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ABSTRACT. Pluripotential Theory is the study of the ”fine proper-
ties” of plurisubharmonic functions on domains in C” as well as in
complex manifolds. These functions appear naturally in Complex
Analysis of Several Variables in connection with holomorphic func-
tions. Indeed they appear as weights of metrics in the L?-estimates
of Hérmander for the solution to the Cauchy-Riemann equation on
pseudoconvex domains culminating with the solution of the Levi
problem (see [Horm90]).

They appear also in Kéhler geometry as potentials for (singu-
lar) Kéhler metrics on Kéhler manifolds and as local weights for
singular hermitian metrics on holomorphic line bundles. Here local
plurisubharmonicity means (semi)-positivity of the curvature form
of the corresponding singular metric.

Pluripotential theory has found recently many applications
in K&hler geometry (e.g. the Calabi conjecture on Kéhler sin-
gular varieties, the existence of singular Kéhler-Einstein metrics,
etc...). All these problems boil down to solving degenerate complex
Monge-Ampere equations as it will be explained in the course by
Chinh H. Lu.

The main goal of this first course is to give an elementary in-
troduction to this theory as developed by E. Bedford and B.A.
Taylor in the early eighties. From their definition it follows that
plurisubharmonic functions are subharmonic with respect to infin-
itely many Kéhler metrics. Therefore the positive cone of plurisub-
harmonic functions can viewed as an infinite intersection of ”half
spaces”, hence it is of nonlinear nature. It turns out that their
study involves a fully nonlinear second order partial differential
operator called the complex Monge-Ampere operator, a nonlinear
generalization of the Laplace operator from one complex variable.

We will first recall some elementary facts from logarithmic po-
tential theory in the complex plane and the Riemann sphere fo-
cusing on the Dirichlet problem for the Laplace operator. Then
we will introduce the complex Monge-Ampere operator acting on
bounded plurisubharmonic functions on domains in C™. Finally we
will we apply these results to solve the Dirichlet Problem for degen-
erate complex Monge-Ampre equations in strictly pseudo-convex
domains in C™ using the Peron method.

The material of this course is taken from [GZ17]. A good
knowledge in complex analysis in one variable, measure and distri-
bution theory as well as some introduction to SCV is required.
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CHAPTER 1

Plurisubharmonic functions

Plurisubharmonic functions have been introduced independently in
1942 by Pierre Lelong in France and Kiyoshi Oka in Japan.

Oka used them to define pseudoconvex sets and solved the Levi
problem in dimension two. Lelong established their first properties and
asked influential questions, some of which remained open for decades.
These problems have been eventually solved by Bedford and Taylor in
two landmark papers [BT76, BT82] which laid down the foundations
of the now called pluripotential theory.

Our purpose in this first part is to develop the first steps of Bedford-
Taylor Theory. We haven’t tried to make an exhaustive presentation,
we merely present those results that we use in the sequel of the book,
when adapting this theory to the setting of compact Kahler manifolds.

The readers already familiar with pluripotential theory in domains
of C™ can skip this first part. We encourage those who wish to learn
more about it to consult the excellent surveys that are available, no-
tably [Sad81, Bed93, Ceg88, Dem91, Kis00, Klim, Blo02, Kol05].

Plurisubharmonic functions are in many ways analogous to convex
functions. They relate to subharmonic functions of one complex vari-
able as convex functions of several variables do to convex functions of
one real variable. On the other hand plurisubharmonic functions can
have singularities (they are not necessarily continuous, nor even locally
bounded). This makes questions of local regularity much trickier than
for convex functions.

One needs infinitely many (sub mean-value) inequalities to define
plurisubharmonic functions, this is best expressed in the sense of cur-
rents (differential forms with coefficients distributions): a function ¢ is
plurisubharmonic if and only if the current dd¢y is positive.

In this chapter we establish basic properties of plurisubharmonic
functions. We first recall that harmonic functions are characterized
by mean-value equalities, briefly review the definition and properties
of subharmonic functions in the plane, and then move on to study
plurisubharmonic functions (defined as upper semi-continuous func-
tions whose restriction to any complex line is subharmonic).

We give several examples and establish important compactness and
integrability properties of families of plurisubharmonic functions.
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1. Harmonic functions

1.1. Definitions and basic properties. Let 2 C R? ~ C be a
domain. Recall that a function h : Q — R is harmonicif h is C?-smooth
and satisfies the Laplace equation

Ah =0

in €2, where
0? 0? 0?
+ =4 -,
oxr?  0y? 020%
is the Laplace operator in C = R?.
It follows from the Cauchy-Riemann equations that if f: ) — C
is a holomorphic function then its real part h = Ref is harmonic. The

Cauchy formula shows that f has the mean-value property: for any
closed disc D(a,r) C Q,

(1.1) fla) = /0 7rf(a—l—rew)g.

Conversely any harmonic function is locally the real part of a holo-
morphic function, hence harmonic functions satisfy the mean-value
property. The latter actually characterizes harmonic functions:

A:

PROPOSITION 1.1. Let h: Q@ — R be a continuous function in Q.
The following properties are equivalent:

(1) the function h is harmonic in );

(13) for any a € Q and any disc D(a,r) C Q there is a holomorphic
function f in the disc D(a,r) such that h = Ref in D(a,r);

(7i1) the function h satisfies the mean-value property (1.1) at each
point a € Q and for any r > 0 such that D(a,r) C Q;

(1v) the function h satisfies the mean-value property (1.1) at each
point a € 2, for r > 0 small enough.

In particular harmonic functions are real analytic hence C*°-smooth.

PROOF. We first show the implication (i) = (i7). We need to
prove that for a fixed disc D = D(a,r) € 2 there exists a smooth
function ¢ in D such that h + ig is holomorphic in D. This boils down
to solving the equation

oh oh
dg=——d —dy =:
g dy T or Y T ¢
in D. The 1-form « is closed in {2 since h is harmonic,
da = Ahdx N\ dy = 0.

The existence of g therefore follows from Poincaré’s lemma.
The implication (i) = (i) follows from the Cauchy formula as we
have already observed, while the implication (iii) = (iv) is obvious.
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It remains to show (iv) = (7). We first prove that h is actually
smooth in Q. Let p : C — R* be a radial function with compact
support in the unit disc D such that [ p(z) dA(z) = 27 fol p(r)rdr = 1.
We consider, for € > 0,

pe(2) :=e%p(z/e) so that /(Cpg(z)d)\(z) =1.

Set h. := h*p. for € > 0 small enough. These functions are smooth
and we claim that h. = hin Q. = {z € Q| dist(z,00) > €} for e > 0
small enough. Indeed integrating in polar coordinates and using the
mean value property for h we get

ho(a) = /01 rp(r)dr /0% h(a + ere®)df = 2rh(a) /01 rp(r)dr = h(a).

