1(u1 = v1)1({u2, v2} ∈ E2) + 1(u2 = v2)1({u1, v1} ∈ E1).

For example, for integer d ≥ 1, consider the usual graph of Zd defined by putting an edge

between u and v if ‖u − v‖1 =
∑d

i=1 |ui − vi| = 1. Then Zd is equal the cartesian product of d

copies of Z.

Observe that a path of length k in G1 × G2 can be decomposed into a path in G1 of length `

and a path in G2 of length k − `, for some 0 ≤ ` ≤ k. Conversely, a path of length ` starting from

u1 ∈ V1 and a path of length k− ` starting from u2 gives
(
k
`

)
paths of length k in G1 ×G2 starting

from (u1, u2). It follows easily from (3) that for any (v1, v2) ∈ V1 × V2∫
xkµ

e(v1,v2)
G1×G2

=
k∑
`=0

(
k

`

)∫
x`µ

ev1
G1

∫
xk−`µ

ev2
G2
.

So finally

µ
e(v1,v2)
G1×G2

= µ
ev1
G1
∗ µev2G2

, (5)

where ∗ denotes the usual convolution.
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1.3.2 Tensor product

We now build a graph G1 ⊗ G2 on the vertex V1 × V2 by putting the edge {(u1, u2), (v1, v2)} if

{u1, v1} ∈ E1 and {u2, v2} ∈ E2. This called the tensor or Kronecker product. The adjacency

operator, say A, of G1 ⊗G2, is given by

〈e(v1,v2), Ae(u1,u2)〉 = 1({u1, v1} ∈ E1)1({u2, v2} ∈ E2),

For example, it is easy to check that Z2 is isomorphic to Z⊗ Z.

By construction, a path of length k in G1 ⊗G2 is a path in G1 of length k and a path in G2 of

length k. We get ∫
xkµ

e(v1,v2)
G1⊗G2

=

∫
xkµ

ev1
G1

∫
xkµ

ev2
G2
,

and, consequently,

µ
e(v1,v2)
G1⊗G2

= µ
ev1
G1
◦· µev2G2

, (6)

where ◦· denotes the product convolution, i.e. if Xi has law µi for i = 1, 2 and X1 and X2 are

independent then µ1 ◦ µ2 is the law of X1X2.

1.3.3 Free product

Assume that G1 and G2 are connected and let oi ∈ Vi, i = 1, 2 be two distinguished vertices, called

the roots. We define V as the set of finite sequences v = (v1, v2, · · · , vk) such that, for any integer

i ≥ 0, v1 ∈ V1, v2i+3 ∈ V1\o1, v2i ∈ V2\o2. The length of v = (v1, · · · , vk) ∈ V is set to be k. We

now build a graph G = (G1, o1) ∗ (G2, o2) on the vertex V by putting the edge {u, v}, where length

of u is less or equal than the length of v, if one of the four cases holds, for integer i ≥ 0 :

- v = (v1, · · · , v2i, v2i+1), u = (v1, · · · , v2i, u2i+1) and {u2i+1, v2i+1} ∈ E1 ;

- v = (v1, · · · , v2i+1, v2i+2), u = (v1, · · · , v2i+1, u2i+2) and {u2i+2, v2i+2} ∈ E2 ;

- v = (v1, · · · , v2i, v2i+1), u = (v1, · · · , v2i) and {v2i+1, o1} ∈ E1 ;

- v = (v1, · · · , v2i+1, v2i+2), u = (v1, · · · , v2i+1) and {v2i+2, o2} ∈ E2.

In words, G is obtained by gluing iteratively on each vertex of G1 a copy of G2 rooted at o2

and from each vertex of G2 a copy of G1 rooted at o1. If G1 and G2 are vertex transitive, this

construction, up to isomorphisms, does not depend on the choice of the root. For example, Td, the

infinite d-regular tree (where all vertices have degree d) is isomorphic, when d is even, to the free

products of d/2 copies of Z. If Gi is the Cayley graph of a group Γi with generating set Si (see

Subsection 1.5 for definitions), then G is the Cayley graph of the free product of the groups G1

and G2 with generating set the disjoint union of S1 and S2.

We have that

µ
eo1
(G1,o1)∗(G2,o2) = µ

eo2
(G2,o2)∗(G1,o1) = µ

eo1
G1

� µ
eo2
G2
, (7)
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where � is the free convolution. For an explanation, see the monograph by Voiculescu, Dykema

and Nica [77].

1.4 Finite graphs

We now look for a definition of the spectral measure of a graph. If G = (V,E) is a finite graph,

|V | = n then we will define the spectral measure of G as,

µG =
1

n

n∑
i=1

δλi , (8)

where (λ1, · · · , λn) are the eigenvalues of A, counting multiplicities. In other words, µG is the

empirical distribution of the eigenvalues of A. In the physics literature, the spectral measure is

known as the density of states.

In terms of the spectral measure with a vector, µψG, it follows from (1) that

1

n

n∑
x=1

µexG =
1

n

n∑
k=1

δλk

n∑
x=1

〈vk, ex〉2 = µG. (9)

Cycle : let Cn be a cycle of length n. The adjacency operator can be written as A = B + B∗,

where B is the permutation matrix of a cycle of length n. Since BB∗ = B∗B = I, the eigenvalues

of B are the roots of unity and the eigenvalues of A are λk = 2 cos(2πk/n), 1 ≤ k ≤ n. We get

µCn =
1

n

n∑
k=1

δ2 cos(2πk/n).

As n goes to infinity, µCn converges weakly to a arcsine distribution ν with density on [−2, 2] given

by

dν(x) =
1

π
√

4− x2
1|x|≤2dx, (10)

(ν is the law of 2 cos(πU) with U uniform on [0, 1]).

Line segment : let Ln = Z ∩ [1, n] be the subgraph of Z spanned by vertices in {1, · · · , n}. The

characteristic polynomial Pn(x) = det(A(Ln)− x) satisfies the recurrence Pn+2(x) = −xPn+1(x)−
Pn(x). It follows that Pn is the Chebyshev polynomial of the second kind. The roots of Pn are

λk = 2 cos(πk/(n+ 1)), 1 ≤ k ≤ n, and we find

µLn =
1

n

n∑
k=1

δ2 cos(πk/(n+1)).

Again, as n goes to infinity, µLn converges weakly to a arcsine distribution ν. In view of (5), we

could also compute the spectral measure of Zd ∩ [1, n]d which is the cartesian product of d copies

of Ln.
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Complete graph : the eigenvalues of the adjacency matrix of the complete graph Kn on n vertices,

are n− 1 with multiplicity 1 and −1 with multiplicity n− 1. It follows that

µKn =
1

n
δn−1 +

n− 1

n
δ−1.

Notice that µKn converges weakly to δ−1. It contrasts with the above situation, since the limit as

n→∞ is purely atomic.

1.5 Cayley graphs

1.5.1 Definition

Let Γ be a countable group and S ⊂ Γ a generating set such that for any S−1 ⊂ S and the unit

of Γ is not in S. The Cayley graph (on the left) G = Cay(Γ, S) associated to S is the graph with

vertex set Γ and edge set {{u, v}, vu−1 ∈ S}. It is not hard to check that G is vertex transitive.

Hence, the spectral measure at vector ev does not depend on the choice of v ∈ Γ. It is then natural

to define the spectral measure of G as

µG = µevG , (11)

(more generally, we could extend this definition to any vertex-transitive graph). In view of (9),

this definition is consistent with our previous definition if G is a finite Cayley graph. This measure

µG is usually called the Plancherel measure of G. Beware that this spectral measure may strongly

depends on the choice of the generating set S.

It is not the scope of these notes to emphasize the connections with operator algebras. Let

us recall anyway that the (left) von Neumann group algebra M of the discrete group Γ is the

subalgebra of all bounded operators on H = `2(Γ) generated by the operators λv corresponding to

multiplication from the left with an element v ∈ Γ, i.e. λveu = evu. M is the algebra of bounded

operators on H commuting with the action of Γ on H through right multiplication. The adjacency

operator is an element of M. The canonical trace on M is the linear map

τ(B) = 〈eo, Beo〉,

where o is the unit of Γ. The fact that τ is a trace follows from τ(λuλv) = τ(λvλu) = 1(uv = o).

With our definition of µG, we get that ∫
xkdµG = τ(Ak).

1.5.2 Basic examples

Let us give some example of spectral measures of Cayley graphs.
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Bi-infinite path : the Cayley graph of the additive abelian group Z with generators S = {1,−1}.

dµZ(x) =
1

π
√

4− x2
1|x|≤2dx = dν(x),

where ν is the arcsine distribution defined in (10).

Lattice : taking the cartesian product we find from (5) that for any integer d ≥ 1,

µZd = ν ∗ · · · ∗ ν,

where the convolution is taken d times. As already pointed, Z2 is also isomorphic to Z ⊗ Z. It

follows that (6) that ν ◦· ν = ν ∗ ν.

Free group with d generators : let Td be the infinite d-regular tree, Td is isomorphic to the Cayley

graph of the free group with d generators. If d = 2k is even then Td is isomorphic to Z ∗ · · · ∗ Z
where the free product is taken k times. Kesten [56] has proved that

dµTd(x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
1|x|≤2

√
d−1dx.

It follows from (7) that if d = 2k, µTd is the free convolution of k times ν.

1.5.3 Lamplighter group

Spectral measures are not always absolutely continuous. Cayley graphs of lamplighter groups give

examples of pure point spectral measure. In [47], Grigorchuk and Żuk have computed explicitly

the spectral measure of the usual lamplighter group Z/2Z o Z and discovered that it was purely

atomic, see also Lehner, Neuhauser and Woess [60]. More generally, the spectral measure of Cayley

graphs on lamplighter groups are related to percolation on the walk graph, see [60]. Interestingly,

lamplighter groups can also be used to build examples of spectral measures with a mass of the atom

at 0 equal to any number in (0, 1), see Austin [67] and Lehner and Wagner [61].

Let us explain how these Cayley graphs are built. Let Γ be a finitely generated group with unit

o and set L = (Z/nZ,+). The group Γ may be referred as the walk space and L as the lamp space.

The lamplighter group Λ = L o Γ is on the set LΓ × Γ. An element (η, x) ∈ Λ is composed by the

configuration of lamps η : Γ → L and the position of the lamplighter x ∈ Γ. The group operation

in Λ is defined as

(η, x).(η′, x′) = (η + θxη
′, x.x′),

where (θxη
′)(y) = η′(x−1y), θx shifts the configuration by x. The unit of Λ is ε = (0, o) where 0 is

the configuration defined by 0(x) = 0.

It is easier to understand the lamplighter group in terms on simple generators. For x ∈ Γ and

` ∈ L, the walk element Wx ∈ Λ and switch element S` ∈ Λ are respectively

Wx = (0, x) and S` = (`δo, o),

8



where δy is the configuration defined by δy(x) = 1(x = y). In words, (η, x).Wy moves the position

of the lamplighter to x.y and leaves the lamps unchanged, while (η, x).S` leaves the position of

the lamplighter unchanged, it switches the light of the lamp located at x into η(x) + ` and leaves

all other lamps unchanged, see figure 1 for an illustration of the walk and switch elements when

Γ = (Z,+) and n = 2.

Figure 1: The position of the walker is the thick arrow, in dashed line, the multiplication by a lamp

element, in plain line, by a walk element.

Consider a symmetric generating set D of Γ. It is not hard to check that {S`,Wx : ` ∈ L, x ∈ D}
is a generating set of Λ. The switch-walk generating set of Λ is given by

{S`.Wx : ` ∈ L, x ∈ D}.

We denote by SW the Cayley graph of Λ with this generating set. The walk-switch generating set

of Λ is defined similarly with elements Wx.S`, we denote by WS its Cayley graph. Finally, the

Cayley graph SWS is associated to the usual switch-walk-switch generating set of Λ with elements

S`.Wx.S`′ .

Let G = Cay(Γ, D) be the Cayley graph associated to the generating set D. The site percolation

graph perc′(G, p) is the random graph spanned by the open vertices of the site percolation of G

with parameter p (independently each vertex is open with probability p). The next theorem due to

Lehner, Neuhauser and Woess [60] relates the spectral measures of the graphs SW, WS and SWS

to perc′(G, p).

Theorem 1.1. For p = 1/n, we have

µSW(·/n) = µWS(·/n) = µSWS(·/n2) = Eµeoperc′(G,p).

where µ(·/t) is the push-forward of the measure µ by the map x 7→ x/t.

Proof. Let us sketch the argument. For ease of notation, we set ν = µWS(·/n) and µ = Eµeoperc′(G,p).

Since µ and ν have compact support it suffices to check that their moments match. For integer

k ≥ 1, let Wk be the set of closed walks of length k in G starting from o, that is the set γ =

9



(γ0, . . . , γk) ∈ Γk+1, such that γ0 = γk = o and {γt, γt+1} ∈ E(G) for 0 ≤ t ≤ k − 1. The range of

γ is the set V (γ) = {γt : 0 ≤ t ≤ k}. Its cardinality is denoted by v(γ) = |V (γ)|. We have∫
λkdµperc′(G,p)(λ) =

∑
γ∈Wk

k∏
t=0

1(γt is open) =
∑
γ∈Wk

∏
x∈V (γ)

1(x is open).

Taking expectation, we get ∫
λkdµ(λ) =

∑
γ∈Wk

p|V (γ)|.

We now compute the moments of ν. Let d = |D|. If A is the adjacency operator of WS, observe

that P = A/(dn) is the transition kernel of the simple random walk on WS. Then if ε = (0, o)∫
λkdν = dkPε(Sk = ε),

where Sk = (ηk, γk) is the position the the random walker on the WS-lampighter graph and Pε(·) is

the law of the walk starting from S0 = ε. We can decompose the random walk as St = X1 · · ·Xt =

(ηt, γt) where Xt = Wxt .S`t , xt is uniform on D and independent of `t uniform on L. Then,

γ = (γ0, . . . , γk) is the trace of the walk on G, it is a simple random walk on G independent of the

`t’s. Moreover, we have ηt(y) = ηt−1(y) for all y 6= γt and

ηt(γt) = ηt−1(γt) + `t.

It follows that Sk = ε if and only if γk = o and for each x ∈ V (γ), ητx−1(x) + `τx = 0, where τx is

the last time that γt visits x. Since τx is independent of the `t’s and q+ `t is uniform on L for any

q ∈ L, we deduce that

Pε(Sk = ε) = d−k
∑
γ∈Wk

P(∀x ∈ V (γ) : ητx−1(x) + `τx = 0)

= d−k
∑
γ∈Wk

p|V (γ)|.

We thus have checked the moments of ν and µ coincide. For SW, the argument is the same,

τx − 1 is simply replaced by τx. The proof for SWS is the same.

Note that if perc′(G, p) contains a.s. only finite connected components then the measure

Eµeoperc′(G,p) will be purely atomic (as a countable weighted sum of atomic measures is atomic).

Hence, Theorem 1.1 implies for example that µSW is atomic if G = Z or G = Z2 and n ≥ 2. In the

case G = Z, µSW can even be computed explicitly using (12) and the forthcoming (22),

Eµeoperc′(Z,p) =
∑
k≥1

pk−1(1− p)µLk ,

(for another method see [47, 35]). For G = Td , Theorem 1.1 has also been used to give an

example of an atom at 0 of the spectral measures with irrational mass, see Lehner and Wagner [61]

(answering a question of Atiyah), see the forthcoming Theorem 3.5).
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2 Spectral measure of unimodular random graphs

We now extend our definition of spectral measures to a more general class of graphs.

We first briefly introduce the theory of local weak convergence of graph sequences and the

notion of unimodularity for random rooted graphs. It was introduced by Benjamini and Schramm

[15] and has then become a popular topology for studying sparse graphs. Let us briefly introduce

this topology, for details we refer to Aldous and Lyons [4] and Pete [69].

A graph G = (V,E) is locally finite if for v ∈ V , the degree of v in G (number of incident edges),

degG(v), is finite. A rooted graph (G, o) is a connected graph G = (V,E) with a distinguished

vertex o ∈ V , the root. Two rooted graphs (Gi, oi) = (Vi, Ei, oi), i ∈ {1, 2}, are isomorphic if there

exists a bijection σ : V1 → V2 such that σ(o1) = o2 and σ(G1) = G2, where σ acts on E1 through

σ({u, v}) = {σ(u), σ(v)}. We will denote this equivalence relation by (G1, o1) ' (G2, o2). In graph

theory terminology, an equivalence class of rooted graph is an unlabeled rooted graph. We denote

by G∗ the set of unlabeled rooted locally finite graphs.

The local topology is the smallest topology such that for any g ∈ G∗ and integer t ≥ 1, the

G∗ → {0, 1} function f(G, o) = 1((G, o)t ' g) is continuous, where (G, o)t is the induced rooted

graph spanned by the vertices at graph distance at most t from o. This topology is metrizable with

the metric

dloc(g, h) =
∞∑
t=1

2−t1(gt 6= ht). (12)

Moreover, it is not hard to check that the space (G∗, dloc) is separable and complete metric space

(or Polish space).

We now consider P(G∗) the set of probability measures on G∗. An element ρ ∈ P(G∗) is the law

of (G, o), a random rooted graph. Since G∗ is a Polish space, we may safely consider the local weak

topology on P(G∗). Recall that it is the smallest topology such that for any continuous bounded

function f : G∗ → R, the function ρ 7→ Eρf(G, o) is continuous, where under Pρ, (G, o) has law ρ.

It is well known that this weak convergence is metrizable by the Lévy-Prohorov distance which we

will denote by dwloc (the actual definition of the Lévy-Prohorov distance will not be used here).

Then (P(G∗), dwloc) is also a separable and complete metric space.

For a finite graph G = (V,E) and v ∈ V , one writes G(v) for the connected component of G

at v. One defines the probability measure U(G) ∈ P(G∗) as the law of the equivalence class of the

rooted graph (G(o), o) where the root o is sampled uniformly on V :

U(G) =
1

|V |
∑
v∈V

δg(v),

where g(v) is the equivalence class of (G(v), v). See Figure 2 for a concrete example. In the passage

from G to U(G) we have lost some information on the graph G, notably the labels of the vertices.

If (Gn)n≥1, is a sequence of finite graphs, we shall say that Gn has local weak limit (or Benjamini-

Schramm limit) ρ ∈ P(G∗) if U(Gn) → ρ weakly in P(G∗). A measure ρ ∈ P(G∗) is called sofic if

11



1 2

3 4

5
α β γ

Figure 2: Example of a graph G and its empirical neighborhood distribution. Here U(G) =
1
5(2δα + 2δβ + δγ), where α, β, γ ∈ G∗ are the unlabeled rooted graphs depicted above (the black

vertex is the root), with g(1) = g(4) = α, g(2) = g(3) = β, g(5) = γ.

there exists a sequence of finite graphs (Gn)n≥1, whose local weak limit is ρ. In other words, the

set of sofic measures is the closure of the set {U(G) : G finite}. The set of sofic measures will be

denoted by Psof(G∗).
We may define similarly locally finite connected graphs with two roots (G, o, o′) and extend

the notion of isomorphisms to such structures. We define G∗∗ as the set of equivalence classes of

graphs (G, o, o′) with two roots and associate its natural local topology. A function f on G∗∗ can

be extended to a function on connected graphs with two roots (G, o, o′) through the isomorphism

classes. Then, a measure ρ ∈ P(G∗) is called unimodular if for any measurable function f : G∗∗ →
R+, we have

Eρ
∑
v∈V

f(G, o, v) = Eρ
∑
v∈V

f(G, v, o), (13)

where under Pρ, (G, o) has law ρ. It is immediate to check that if G is finite then U(G) is unimodular

: indeed, if u and v are in the same connected component then by definition, G(u) = G(v). It

follows that

EU(G)

∑
v∈V

f(G, o, v) =
1

|V |
∑
u∈V

∑
v∈V (G(u))

f(G(u), u, v)

=
1

|V |
∑
v∈V

∑
u∈V (G(v))

f(G(v), u, v)

= EU(G)

∑
v∈V

f(G, v, o).

We will denote by Puni(G∗) the set of unimodular measures.

Lemma 2.1. The set Puni(G∗) is closed for the local weak topology.

Proof. We follow [15]. Let ρn → ρ and f : G∗∗ → R+. Let t > 0 and g ∈ G∗ with radius

from the root at most t, observe that by dominated convergence (13) holds for ft,g(G, u, v) =

12



t ∧ f(G, u, v)1(dG(u, v) ≤ t)1((G, u)t ' g). Then, summing over all countably many g, it holds for

ft(G, u, v) = t ∧ f(G, u, v)1(dG(u, v) ≤ t). By monotone convergence, it also holds for f . �

In particular, the above lemma implies that all sofic measures are unimodular, the converse

is open, for a discussion see [4]. It is however known that all unimodular probability measures

supported on rooted trees are sofic, see Elek [39], Bowen [24], and for alternative proofs [14, 19].

In this last reference, the asymptotics number of graphs G with n vertices and m edges such that

U(G) is close to a given ρ ∈ Puni(G∗) is computed when ρ is supported on rooted trees.

Let G = (Γ, E) be a Cayley graph of a discrete group Γ with generating set S = S−1, E =

{{u, v}, vu−1 ∈ S}. Let o be the unit of Γ. Then the counting measure on Γ, ν =
∑

v∈Γ δv is

unimodular in the group theoretic sense (invariant by left and right multiplication). In particular,

any function f : Γ × Γ → R+ invariant by right multiplication (i.e. such that f(u, v) = f(uγ, vγ)

for all γ ∈ Γ) will satisfy ∑
v∈Γ

f(o, v) =
∑
v∈Γ

f(o, v−1) =
∑
v∈Γ

f(v, o).

It implies that if we define the measure ρ ∈ P(G∗) which puts a Dirac mass at the equivalence class

of (G, o), then ρ is unimodular.

With a slight abuse of language, we shall say that a random rooted graph (G, o) is unimodular

if the law of its equivalence class in G∗ is unimodular.

2.1 Extension to weighted graphs

A weighted graph (G,ω) is a graph G = (V,E) equipped with a weight function ω : V 2 → Z such

that ω(u, v) = 0 if u 6= v and {u, v} /∈ E. The weight function is edge-symmetric if ω(u, v) = ω(v, u)

and ω(u, u) = 0. Note that, for edge-symmetric weight functions, the set of edges such that ω(e) = k

spans a subgraph of G. It is straightforward to extend the local weak topology to weighted graphs.

The definition of unimodularity carries over naturally to the weighted graphs (see the definition of

unimodular network in [4]).

2.2 Examples of unimodular graphs and local weak limits

Finite window approximation of a lattice : consider an integer d ≥ 1, the graph of Zd and

Ln = Zd ∩ [1, n]d. Then, the local weak limit of Ln is the Dirac mass of the equivalence class of

(Zd, o). Indeed, if t is an integer (Ln, v)t ' (Zd, o)t for all v ∈ V (Ln) which are distance at least t

from Zd\[1, n]d. It follows that (Ln, v)t ' (Zd, o)t for all but O(tnd−1) = o(|V (Ln)|) vertices.

The same argument will work for any amenable graph. As an exercise, what is the local weak

limit of a complete binary tree Tn of height n ?

Percolation on a lattice : Consider an integer d ≥ 1 and the usual bond percolation on the graph

of Zd where each edge is kept with probability p ∈ [0, 1], we obtain a random subgraph G of Zd.
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Then, a.s. the local weak limit of Gn = G ∩ [1, n]d is perc(Zd, p), the law of the equivalence class

of (G(o), o).

Unimodular Galton-Watson trees : Let P ∈ P(Z+) with positive and finite mean. The unimodular

Galton-Watson tree with degree distribution P (commonly known as size-biased Galton-Watson

tree) is the law of the random rooted tree obtained as follows. The root has a number d of children

sampled according to P , and, given d, the subtrees of the children of the root are independent

Galton-Watson trees with offspring distribution

P̂ (k) =
(k + 1)P (k + 1)∑

` `P (`)
. (14)

These unimodular trees appear naturally as a.s. local weak limits of uniform random graphs with a

given degree distribution, see e.g. [38, 33, 17]. It is also well known that the Erdős-Rényi G(n, c/n)

has a.s. local weak limit the Galton-Watson tree with offspring distribution Poi(c). Note that if P

is Poi(c) then P̂ = P . The percolation on the hypercube {0, 1}n with parameter c/n has the same

a.s. local weak limit.

Skeleton tree : The infinite skeleton tree which consists of a semi-infinite line Z+ rooted at 0 with

i.i.d. critical Poisson Galton-Watson trees Poi(1) attached to each of the vertices of Z+. It is the

a.s. local weak limit of the uniformly sampled spanning tree on n labeled vertices.

2.3 Spectral measure

Remark that if two rooted graphs (G1, o1) and (G2, o2) are isomorphic then the spectral measures

µ
eoi
Gi

, i = 1, 2 are equal. It thus makes sense to define µeoG for elements (G, o) ∈ G∗. Then, if

ρ ∈ P(G∗) is supported on graphs with bounded degrees, we may consider the expected spectral

measure at the root vector :

µρ = EρµeoG . (15)

In particular, if |V | = n is finite, we find from (1)

µU(G) =
1

n

n∑
k=1

δλk .

It is consistent with our previous definition (8). Similarly, if G is a Cayley graph and ρ = δ(G,o) we

find µρ = µG which is consistent with (11).

It is not clear a priori how to extend this construction to random graphs without bounded

degrees. It can be difficult to check that adjacency operators are essentially self-adjoint. It turns

out however that for unimodular measures, A is always ρ-a.s. essentially self-adjoint and µρ = EρµeoA
is thus well-defined without any bounded degree assumption.
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Proposition 2.2. For any ρ ∈ Puni(G∗),

(i) the adjacency operator A is ρ-a.s. essentially self adjoint,

(ii) if ρn ∈ Puni(G∗) and ρn → ρ, then µρn converges weakly to µρ.

In particular, if a sequence of finite graphs (Gn)n≥1 has local weak limit ρ then the empirical

distribution of the eigenvalues of their adjacency matrices converges weakly to µρ. In the next

subsection, we will reinforce this convergence. Restricted to sofic measures, the proof of this

proposition is contained in [22], [21]. To bypass this limitation, we introduce some concepts of

operator algebras. The idea being that to any unimodular measure we can associate a Von Neumann

algebra which is analog to the group algebra considered above.

Consider a Von Neumann algebra M of bounded linear operators on a Hilbert space H with

a normalized trace τ . If A ∈ M is self-adjoint, we denote by νA its spectral measure, i.e. the

probability measure such that

τ(Ak) =

∫
xkdνA(x).

The rank of A is defined as

rank(A) = 1− νA({0}).

This is the natural notion of rank. Indeed, consider a closed vector space S of H such that, PS ,

the orthogonal projection to S, is an element of M. The von Neumann dimension of such vector

space S is

dim(S) := τ(PS) = rank(PS). (16)

We refer for example to Kadison and Ringrose [52].

There is a natural Von Neumann algebra associated to unimodular measures. More precisely,

let G∗ denote the set of equivalence classes of locally finite connected (possibly weighted) graphs

endowed with the local weak topology. There is a canonical way to represent an element (G, o) ∈ G∗

as a rooted graph on the vertex set V (G) = {o, 1, 2, · · · , N} with N ∈ N ∪ {∞}, see Aldous and

Lyons [4]. We set V = {o, 1, 2, · · · }, H = `2(V ) and define B(H) as the set of bounded linear

operators on H. Then, for a fixed ρ ∈ Puni(G∗), we consider the Hilbert space H of ρ-measurable

functions ψ : G∗ → H, such that Eρ‖ψ‖22 < ∞ with inner product Eρ〈ψ,ϕ〉. Let us denote by

L∞(G∗,B(H), ρ) the ρ-measurable maps B : G∗ → B(H) with ‖B‖ ∈ L∞(G∗, ρ).

For any bijection σ : V → V , we consider the orthogonal operator λσ defined for all v ∈ V ,

λσ(ev) = eσ(u). We introduce the algebraM of operators in L∞(G∗,B(H), ρ) which commutes with

the operators λσ, i.e. for any bijection σ, ρ-a.s. B(G, o) = λ−1
σ B(σ(G), o)λσ. In particular, B(G, o)

does not depend on the root. It can be checked that M is a von Neumann algebra of operators

on the Hilbert space H (see [4, §5] and Lyons [64] for details). Moreover, the linear map M→ C
defined by

τ(B) = Eρ〈eo, Beo〉,
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where B = B(G, o) ∈ M and under, Eρ, (G, o) has distribution ρ, is a normalized faithful trace.

Observe finally that any (G, o) = (V (G), E, o) ∈ G∗ can be extended to a graph on V (all vertices in

V \V (G) are isolated). Then, the adjacency operator A : (G, o) 7→ A(G) defines a densely defined

operator affiliated to M (see again [64] for details). We may now turn to the proof of Proposition

2.2.

Proof of Proposition 2.2. Statement (i) is a consequence of Nelson [68]. First, since A : (G, o) 7→
A(G) is affiliated to M, from [51, Remark 5.6.3], Ā, the closure of A, is also affiliated to M.

Moreover, from [68, Theorem 1], A∗ is affiliated to M (see discussion below [73, Theorem 2.2]).

To prove statement (i) it is sufficient to check that Ā = A∗ (indeed, denoting by R the range of

an operator, if R(Ā + iI) = H then ρ-a.s. R(A(G) + iI) = H). Now, we introduce Vn(G) = {v ∈
V : degG(v) ≤ n and for all {u, v} ∈ E(G), degG(u) ≤ n} and let Pn ∈ M be the projection onto

Hn = {ψ ∈ H : ρ-a.s. supp(ψ(G, o)) ⊂ Vn(G)}. Observe that for ψ ∈ Hn, then ρ-a.s.

‖APnψ‖2 =
∑
v∈V

1(deg(v) ≤ n)

 ∑
u:{u,v}∈E

ψ(u)

2

≤ n
∑
v∈V

∑
u:{u,v}∈E

ψ2(u) ≤ n2‖ψ‖2.

Hence, APn is bounded and it follows that Hn is both in the domain of Ā and A∗. We deduce that

Ā and A∗ coincide on Hn. Moreover, since ρ is a probability measure on locally finite graphs,

Pρ (deg(o) > n or ∃v : {v, o} ∈ E,deg(v) > n) = ε(n)→ 0. (17)

Finally, since for any B ∈ M, dim(ker(B)) ≥ Pρ(eo ∈ ker(B(G, o))), we deduce from (16) that

dim(Hn) ≥ Pρ(eo ∈ Vn(G)) ≥ 1− ε(n). From [68, Theorem 3], Ā and A∗ are equal.

Let us prove statement (ii). Consider a sequence (ρn) converging to ρ in the local weak topology.

From the Skorokhod’s representation theorem one can define a common probability space such that

the rooted graphs (Gn, o) converge for the local topology to (G, o) where (Gn, o) has distribution

ρn and (G, o) has distribution ρ. Then, the following two facts hold true: (a) for any compactly

supported ψ ∈ `2(V ), for n large enough, Anψ = Aψ, where An and A are the adjacency operators

of Gn and G. And, (b) if P denotes the probability measure of the joint laws of (Gn, o) and (G, o),

from statement (i), P-a.s. A and An are essentially self-adjoint with common core, the compactly

supported ψ ∈ `2(V ). These last two facts imply the strong resolvent convergence, see e.g. [70,

Theorem VIII.25(a)]. From (4), the Cauchy-Stieltjes transform of µeoA is a diagonal coefficient of

the resolvent,

〈eo, (A− zI)−1eo〉 =

∫
dµeoA
x− z

.

It implies that ρ-a.s. µeoAn converges weakly to µeoA (recall that the pointwise convergence of Cauchy-

Stieltjes transform on C+ is equivalent to weak convergence). Taking expectation, we get µρn =

EρµeoAn converges weakly to µρ = EρµeoA . �

We conclude this paragraph with a perturbation inequality on the average spectral measures.

Recall that the Kolmogorov-Smirnov distance between two probability measures on R is the L∞
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norm of their cumulative distribution functions :

dKS(µ, ν) = sup
t∈R
|µ(−∞, t]− ν(−∞, t]|.