Therefore h = h, is smooth in €)..
Fix now a € {2 and use Taylor expansion of h in a neighborhood of
a: for |z —a| =r <<'1

h(z) = h(a) + RP(z —a) + ;Ah(a) + o(r?),

where P is a quadratic polynomial in z such that P(0) = 0. Thus

1 27 . 2
~ [ h(a+re®)dd = h(a) + = Ah(a) + o(r?),
2 Jo 2
hence
2 ; [
Ah(a) = Tlir(% 3 </0 h(a+re )% — h(a)) =0,
by the mean value property. Thus h is harmonic in 2. U

Let D(£2) denote the space of smooth functions with compact sup-

port in © and let D’(€2) denote the space of distributions (continuous
linear forms on D(2)). Recall that a function f € L () defines a
distribution Ty € D'(12),

Tf:XeD(Q)H/de)\ER,
0

where d)\ denotes the Lebesgue measure in ).

Weyl’s lemma shows that harmonic distributions are induced by
harmonic functions:

LEMMA 1.2. Let T € D'(Q2) be a harmonic distribution on Q2. Then
there is a unique harmonic function h in € such that T = Tj,.

PrROOF. Consider radial mollifiers (p.).so as above and set T, :=
T % p.. Then T is a smooth function in ). which satisfies AT, =
(AT) % p. = 0 in Q, hence it is a harmonic function in €.
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The proof of the previous proposition shows that for e, > 0,
T, =T %py, =T, xp. =T,

weakly in Q.,. Letting ¢ — 0 we obtain 7" = T}, in the weak sense of
distributions in €,. Therefore as n — 0% the functions T;, glue into a
unique harmonic function A in €2 such that 7" =T}, in €. O

1.2. Poisson formula and Harnack’s inequalities. The Pois-
son formula is a reproducing formula for harmonic functions:

PROPOSITION 1.3. (Poisson formula). Let h : D — R be a con-
tinuous function which is harmonic in D. Then for all z € D

1 2 ) 1 _ |Z|2
hz)=— [ h(e"’)——"=db.
@)= [ M
PRrROOF. We reduce to the case when A is harmonic in a neighbor-
hood of D by considering z —— h(rz) for 0 < r < 1 and letting r
increase to 1 in the end.

For z = 0 the formula above is the mean value property in the unit
disc. Fix a € D and let f, be the automorphism of D sending 0 to a,

Z+a
fol2) = 1+az
The function h o f, is harmonic in a neighborhood of D, hence
h(a) = ho f,(0) —/ ho f.(2)do
oD
The change of variables ( = f,(z) yields z = f_,(¢) and
L N Sl
as desired. O

The following are called Harnack’s inequalities:

COROLLARY 1.4. Let h : D — R be a non-negative continuous
function which is harmonic in D. For all0 < p < 1 and z € D with
|z| = p, we have

1-— 1
Toh(0) < h(z) < TLh(0),
1+p 1—p
PRrROOF. Fix z € D such that |z| = p and observe that
_ 1.2
1—p < 1A || < 1+ P
I+p e —2z2 " 1—p

Since h > 0 in dD we can multiply these inequalities by h(e?) and
integrate over the unit circle. Poisson formula and the mean value

property for h thus yield
1—p
_— < < — .
o ph(O) < h(z) h(0)
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g

1.3. The maximum Principle. Harmonic functions satisfy the
following fundamental maximum principle:

THEOREM 1.5. Let h : Q@ — R be a harmonic function.
1. If h admits a local maximum at some point a € ) then h is
constant in a neighborhood of a.
2. For any bounded subdomain D € ) we have
max h = max h.
D oD
Moreover h(z) < maxgp h for all z € D unless h is constant.

PROOF. 1. Assume there is a disc D(a,r) C Q s.t. h(z) < h(a) for
all z € D(a,r). Fix 0 < s < r and note that h(a) — h(a + se®®) > 0 for
all § € [0,27]. The mean value property yields

/027r (h(a) — h(a+ se”)) df = 0.

Since h is continuous we infer h(a) — h(a + se?) = 0 for all 6 € [0, 27],
hence h is constant as claimed.

2. By compactness there exists a € D such that h(a) = maxp h. If
a € D the previous case shows that h is constant in a neighborhood of
a. Therefore the set A := {z € D;h(z) = h(a) = maxp h} is open, non
empty and closed (by continuity). We infer A = D hence h is constant
in D. U

1.4. The Dirichlet problem in the disc. Let 2 CC C be a
bounded domain and ¢ : 92 — R a continuous function (the boundary
data). The Dirichlet problem for the homogeneous Laplace equation
consists in finding a harmonic function A : €2 — R solution of the
following linear PDE with prescribed boundary values,

Ah=01in Q
hioa = ¢

By the maximum principle, if a solution exists it is unique. We only
treat here the case when () is the unit disc

D:={¢eC;¢| <1}

The solution can be expressed by using the Poisson formula:

DirMA (£, ¢) {

PROPOSITION 1.6. Assume ¢ € C°(OD). The function
1 2T 1— |Z|2 ‘
he(z) = — | ——=6(e”)db
2o hg(s) = o [ = Hmele)

18 harmonic in D and continuous up to the boundary where it coincides
with ¢. Thus hy is the unique solution to DitMA(A, ¢).
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PROOF. Observe that for fixed ¢ = e € 9D, the Poisson kernel is
the real part of a holomorphic function in D,

1 — 2
reo= g =n(E57)

Thus hy is harmonic in D as an average of harmonic functions.

We now establish the continuity property. Fix (; = e® € oD
and € > 0. Since ¢ is continuous at (p, we can find § > 0 such that
|o(¢) — &(Co)| < £/2 whenever ¢ € D and |( — (| < 0. Observing that
the Poisson formula for A~ = 1 implies

1 27 1 o 2
L
21 Jo |z —e?)?

|he(2) — d(Co)] < e/2+ M

we infer
1—|z?

ei® —(o|>6 |Z - €i€|2

do),

where 27 M = supyp |¢|. Note that |z — €| > §/2 if z is close enough
to o and |e” — (3| > 6. The latter integral is therefore bounded from
above by 4(1 — |z|%)/6% hence converges to zero as z approaches the
unit circle. U

2. Subharmonic functions

We now recall some basic facts concerning subharmonic functions
in R? ~ C. These are characterized by submean-value inequalities.