We have that dKS(µ, ν) ≥ dL(µ, ν) where dL is the Lévy distance,

dL(µ, ν) = inf {ε > 0 : ∀t ∈ R, µ(−∞, t− ε]− ε ≤ ν(−∞, t] ≤ µ(−∞, t+ ε] + ε}

The following simple lemma is the operator algebra analog of a well known rank inequality for

matrices (see e.g. Bai and Silverstein [10, Theorem A.43]).

Lemma 2.3. If A,B ∈M are self-adjoint,

dKS(νA, νB) ≤ rank(A−B).

Proof. We should prove that for any J = (−∞, t] we have |νA(J)− νB(J)| ≤ rank(A−B). There

is a convenient variational expression for νA(J) :

νA(J) = max{τ(P ) : PAP ≤ tP, P ∈ P}, (18)

where P ⊂ M is the set of projection operators (P = P ∗ = P 2) and S ≤ T means that T − S is

a non-negative operator. This maximum is reached for P equal to the spectral projection on the

interval J , (see e.g. Bercovici and Voiculescu [16, Lemma 3.2]).

Now let Q ∈ P such that νB(J) = τ(Q) and QBQ ≤ tQ. We denote H the range of Q and

we consider the projection operator R on H ∩ ker(A − B). Observe that RAR = RBR ≤ tR. In

particular, from (18), we get

τ(R) = dim(H(Q) ∩ ker(A−B)) ≤ νA(J). (19)

Then, the formula for closed linear subspaces, U, V ,

dim(U + V ) + dim(U ∩ V ) = dim(U) + dim(V ),

(see [50, exercice 8.7.31]) yields

dim(H ∩ ker(A−B)) ≥ dim(H) + dim(ker(A−B))− 1

≥ dim(H)− rank(A−B).

By definition dim(H) = νB(J) and Equation (19) imply that

νB(I)− rank(A−B) ≤ νA(I).

Reversing the role of A and B allows to conclude. �

For integer n ≥ 1, if G = (V,E) is locally finite, denote by Gn = (V,En) the subgraph spanned

by edges adjacent to vertices of degree at most n : En = {{u, v} ∈ E : deg(u) ∨ deg(v) ≤ n}.
If ρ ∈ Puni(G∗), let ρn be the law of (Gn(o), o) where (G, o) has distribution ρ and Gn(o) is the

connected component of o in Gn. It is easy to check that ρn ∈ Puni(G∗). By construction, the

operator A(Gn) has norm at most n. The next corollary will be useful.
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Corollary 2.4. If ρ, ρn ∈ Puni(G∗) are as above,

dKS(µρ, µρn) ≤ Pρ(deg(o) > n or ∃v : v, o ∈ E,deg(v) > n).

Proof. Consider the von Neumann algebra M associated to ρ. We define An : G∗ 7→ An(G) as the

adjacency operator spanned by edges adjacent to vertices of degree at most n. Since ‖An(G)‖ ≤ n,

we have An ∈M and νAn = µρn . Now, with ε(n) as in (17), we deduce that, for any n,m ∈ N,

rank(An −An+m) ≤ 1− Pρ(Aneo = An+meo) ≤ ε(n).

Using Lemma 2.3, we find that µρn is a Cauchy sequence for the Kolmogorov-Smirnov distance.

The space (P(R), dKS) is a complete metric space. It follows that µρn converges weakly to some

probability measure denoted by µ and dKS(µ, µρn) ≤ ε(n). However, from Proposition 2.2(ii), as

ρn converges weakly to ρ, µ = µρ .

2.4 Pointwise continuity of the spectral measure

In this last case, if moreover for some θ > 0 and for all v ∈ V (Gn), degGn(v) ≤ θ, then using Lück’s

approximation, the convergence can even be reinforced to the pointwise convergence of all atoms.

The next result is proved in Àbert, Thom and Viràg [1], see also [63, 75] for nearly equivalent

statements.

Theorem 2.5. Let ρ ∈ Puni(G∗). If (Gn)n≥1 is a sequence of finite graphs such that U(Gn) → ρ

then

lim
n→∞

dKS(µρ, µGn) = 0.

Consequently for any λ ∈ R, µGn({λ})→ µρ({λ}).

Notice that Proposition 2.2 and the Portemanteau theorem implies that for any λ, lim supn µGn(λ) ≤
µρ(λ), lim supn µGn(−∞, λ] ≤ µρ(−∞, λ] and lim infn µGn(−∞, λ) ≥ µρ(−∞, λ). Hence the con-

vergence for the Kolmogorov-Smirnov distance is equivalent to weak convergence together with

convergence of all atoms. Since µG(λ) = 0 for all finite graphs and all non-algebraic integers, a

striking consequence of Theorem 2.5 is the next result (first proved in the context of sofic groups

by Thom [75]).

Corollary 2.6. If ρ ∈ P(G∗) is sofic then all atoms of µρ are algebraic integers.

Even for Cayley graphs, it is an open problem to prove whether the statement of Corollary 2.6

holds for all ρ ∈ Puni(G∗). A negative answer would disprove the conjecture that all unimodular

graphs are sofic.

We now turn to the proof of Theorem 2.5. We will follow the proof of [1]. It is essentially a

consequence of the next result :
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Proposition 2.7. Let λ ∈ R, θ, ε ∈ R+. There exists a continuous function δ : R → [0, 1] with

δ(0) = 0 depending on λ and θ such that, for any finite graph G where all degrees are bounded θ,

we have

µG(λ) ≤ µG((λ− ε, λ+ ε)) ≤ µG(λ) + δ(ε).

The strength of Proposition 2.7 is a uniform control with respect to size of the graph on the

mass around a small interval. It will be a consequence of the repulsion of the distinct eigenvalues

coming from the fact that the adjacency matrix has integer coefficients.

Proof of Theorem 2.5. From Corollary 2.4, we may restrict to the case where Gn and G have

degrees bounded by θ for some θ > 0. Also, as already pointed, it is enough to prove that

lim inf µGn(λ) ≥ µρ(λ).

From Portemanteau theorem, for any ε > 0, we have

lim inf µGn(λ− ε/2, λ+ ε/2) ≥ µρ(λ− ε/2, λ+ ε/2) ≥ µρ(λ).

We get from Proposition 2.7 that

µρ(λ) ≤ lim inf µGn(λ) + δ(ε).

It remains to take ε→ 0. �

Proof of Proposition 2.7. We start with two simple remarks. The set A(k, θ) of algebraic integers

of degree at most k such that all roots of its minimal polynomial (the Galois conjugates) have

modulus at most θ is finite. Indeed, the coefficients of the minimal polynomial are integers with

absolute value bounded by |θ|`
(
k
`

)
for some 1 ≤ ` ≤ k. Also, if x ∈ R is an algebraic integer of

degree k then

µG(x) ≤ 1

k
.

(if x is an eigenvalue of A then all its Galois conjugates are also eigenvalues of A with the same

multiplicity).

Now, we set n = |V (G)| and we denote by λ1, · · · , λn the eigenvalues of the adjacency matrix

A of G. They are the roots of the characteristic polynomial P ∈ Z[x] of A. Moreover for all i,

|λi| ≤ θ. From what precedes, we deduce that for all there exists an integer k(ε) such that k(ε)→ 0

as ε → 0 and the open set I = (λ − ε, λ + ε)\{λ} does not intersect A(k(ε), θ). Consequently, for

any x ∈ I, µG(x) ≤ 1/k(ε). We introduce the scalars

α = n−2|{(i, j) : λi = λj , λi ∈ I}|

β = n−2|{(i, j) : λi 6= λj , λi ∈ I, λj ∈ I}|.
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From what precedes,

α =
∑

x∈σ(A)∩I

µ(x)2 ≤ 1

k

∑
x∈σ(A)

µ(x) =
1

k(ε)
.

Hence,

β = µ(I)2 − α ≥ µ(I)2 − 1

k(ε)
. (20)

We introduce

D = D(λ1, · · · , λn) =
∏

(i,j):λi 6=λj

(λi − λj).

Observe that D is invariant by permutation, hence it can be written in terms of the elementary

symmetric polynomials. Since P ∈ Z[x], we get that D ∈ Z. In particular |D| ≥ 1 and we find

1 ≤ (2ε)n
2β(2θ)n

2
,

the above inequality is the key relation which allows to quantify the repulsion of the distinct

eigenvalues. Taking logarithm, we find

0 ≤ β log(2ε) + log(2θ).

Using (20) yields to, for any 0 < ε < 1/2,

µ(I)2 ≤ 1

k(ε)
+

log(2θ)

| log(2ε)|
.

The conclusion follows. �

3 Atoms and eigenvectors

In this section, we will give criteria for existence of a continuous part in µρ where ρ ∈ Puni(G∗). To

motivate the sequel, let us give some comments on the atomic part of µρ.

3.1 Finite graphs

First, it is important to keep in mind that atoms are related to eigenspaces : if A is ρ-a.s. a bounded

operator, then the spectral resolution of A gives that (see (2))

µρ(λ) = EµeoG (λ) = E〈eo, E{λ}eo〉 = dim(S{λ}), (21)

where S{λ} is the vector space spanned by vectors ψ ∈ `2(V ) such that Aψ = λψ and dim(·) is the

von Neumann dimension defined by (16).

Also, for any Borel B ⊂ R, we apply unimodularity to the function f(G, u, v) = µeuG (B)/|V | if

G is finite and f equal to 0 otherwise. We find

EρµeoG (B)1|V |<∞ = Eρ
1

|V |
∑
v∈V

µevG (B)1|V |<∞ = EρµG(B)1|V |<∞, (22)
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where we have used (9). It follows that

µρ � EρµG1|V |<∞, (23)

where µ � ν means that that µ(B) ≤ ν(B) for any Borel B. A countable sum of atomic measures

is atomic. We deduce the following simple lemma.

Lemma 3.1. If ρ ∈ Puni(G∗) is supported on finite graphs then µρ is purely atomic.

We denote by T ∗ ⊂ G∗, the set of unlabeled rooted trees and by T ∗f ⊂ T ∗ the subset of finite

trees. Salez [72] has proved any algebraic integer λ is an eigenvalue of the adjacency matrix of a

finite tree. Hence, a corollary of his result, (23) and Theorem 2.5 is

Lemma 3.2. Let ρ = Puni(G∗) whose support contains T ∗f . If λ ∈ R is an algebraic integer then

µρ(λ) > 0 otherwise µρ(λ) = 0. In particular, the pure point part of µρ is dense in R.

For example, let us consider the case where ρ = UGW(Poi(c)) is the distribution of a Poisson

Galton-Watson tree with mean offspring c > 0. Recall that if 0 < c ≤ 1 then ρ-a.s. T is finite.

We deduce from Lemma 3.1 that if 0 < c ≤ 1, µρ is purely atomic. Moreover, for any c > 0, the

support of ρ contains T ∗f and we may apply lemma 3.2 to UGW(Poi(c)) for any c > 0.

3.2 Finite pending subgraphs

The atomic part of µρ does not only come from finite graphs. It may also come from the existence

of finite subgraphs. If g, g′ ∈ G∗, we denote by g ∪ g′ the rooted graph obtained by identifying the

two roots of g and g′ and taking the disjoint union of the edge and vertex sets. We write that g ⊂ g′

if there exists γ ∈ G∗ such that g ∪ γ = g′. We also define g+ as the graph obtained by adding a

new neighboring vertex to the root and defining the new root as being this new vertex. The next

result generalizes Lemma 3.2.

Lemma 3.3. Let ρ ∈ Puni(G∗) such that for any τ ∈ T ∗f , Pρ(τ ⊂ (G, o)) > 0. If λ ∈ R is an

algebraic integer then µρ(λ) > 0 otherwise µρ(λ) = 0. In particular, the pure point part of µρ is

dense in R.

As an application, take ρ = UGW(Poi(c)) and c > 1. Then, T is infinite with positive proba-

bility, p = 1 − e−cp. The measure ρ∞ (resp. ρf ) is defined as the law of (T, o) conditioned on T

infinite (resp. finite) is a unimodular measure. We have µρ = pµρ∞ + (1 − p)µρf . It not hard to

check that the assumption of Lemma 3.3 holds for ρ∞. We deduce that the total mass of atoms in

µρ is larger than 1− p and it does not come solely from the contribution of finite trees.

Proof of Lemma 3.3. We are going to build finitely supported eigenvectors. Let λ ∈ R be an

algebraic integer. From [72] there exists a finite tree t ∈ T ∗f such that A(t) has eigenvalue λ with
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associated eigenvector ψ, ‖ψ‖2 = 1. We may also require that t isλ- irreducible in the sense that

that λ is simple and for all v ∈ V (t), ψ(v) 6= 0. Indeed, if it is the case that ψ(v) = 0, the two trees

obtained by removing the vertex v have also eigenvalue λ (with eigenvector the restriction of ψ to

their vertex set). For any γ ∈ G∗, we consider g(γ) = t ∪ (γ ∪ t+)+, see Figure 3.

o

u

T2

T1

0

ψ

−ψ

v

Figure 3: Construction of the eigenvector

As in Corollary 2.4, we introduce the truncated version ρn of ρ. By assumption on an event

with probability (under ρ) at least p, there exists γ such that (G, o) ' g(γ). If the truncation of the

degrees, n, is high enough, this will also holds under ρn with the same probability. We write, with

obvious notation, (G, o) = (T1, o)∪ (G2, o), with (T1, o) ' t and (G2, o) ' (γ ∪ t+)+ (see Figure 3).

Let us call u the neighbor of o with subgraph (G2, u) ' (γ ∪ t+) and v the neighboring vertex of u

in V (G2) with subgraph (T2, v) ' t. We consider the vector ϕ equal to 0 on V (G2\T2), equal (up

to isomorphism) to −ψ/
√

2 on T2 and ψ/
√

2 on T1. If A is the adjacency operator of G, we find

that Aϕ = λϕ, indeed, we have Aϕ(u) = ϕ(o) +ϕ(v) = 0 = λϕ(u) and all other vertices satisfy the

eigenvalue equation. Moreover, by hypothesis ϕ(o) = ψ(o) 6= 0.

With the notation of (21), ϕ ∈ E{λ} and it yields to

µeoG (λ) ≥ 〈ϕ, eo〉2 = ψ(o)2/2.

Finally, taking expectation, under ρn, we get that µρn(λ) > pψ(o)2/2. Letting n go to infinity, the

conclusion follows from Corollary 2.4. �

At least for finite graphs, it is possible to extend the idea of the proof of Lemma 3.3 to compute

the mass of an atom. Let us consider an algebraic integer λ and a finite rooted graph L which

is λ-irreducible, in the sense that λ is a simple eigenvalue of the adjacency matrix of L and its

eigenvector has no zero entries.

Lemma 3.4. Let λ ∈ R and L be a λ-irreducible rooted graph. Assume that G is a finite graph
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and o ∈ V (G) is a vertex such that L+ ⊂ (G, o) then

dim ker(A(G)− λ) = dim ker(A(G\L+)− λ).

Proof. Denote by u the root of L and G′ = G\L+. We have that Aeo = eu + α where α ∈
`2(V (G′)). Let ϕ ∈ ker(A(G) − λ). We denote by ϕL and ϕG′ the restrictions of ϕ to L and G′.

We find A(L)ϕL = λϕL + ϕ(o)eo. In particular ϕ(o)eo ∈ im(A(L) − λ) = ker(A(L) − λ)⊥. By

assumption, there is a unique vector ψ in ker(A(L)−λ) such that ψ(u) = 1. We get that ϕ(o) = 0,

ϕG′ ∈ ker(A(G′) − λ) and ϕL = cψ for some c ∈ R. We also have 0 = (A(G)ϕ)(o) = c + α∗ϕG′ .

Hence, c is uniquely determined by ϕG′ and there is an isomorphism between ker(A(G) − λ) and

ker(A(G′)− λ). �

For λ = 0, observe that a single vertex graph is 0-irreducible. Hence, the above lemma gives

an algorithm, the leaf removal algorithm, to compute recursively the rank of the adjacency matrix

of a finite tree. Interestingly, it also the size of the maximal number of vertices covered by a finite

tree. In this context, it was notably studied by Bauer and Golinelli [12, 11].

3.3 Computation of the atom at 0

We have seen so far two ways to generate some masses at a given λ ∈ R : either by a finite graph

or by a finite pending subgraph (both are associated with finitely supported eigenvectors). It may

not cover all cases, as Theorem 1.1 illustrates for the lamplighter group. Also, for λ = 0, it is a

consequence of [22] that for any d ≥ 0, there exist D and ρ ∈ Puni(T ∗) such that ρ-a.s. all degrees

of vertices are in [d,D] and µρ(0) > 0. With d ≥ 2, it implies that unimodular trees without any

finite pending subtrees can have a spectral measure with a pure point part.

The exact value of µρ(0) can also be computed in non-trivial examples. The main result of [22]

is the following.

Theorem 3.5. Let ρ be the distribution of a UGW tree T whose degree distribution π has a finite

second moment, and let φ be the generating function of π. Then, A(T ) is ρ-a.s. essentially self

adjoint and

µρ({0}) = max
x∈[0,1]

M(x),

where

M(x) = φ′(1)xx+ φ(1− x) + φ(1− x)− 1, with x = φ′(1− x)/φ′(1).

3.4 Quantum Percolation

For simplicity, the above discussion was focused on unimodular trees. We may also study ρ =

perc(Zd, p), the law of the connected component of the origin in bond percolation in Zd where each

edge is present independently with probability 0 < p < 1. In this case, the measure µρ has support

[−2d, 2d]. Lemma 3.1 implies that for 0 < p < pc(d), µρ is purely atomic. For pc(d) < p < 1,
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µρ has a dense pure point part, even when we condition the law of ρ on the event that connected

component of the origin is infinite. This fact was first observed by Kirkpatrick and Eggarter [58]

and Chayes et al. [27].

Physicists are mainly interested in eigenvectors and existence of continuous spectrum. Shortly

after the seminal work of Anderson [7], the study of random Hamiltonians generated by percolation

on the Euclidean lattice was initiated in [31, 32] under the name of quantum percolation. For clarity,

let us define the Anderson model. Consider a transitive graph G = (V,E) on a countable vertex set

V (for example G is the graph of Zd or G is the infinite d-regular tree). The Anderson tight-binding

model on G is formally defined by the operator on `2(V ),

H = A+ λV ;

where A is the adjacency operator of G, λ > 0 is the strength of disorder and V is a diagonal

operator with, for x ∈ V , V f(x) = Vxf(x) and (Vx)x∈V independent and identically distributed

real random variables. If G = Td is the infinite d-regular tree, then there is a intrinsic equation

satisfied by the law of diagonal terms of the resolvent of H. This is the starting point of all rigorous

statements on the fact that B has absolutely continuous spectrum at small disorder λ (under mild

assumptions on the law of V , see [59, 54, 2]). Proving the existence of Anderson delocalization

for random Schrödinger operators on the Euclidean lattice at small noise remains the main open

challenge in the area. On the other end, if λ is large enough, H has purely atomic spectrum, this

phenomenon is called Anderson localization, we refer to [36] for a recent account on the topic.

Quantum percolation is even harder to study, the randomness is now on the graph geometry

itself. One of the issue of quantum percolation models is that the lack of regularity of percolation

graphs does not allow to use Wegner estimates, that is the regularity of the density of states is

already difficult to study. In the simplified setting of random trees, robust criteria for the existence

of continuous spectrum are still to be found. The only know results are on small perturbations

of infinite regular trees [53, 18]. They are based on ideas first developed for the study of random

Schrödinger operators on the infinite regular tree [59, 44, 2, 54]. In [53, 18] it is notably shown that

Galton-Watson trees whose offspring distribution is sufficiently close to a Dirac mass at d ≥ 2 have

an absolutely continuous spectrum (it applies for example to percolation on the infinite d-regular

tree Td). In section 5 we will come back to the study of the eigenvectors of finite graphs.

4 Existence of continuous spectral measure

This section is based on a joint work with Sen and Viràg [23].

4.1 A few answers and many questions

Percolation on Z2 As above, we consider an integer d ≥ 2 and the edge percolation on Zd

where each edge of the graph of Zd is removed independently with probability 1 − p ∈ [0, 1]. Let
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perc(Zd, p) is the law of (G, o), the connected component containing the origin rooted at the origin.

As already pointed for p < pc, µperc(Zd,p) is purely atomic, and for p = 1, perc(Zd, 1) is simply Zd

rooted at the origin and its spectral measure is absolutely continuous (it is the convolution of d

arcsine distributions).

Theorem 4.1. Assume d = 2 and let ρ = perc(Z2, p). For any p > pc = 1/2, µρ has a non-trivial

continuous part.

Unimodular trees A weighted graph (G,ω) is a graph G = (V,E) equipped with a weight

function ω : V 2 → Z such that ω(u, v) = 0 if u 6= v and {u, v} /∈ E. The weight function is edge-

symmetric if ω(u, v) = ω(v, u) and ω(u, u) = 0. Note that, for edge-symmetric weight functions, the

set of edges such that ω(e) = k spans a subgraph of G. A line ensemble of G is a edge-symmetric

weight function L : V 2 → {0, 1} such that for all v ∈ V ,∑
u

L(u, v) ∈ {0, 2}.

Now, consider a unimodular graph (G, o). If, on an enlarged probability space, the weighted graph

(G,L, o) is unimodular and L is a.s. a line ensemble then we shall say that L is an invariant line

ensemble of (G, o). We shall say that a vertex v ∈ V is in L if
∑

u L(u, v) = 2 and outside L

otherwise.

Theorem 4.2. Let (T, o) be a unimodular tree with law ρ. If L is an invariant line ensemble of

(T, o) then for each real λ,

µρ(λ) ≤ P(o /∈ L)µρ′(λ)

where, if P(o /∈ L) > 0, ρ′ is the law of the rooted tree (T\L(o), o) conditioned on the root o /∈ L.

In particular, the total mass of atoms of µρ is bounded above by P(o /∈ L).

We will check in §4.4.1 below that the measure ρ′ is indeed unimodular. As a consequence, if

(T, o) has an invariant line ensemble such that P(o ∈ L) = 1 then µρ is continuous. Our next result

gives the existence of invariant line ensemble for a large class of unimodular trees. We recall that

for a rooted tree (T, o), a topological end is just an infinite simple path in T starting from o.

Proposition 4.3. Let (T, o) be a unimodular tree. If T has at least two topological ends with

positive probability, then (T, o) has an invariant line ensemble L with positive density: P(o ∈ L) > 0.

Moreover, we have the following lower bounds.

(i) P(o ∈ L) ≥ 1
6

(Edeg(o)−2)2

Edeg(o)2
as long as the denominator is finite.

(ii) Let q be the probability that T \ {o} has at most one infinite component. If deg(o) ≤ d a.s.,

then P(o ∈ L) ≥ 1
3 (Edeg(o)− 2q)/d.
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One of the natural examples where the conditions of Proposition 4.3 are not satisfied is the

infinite skeleton tree which consists of a semi-infinite line Z+ with i.i.d. critical Poisson Galton-

Watson trees attached to each of the vertices of Z+. It is the local weak limit of the uniform trees

on n labeled vertices.

Let P ∈ P(Z+) with positive and finite mean. The unimodular Galton-Watson tree with degree

distribution P (commonly known as size-biased Galton-Watson tree) is the law of the random

rooted tree obtained as follows. The root has a number d of children sampled according to P , and,

given d, the subtrees of the children of the root are independent Galton-Watson trees with offspring

distribution

P̂ (k) =
(k + 1)P (k + 1)∑

` `P (`)
. (24)

These unimodular trees appear naturally as a.s. local weak limits of random graphs with a given

degree distribution, see e.g. [38, 33, 17]. It is also well known that the Erdős-Rényi G(n, c/n) has

a.s. local weak limit the Galton-Watson tree with offspring distribution Poi(c). Note that if P is

Poi(c) then P̂ = P . The percolation on the hypercube {0, 1}n with parameter c/n has the same

a.s. local weak limit.

If P has first moment µ1 and second moment µ2, then the first moment of P̂ is µ̂ = (µ2−µ1)/µ1.

If P 6= δ2 and µ̂ ≤ 1, then the unimodular Galton-Watson tree is a.s. finite. If µ̂ > 1 (µ̂ = ∞ is

allowed), the tree is infinite with positive probability. Proposition 4.3 now implies the following

phase transition exists for the existence of a continuous part in the spectral measure.

Corollary 4.4. Let ρ be a unimodular Galton-Watson tree with degree distribution P 6= δ2. The

first moment of P̂ is denoted by µ̂. Then µρ contains a non-trivial continuous part if and only if

µ̂ > 1.

Note that for some choices of P , it is false that the total mass of the atomic part of µρ is equal

to the probability of extinction of the tree, it is only a lower bound (see [22]).

Let us conclude the intoduction with a few open questions.

Open questions

Question 4.5. Consider a unimodular Galton-Watson tree with degree distribution P with finite

support and P (0) = P (1) = 0. Does the expected spectral measure have only finitely many atoms?

Theorem 4.1 naturally inspires the following question. We strongly believe that the answer is

yes.

Question 4.6. Does supercritical bond percolation on Zd have a continuous part in its expected

spectral measure for every d ≥ 2?

In view of the result of Grigorchuk and Żuk [47] on the lamplighter group, the next problem

has some subtlety
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Question 4.7. Is there some monotonicity in the weights of the atoms of the spectral measure (for

some non-trivial partial order on unimodular measures)?

Our main results concern percolation on lattices and trees. It motivates the following question.

Question 4.8. What can be said about the regularity of the spectral measure for other nona-

menable/hyperbolic graphs and for other planar graphs (such as the uniform infinite planar trian-

gulation in Angel and Schramm [8])?

We have seen that regular trees with degree at least 2 contain invariant line ensembles with

density 1. A quantitative version of this would be that if the degree is concentrated, then the

density is close to 1. Based on the last part of Proposition 4.3. the following formulation is natural.

Question 4.9. Is there a function f with f(x) → 1 as x → 1 so that every unimodular tree of

maximal degree d ≥ 2 contains an invariant line ensemble with density at least f(Edeg(o)/d)?

Two open questions (Questions 4.23 and 4.24) can be found in subsection 4.4.4.

4.2 Two Tools for bounding eigenvalues multiplicities

We will develop two simple tools to prove the existence of a continuous part of the spectral measure

of unimodular graphs. We will give many examples where those two tools can be applied. Let us

state two results.

4.2.1 Monotone labeling

In this paragraph, we will use a carefully chosen labeling of the vertices of a graph to prove regularity

of its spectrum, the intuition being that a labeling gives an order to solve the eigenvalue equation

at each vertex.

Definition 4.10. Let G = (V,E) be a graph. A map η : V → Z is a labeling of the vertices of G

with integers. We shall call a vertex v

(i) prodigy if it has a neighbor w with η(w) < η(v) so that all other neighbors of w also have

label less than η(v),

(ii) level if not prodigy and if all of its neighbors have the same or lower labels,

(iii) bad if none of the above holds.

See Figure 4 for an illustration of these definitions.
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Figure 4: A labeling of a graph. The prodigy, level and bad vertices are marked with •, ◦ and �

respectively.

Finite graphs. We start with the simpler case of finite graphs.

Theorem 4.11. Let G be a finite graph, and consider a labeling η of its vertices with integers. Let

`, b denote the number of level and bad vertices, respectively. For any eigenvalue λ with multiplicity

m we have, if `j is the multiplicity of the eigenvalue λ in the subgraph induced by level vertices with

label j,

m ≤ b+
∑
j

`j .

Consequently, for any multiplicities m1, . . . ,mk of distinct eigenvalues we have

m1 + . . .+mk ≤ kb+ `.

Proof. Let S be the eigenspace for the eigenvalue λ of multiplicity m. Consider the set of bad

vertices, and let B be the space of vectors which vanish on that set. For every integer j, let Lj

denote the set of level vertices with label j and let Aj denote the eigenspace of λ in the induced

subgraph of Lj . With the notation of the theorem, dim(Aj) = `j . We extend the vectors in Aj

to the whole graph by setting them to zero outside Lj . Let A⊥j be the orthocomplement of Aj .

Recall that for any vector spaces A,B we have dim(A ∩ B) ≥ dimA − codimB. Using this, let

S′ = S ∩B ∩
⋂
j A
⊥
j , and note that

dimS′ ≥ dimS − codimB −
∑
j

codimA⊥j = m− b−
∑
j

dimAj . (25)

However, we claim that the subspace S′ is trivial. Let f ∈ S′. We now prove, by induction on

the label j of the vertices, low to high, that f vanishes on vertices with label j. Suppose that f

vanishes on all vertices with label strictly below j. Clearly, f vanishes on all bad vertices since

f ∈ B. Consider a prodigy v with label j. Then, by induction hypothesis, v has a neighbor w so

that f vanishes on all of the neighbors of w except perhaps at v. But the eigenvalue equation

λf(w) =
∑
u∼w

f(u)
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implies that f also vanishes at v. Now, observe that the outer vertex boundary of Lj (all vertices

that have a neighbor in Lj but are not themselves in Lj) is contained in the union of the set of

bad vertices, the set of level vertices with label strictly below j and the set of prodigy with label j.

Hence, we know that f vanishes on the outer vertex boundary of Lj . This means that the restriction

of f to Lj has to satisfy the eigenvector equation. But since f ∈ A⊥j , we get that f(v) = 0 for

v ∈ Lj , and the induction is complete.

We thus have proved that S′ is trivial. Thus Equation (25) implies that m ≤ b+
∑

j dimAj . It

gives the first statement of Theorem 4.11.

For the second statement, let Ai,j denote the eigenspace of λi in the induced subgraph of Lj .

Summing over i the above inequality, we get

m1 + . . .+mk ≤ bk +
∑
j

∑
i

dimAi,j ≤ bk +
∑
j

|Lj | = bk + `.

�

Unimodular graphs. We now prove the same theorem for unimodular random graphs which

may possibly be infinite. To make the above proof strategy work, we need a suitable notion

of normalized dimension for infinite dimensional subspaces of `2(V ). This requires some basic

concepts of operator algebras. First, as usual, if (G, o) is a unimodular random graph, we shall say

that a labeling η : V (G) → Z is invariant if on an enlarged probability space, the vertex-weighted

rooted graph (G, η, o) is unimodular.

We have seen in the proof of Proposition 2.2 that there is a natural Von Neumann algebra

associated to unimodular measures. For a fixed ρ ∈ Puni(G∗), we introduce the algebra M of

operators in L∞(G∗,B(H), ρ) which commutes with the operators λσ, i.e. for any bijection σ, ρ-

a.s. B(G, o) = λ−1
σ B(σ(G), o)λσ. In particular, B(G, o) does not depend on the root. It is a Von

Neumann algebra and the linear map M→ C defined by

τ(B) = Eρ〈eo, Beo〉,

where B = B(G, o) ∈ M and under, Eρ, G has distribution ρ, is a normalized faithful trace (see

[4, §5] and Lyons [64]).

A closed vector space S of H such that, PS , the orthogonal projection to S, is an element ofM
will be called an invariant subspace. Recall that the von Neumann dimension of such vector space

S is just

dim(S) := τ(PS) = Eρ〈eo, PSeo〉.

We refer e.g. to Kadison and Ringrose [52].

Theorem 4.12. Let (G, o) be unimodular random graph with distribution ρ, and consider an in-

variant labeling η of its vertices with integers. Let `, b denote the probability that the root is level or
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bad, respectively. For integer j and real λ, let `j be the von Neumann dimension of the eigenspace

of λ in the subgraph spanned by level vertices with label j. The spectral measure µρ satisfies

µρ(λ) ≤ b+
∑
j

`j .

Consequently, for any distinct real numbers λ1, . . . , λk, we have

µρ(λ1) + . . .+ µρ(λk) ≤ kb+ `.

In particular, if b = 0, then the atomic part of µρ has total weight at most `.

Proof. We first assume that there are only finitely many labels. Let S be the eigenspace of λ :

that is the subspace of f ∈ `2(V ) satisfying, for all w ∈ V ,

λf(w) =
∑
u∼w

f(u). (26)

Consider the set of bad vertices, and let B be the space of vectors which vanish on that set. For

every integer j let Lj denote the set of level vertices with label j. Let Aj denote the eigenspace of

λ in the induced subgraph of Lj ; extend the vectors in Aj to the whole graph by setting them to

zero outside Lj . Let A⊥j be the orthocomplement of Aj .