2.1. Definitions and basic properties. Let {2 C C be a domain.

DEFINITION 1.7. A function u :  — [—o00, +00[ is subharmonic
if it is upper semi-continuous in ) and for all a € € there exists 0 <
pa) < dist(a, 0Q) such that for all 0 < r < p(a),

2
(2.1) u(a) < i/ u(a + re')do.
2m J,

Recall that a function u is upper semi-continuous (u.s.c. for short)
in Q if and only if for all ¢ € R the sublevel sets {u < ¢} are open
subsets of 2. Note that harmonic functions are subharmonic; the class
of subharmonic functions is however much larger.

The notion of subharmonicity is a local concept. By semi-continuity,
a subharmonic function is bounded from above on any compact sub-
set K C () and attains its maximum on K. It can however take the
value —oo at some points. With our definition the function which is
identically —oo is subharmonic in €.

We will soon show that if u is subharmonic in a domain 2 and
u % —o0, then v € L} () hence the set {u = —oc} has zero Lebesgue

loc
measure in C. It is called the polar set of w.
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Observe that the maximum of two subharmonic functions is sub-
harmonic; so is a convex combination of subharmonic functions. Here
are some further recipes to construct subharmonic functions:

ProrosiTION 1.8. Let 2 C C be a domain in C.

(1) If u: Q@ — [—00, +00[ is subharmonic in  and x : I — R is
a convez increasing function on an interval I containing u(€2)
then x o u is subharmonic in Q.

(2) Let (u;)jen be a decreasing sequence of subharmonic functions
in Q. Then u = limu; is subharmonic in 2.

(3) Let (uj);en be a sequence of subharmonic functions in Q, which
is locally bounded from above in 2 and (g;) € RY be such that
djen€j < +oo. Then u:= 3}, eju; is subharmonic in 2.

(4) Let (X,T) be a measurable space, |1 a positive measure on
(X,T), and E(z,z) : Q x X — RU{—00} a function s.t.

(i) for p-a.e. v € X, z+—— E(z,x) is subharmonic in €,

(17) For all zg € Q, 3D a neighborhood of zy in Q and
g€ L' (u) s.t. E(z x) <g(x ) forall z € D and p-a.e. x € X.

Then z — U(z) == [y E(z,2)du(x) is subharmonic in Q.

Proor. 1. The first property is an immediate consequence of
Jensen’s convexity inequality.

2. Tt is clear that u = inf{u;; j € N} is usc in 2. The submean-value
inequality is a consegence of the monotone convergence theorem.

3. The statement is local hence it is enough to prove that u is
subharmonic in any subdomain D & 2. By assumption there exists
C > 0 such that suppu; < C for all j € N. Write

u = Zej(uj — C) —|—OZ€J'.
jEN jEN
The first sum is the limit of a decreasing sequence of subharmonic
functions, hence it is subharmonic and so is .
4. The upper semi-continuity of U is a consequence of Fatou’s
lemma. The submean value property is a consequence of the Tonelli-
Fubini theorem. O

We now give some examples of subharmonic functions.

EXAMPLES 1.9.

1. Fiza € C and ¢ > 0. The function z — clog |z — a| is subhar-
monic in C and harmonic in C\ {a}.

2. Let (a;) € CY be a bounded sequence and let £; > 0 be positive
reals such that 3 e; < +00. The function

z = u(z Zsjlog|z—aj\

15 a locally integrable subharmomc function in C. If the sequence (a;)
is dense in a domain €2, it follows from a Baire category argument that
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the polar set (u = —o0) is uncountable but has zero Lebesque measure.
Any point a € Q\ {u = —oo} is a point of discontinuity of u: the
function u is finite at a but not locally bounded near a.

We generalize the first example above:

ProrosiTioN 1.10. Let f : Q@ — C be a holomorphic function
with f £ 0 in Q. Then log|f| is a subharmonic function in Q which
is harmonic in the domain Q\ f~(0). In particular for any o > 0 the
function |f|* is a subharmonic function in €.

PROOF. Observe that {u = —oco} = {f = 0}. It is clear that u is
w.s.c. in 2, since for every ¢ € R {u < ¢} = {|f] < e‘} is open.

If a € Q and u(a) = —oo, the submean-value inequality (2.1) is
trivially satisfied. If @ € Q and u(a) > —oo then f(a) # 0. By
continuity, f(z) # 0 for |z — a| < r, where > 0 is small enough. It
follows that log f has a continuous branch which is holomorphic in the
disc D(a,r). Therefore u = R(log f) is harmonic in D(a,r) hence it
satisfies the submean-value equality.

The last statement follows from the fact that | f|* = x(log|f|) where
X (t) := exp(at) is a convex increasing function in R U {—o0}. O

PROPOSITION 1.11. Let u : 2 — R be a convex function. Then u
is a continuous subharmonic function in €.

PROOF. When u is smooth in €2 we see that Aw is the trace of the
real hessian of u which is a semi-positive quadratic form by convexity.
Hence Au > 0 pointwise in 2 which proves that u is subharmonic in €.
For the general case we use regularization by convolution with radial
mollifiers to conclude. 0

REMARK 1.12. Observe that convexr functions are continuous but
this is not the case for subharmonic functions as Examples 1.9 show.
This is an important source of difficulty when studying fine properties
of subharmonic functions.

The converse of the above proposition is thus false: there are subhar-
monic functions that are not convexr. On the other hand if u: D x I C
R? — R is a function which only depends on the real part of z i.e.
u(z) = v(z) for any z = x4+ iy € D x I, then u is subharmonic in
D x I iff v is convex in D, as the reader will check.

The mean value of a subharmonic function has an important mono-
tonicity property:

ProrPoOsSITION 1.13. Let u be a subharmonic function, a € £ and
set §(a) := dist(a,0Y). The mean-value

1 2m )
r+— M(a,r) := —/ u(a + re)do,
0

27

is increasing and continuous in [0,(a)[ ; it converges to u(a) asr — 0.
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PROOF. Fix 0 < r < d(a) and let h be a continuous function in the
unit circle 9D such that u(a + re?) < h(e®) for all e € OD. Let H
be the unique harmonic function in D such that H = h on 0D. The
classical maximum principle insures u(a 4+ r() < H(() for ( € D.

If 0 < s <r, it follows from the mean-value property for harmonic

functions that
27 27

2m
/ wa+sé®do < [ H(se®do = [ H(re®)do.
0 0 0

Therefore fo% u(a+se?)df < fo% h(rei?)df for any continuous function
h such that u(a + r¢) < h(¢) on OD.

Since u is upper semi-continuous, there exists a decreasing sequence
h; of continuous functions in the circle 0D that converges to the func-
tion ¢ — wu(a + r¢) in the circle (see Exercise 1.1). The monotone
convergence theorem yields

2w 27
/ u(a + se)dh < / u(a + re')do.
0 0
U

COROLLARY 1.14. If u is subharmonic in Q, a € Q and 0 < r <
d(a), then
1
u(a) < — / w(2)dV (2),
D(a,r)

wr

where dV is the Lebesgue measure on R?. For any a € (Q,

1
u(a) = lim —; u(2)dV (2).
@=tim 5 [ wav()
In particular if w and v are subharmonic functions in € such that
u < v almost everywhere in €2 then u < v everywhere in Q.

2.2. The maximum principle. The maximum principle is one
of the most powerful tools in Potential Theory:

THEOREM 1.15. Assume u is subharmonic in Q.

1. If w admits a local mazimum at some point a € ) then u is
constant in a neighborhood of a,

2. For any bounded subdomain D € §2 we have

max u = maxu.
D oD

Moreover u(z) < maxgp u for all z € D unless u is constant on D.

PRrROOF. The proof follows the same lines as in the case of har-
monic functions with some modifications due to the fact that u is not
necessarily continuous.

1. By hypothesis there is a disc D(a,r) € €2 such that u(z) < u(a)
for any z € D(a,r). Fix 0 < s < r and observe that

u(a) — u(a + se') > 0 for all § € [0, 2n].
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Integrating in polar coordinates gives
/ (u(a) —u(z))dV(z) >0,
D(a,r)

while the submean-value property shows that the above integral is neg-
ative. Therefore

/D ) —u(a)av ) =o

We infer that u(z) — u(a) = 0 almost everywhere in D(a, ), hence
everywhere in D(a,r) since u is subharmonic. This proves that u is
constant in a neighborhood of a.

2. By compactness and upper semi-continuity we can find a € D
such that u(a) = maxpu. If a € D then by the previous case u is
constant in a neighborhood of a, therefore the set

A:={z € D;u(z) = u(a) = mgxu} ={z € D;u(z) > mgxu}

is open, non empty and closed by upper semi-continuity, hence u is
constant in D. O

COROLLARY 1.16. Let Q2 € C a bounded domain and u a subhar-
monic function in §2. Assume that limsup, . u(z) < 0 for all ¢ € 952,
Then v <0 in €.

PRroOF. Fix € > 0. By compactness and upper semi-continuity of
u there exists a compact subset K C €2 such that © < e in Q\ K. Take
a subdomain D € 2 such that K C D and apply Theorem 1.15 to
conclude that u < € in D. Therefore v < ¢ in 2 and the conclusion
follows since € > 0 is arbitrary. U

The following consequence is known as the comparison principle:

COROLLARY 1.17. Let Q2 € C be a bounded domain and u,v sub-
harmonic functions in L}, () such that the following holds:

(i) For all ¢ € 09, liminf, ,.(u(z) —v(z)) > 0.

(17) Au < Av in the weak sense of Radon measures in §).
Then u > v in €.

PROOF. Set w := v — u and observe that w is well defined at all
points in 2 where the two functions do not take the value —oo at
the same time, hence almost everywhere in Q and w € L, .(Q) (see
Proposition 1.37). From the condition (i7) it follows that Aw > 0 in
the sense of distributions in (2.

We infer that w is equal almost everywhere to a subharmonic func-
tion W in Q (see Proposition 1.19 ). Therefore v = u + W almost
everywhere in (2, hence everywhere in €.

We claim that limsup, , W(z) < 0. Indeed let (z;) € QY be a

sequence converging to ¢ € 0€2. Since limsup, _,(v(z;) — u(z;)) <0,
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it follows that for j > 1 large enough v(z;) — u(z;) < 400, hence
W(z;) = v(zj) — u(z;) and limsup, . W(z;) < 0. This proves our
claim. It follows from Corollary 1.16 that W < 0 in €2 as desired. [J

2.3. The Riesz representation formula. In this section we lay
down the foundations of Logarithmic potential theory. We associate
a canonical (Riesz) measure to any subharmonic function and show
how to reconstruct the function from its boundary values and its Riesz
measure.

DEFINITION 1.18. We let SH(Q2) denote the set of all subharmonic
functions in the domain 2 which are not identically —oo.

The set SH () is a convex positive cone contained in L}, (). The
proof of this fact will be given in Proposition 1.37, in the more general

context of plurisubharmonic functions.

PROPOSITION 1.19. Ifu € SH(QQ) then the distribution Au > 0 is
a non-negative distribution: for any positive test function ¢ € DT(Q),

(Au, ) = / uApdV > 0.
0

Conversely if T € D'(Q) is a distribution such that AT > 0 then
there is a unique function u € SH(Y) such that T,, = T.

PROOF. Fix u € SH(2). Assume first that u is smooth in 2 and
fix a € Q. It follows from Taylor’s formula that

Aufa) = lim = ( L /O%u(a +re)df — u(a)) |

Since wu is subharmonic the right hand side is non negative hence
Au(a) > 0 pointwise in 2.

We now get rid of the regularity assumption. It follows from Propo-
sition 1.37 that u € L}, (), hence we can regularize u by convolution
setting u. = u x p. for € > 0, using radial mollifiers.

The functions u, are subharmonic as convex combination of sub-
harmonic functions. Since u. is moreover smooth we infer Au, > 0,
hence Au > 0 since v — w in L], .

We note for later use that € +— wu. is non-decreasing: this follows
from the mean value inequalities and the fact that we use radial and
non-negative mollifiers. In particular u. decreases to u as € decreases

to zero (cf Proposition 1.13 and Corollary 1.14).

Let now T be a distribution in 2 and (p.).>¢ be mollifiers as above.
Then v, := T * p. is a smooth function such that Av, = (AT) xp. >0
in )., thus v, is subharmonic in €2..

We claim that ¢ —— v, is non decreasing. Indeed for ¢ > 0 small
enough, the map 7 —— (v. x p,) is non decreasing since v. is subhar-
monic in 2.. By definition of convolution, we have v, x p, = v, x p in
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ey, for e,m > 0 small enough. Therefore for any fixed n > 0 small
enough, the map € — v, x p,, is also non decreasing for small €. Since
Ve % pp — V. as ) — 07 the claim follows.

Now since v, is non decreasing in € > 0 it converges to a subhar-
monic function v as € decreases to zero. The function v can not be
identically —oo since T, = T as distributions (this follows from the
monotone convergence theorem). The uniqueness follows again from
Corollary 1.14: two subharmonic functions which coincide almost ev-
erywhere are actually equal. U

Recall that a positive distribution always extends to a positive Borel
measure (see Exercise 1.11). Therefore if u € SH(S2) then the positive
distribution (1/27)Aw can be extended as a positive Borel measure p,
on 2 which we call the Riesz measure of w.