For any two invariant vector spaces R,Q we have

dim(R ∩Q) ≥ dim(R) + dim(Q)− 1,

(see e.g. [50, exercice 8.7.31]). Setting S′ = S ∩B ∩
⋂
j A
⊥
j , it yields to

dim(S′) ≥ dim(S) + dim(B)− 1 +
∑
j

(dim(A⊥j )− 1) = µρ(λi)− b−
∑
j

dim(Aj).

However, we claim that the subspace V ′i is trivial. Let f ∈ V ′i . We now prove, by induction on

the label j of the vertices, low to high, that f vanishes on vertices with label j. The argument is

exactly similar to the case of finite graphs presented before. Suppose that f vanishes on all vertices

with label strictly below j. Clearly, f vanishes on all bad vertices since f ∈ B. Consider a prodigy

v with label j. Then v has a neighbor w so that f vanishes on all of the neighbors of w except

perhaps at v. But the eigenvalue equation (26) implies that f also vanishes at v. By now, we know

that f vanishes on the outer vertex boundary of Lj . This means that the restriction of f to Lj has

to satisfy the eigenvector equation. But since f ∈ A⊥j , we get that f(v) = 0 for v ∈ Lj , and the

induction is complete.

We have proved that µρ(λi) ≤ b+
∑

j dim(Aj) : it is the first statement of the theorem in the

case of finitely many labels. When there are infinitely many labels, for every ε, we can find n so

that P(|η(o)| > n) ≤ ε. We can relabel all vertices with |η(v)| > n by −n− 1; this may make them
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bad vertices, but will not make designation of vertices with other labels worse. The argument for

finitely many labels gives

µρ(λ) ≤ b+ ε+

n∑
j=−n−1

dim(Aj) ≤ b+ 2ε+

n∑
j=−n

dim(Aj) ≤ b+ 2ε+
∑
j

`j ,

and letting ε→ 0 completes the proof of the first statement.

For the second statement, let Ai,j denote the eigenspace of λi in the induced subgraph of Lj .

Summing over i the above inequality, we get

µρ(λ1) + . . .+ µρ(λk) ≤ bk +
∑
j

∑
i

dim(Ai,j) ≤ bk +
∑
j

P(o ∈ Lj) = bk + `.

�

Vertical percolation. There are simple examples where we can apply Theorems 4.11-4.12.

Consider the graph of Z2. We perform a vertical percolation by removing some vertical edge

{(x, y), (x, y + 1)}. We restrict to the n× n box [0, n− 1]2 ∩ Z2. We obtain this way a finite graph

Λn on n2 vertices. We consider the labeling η((x, y)) = x. It appears that all vertices with label

different from 0 are prodigy. The vertices on the y-axis are bad and there are no level vertices.

By Theorem 4.11, the multiplicity of any eigenvalue of the adjacency matrix of Λn is bounded by

n = o(n2).

Similarly, let p ∈ [0, 1]. We remove each vertical edge {(x, y), (x, y + 1)} independently with

probability 1 − p. We obtain a random graph Λ(p) with vertex set Z2. Now, we root this graph

Λ(p) at the origin and obtain a unimodular random graph. We claim that its spectral measure is

continuous for any p ∈ [0, 1]. Indeed, let k ≥ 1 be an integer and U be a random variable sampled

uniformly on {0, · · · , k − 1}. We consider the labeling η((x, y)) = x+ U mod(n). It is not hard to

check that this labeling is invariant. Moreover, all vertices such that η(x, y) 6= 0 are prodigy while

vertices such that η(x, y) = 0 are bad. It follows from Theorem 4.12 that the mass of any atom of

the spectral measure is bounded by 1/k. Since k is arbitrary, we deduce that the spectral measure

is continuous.

The same holds on Zd, d ≥ 2, in the percolation model where we remove edges of the form

{u, u+ ek}, with u ∈ Zd, k ∈ {2, · · · , d}.

4.2.2 Minimal path matchings

In this subsection, we give a new tool to upper bound the multiplicities of eigenvalues.

Definition 4.13. Let G = (V,E) be a finite graph, I = {i1, · · · , ib} and J = {j1, · · · , jb} be two

disjoint subsets of V of equal cardinal. A path matching Π = {π`}1≤`≤b from I to J is a collection

of self-avoiding paths π` = (u`,1, · · · , u`,p`) in G such that for some permutation σ on {1, · · · , b}
and all 1 ≤ ` 6= `′ ≤ b,
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• π`′ ∩ π` = ∅,

• u`,1 = i` and u`,p` = jσ(i`).

We will call σ the matching map of Π. The length of Π is defined as the sum of the lengths of

the paths

|Π| =
b∑
`=1

|π`| =
b∑
`=1

|p`|.

Finally, Π is a minimal path matching from I to J if its length is minimal among all possible

paths matchings.

Connections between multiplicities of eigenvalues and paths have already been noticed for a

long time, see e.g. Godsil [46]. The following theorem and its proof are a generalization of Kim and

Shader [57, Theorem 8] (which is restricted to trees).

Theorem 4.14. Let G = (V,E) be a finite graph and I, J ⊂ V be two subsets of cardinal b. Assume

that the sets of path matchings from I to J is not empty and that all minimal path matchings from

I to J have the same matching map. Then if |V | − ` is the length of a minimal path matching and

if m1, · · · ,mr are the multiplicities of the distinct eigenvalues λ1, · · · , λr of the adjacency matrix

of G, we have
r∑
i=1

(mi − b)+ ≤ `.

Consequently, for any 1 ≤ k ≤ r,

m1 + · · ·+mk ≤ kb+ `.

We will aim at applying Theorem 4.14 with b small and |V | − ` proportional to |V |. Observe

that ` is the number of vertices not covered by the union of paths involved in a minimal path

matching. Theorem 4.14 and Theorem 4.12 have the same flavor but they are not equivalent. We

note that, contrary to Theorem 4.11-Theorem 4.12, we do not have a version of Theorem 4.14

which holds for possibly infinite unimodular graphs. Unlike Theorem 4.11, we do not have either a

version which bounds the multiplicity of an eigenvalue in terms of its multiplicities in subgraphs.

On the other hand, Theorem 4.14 will be used to show the existence of non-trivial continuous part

for the expected spectral measure of two dimensional supercritical bond percolation. It is not clear

how to apply Theorem 4.11 or Theorem 4.12 to get this result.

Following [57], the proof of Theorem 4.14 is based on the divisibility properties of characteristic

polynomials of subgraphs. For I, J ⊂ V , we define (A − x)I,J has the matrix (A − x) where the

rows with indices in I and columns with indices in J have been removed. We define the polynomial

associated to the (I, J)-minor as :

PI,J(A) : x 7→ det(A− x)I,J .
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We introduce the polynomial

∆b(A) = GCD (PI,J(A) : |I| = |J | = b) ,

where GCD is the greatest common divisor in the ring of polynomials R[x] : by convention, GCD

is a monic polynomial. Recall also that any polynomial divides 0. Observe that if |I| = b then

PI,I(A) is a polynomial of degree |V | − b. It follows that the degree of ∆b is at most |V | − b.
The next lemma is the key to relate multiplicities of eigenvalues and characteristic polynomial

of subgraphs.

Lemma 4.15. If A is a symmetric matrix and m1, · · · ,mr are the multiplicities of its distinct

eigenvalues λ1, · · · , λr, we have

∆b(A) =

r∏
i=1

(x− λi)(mi−b)+ .

Consequently,
r∑
i=1

(mi − b)+ = deg(∆b(A)).

Proof. We set |V | = n. If B(x) ∈ Mn(R[x]) is an n× n matrix with polynomial entries, we may

define analogously PI,J(B(x)) = detB(x)I,J and ∆b(B(x)) (we retrieve our previous definition

with B(x) = A − x). Let B1(x), · · · , Bn(x) be the columns of B(x). The multi-linearity of the

determinant implies that

det(w11B1(x) + w21B2(x) + · · ·+ wn1Bn(x), B2(x), · · · , Bn(x))I,J

=

n∑
j=1

wj1 det(Bi(x), · · · , Bn(x))I,J(j)

is a weighted sum of determinants of the minors of the form (I, J (j)), where J (j) = (J \ {1}) ∪ {j}
if 1 ∈ J and J (j) = J if 1 /∈ J. It is thus divisible by ∆b(B(x)). The same holds for the rows of

B(x). We deduce that if U,W ∈Mn(R), ∆b(B(x)) divides ∆b(UB(x)W ). It follows that if U and

W are invertible

∆b(UB(x)W ) = ∆b(B(x)).

We may now come back to our matrix A. Since A is symmetric, the spectral theorem gives

A = UDU∗ with U orthogonal matrix and D diagonal matrix with mi entries equal to λi. We have

U(D − x)U∗ = A− x. Hence, from what precedes

∆b(A− x) = ∆b(D − x).

It is immediate to check that if I 6= J , PI,J(D − x) = 0 and

PI,I(D − x) =
∏
k/∈I

(Dkk − x) =

r∏
i=1

(λi − x)mi−mi(I),

33



where mi(I) =
∑

k∈I 1(Dkk = λi). The lemma follows easily. �

Proof of Theorem 4.14. We set |V | = n. We can assume without loss of generality that I∩J = ∅ and

the matching map of minimal length matchings is the identity. We consider the matrix B ∈Mn(R)

obtained from A by setting

for 1 ≤ ` ≤ b, Bej` = ei` and for j /∈ J , Bej =
∑
i/∈I

Aijei.

In graphical terms, B is the adjacency matrix of the oriented graph Ḡ obtained from G as follows :

(1) all edges adjacent to a vertex in J are oriented inwards, (2) all edges adjacent to a vertex in I

are oriented outwards, and (3) for all 1 ≤ ` ≤ b, an oriented edge from j` to i` is added. We define

B(x) = B − xD,

where D is the diagonal matrix with entry Dii = 1 − 1(i ∈ I ∪ J). Expanding the determinant

along the columns J , it is immediate to check that

detB(x) = det(A− x)I,J .

We find

PI,J(A) =
∑
τ

(−1)τ
∏
v∈V

B(x)v,τ(v) =
∑
τ

(−1)τQτ (x),

where the sum is over all permutations of V . Consider a permutation such that Qτ 6= 0. We

decompose τ into disjoint cycles. Observe that Qτ 6= 0 implies that any cycle of length at least 2

coincides with a cycle in the oriented graph Ḡ. Hence, Qτ = 0 unless τ(j`) = i` and (τk(i`), k ≥ 0)

is a path in Ḡ. We define σ(i`) = τp`(i`) as the first element in J which is met in the path. We

may decompose these paths into disjoints path π` = (τk(i`), 0 ≤ k ≤ p`) in G from i` to jσ(`). It

defines a path matching Π = {π1, · · · , πb}. The contribution to Qτ of any cycle of length at least 2

is 1 (since off-diagonal entries of A and B are 0 or 1). Also, the signature of disjoint cycles is the

product of their signatures. So finally, it follows that

PI,J(A) =
∑

Π

ε(Π) det(B(x)Π,Π) =
∑

Π

ε(Π) det((A− x)Π,Π), (27)

where the sum is over all path matchings from I to J and ε(Π) is the signature of the permutation

τ on Π defined by, if Π = {π1, · · · , πb}, π` = (i`,1, · · · , i`,p`) and σ is the matching map of Π : for

1 ≤ k ≤ p` − 1, τ(i`,k) = i`,k+1 and τ(i`,p`) = τ(jσ(`)) = iσ(`).

Observe that det((A−x)Π,Π) is a polynomial of degree n−|Π| and leading coefficient (−1)n−|Π|.

Recall also that the signature of a cycle of length k is (−1)k+1. By assumption, if Π is a minimal

path matching then its matching map is the identity : it follows that

ε(Π) = (−1)n−`+b.
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Hence, from (27), PI,J(A) is a polynomial of degree ` and leading coefficient m(−1)b where m

is the number of minimal path matchings. By assumption ∆b(A) divides PI,J(A) in particular

deg(∆b(A)) ≤ `. It remains to apply Lemma 4.15. �

Vertical percolation (revisited). Let us revisit the example of vertical percolation on Z2 intro-

duced in the previous paragraph. We consider the graph Λn on the vertex set [0, n−1]2∩Z2 where

some vertical edges {(x, y), (x, y+ 1)} have been removed. We set I = {(0, 0), (0, 1), · · · , (0, n− 1)}
and J = {(n− 1, 0), (n− 1, 1), · · · , (n− 1, n− 1)}. Consider the path matchings from I to J . Since

none of the horizontal edges of the graph of Z2 have been removed, the minimal path matching is

unique, it matches (0, k) to (n − 1, k) along the path ((0, k), (1, k), · · · , (n − 1, k)). In particular,

the length of the minimal path matching is n2. We may thus apply Theorem 4.14 : we find that

the multiplicity of any eigenvalue is bounded by n = o(n2). On this example, Theorems 4.11 and

4.14 give the same bound on the multiplicities.

Lamplighter group. The assumption that all minimal path matchings have the same matching

map is important in the proof of Theorem 4.14. It is used to guarantee that the polynomial in

(27) is not identically zero. Consider a Følner sequence Bn in the Cayley graph of the lamplighter

group Z2 o Z [47] where Bn consists of the vertices of the form (v, k) ∈ ZZ
2 × Z with v(i) = 0 for

|i| > n and |k| ≤ n. There is an obvious minimal matching in Bn covering all the vertices where

each path is obtained by shifting the marker from −n to n keeping the configurations of the lamps

unaltered along the way. But the condition on the unicity of the matching map is not fulfilled. In

this case, it is not hard to check that there is a perfect cancellation on the right hand side of (27).

It is consistent with the fact that spectral measure of this lamplighter group is purely atomic.

4.3 Supercritical edge percolation on Z2

In this section, we will prove Theorem 4.1 by finding an explicit lower bound on the total mass of

the continuous part of µρ in terms of the speed of the point-to-point first passage percolation on

Z2. We fix p > pc(Z2) = 1/2.

We will use a finite approximation of Z2. Let Λn(p) be the (random) subgraph of the lattice

Z2 obtained by restricting the p-percolation on Z2 onto the (n+ 1)× (n+ 1) box [0, n]2 ∩ Z2. We

simply write Λn for Λn(1). As mentioned in the introduction, perc(Z2, p) is the local weak limit

of U(Λn(p)) and hence by Proposition 2.2, we have that Eµpn converges weakly to µρ as n → ∞,

where µpn is the empirical eigenvalue distribution of Λn(p) and the average E is taken w.r.t. the

randomness of Λn(p).

Now, assume that, given a realization of the random graph Λn(p), we can find two disjoint

subsets of vertices U and V of Λn(p) with |U | = |V | and a minimal vertex-disjoint path matching

Mn of Λn(p) between U and V such that
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(i) The vertices of U and V are uniquely paired up in any such minimal matching of Λn(p)

between U and V .

(ii) |U | = o(n2).

(iii) There exists a constant c > 0 such that the size of Mn is at least cn2, with probability

converging to one.

If such a matching exists satisfying property (i), (ii) and (iii) as above, then Theorem 4.14 says

that for any finite subset S ⊂ R,

P(µpn(S) ≤ 1− c) = 1− o(1),

and consequently, Eµpn(S) ≤ (1 − c) + o(1). Then by Lück approximation (see [76, Corollary 2.5],

[75, Theorem 3.5] or [1]) µρ(S) = limn→∞ Eµpn(S) ≤ 1 − c for any finite subset S, which implies

that the total mass of the continuous part of µρ is at least c. Hence, in order to prove Theorem 4.1,

it is sufficient to prove the existence with high probability of such pair of disjoint vertices.

Figure 5: Path matchings.