DEFINITION 1.20. The Riesz measure of uw € SH(S) is

1
« = —Au.
a 27 “
Using the complex coordinate z = = + iy, the real differential oper-
ator acting on smooth functions f : 2 — C by

o af of |

oo
+8y

splits into d = 9 + 0, where the complex differential operators 0 and 0
are defined by

f af

of =
We extend these dlfferentlal operators to distributions: if f is a
distribution then df is defined as above, but it has to be understood in
the sense of currents of degree 1 on €Q: it is a differential form of degree
1 with distribution coefficients.
Observe that the volume form in C can be writen as

dz and Of =

da A dy = %dz/\dz.

We define the real operator d° by

c .__ 1 )
&= 5—(0-0)

so that for u € SH(2), we obtain
1
dd‘u = 2—Au dz N\ dy = p,, dx A dy,
T

where p, is the Riesz measure of w and the notation u,dzr A dy is
understood in the sense of currents of degree 2: it is a differential form
of degree 2 with distribution coefficients.
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EXAMPLE 1.21. Fiz a € Q. The function z — {,(z) := log|z — a
is subharmonic and satisfies

1
2.2 ddl, = —Al, = 6,
(2:2) o

in the sense of distribution, where d, denotes the Dirac mass at the
point a. In particular £y is a fundamental solution of the linear differ-
ential operator dd® = (2m)"*A in C.

The following result connects logarithmic potential theory to the
theory of holomorphic functions in one complex variable:

ProrosiTION 1.22. Let f : Q@ — C be a holomorphic function
such that f # 0, then log|f| € SH(). It satisfies

ddlog | f| = Z my(a)dy,

aEZf

where Z; := f~(0) is the zero set of f in Q and my(a) is the order of
vanishing of f at the point a.

Observe that since f # 0, the zero set Z; is discrete in €2, hence
the sum is locally finite.

PrRoOOF. On any subdomain D & (2 the set A := Z; N D is finite
and there exists a non-vanishing holomorphic function g such that

f(2) = Maea(z — a)™Wg(2)

for z € D. Since g is zero free, log |g| is harmonic hence

dd®log | f| = me(a)ddc log|z —al = me(a)éa

acA a€A

in the sense of distributions. O

Let 1 be a Borel measure with compact support on C, then

2= Uy(z) = /(Clog |z — C|du(¢) = pxlo(2)

is subharmonic in C. Moreover, if z € C\ Supp(u) then
Uy(2) = logdist(z, Supp(p)) > —oo,
and
Un(2) < 1(C)log" |2] + Clu), = € C.
It follows that U, € SH(C).

DEFINITION 1.23. The function U, : z + [.log|z — ¢|du(C) s
called the logarithmic potential of the measure p.
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Observe that
lAU = (lAE ) * =
o ~Vn o 00 M= H,
in the sense of distributions on C. This implies that U, is subharmonic
in C and harmonic (hence real analytic) in C \ Supp(u).

We can now derive the Riesz representation formula:

PROPOSITION 1.24. Fiz u € SH(Y) and D € Q a subdomain.
Then

u(z) = [ Toglz = Cldl) + hol), =€ D,

where [, = %Au and hp s a harmonic function in D.

PROOF. Apply the last construction to the measure up := 1p - iy
which is a Borel measure with compact support on C: the function

) i= [ Toglz = Cldinc) = o * o(2)

is subharmonic in C and satisfies
Av = pup*x A(ly) = 1p(Au)

in the sense of Borel measures in C. Therefore h := u — v is a locally
integrable function which satisfies Ah = 0 in the weak sense of distri-
butions in D. It follows from Weyl’s lemma that A coincides almost
everywhere in D with a harmonic function denoted by hp. This implies
that w = v + hp almost everywhere in D hence everywhere in D. [J

This result shows that a subharmonic function u coincides locally
(up to a harmonic function which is smooth) with the logarithmic po-
tential of its Riesz measure . In particular the information on the sin-
gularities of u (discontinuities, polar points, etc) are contained within
its potential U,,.

The study of fine properties of subharmonic functions is therefore
reduced to that of logarithmic potentials of compactly supported Borel
measures on C, hence the name Logarithmic Potential Theory.

2.4. Poisson-Jensen formula. The Poisson-Jensen formula is a
generalization of the Poisson formula for harmonic functions in the
unit disc. It is a precise version of the Riesz representation formula
that takes into account the boundary values of the function:

PROPOSITION 1.25. Assume u € SH(SY) where §) is a domain con-
taining the closed unit disc . Then for all z € D,

e L=z db -
ue) = [ u(eit) L 48 /|< ‘ 1logMdu<c>,

|z—ei9|2% |1—Z§_|

where p = %Au is the Riesz measure of u.
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When w is harmonic in D we recover the Poisson formula (Theo-
rem 1.6). The first term is called the Poisson transform of w in D.
This is the least harmonic majorant of v in ). The second term is a
non-positive subharmonic function encoding the singularities of u; it is
called the Green potential of the measure pu.

ProOF. Fix w € D and set for z € D,

Z—w
Gp(z,w) = Gy(z) = 10gﬁ

Observe that G, is subharmonic in D,
dd°G, = Oy,

in the weak sense of distributions in ID and G,, = 0 in D.

It follows from the comparison principle (Corollary 1.17) that G,
is the unique function having these properties. It is called the Green
function of the unit disc with logarithmic pole at the point w.

For w € C fixed, we set

H,(z) = /8 log ¢~ wlPo(z. )do(6),

where do is the normalized Lebesgue measure on 0D and

1—|z]?
P]D) Zag =TT
B8 =e=op
is the Poisson kernel for the unit disc. We claim that
(2.3) Hy(z) = loglz —w| — Gu(2), if w e D,
(2.4) Hy(z) = loglz—w|, if weC\D.

Indeed if w € D then by Proposition 1.6, the function H,, is harmonic
in D and continuous up to the boundary where it coincides with the
function z — log |z — w|. Therefore the function g(z) := log |z — w| —
H, (%) is harmonic in D \ {w}, subharmonic in D with a logarithmic
singularity at w and is 0 on dD. The maximum principle thus yields

(2.5) Gu(z) =log|z — w| — Hy(z),

for any z € D, which proves (2.3).
If w € C\ D, the function z — log |z — w| is harmonic in D and
continuous in . Therefore (2.4) follows from the Poisson formula.
By the Riesz representation formula, if I’ is a disc containing ID so
that u is subharmonic on I/, we have u = U, +h in I, where p1 := pipy
and h is a harmonic function in I'. Fubini’s theorem and (2.3), (2.4)
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yield
[ worsgae) = [ ([ el ciauto +no) otz ante)
= [ ([ tosle~cIo(. 9000 ) du(6) + 102
| 1oglz = Cldu(e) ~ [ Geedutc) + (2
g D
= ()~ [ Gele)ducc)

which is the required formula. O

REMARK 1.26. The Poisson-Jensen formula suggests to consider
the following general Dirichlet problem: given a finite Borel measure
on the disc D and a continuous function ¢ in ID, find u € SH(D)
which extends to the boundary such that

Au=p inD

DiniA®. 0. { 3" 2",

We shall come back to this problem in Chapter 5.

2.5. The Green function and the Dirichlet problem. As we
already observed, for any w € C, the function ¢,,(z) :=log |z — w| is a
fundamental solution for the Laplace operator i.e.

ddl = by,

in the weak sense of distributions on C.

For the unit disc D we have foundamental solution Gp(-, w) for the
Laplace operator in I such that Gp(-,w) = 0 on JA. This means that
g := Gp(+,w) is the unique solution to the following Dirichlet problem:

Au =6, inD

DirMA(D, 0, 6,,) { wom = 0
o=

DEeFINITION 1.27. Let 2 C C be a fired domain and w € C be a
fixed point. We say that Q0 admits a Green function with logarithmic
pole at w if there zists a fundamental solution to the Laplace operator
on the domain Q with boundary values 0 (on 0L2) i.e. the Dirichlet
problem DirMA(£,0, dy) with D replaced by 2 has a solution.

Such a function if it exists is unique by the maximum principle. We
denote it by Gq(-,w) : the Green function of 2 with logarithmic pole
at w.

The existence of a Green function is closely related to the regularity
of the domain and the solvability of the Dirichlet problem for the ho-
mogenous equation Au = 0 in € with an arbitary continuous boundary
data (see [Ral).
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THEOREM 1.28. Assume that Q2 € C is a given domain. Then the
following properties are equivalent:

(1) for any fized point w € Q, the domain Q2 admits a Green function
with logarithmic pole at w;

(23) for any point ¢ € 02 there exists a function be subharmonic in
Q such that by < 0 in Q and lim, ¢ b:(2) =0 (b is called a barrier for
Q at the point C);

(i11) for anmy continuous function h € C°(0S2, the Dirichlet problem

Au=01inD

DirMA(Q, b, 0) { won = h
o =

has a (unique) solution Uq(h).

A domain satisfying one the previous properties is said to be reqular
for the Dirichlet problem. As a consequence we connect this problem
to the Riemann mapping theorem.

COROLLARY 1.29. Let Q2 € C be a simply connected domain. Then
Q admits a Green function G, with logarithmic pole at any fized point
w € Q.

Moreover there exists a holomorphic isomorphism ¢ of ) onto the
unit disc D such that p(w) =0 and

p(2)| := eCol=w) 2 e Q.

Proor. We first show that the domain €2 is regular for the Dirichlet
problem. Indeed fix { € 0€). Then by translation and dilation, we can
assume that ( = 0 € 92 and Q C . Then since €2 is a simply
connected domain in C\ {0}, there exists a holmorphic branch log of
the logarithm on €2. Hence the function defined on 2 by

b(z) :==R(1/log z)

is a barrier function for €2 at the boundary point ¢ = 0.

By the previous theorem, 2 admits a Green function. Let h(z) :=
Ga(z)—log|z—w| for z € 2. Then the function A is harmonic in Q\{w}
and locally bounded near w in Q \ {w}. Therefore it extends into a
harmonic function on €2. Let hA* be the harmonic conjugate function
of h in Q such that h*(w) = C to be choosen. Then the function
#(2) := (z — w)e"™" is holomorphic in Q such that |¢(z)] = eFe=w)
and lim_,pq = 1 Therefore ¢ is a proper holomorphic function from €2
onto D. It is enough to prove that ¢ is injective on §2. Assume there
are two point a,b € Q such that ¢(a) = ¢(b).

Consider the function u(z) := Gp(¢(2), ¢(b)) — Ga(z,b). Then u is
subharmonic in Q\ {wp} and bounded from above near wy. Therfore it
exetnds into a subharmonic function in €2, denoted by w. Since u tends
to 0 at the boundary of €2, it follows from the maximum principle that
u < 0in Q. Since u(a) = 0 we conclude that u = 0 in 2. Therefore
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since ¢(a) = ¢(b), we have proved that for any z € Q,
Go(9(2), ¢(a)) = Go((2), 9(b)) = Gal(z,b)
Since ¢(a) = ¢(b) this implies that
Gola,b) = lin Go(2.) = lin Go(6(2), 6(a)) = .
This proves that a = b. O

3. Plurisubharmonic functions

We now introduce the fundamental objects that we are going to
study in the sequel. The notion of plurisubharmonic function is the
pluricomplex counterpart of the notion of subharmonic function.

3.1. Basic properties. We fix () a domain of C".

DEFINITION 1.30. A function u : Q@ — [—00 + 00| is plurisubhar-
monic if it is upper semi-continuous and for all complex lines A C C™,
the restriction u|QQ N A is subharmonic in QN A.

The latter property can be reformulated as follows: for all a € €,
¢ € C" with €| =1 and r > 0 such that B(a,r) C Q,

(3.1) u(a) < % /OQWu(a + re’€)dh.

All basic results that we have established for subharmonic functions
are also valid for plurisubharmonic functions. We state them and leave
the proofs to the reader:

ProrosiTION 1.31.

(1) If u : Q — [—00,400] is plurisubharmonic in 0 and x is a
real convex increasing function on an interval containing the
image u(S)) of u then x ow is plurisubharmonic in Q.

(2) Let (u;)jen be a decreasing sequence of plurisubharmonic func-
tions in §). Then w := lim;_, o u; is plurisubharmonic in .

(3) Let (X,T) be a measurable space, ji a positive measure on
(X,T) and E(z,x) : Q x X — RU{—o00} be such that

(i) for p-a.e. v € X, z— E(z,x) is plurisubharmonic,

(i) Vzo € Q there exists v > 0 and g € L*(u) such that for
all z € B(zp,7) and p-a.e. x € X, E(z,z) < g(x).

Then z — V(z) := [ E(z,t)du(x) is plurisubharmonic.

Recall that a function f : z = (21,...,2,) € Q = f(z2) € C is
holomorphic if it satisfies the Cauchy-Riemann equations 0f/0z; = 0
forall 1 <j <n.

PROPOSITION 1.32. Let Q C C" be a domain in C* and f a holo-
morphic function such that f # 0 in Q. Then log|f| is plurisubhar-
monic in 0 and pluriharmonic in Q\{f = 0}. Moreover for any o > 0,
| f|¢ is plurisubharmonic in €.



3. PLURISUBHARMONIC FUNCTIONS 23

A function is pluriharmonic if it satifies the linear equations
f

azjﬁik N

for all 1 < j,k < n. One shows (like in complex dimension 1) that a

function is pluriharmonic if and only if it is locally the real part of a
holomorphic function.