A natural way to construct this is to find a linear number of vertex-disjoint paths in Λn(p)

between its left and right boundary (see Figure 5). Suppose that there exists a collection of m

disjoint left-to-right crossings of Λn(p) that matches the vertex (0, ui) on the left boundary to the

vertex (n, vi) on the right boundary for 1 ≤ i ≤ m. Without loss of generality, we can assume

0 ≤ u1 < u2 < · · · < um ≤ n. Since two vertex-disjoint left-to-right crossings in Z2 can never cross

each other, we always have 0 ≤ v1 < v2 < · · · < vm ≤ n. Now we take U = {(0, ui) : 1 ≤ i ≤ m}
and V = {(n, vi) : 1 ≤ i ≤ m}. We consider all vertex-disjoint path matchings between U and V

in Λn(p) (there exists at least one such matching by our hypothesis) and take Mn to be a minimal

matching between U and V . Clearly, the property (i) and (ii) above are satisfied. Since any left-

to-right crossing contains at least (n + 1) vertices, the size of Mn is at least (n + 1)m. Thus to

satisfy the property (iii) we need to show that with high probability we can find at least cn many

vertex-disjoint left-to-right crossings in Λn(p).

Towards this end, let `n denote the maximum number of vertex-disjoint paths in Λn(p) between

its left and right boundary. By Menger’s theorem, `n is also equal to the size of a minimum vertex
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cut of Λn(p), that is, a set of vertices of smallest size that must be removed to disconnect the left

and right boundary of Λn(p) (see Figure 5). Note that to bound `n from below, it suffices to find

a lower bound on the size of a minimum edge cut of Λn(p), since the size of a minimum edge cut

is always bounded above by 4 times the size of a minimum vertex cut. This is because deleting all

the edges incident to the vertices in a minimum vertex cover gives an edge cut. The reason behind

considering minimum edge cut instead of minimum vertex cut is that the size of the former can be

related to certain line-to-line first passage time in the dual graph of Λn, whose edges are weighted

by i.i.d. Ber(p). We describe this connection below.

Let Λ∗n (called the dual of Λn) be a graph with vertices {(x + 1
2 , y + 1

2) : 0 ≤ x ≤ n − 1,−1 ≤
y ≤ n}, with all edges of connecting the pair of vertices with `1-distance exactly 1, except for

those in top and bottom sides. To each edge e of Λ∗n, we assign a random weight of value 1 or 0

depending on whether the unique edge of Λn, which e crosses, is present or absent in the graph

Λn(p). Hence, the edge weights of Λ∗n are i.i.d. Ber(p). Now here is the crucial observation. The

size of minimum edge cut of Λn(p), by duality, is same as the minimum weight of a path from

the top to bottom boundary of Λ∗n. Moreover, since the dual lattice of Z2 is isomorphic to Z2,

the minimum weight of a top-to-bottom crossing in Λ∗n is equal in distribution to the line-to-line

passage time tn+1,n−1(Ber(p)) in Z2, where

tn,m(F ) := inf
{∑
e∈γ

t(e) :γ is a path in Z2 joining (0, a), (n, b) for some 0 ≤ a, b ≤ m

and γ is contained in [0, n]× [0,m]
}
,

and t(e), the weight of edge e of Z2, are i.i.d. with nonnegative distribution F . By Theorem 2.1(a)

of [48], for any nonnegative distribution F , we have

lim inf
n→∞

1

n
tn,n(F ) ≥ ν(F ) a.s., (28)

where ν(F ) <∞ is called the speed (or time-constant) of the first passage percolation on Z2 with

i.i.d. F edge weights, that is,

1

n
a0,n(F )→ ν(F ) in probability,

where

a0,n(F ) := inf
{∑
e∈γ

t(e) :γ is a path in Z2 joining (0, 0), (n, 0)
}
.

It is a classical fact due to Kesten [56] that the speed is strictly positive or ν(F ) > 0 if and only if

F (0) < pc(Z2) = 1
2 . This ensures that ν(Ber(p)) > 0 in the supercritical regime p > 1

2 . Therefore,

for any ε > 0, with probability tending to one,

tn+1,n−1(Ber(p)) ≥ tn+1,n+1(Ber(p)) ≥
(
ν(Ber(p))− ε

)
(n+ 1),
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which implies that

lim
n→∞

P
(
`n ≥

1

4

(
ν(Ber(p))− ε

)
n

)
= 1.

Hence the property (3) is satisfied with c = 1
4

(
ν(Ber(p)) − ε

)
for any ε > 0. Therefore, the total

mass of the continuous part of µρ is bounded below by 1
4ν(Ber(p)).

This concludes the proof of Theorem 4.1. �

4.4 Spectrum of Unimodular Trees

4.4.1 Stability of unimodularity

In the sequel, we will use a few times that unimodularity is stable by weight mappings, global

conditioning and invariant percolation. More precisely, let (G, o) be a unimodular random weighted

rooted graph with distribution ρ. The weights on G are denoted by ω : V 2 → Z. The following

trivially holds :

Weight mapping : let ψ : G∗ → Z and φ : G∗∗ → Z be two measurable functions. We define

Ḡ as the weighted graph with weights ω̄, obtained from G by setting for u ∈ V , ω(u, u) = ψ(G, u)

and for u, v ∈ V 2 with {u, v} ∈ E(G), ω(u, v) = ψ(G, u, v). The random rooted weighted graph

(Ḡ, o) is unimodular. Indeed, the G∗ → G∗ map G 7→ Ḡ is measurable and we can apply (13) to

f(G, u, v) = h(Ḡ, u, v) for any measurable h : G∗∗ → R+.

Global conditioning : let A be a measurable event on G∗ which is invariant by re-rooting: i.e. for

any (G, o) and (G′, o) in G∗ such that G and G′ are isomorphic, we have (G, o) ∈ A iif (G′, o) ∈ A.

Then, if ρ(A) > 0, the random rooted weighted graph (G, o) conditioned on (G, o) ∈ A is also

unimodular (apply (13) to f(G, u, v) = 1((G, u) ∈ A))h(G, u, v) for any measurable h : G∗∗ → R+).

Invariant percolation : let B ⊂ Z. We may define a random weighted graph Ĝ with edge set

E(Ĝ) ⊂ E(G) by putting the edge {u, v} ∈ E(G) in E(Ĝ) if both ω(u, v) and ω(v, u) are in B. We

leave the remaining weights unchanged. Then the random weighted rooted graph (Ĝ(o), o) is also

unimodular (apply (13) to f(G, u, v) = h(Ĝ(u), u, v) for any measurable h : G∗∗ → R+).

As an application the measure ρ′ defined in the statement of Theorem 4.2 is unimodular. Indeed,

consider the weight mapping for v ∈ V , ω(v, v) = 1(v ∈ L) and for {u, v} ∈ E, ω(u, v) = ω(v, u) =

1(ω(u, u) = ω(v, v)). Then we perform an invariant percolation with B = {1} and finally a global

conditioning by A = {all vertices in G satisfy ω(v, v) = 0}.

4.4.2 Proof of Theorem 4.2

Consider the unimodular weighted tree (T, L, o). Our main strategy will be to construct a suitable

invariant labeling on T using the invariant line ensemble L and then apply Theorem 4.12.

We may identify L with a disjoint union of countable lines (`i)i. Each such line ` ⊂ L has

two topological ends. We enlarge our probability space and associate to each line an independent

Bernoulli variable with parameter 1/2. This allows to orient each line ` ⊂ L. This can be done by
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choosing the unique vertex on the line ` whose distance from the root o is minimum and then by

picking one of its two neighbors on the line using the Bernoulli coin toss (check that this preserves

the unimodularity).

Let us denote by (
−→
`i )i the oriented lines. We obtain this way a unimodular weighted graph

(T, ω, o) where ω(u, v) = 1 if the oriented edge (u, v) ∈
−→
`i for some k, ω(u, v) = −1 if (v, u) ∈

−→
`i ,

and otherwise ω(u, v) = 0.

Now, we fix some integer k ≥ 1. There are exactly k functions η : V 7→ Z/kZ such that the

discrete gradient of η is equal to ω (i.e. such that for any u, v ∈ V with {u, v} ∈ E, η(u)− η(v) =

ω(v, u) mod(k)) since given the gradient ω, the function η is completely determined by its value

at any vertex. We may enlarge our probability space in order to sample, given (T, ω, o), such

a function η uniformly at random. Then the vertex-weighted random rooted graph (T, η, o) is

unimodular (check that this preserves the unimodularity).

In summary, we have obtained an invariant labelling η of (T, o) such that all vertices v ∈ V

outside L are level, all vertices in L such that η(v) 6= {0, 1} are prodigy, and vertices in L such that

η(v) ∈ {0, 1} are bad. By Theorem 4.12, we deduce that for any real λ,

µρ(λ) ≤ P(o is bad) +
∑
j

`j ,

where `j = E〈eo, Pjeo〉 and Pj is the projection operator of the eigenspace of λ in the adjacency

operator Aj spanned by vertices with label j. Now, observe that the set of level vertices with label

j are at graph distance at least 2 from the set of level vertices with label i 6= j. It implies that the

operators Aj commute and A′, the adjacency operator of T ′ = T\L, can be decomposed as a direct

sum of the operators Aj . It follows that, if P ′ is the projection operator of the eigenspace of λ in

A′ ∑
j

`j = E〈eo, P ′eo〉 = P(o /∈ L)µρ′(λ).

Also, by construction, P(o is bad) is upper bounded by 2/k. Since k is arbitrary, we find

µρ(λ) ≤ P(o /∈ L)µρ′(λ).

This concludes the proof of Theorem 4.2. �

Remark 4.16. In the proof of Theorem 4.2, we have used our tool Theorem 4.12. It is natural to

ask if we could have used Theorem 4.14 together with some finite graphs sequence (Gn) having local

weak limit (T, o) instead. We could match the set of v ∈ L such that η(v) = 1 to the set of v ∈ L
such that η(v) = k−1 forbidding the set of v ∈ L with η(v) = 0. Note however that if the weighted

graph (Gn, ηn) has local weak limit (T, η, o) then the boundary of η−1
n (j) for j ∈ Z/kZ has cardinal

(2/k+o(1))P(o ∈ L)|V (Gn)|. In particular, the sequence (Gn) must have a small Cheeger constant.

It implies for example that we could not use the usual random graphs as finite approximations of

infinite unimodular Galton-Watson trees since they have a Cheeger constant bounded away from

0, see Durrett [38].
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4.4.3 Construction of invariant line ensemble on unimodular tree

We will say that a unimodular tree (T, o) is Hamiltonian if there exists an invariant line ensemble L

such that P(o ∈ L) = 1. As the first example, we show that d-regular infinite tree is Hamiltonian.

Lemma 4.17. For any integer d ≥ 2, the d-regular infinite tree is Hamiltonian.

Proof. The case d = 2 is trivial : in this case T = (V,E) itself is a line ensemble. Let us assume

d ≥ 3. On a probability space, we attach to each oriented edge (u, v) independent variables, ξ(u, v)

uniformly distributed on [0, 1]. With probability one, for each u ∈ V , we may then order its d

neighbours according to value of ξ(u, ·). This gives a weighted graph (T, ω, o) such that, for each

u ∈ V with {u, v} ∈ V , ω(u, v) ∈ {1, · · · , d} is the rank of vertex v for u. Note that ω(u, v)

may be different from ω(v, u). We now build a line ensemble as follows. The root picks its first

two neighbours, say u1, u2, and we set L(u1, o) = L(u2, o) = 1, for its other neighbours, we set

L(u, o) = 0. To define further L, let us introduce some notation. For u 6= v, let T vu be the tree

rooted at u spanned by the vertices whose shortest path in T to v meets u, and let av(u) be the

first visited vertex on the shortest path from u to v (see Figure 6). Then, we define iteratively

the line ensemble (we define L(u, ·) for a vertex u for which L(aou, ·) has already been defined)

according to the rule : if L(u, ao(u)) = 1 then u picks its first neighbour in T ou , say v1, and we set

L(u, v1) = 1, otherwise L(u, ao(u)) = 0 and u picks its two first neighbours in T ou , say v1, v2, and we

set L(u, v1) = L(u, v2) = 1. In both cases, for the other neighbours of u in T ou , we set L(u, v) = 0.
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T uv

v

T vu

u av(u)

Figure 6: Definition of av(u) and T vu .

Iterating this procedure gives a line ensemble which covers all vertices. It is however not so

clear that this line ensemble is indeed invariant since, in the construction, the root seems to play

a special role. In order to verify (13), it is sufficient to restrict to functions f(G,L, u, v) such

that f(G,L, u, v) = 0 unless {u, v} ∈ E (see [4, Proposition 2.2]). Let us denote v1, · · · , vd the

neighbours of the root, we have

E
d∑

k=1

f(T, L, o, vk) = (d− 2)E[f(T, L, o, v1)|L(v1, o) = 0] + 2E[f(T, L, o, v1)|L(v1, o) = 1].

We notice that the rooted trees T vu , u 6= v, are isomorphic (T vu is a (d− 1)-ary tree) and that, given

the value of L(o, v1), the restriction of L to T ov1 and T v1o have the same law (and are independent).
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Since L(u, v) = L(v, u), it follows that, for ε ∈ {0, 1},

E[f(T, L, o, v1)|L(v1, o) = ε] = E[f(T, L, v1, o)|L(o, v1) = ε].

We have thus checked that L is an invariant line ensemble. �

Lemma 4.18. Let k ≥ 3. Every unimodular tree with all degrees either 2 or k has an invariant

line ensemble of density Edeg(o)/k.

Proof. Sample the unimodular random tree (T, o). Consider the k-regular labeled tree T ′ that one

gets by contracting each induced subgraph which is a path to a single edge labeled by the number

of vertices. This tree has an invariant line ensemble L′ with density 1; this corresponds to a line

ensemble L in T . Since each edge in T ′ is contained in L′ with probability 2/k, it follows that each

edge of T is contained in L with probability 2/k. Thus the expected degree of L at the root of T

given T is 2
kdeg(o). The claim follows after averaging over T . �

The following proves Proposition 4.3, part 2 for the case q = 0 (i.e. when there are no “bushes”).

Proposition 4.19. Let T be a unimodular tree with degrees in {2, 3, . . . , d}. Then T contains an

invariant line ensemble with density at least 1
3Edeg(o)/d. In fact, when d ≥ 6 the density is at

least 1
3Edeg(o)/(d− 4).

A tree constructed of d-stars with paths of length m emanating shows that in some cases the

optimal density can be arbitrary close to Edeg(o)/d. In this sense our bound is sharp up to a factor

of 2/3.

Proof of Proposition 4.19. If d ≥ 6 we argue as follows. For each k, we split all vertices of degree

3k+2j with j = 0, 1, 2 into k groups of vertices of degree 3 and j groups of vertices of degree 2. We

can perform this in an unimodular fashion by ordering the adjacent edges of a vertex uniformly at

random (see the proof of Lemma 4.17). This way we obtain a countable collections of trees (Tn)n≥1.

By Lemma 4.18 each of these trees contains invariant line ensembles with expected degree
2
3EdegTn(o). In particular, the expected degree of their union F1 in T is 2

3Edeg(o). We thus have

found an invariant subforest F1 of F0 = T with degrees in {0, 2, 4 . . . , 2k+ 2j} and expected degree
2
3Edeg(o).

Iterating this construction i times we get a sequence of subforests Fi with expected degree(
2
3

)i Edeg(o). The maximal degree of Fi is bounded above by some di (with d0 = d), which satisfy

the following recursion: if di = 3k + 2j with j = 0, 1, 2, then di+1 = 2k + 2j. In particular, di is

even for i ≥ 1, and

di+1 ≤
2

3
di +

4

3
. (29)

Let k be the first value so that dk ≤ 4; by checking cases we see that dk = 4, and that dk−1 = 5

or dk−1 = 6. Assuming k > 1 we also know that dk−1 is even, so dk−1 = 6. Otherwise, k = 1 and
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then d0 = d. However the assumption d ≥ 6 yields to d0 = d = 6. Hence in any case dk−1 = 6.

Now using the inequality (29) inductively we see that for 1 ≤ i ≤ k we have dk−i ≥ 4
3

(
3
2

)i
+ 4.

Setting i = k and rearranging we get (
2

3

)k
≥ 4

3

1

d− 4
.

The forest Fk has degrees in {0, 2, 4}. Another application of Lemma 4.18 (with k = 4 there) gives

an invariant line ensemble with density

1

4

(
2

3

)k
Edeg(o) ≥ 1

3

Edeg(o)

d− 4
.

If d = 5, then k = 1, and the above argument gives an invariant line ensemble with density
1
4

(
2
3

)
Edeg(o).

The only cases left are d = 3, 4. In the first case, just use Lemma 4.18 with k = 3. In the

second, split each degree 4 vertex in 2 groups of degree 2 vertices as above. Then apply Lemma 4.18

with k = 3 to get a subforest with degrees in 0, 2, 4. Then apply the Lemma again with k = 4. The

density lower bounds are given by 1
3Edeg(o), 1

6Edeg(o) respectively, and this proves the remaining

cases. �

Recall that the core C of a tree T is the induced subgraph of vertices whose removal breaks T

into at least two infinite components. The following is a reformulation of part (ii) of Proposition

4.3.

Corollary 4.20 (Removing bushes). Let (T, o) be an infinite unimodular tree, with core C and

maximal degree d. Then Proposition 4.19 holds with Edeg(o) replaced by Edeg(o)− 2P(o /∈ C).

Proof. We clarify that degC(o) = 0 if o /∈ C. It suffices to to show that EdegC(o) = Edeg(o) −
2P(o /∈ C). For this, let every vertex v with degC(v) = 0 send unit mass to the unique neighbor

vertex closest to C (or closest to the single end of T in case C is empty). We have

degC(o) = deg(o)− r − 1(o /∈ C)

where r is the amount of mass o receives. The claim now follows by mass transport : (13) applied

to f(G, o, v) equal to the amount of mass send by o to v gives P(o /∈ C) = Er. �

We are now ready to prove the main assertion of Proposition 4.3, repeated here as follows.

Corollary 4.21. Let (T, o) be a unimodular tree with at least 2 ends with positive probability. Then

T contains an invariant line ensemble with positive density.

Proof. We may decompose the measure according to whether T is finite or infinite and prove the

claim separately. The finite case being trivial, we now assume that T is infinite.
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Consider the core C of T . If T has more than one end, then C has the same ends as T , in

particular it is not empty. Thus for the purposes of this corollary we may assume that T = C, or

in other words all degrees of T are at least 2.

If Edeg(o) = 2, then T is a line and we are done. So next we consider the case Edeg(o) > 2.

Let Fd be a subforest where all edges incident to vertices of degree more than d are removed.

Then degFd(o) → degT (o) a.s. in a monotone way. Thus by the Monotone Convergence Theorem

EdegFd(o) → EdegT (o) > 2. Pick a d so that EdegFd(o) > 2. Corollary 4.20 applied to the

components of Fd now yields the claim. �

Part (i) of Proposition 4.3 is restated here as follows.

Corollary 4.22. Let T be a unimodular tree and assume that Edeg(o)2 is finite. Then T contains

an invariant line ensemble L with density

P(o ∈ L) ≥ 1

6

(Edeg(o)− 2)2
+

Edeg(o)2
.

Proof. Let d ≥ 1 be an integer. For each vertex v we mark (deg(v) − d)+ incident edges at

random. To set up a mass transport argument, we also make each vertex to send mass one along

every one of its marked edges. The unmarked edges form a forest Fd with the same vertices as T

and maximal degree d: we now bound its expected degree. Note that the degree of the root in Fd

is bounded below by the same in T minus the total amount of mass sent or received. These two

quantities are equal in expectation, so we get

EdegFd(o) ≥ Edeg(o)− 2E(deg(o)− d)+.

By Proposition 4.19 applied to components of Fd, as long as d ≥ 6 we get an invariant line ensemble

L with density

P(o ∈ L) ≥ 1

3

1

d− 4
(Edeg(o)− 2− 2E(deg(o)− d)+) .

To bound the last term, note that setting c = deg(o)− d, the inequality 4(deg(o)− d)+d ≤ deg(o)2

reduces to 4cd ≤ (c+ d)2, which certainly holds. Thus we can bound

P(o ∈ L) ≥ 1

3

1

d− 4

(
Edeg(o)− 2− Edeg(o)2

2d

)
.

Now set d = dEdeg(o)2/(η − 2)e ≥ η2/(η − 2) ≥ 8, where η = Edeg(o) can be assumed to be more

than 2. Using the bound dxe − 4 ≤ x we get the claim. �

4.4.4 Maximal invariant line ensemble

Let (T, o) be a unimodular rooted tree with distribution ρ. In view of Theorem 4.2 and Proposition

4.3, we may wonder what is the value

Σ(ρ) = supP(o ∈ L),

43



where the supremum runs over all invariant line ensembles L of (T, o). Recall that a line ensemble

L of (T, o) is a weighted graph (T, L, o) with weights L(u, v) in {0, 1}. By diagonal extraction, the

set of {0, 1}-weighted graphs of a given (locally finite) rooted graph G = (G, o) is compact for the

local topology. Hence, the set of probability measures on rooted {0, 1}-weighted graphs such that

the law of the corresponding unweighted rooted graph is fixed is a compact set for the local weak

topology. Recall also that the set of unimodular measures in closed for the local weak topology.

By compactness, it follows that there exists an invariant line ensemble, say L∗, such that

Σ(ρ) = P(o ∈ L∗).

It is natural to call such invariant line ensemble a maximal invariant line ensemble.

Question 4.23. What is the value of Σ(ρ) for ρ a unimodular Galton-Watson tree ?

Let L∗ be an maximal invariant line ensemble and assume P(o ∈ L∗) < 1. Then ρ′, the law

of (T\L∗, o) conditioned on o /∈ L∗, is unimodular. Assume for simplicity that ρ is supported on

rooted trees with uniformly bounded degrees. Then, by Proposition 4.3 and the maximality of L∗,

it follows that, if (T ′, o) has law ρ′, then a.s. T ′ has either 0 or 1 topological end. Theorem 4.2

asserts that the atoms of µρ are atoms of µρ′ . We believe that the following is true.

Question 4.24. Is it true that if ρ is a unimodular Galton-Watson tree then ρ′ is supported on

finite rooted trees ?

4.4.5 Two examples

Ring graphs. With Theorem 4.2, we can give many examples of unimodular rooted trees (T, o)

with continuous expected spectral measure. Indeed, by Theorem 4.2 all Hamiltonian trees have

continuous spectrum.

An example of a Hamiltonian unimodular tree is the unimodular ring tree obtained as follows.

Let P ∈ P(Z+) with finite positive mean. We build a multi-type Galton-Watson tree with three

types {o, a, b}. The root o has type-o and has two type-a children and a number of type-b children

sampled according P . Then, a type-b vertex has two type-a children and a number of type-b

sampled independently according to P̂ given by (24). A type-a vertex has 1 type-a child and a

number of type-b sampled according to P . We then remove the types and obtain a rooted tree.

By construction, it is Hamiltonian : the edges connecting type-a vertices to their genitor is a line

ensemble covering all vertices. We can also check easily that it is unimodular.

If P has two finite moments, consider a graphic sequence d(n) = (d1(n), · · · , dn(n)) such that

the empirical distribution of d(n) converges weakly to P and whose second moment is uniformly

integrable. Sample a graph Gn with vertex set Z/(nZ) uniformly on graphs with degree sequence

d(n) and, if they are not already present, add the edges {k, k+ 1}, k ∈ Z/(nZ). The a.s. weak limit

of Gn is the above ring tree. This follows from the known result that the uniform graph with degree
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sequence d(n) has a.s. weak limit the unimodular Galton-Watson tree with degree distribution P

(see [38, 33, 17])

Alternatively, consider a random graph Gn on Z/(nZ) with the edges {k, k + 1}, k ∈ Z/(nZ)

and each other edge is present independently with probability c/n. Then the a.s. weak limit of Gn

will be the unimodular ring tree with P = Poi(c). Note that Gn is the Watts-Strogatz graph [78].

Stretched regular trees. Let us give another example of application of Theorem 4.2. Fix an

integer d ≥ 3. Consider a unimodular rooted tree (T, o) with only vertices of degree 2 and degree

d. Denote its law by ρ. For example a unimodular Galton-Watson tree with degree distribution

P = pδ2 + (1− p)δd, 0 < p < 1. Then, arguing as in Proposition 4.3, a.s., all segments of degree 2

vertices are finite. Contracting these finite segments, we obtain a d-regular infinite tree. Hence, by

Lemma 4.17, there exists an invariant line ensemble L of (T, o) such that a.s. all degree d vertices

are covered. By Theorem 4.2, the atoms of µρ are contained in set of atoms in the expected

spectral measure of rooted finite segments. Eigenvalues of finite segments of length n are of the

form λk,n = 2 cos(πk/(n + 1)), 1 ≤ k ≤ n. This proves that the atomic part of µρ is contained in

Λ = ∪k,n{λk,n} ⊂ (−2, 2).

On the other hand, if ρ is a unimodular Galton-Watson tree with degree distribution P =

pδ2 + (1 − p)δd, 0 < p < 1, the support of µρ is equal to [−2
√
d− 1, 2

√
d− 1]. Indeed, recall that

µρ = EρµeoA and ∫
x2kµeoA = 〈eo, A2keo〉

is equal to the number of path in T of length 2k starting and ending at the root. An upper bound

is certainly the number of such paths in the infinite d-regular tree. In particular, from Kesten [55],∫
x2kµeoA ≤ (2

√
d− 1 + o(1))2k.

It implies that the convex hull of the support of µρ is contained [−2
√
d− 1, 2

√
d− 1]. The other

way around, recall first that if µ is the spectral measure of the infinite d-regular tree then µ(I) > 0

if I is an open interval in [−2
√
d− 1, 2

√
d− 1], see [55]. Recall also that for the local topology on

rooted graphs with degrees bounded by d, the map G 7→ µeoA(G) is continuous in P(R) equipped

with the weak topology (e.g. it follows from Reed and Simon [70, Theorem VIII.25(a)]). Hence,

there exists t > 0 such that if (T, o)t is d-regular then µeoA(T )(I) > 0. Observe finally that under ρ

the probability that (T, o)t is d-regular is positive. Since µρ = EρµeoA , it implies that µρ(I) > 0.

We thus have proved that for a unimodular Galton-Watson tree with degree distribution P =

pδ2 + (1− p)δd, µρ restricted to the interval [2, 2
√
d− 1] is continuous.

5 Local laws and delocalization of eigenvectors

In this section, we consider a finite graph G = (V,E) with |V | = n and study the behavior of o(n)

eigenvalues and the delocalization of the eigenvectors.
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To be more precise, assume that (Gn) is a sequence of finite graphs, with vertex set V (Gn) =

{1, . . . , n} such that U(Gn)→ ρ ∈ Puni(G∗). Then Theorem 2.5 asserts that for any fixed interval

I ⊂ R,

lim
n→∞

µGn(I) = µρ(I).

We would like to have a more quantitative statement. Notably, assume that µρ has a bounded

density f in a neighborhood of λ ∈ R so that µρ([λ+ t/2, λ+ t/2]) = tf(λ) + o(t) . We would like

to find an explicit sequence tn → 0 such that, if In = [x+ tn/2, x+ tn/2],

lim
n→∞

µGn(In)− µρ(In)

tn
= lim

n→∞

µGn(In)

tn
− f(λ) = 0. (30)

This type of statement is usually called a local limit spectral law. In many important cases, we

expect that the above convergence holds as soon as tn � 1/n.

It is also important to understand the localization properties of the eigenvectors in the canonical

basis of Rn. More precisely, let (vk)1≤k≤n be an orthonormal basis of eigenvectors of the adjacency

matrix A of G = Gn. For an eigenvector vk, we may wonder whether the probability vector

(v2
k(1), . . . , v2

k(n)) has most of its mass concentrated on few coordinates (or vertices in our context)

or whether its mass is well spread out. This can be measured by studying ratio of `p-norms. Namely,

a form of delocalization occurs if for some p ∈ (2,∞],(
n∑
x=1

|vk(x)|p
)1/p

=
‖vk‖p
‖vk‖2

= o(1). (31)

Note that this notion of delocalization depends on the choice of the basis of Rn. Physicists call

the above quantities inverse participation ratios. The logarithm of the left hand side of (31) is, up

to a constant, the Rényi entropy of the probability vector (v2
k(1), . . . , v2

k(n)) with parameter p/2.

If vk = (1, . . . , 1)/
√
n, then ‖vk‖p = n1/p−1/2. It is often easier to study the average of inverse

participation ratios over eigenvectors associated to close eigenvalues. If ΛI = {k : λk ∈ I} is not

empty, we set

PI =
1

|ΛI |
∑
k∈ΛI

(
n∑
x=1

|vk(x)|p
)
∈ [n1−p/2, 1]. (32)

A form of delocalization occurs if the above expression goes to 0.

If the graph has enough homogeneity, then we may even expect that stronger forms of de-

localization of the eigenvectors occur. We could then try to compare the orthonormal basis of

eigenvectors (v1, . . . , vn) to the columns of a Haar distributed orthogonal matrix in Rn. A weaker

form of this question is to look at the distance between the probability vector (v2
k(1), . . . , v2

k(n))

with a random vector sampled uniformly on the simplex
∑

x px = 1, px ≥ 0. Unfortunately, this

type of questions on eigenvectors are currently out of reach for most graphs.

Nevertheless, motivated by the study of quantum chaos, a delocalization criterion in this spirit

is studied by Anantharaman and Le Masson in [6, 5]. For a fixed k, the aim is to compare the
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probability measures
n∑
x=1

v2
k(x)δx and

1

n

n∑
x=1

δx.

That is, over a reasonable class of functions f , we want to upper bound∣∣∣∣∣∑
x

f(x)

(
v2
k(x)− 1

n

)∣∣∣∣∣.
If the above expression goes to 0, this is usually referred as unique quantum ergodicity (see [25, 6, 5]).

Again, in practice, it is easier to study an average

QI(f) =
1

|ΛI |
∑
k∈ΛI

∣∣∣∣∣∑
x

f(x)

(
v2
k(x)− 1

n

)∣∣∣∣∣. (33)

If the above expression goes to 0, this is referred as quantum ergodicity.

The focus of these notes is the spectral measures at vectors. We can easily estimate (32) in

terms of the spectral measures µexG as follows. Using for p ≥ 2,

∑
k∈ΛI

|vk(x)|p ≤

∑
k∈ΛI

|vk(x)|2
p/2

=
(
µexG (I)

)p/2
,

we find that

PI ≤
1

n

n∑
x=1

(
µexG (I)

)p/2
µG(I)

.

Hence, if µexG (I) ≤ c|I| for ‘most’ x ∈ V and µG(I) ≥ |I|/c then PI = O(|I|p/2−1) goes to 0 if I has

a vanishing length. The expression (33) is not directly related to the spectral measures. However,

if we remove the absolute value in (33), we find

1

|ΛI |
∑
k∈ΛI

n∑
x=1

f(x)

(
v2
k(x)− 1

n

)
=

1

n

n∑
x=1

f(x)

(
µexG (I)

µG(I)
− 1

)
.

Notably, we see that the quantum ergodicity implies a form of concentration of the spectral measures

µexG around their spatial average µG, see (9).

In this section, we are going to see that the above expressions can be controlled from fine

estimates on the resolvent matrix. In the context of random matrices, these methods have been

introduced by Erdős, Yau and Schlein, see [42, 43]. For random graphs ensemble with growing

average degree, we refer to [40, 41, 13]. This section is partly adapted from [18].

5.1 Cauchy-Stieltjes transform

Let µ be a finite positive measure on R. Define its Cauchy-Stieltjes transform as for all z ∈ C+ =

{z ∈ C : =(z) > 0},
gµ(z) =

∫
1

λ− z
dµ(λ).
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Note that if µ has bounded support

gµ(z) = −
∑
k≥0

z−k−1

∫
λkdµ(λ).

The Cauchy-Stieltjes transform is thus essentially the generating function of the moments of the

measure µ. It is straightforward that the function gµ is an analytic function from C+ → C+ and

for any z ∈ C+, |gµ(z)| ≤ µ(R)(=(z))−1.

The Cauchy-Stieltjes transform characterizes the measure. More precisely, the following holds.

Lemma 5.1 (Inversion of Cauchy-Stieltjes transform). Let µ be a finite measure on R.

(i) For any f ∈ C0(R), ∫
fdµ = lim

t↓0

1

π

∫
f(x)=gµ(x+ it)dx.