0

We add one more recipe known as the gluing construction:

PROPOSITION 1.33. Let u be a plurisubharmonic function in a do-
main . Let v be a plurisubharmonic function in a relatively compact
subdomain Q' C Q. If u > v on 0, then the function

| maxu(z),v(2)] if z € Y
ZH“’(Z)—{U(Z) ifz€Q\Q

18 plurisubharmonic in €.

PROOF. The upper semi-continuity property is clear. Replacing v
by v—e, one gets that u strictly dominates v—e in a neighborhood of 9
and the corresponding function w. is then clearly plurisubharmonic.
Now w is the increasing limit of w. as £ decreases to zero, so it satisfies
the appropriate submean-value inequalities. O

3.2. Submean-value inequalities. The following result follows
from its analogue in one complex variable.

PROPOSITION 1.34. Let u : Q@ — [—oo+o00] be a plurisubharmonic
function. Fiz a € Q and set 6(a) := dist(a,0). Then
(i) the spherical submean value inequality holds: for 0 <r < d(a),

(3.2) u(a) < /{ a6 do(9)

where do is the normalized area measure on the unit sphere S**~1 c C*;
(ii) the spatial submean value inequality holds: for 0 < r < d6(a)
and any increasing right continuous function vy on [0,r] with v(0) = 0,

1 T
33 o< gy [t [ a9 dote
(i1) the toric submean value inequality holds: for 0 < r < d(a)//n,
(3.4) u(a) < / u(a + r¢) dr,(¢),

where dt,, 1s the normalized Lebesque measure on the torus T™.

All these integrals make sense in [—o0o, +0o[. We will soon see that
they are usually finite (cf Proposition 1.37).
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PROOF. The first inequality follows from (3.1) by integration over
the unit sphere in C" and the second inequality follows from the first
one by integration over [0,r] against the measure dvy. The third in-
equality follows from (3.1) by integration on the torus. O

REMARK 1.35. Let u be a plurisubharmonic in €). Using polar co-
ordinates we can write

o " 2n—1
/|<|<1 u(a + r¢)d\(() —/0 t dt/|§:1 u(a 4+ t&)do(§).
It follows from (3.3) that

(3.5) ua) < - [ utat Q) av(Q)
Ran Ji¢|<1
where kg, denotes the volume of the unit ball in C™.
The function u considered as a function on 2n real variables is thus
subharmonic in Q considered as a domain in R?".

DEFINITION 1.36. We denote by PSH(S2) the convex cone of plurisub-
harmonic functions u in  such that u|Q # —oo.

The submean-value inequalities imply the following important in-
tegrability result:

PROPOSITION 1.37.
PSH(Q) C L,,.(Q).

Moreover the restriction of u € PSH(2) to any euclidean sphere
(resp. any torus T™) contained in ) is integrable with respect to the
area measure of the sphere (resp. the torus).

In particular the polar set P(u) := {u = —oo} has volume zero in
Q and its intersection with any euclidean sphere (resp. any torus T")
has measure zero with respect to the corresponding area measure.

DEFINITION 1.38. A set is called (locally) pluripolar if it is (locally)
included in the polar set {u = —oo} of a function u € PSH(S).

It follows from previous proposition that pluripolar sets are some-
how small. We will provide more precise information on their size in
the next chapters.

PROOF. Fix u € PSH(Q) et let G denote the set of points a € Q
such that wu is integrable in a neighborhood of a. We are going to show
that G is a non empty open and closed subset of €. It will follow that
G = Q (by connectedness) and u € L}, .(Q).

Note that G is open by definition. If a € Q and u(a) > —oo, the
volume submean-value inequalities yield, for all 0 < r < dist(a, 092),

—00 < kg u(a) < / u(z)dV(z).
B(a,r)
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Since u is bounded from above on B(a,r) € €, it follows that u is
integrable on B(a,r). In particular if u(a) > —oo then a € G, hence
G # (), since u # —o0.

We finally prove that G is closed. Let b € €2 be a point in the
closure of G and r > 0 so that B(b,r) € Q. By definition there exists
a € GNB(b,r). Since u is locally integrable in a neighborhood of a
there exists a point a’ close to a in B(b, ) such that u(a’) > —oo. Since
beB(d,r) € Qand u is integrable on B(a’, r), it follows that b € G.

The other properties are proved similarly, replacing volume sub-
mean inequalities by spherical (resp. toric) ones (Proposition 1.34). [

PROPOSITION 1.39. Fiz uw € PSH(Q), a € Q and set éq(a) =
dist(a, 02). Fizx~y a non decreasing right continuous function such that
v(0) = 0. Then

re )=~ [l /  ula+s0)do(c),

is a non-decreasing continuous function in [0,0q(a)[ which converges
to u(a) asr — 0.

ProoOF. This property has already been established when n = 1.
Fix 0 < r < dg(a) and observe that for all e € T,

[ uarsoiol©)= [ ulatse? aofc),
|€]=1 l€|=1

since the area measure on the sphere is invariant under the action of
the circle T. Integrating on the circle and using the one-dimensional
case yields the required property. O

COROLLARY 1.40. Foru € PSH(Q), a € Q and 0 <1 < dg(a),
1
wa) <o [ ulatrdNO < [ ulatr)dofe).
Ran Jigi<1 l€1=1

COROLLARY 1.41. If two plurisubharmonic functions coincide al-
most everywhere, then they are equal.

PROOF. Assume u,v € PSH(S2) are equal a.e. Then for all a € Q,

wla) = lim—— /|< _ ula+ OB

r—=0 Koy,

r—0 /ﬁ}2n

1
= lim — v(ia + rl)d =v(a).
/K'Sluo () = v()
O

We endow the space PSH(Q) with the L] -topology. The following

property will be used on several occasions in the sequel:
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PROPOSITION 1.42. The evaluation functional
(u,2) € PSH(2) x Q +— u(z) € RU{—o0}

1S upper semi-continuous.
In particular if U C PSH(QY) is a compact family of plurisubhar-
monic functions, its upper envelope

U :=sup{u;u € U}
s upper semi-continuous hence plurisubharmonic in €.

PRrROOF. Fix (u,29) € PSH(2) x Q. Let (u;) be a sequence in
PSH() converging to u and let » > 0 and ¢ > 0 be small enough.