(ii) If f = 1I with I is interval and µ(∂I) = 0 the above formula holds.

(iii) For any x ∈ R,

µ({x}) = lim
t↓0

t=gµ(x+ it).

(iv) If µ admits a density at x ∈ R, then its density is equal to

lim
t↓0

1

π
=gµ(x+ it).

Proof. By linearity, we can assume that µ is probability measure. We have the identity

=g(x+ it) =

∫
t

(λ− x)2 + t2
dµ(λ).

Hence 1
π=g(x + it) is the equal to density at x of the distribution (µ ∗ Pt), where Pt is a Cauchy

distribution with density

Pt(x) =
t

π(x2 + t2)
.

In other words,
1

π

∫
f(x)=gµ(x+ it)dx = Ef(X + tY ),

where X has law µ and is independent of Y with distribution P1. Since X + tY converges weakly

to X as t → 0, the statements follow easily. (Alternatively, it suffices to use that in D′(C),

∂(1
z ) = − 1

π δ0 where ∂f(z) = 1
2(∂<(z)f(z)− i∂=(z)f(z)) denotes the Cauchy derivative).

There are more quantitative inversion or deconvolution formulas which are useful, notably for

the local laws (30). For example, the following holds (for a proof see [20]).
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Lemma 5.2 (Quantitative inversion of Stieltjes transform). There exists a constant c such that

the following holds. Let L ≥ 1, K be an interval of R and µ be a probability measure on R. We

assume that for some t > 0 and all λ ∈ K, either

=gµ(λ+ it) ≤ L or µ

([
λ− t

2
, x+

t

2

])
≤ Lt.

Then, for any interval I ⊂ K of size at least t and such that dist(I,Kc) ≥ 1/L, we have∣∣∣∣µ(I)− 1

π

∫
I
=gµ(λ+ it)dλ

∣∣∣∣ ≤ cLt log

(
1 +
|I|
t

)
.

5.2 Bounds using the resolvent

If A ∈ Hn(C) is an Hermitian matrix and z ∈ C+ = {z ∈ C : =(z) > 0}, then A− zI is invertible.

Recall that the resolvent of A is the function R : C+ 7→ Mn(C),

R(z) = (A− zI)−1.

For φ ∈ Cn, we have the identity

〈φ,R(z)φ〉 =

∫
1

λ− z
dµφA(λ) = g

µφA
(z), (34)

where µφA is the spectral measure with vector φ. We also find

gµA(z) =
1

n
tr(R(z)). (35)

For any 1 ≤ x, y ≤ n, z 7→ R(z)xy is an analytic function on C+ → C. Moreover the operator norm

of R(z) is at most =(z)−1.

We see from (35) and Lemma 5.2 that the local law (30) can be rephrased in terms of the

resolvent matrix.

Lemma 5.3. Let A ∈ Hn(C) be an Hermitian matrix with resolvent R(z) = (A − zIn)−1. Let

L ≥ 1, K be an interval of R and µ ∈ P(R) be as in Lemma 5.2. We assume that for some t > 0,

0 < δ < 1/2 and all λ ∈ K, ∣∣∣∣ 1ntrR(λ+ it)− gµ(λ+ it)

∣∣∣∣ ≤ δ.
Then for any interval I ⊂ K of length |I| ≥ t

(
1
δ log 1

δ

)
such that dist(I,Kc) > 1/L we have

|µA(I)− µ(I)|
|I|

≤ CLδ,

where C is a universal constant.

Let φ ∈ Cn with ‖φ‖ = 1. Obviously, from (34), the same statement holds by replacing µA by

µφA and 1
ntrR(z) by 〈φ,R(z)φ〉.
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Proof of Lemma 5.3. Let s = |I|/t. By Lemma 5.2, applied with L′ = L + δ ≤ 2L, for some

constant c > 0,
|µA(I)− µ(I)|

|I|
≤ 2δ

π
+

2cL

s
log(1 + s).

Now, if δ < 1/2 and s ≥ 1
δ log 1

δ , it is easy to check that 1
s log(1 + s) ≤ c0δ.

Simpler bounds are also available. For example, if I = [λ0 − t, λ0 + t] and z = λ0 + it then

=((λ− z)−1) = t/((λ− λ0)2 + t2) ≥ (1/2t)1(λ ∈ I). We deduce that

µ(I) ≤ 2t=(gµ(z)).

In particular, ∑
k∈ΛI

|vk(x)|2 ≤ 2t=(Rxx(z)), (36)

where ΛI = {k : λk(A) ∈ I} and (vk)1≤k≤n is an orthonormal basis of eigenvectors of A. It follows

that bounds on the diagonal coefficients of the resolvent when z is close to the real axis will give

information on the eigenvectors. Notably, if k ∈ ΛI and p ≥ 2,

‖vk‖p ≤
√

2t

(
n∑
x=1

=(Rxx(z))p/2
)1/p

and ‖vk‖∞ ≤
√

2t max
1≤x≤n

=(Rxx(z)).

These bounds could thus be used to check that (31) holds. Similarly, for p ≥ 2, we find

∑
k∈ΛI

|vk(x)|p ≤

∑
k∈ΛI

|vk(x)|2
p/2

≤ (2t=(Rxx(z)))p/2.

Hence, ∑
k∈ΛI

n∑
x=1

|vk(x)|p ≤ (2t)p/2
n∑
x=1

(=(Rxx(z)))p/2. (37)

It follows that once a local law has been established (to lower bound |ΛI | = nµA(I)), the above

inequality could be used to upper bound the average of inverse participation ratios defined in (32).

5.3 Local convergence and convergence of the resolvent

The objective of this subsection is to compare the Stieltjes transforms of two measures whose first

moments coincide. Roughly speaking, if two probability measures have their first n moments equal

then their Cauchy-Stieltjes transform are close for all z ∈ C+ such that =(z)� 1/n.

Proposition 5.4. Let µ1, µ2 be two real probability measures such that for any integer 1 ≤ k ≤ n,∫
λkdµ1(λ) =

∫
λkdµ2(λ).
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Let ζ = e2π, for any 0 ≤ a < b, for all z ∈ C+, |<(z)| ≤ a and =(z) ≥ ζbdlog ne/n,

|gµ1(z)− gµ2(z)| ≤ 2

ζnb
+

2

b− a
.

Moreover, if µ1 and µ2 have support in [−b, b] then for all z ∈ C+ with =(z) ≥ ζbdlog ne/n,

|gµ1(z)− gµ2(z)| ≤ 2

ζnb
.

Proof. We set t = =(z) and

gz(λ) =
1

λ− z
.

For integer k ≥ 0, we have

‖∂(k)gz‖∞ = k!t−k−1.

From Jackson’s theorem [34, Chap. 7, §8], there exists a polynomial pz of degree n such that for

any λ ∈ [−b, b] and k ≤ n,

|gz(λ)− pz(λ)| ≤
(π

2
b
)k (n− k + 1)!

(n+ 1)!
‖∂(k)gz‖∞.

We take k = dlog ne ≥ 1 and t ≥ ζbdlog ne/n. We use k! ≤ kk and (log n)/n ≤ e−1 and get,

|gz(λ)− pz(λ)| ≤ 1

t

(
πbk

2t(n+ 2− k)

)k
≤ 1

t

(
1

2e2

1

1− e−1

)k
≤ 1

tn2
≤ 1

ζbn
.

The second statement follows.

For the first statement, we use that if b > |<(z)|, then for any real λ, |λ| ≥ b, we have

|gz(λ)| ≤ 1/(b− |<(z)|). In particular, from what precedes,∣∣∣∣gµ(z)−
∫ b

−b
pz(λ)dµ(λ)

∣∣∣∣ ≤ 1

ζbn
+
µ([−b, b]c)
b− a

.

The conclusion follows.

As an immediate corollary, we have the following statement.

Corollary 5.5. For i = 1, 2, let (Gi, o) be a finite rooted graph and denote by Ai their adja-

cency operators which are assumed to be essentially self-adjoint. Assume further that that (G1, o)h

and (G2, o)h are isomorphic. Then for any b > a and all z ∈ C+ with |<(z)| ≤ a and =(z) ≥
ζbdlog 2he/(2h), ∣∣〈eo, (A1 − z)−1eo〉 − 〈eo, (A2 − z)−1eo〉

∣∣ ≤ 1

ζbh
+

2

b− a
.

Moreover, if for i = 1, 2, ‖Ai‖ ≤ b then for all z ∈ C+, with =(z) = t,∣∣〈eo, (A1 − z)−1eo〉 − 〈eo, (A1 − z)−1eo〉
∣∣ ≤ 1

ζbh
.

51



Proof. By assumption and (3), we can apply Proposition 5.4 to n = 2h.

Proposition 5.4 does not require any type of continuity for the measures µ1 or µ2. If µ1 or µ2

has a bounded support and a bounded density, then it is possible to upper bound the Kolmogorov-

Smirnov distance of µ1 and µ2. This is a consequence of the Chebyshev-Markov-Stieltjes inequali-

ties, see e.g. Akhiezer [3, Chapter 3] and for their applications in our context see notably [62, 74]

and particularly Geisinger [45, Theorem 4].

5.4 Application to tree-like regular graphs

We may now apply the above estimates to study the eigenvectors of tree-like regular graphs. The

results of this section are contained in Dumitriu and Pal [37], Brooks and Lindenstrauss [25],

Anantharaman and Le Masson, [6, 5] or Geisinger [45].

Let d ≥ 2, be an integer and let G be a graph with |V (G)| = n. We denote by B(h) the number

of vertices v in V (G) such that (G, v)h is not isomorphic (Td, o)h where Td is the infinite d-regular

tree.

Theorem 5.6 (Local Kesten-McKay law). Let 0 < δ < 1 and assume that there exists h ≥ 1 such

that

δ ≥ max

(
hB(h)

n
,

1

h

)
.

Then, for any interval I ⊂ R of length |I| ≥ 20d log(2h)
h

(
1
δ log 1

δ

)
we have

|µG(I)− µTd(I)|
|I|

≤ Cδ,

where the constant C depends only on d.

Proof. Let t = ζddlog 2he/(2h) ≤ 20d log(2h)
h , R(z) = (A(G) − zI)−1, R′(z) = (A(Td) − zI)−1. We

have R′oo(z) = 〈eo, R′(z)eo〉 = gµTd (z). From Corollary 5.5, we have, if =(z) = t,

|gµG(z)− gµTd (z)| =

∣∣∣∣∣ 1n
n∑
x=1

R(z)xx −R′(z)oo

∣∣∣∣∣
≤ 2

B(h)

nt
+

1

ζdh

≤ 4

ζd

hB(h)

n
+

1

ζdh
.

By assumption the above expression is bounded 5δ/(dζ) ≤ δ. It remains to apply Lemma 5.3 and

use that there exists a constant c such that =(gµTd (z)) ≤ c for all z ∈ C.

If G is a uniformly sampled d-regular graph on n vertices (dn even and n large enough), then

Theorem 5.6 can be applied with probability tending to one, with 2h = (1 − ε) logd−1 n. Indeed,
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in this case, B(h) ≤ no(1)(d− 1)2h = n1−ε+o(1) with probability tending to one. This follows from

known asymptotics on the number of cycles in random regular graphs, see [37, 65].

Theorem 5.6 applies also to d-regular graphs whose girth (lenght of the smallest cycle) is 2h+1.

Indeed, in this case, we simply have B(h) = 0.

We can also derive some weak bounds on delocalization of eigenvectors. The main result of

Brooks and Lindenstrauss [25] gives however a much stronger statement.

Theorem 5.7 (Weak delocalization of eigenvectors). For any ε > 0, there exists a subset of

eigenvectors B∗ of cardinal at most B(h)/ε such that for all k /∈ B∗ and any subset S ⊂ {1, · · · , n},∑
x∈S

v2
k(x) ≤ ε+

C|S| log h

h
.

where the constant C depends only on d.

Proof. Let B be the subset of vertices v in V (G) such that (G, v)h is not isomorphic to (Td, o)h.

We have ∑
x∈B

n∑
k=1

v2
k(x) = B(h).

In particular, the set B∗ of eigenvectors such that∑
x∈B

v2
k(x) ≥ ε

has cardinal at most B(h)/ε. Now, take k /∈ B∗ and z = λk + it with t = 20d log(2h)/h, then, from

(36) and Corollary 5.5, ∑
x∈S

v2
k(x) ≤ ε+

∑
x∈S\B

v2
k(x)

≤ ε+
∑
x∈S\B

2t=(Rxx(z))

≤ ε+ 2|S|t=(gµTd (z)) +
|S|
ζdh

.

Now, there exists a constant c > 0 such that =(gµTd (z)) ≤ c for all z ∈ C.

Finally, we can also compute bounds on the average of inverse participation ratios PI defined

by (32).

Theorem 5.8 (Inverse participation ratio). Let p > 2, L ≥ 1, and K ⊂ (−2
√
d− 1, 2

√
d− 1) be a

closed set. There exists a constant h0 depending on d,K, p, L such that the following holds. If for

some h ≥ h0,
hp/2B(h)

n
≤ L
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then, for all intervals I ⊂ K of length at least C(log h)/h,

PI ≤ C|I|p/2−1,

where C is a constant depending d,K, p, L.

Proof. First, since K ⊂ (−2
√
d− 1, 2

√
d− 1), the density of µTd is lower bounded by some positive

constant say 2c0 on K. Also,
hBh
n
≤ Lh1−p/2 = δ

and h ≥ log(1/δ) = (p/2− 1) log h− logL if h is large enough. It follows from Theorem 5.6 that

µG(I)

|I|
≥ 2c0 − Cδ,

for all intervals I ⊂ K of lenght at least 20d log(2h)
h

(
1
δ log 1

δ

)
. In particular, if δ ≤ δ0 = c0/C then

µG(I)/|I| ≥ c0, for all interval I ⊂ K of length at least c1 log(2h)/h with c1 = 20d
(

1
δ0

log 1
δ0

)
. In

other words, for all such intervals

|ΛI | ≥ c0n|I|.

On the other end, let h ≥ 1 and t = 20d log(2h)/h. We set R(z) = (A(G) − zI)−1, R′(z) =

(A(Td)− zI)−1. We note that R′oo(z) = 〈eo, R′(z)eo〉 = gµTd (z) is uniformly bounded for all z ∈ C
by say c. From Corollary 5.5, we have if (G, x)h and (Td, o)h are isomorphic∣∣Rxx(z)−R′oo(z)

∣∣ ≤ 1

ζdh
.

In particular, |Rxx(z)| is bounded by c+ 1. We deduce that, for some constant C,C ′ depending on

p, d,∣∣∣∣∣ 1n
n∑
x=1

(=(Rxx(z)))p/2 −
(
=
(
R′oo(z)

))p/2∣∣∣∣∣ ≤ 1

n

n∑
x=1

p

2

∣∣Rxx(z)−R′oo(z)
∣∣(|Rxx(z)| ∨ |R′oo(z)|

)p/2−1

≤ C

(
B(h)

ntp/2
+

1

ζdh

)
≤ C ′

(
hp/2B(h)

n
+

1

h

)
.

By assumption, the above expression is bounded by some constant depending on L, p, d. Hence,

from (37), if I = [λ− t, λ+ t] and z = λ+ it, we get

∑
k∈ΛI

n∑
x=1

|vk(x)|p ≤ |I|p/2
n∑
x=1

(=(Rxx(z)))p/2 ≤ C ′′n|I|p/2.

Putting together this last bound with the lower bound on |ΛI |, we conclude the proof.
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Remark that the techniques used here are not really specific to regular graphs. They could be

extended to other sequences of graphs Gn with U(Gn)→ ρ for which we have a good understanding

of the regularity of the spectral measure µeoG , where (G, o) has distribution ρ. This is done in [18].

We note however that in the present exposition, they are far from being optimal, the bound given

by Corollary 5.5 is too rough.
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Henri Poincaré, volume 13, pages 1745–1766, 2012.

[54] M. Keller, D. Lenz, and S. Warzel. Absolutely continuous spectrum for random operators on

trees of finite cone type. J. Anal. Math., 118(1):363–396, 2012.

[55] H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336–354, 1959.

[56] H. Kesten. Aspects of first passage percolation. In École d’été de probabilités de Saint-Flour,
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