We observe first that (u;) is locally uniformly bounded from above.
Indeed, if B(a,2r) C , the submean value inequalities yield,

1
/BW) uytw)aviv) < /BW oy () |V (w)

uj(z) <

KonT?" KonT?"

for |z —a| < r. Thus

1
sup u; < ——— /B( . lu;(w)|dV (w) < C,

2
B(zo,r) KonT<"

since U is compact hence bounded.
We can thus assume without loss of generality that u; < 0. The
submean-value inequalities again yield, for |z — zy| <,

7 ), o
—_— u;d\ < —————— u;d\
I€2n<7’ + 6)271 B(z,r+9) ’ Kan (T + 5)271 B(zo,r) ’

Taking the limit in both j and 2, we obtain

1
limsup w;j(z) < —/ udA.
B(zo,r)

(j,2)= (+00,20) Kon (1 + 0)%"

u;j(z) <

Let § — 07 and then » — 0" to obtain

limsup w;j(z) < u(z),
(4,2)—(+00,20)

which proves the desired semi-continuity at point (u, zp).

It follows that the envelope U is upper semi-continuous. Since it
clearly satisfies the mean value inequalities on each complex line, we
infer that U is plurisubharmonic . U

The upper envelope of a family of plurisubharmonic functions which
is merely relatively compact is not necessarily upper semi-continuous.
It turns out that its upper semi-continuous regularization is plurisub-
harmonic :
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PROPOSITION 1.43. Let (u;)ier be a family of plurisubharmonic
functions in a domain ), which is locally uniformly bounded from above
in Q and let u := sup,c; u; be its upper envelope. The usc reqularization

z = u*(z) ;== limsupu(z’) € RU{—o0}

03z —z

is plurisubharmonic in Q and {u < u*} has Lebesque measure zero.

Proor. It follows from Choquet’s lemma (see Chapter 4) that
there exists an increasing sequence v; = u;; of plurisubharmonic func-
tions such that

u' = (limv;)”.

Set v = lim  v;. This function satisfies various mean-value in-
equalities but it is not necessarily upper semi-continuous. Let y. be
standard radial mollifiers. Observe that, for ¢ > 0 fixed, v; * x. is an
increasing sequence of plurisubharmonic functions, thus its continuous
limit v * x. is plurisubharmonic and € +— v * x. is increasing.

We let w denote the limit of v* y. as € decreases to zero. The func-
tion w is plurisubharmonic as a decreasing limit of plurisubharmonic
functions. It satisfies, for all ¢ > 0, w < u * . since v; * x. < U * Xe.

On the other hand for all ¢ > 0, u < v* < v * x. hence

u<u =0 <w < uky..

Since u* x. converges to u in L}, , we conclude that u* = w is plurisub-
harmonic. Note that the set {u < u*} has Lebesgue measure zero. [

ExamMpLE 1.44. If f : Q@ — C 1is a holomorphic function such
that f # 0 and ¢ > 0 then clog|f| € PSH(2). Conversely one can
show, when ) is pseudoconvex, that the cone PSH () is the closure
(in L} (Q)) of the set of functions

loc
{clog|f|; f € O(9), f # 0, > 0},

This can be shown by using Hormander’s L*-estimates [Horm90)].

3.3. Differential characterization. We show in this section that
plurisubharmonicity can be characterized by differerential inequalities.

3.3.1. Plurisubharmonic smoothing. We first explain how any u €
PSH() can be approximated by a decreasing family of smooth plurisub-
harmonic functions (on any subdomain D € Q).

Let p(z) > 0 be a smooth radial function on C" with compact
support in the unit ball B C C" such that [, p(z)dA(z) = 1. We set

p=(¢) == e7*"p(C/e),

for e > 0. The functions p. are smooth with compact support in B(0, )
and fcw pdX = 1, they approximate the Dirac mass at the origin.
Let u: Q2 — RU{—o0} be a L, -function. We set

Q. = {z € Q;dist(z,00) > ¢}
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and consider, for z € €.,

w(z) = / w(Q)pelz — QANQ).

These functions are smooth and converge to u in L] .

PROPOSITION 1.45. If u € PSH(QY) then the smooth functions u.
are plurisubharmonic and decrease to u as € decreases to 0F.

Proor. The functions u,. are plurisubharmonic as (convex) average
of plurisubharmonic functions. By definition if z € )., we have

us(z) = / u(z +eC)p(Q)dN (), z € Q..
I¢l<1

Integrating in polar coordinates we get

ue(z) = /0 Ly dr /g o)

The monotonicity property now follows from Proposition 1.39. U

We let the reader check that a function u of class C? is plurisub-
harmonic in € iff for all a € 2 and 5 e C,

(3.6) Z Z Gzﬁz] ;>0

=1 j=1

In other words the hermitian form £, (a,.) (the Levi form of u at the
point a) should be semi-positive in C".

For non smooth plurisubharmonic functions this positivity condi-
tion has to be understood in the sense of distributions:

PROPOSITION 1.46. Ifu € PSH(Q) then for any & € C™,

2 é35’“@,2(9,4 0

1<5,k<n

s a positive distribution in €.

Conversely if U € D'(Q) is a distribution such that for all £ € C™,
the distribution ijfk% 18 positive, then there exists a unique u €
PSH(Q) such that U = Tu.

Each distribution 3 a*
Q2 so that the matrix (um) is hermitian semi-positive.

extends to a complex Borel measure j; ; on

ProOF. The proof follows that of Proposition 1.19. Fix & € C"
and consider the linear operator with constant coefficients

Z fjé.k 6zj 82k

1<j5,k<n



3. PLURISUBHARMONIC FUNCTIONS 29

Assume first that v is smooth in €2 and fix a € €). The one variable
function we : ¢ — u(a+ (- &) is defined on a small disc around 0. For
¢ € C small enough observe that

82u5 ( — A
acaé Q) - Eu(a +C- 5)
This yields the first claim of the proposition in this smooth setting.
We proceed by regularization to treat the general case. Since A is
linear with constant coefficients, it commutes with convolution,

Ague = (Agu).

and we can pass to the limit to conclude.

For the converse we proceed as in the proof Proposition 1.19 to
show that the distributions 8225% are non-negative in 2. Thus they
extend into non-negative Borel measures in 2. The mixed complex
derivatives are controlled by using polarization identities for hermitian

forms. O

3.3.2. Invariance properties. Plurisubharmonicity is invariant un-
der holomorphic changes of coordinates, hence it makes sense on com-
plex manifolds. More generally we have the following:

PROPOSITION 1.47. Fiz Q@ C C* and Q' C C™. Ifu € PSH(Q)
and f: Q' — Q is a holomorphic map, then uo f € PSH({Y).

ProOF. Using convolutions we reduce to the case when u is smooth.
Fix zp € ' and set wy = f(20), by the chain rule we get

aZu o f Z afk 8fl 8 u (w )
32@875 0z 87; 8wk8wl 0/
J 1<k,I<n J

fori,7 =1,---,m. Thus for all £ € C",
0? uof
25] J a a— annl ka l )

where 7y, 1= Zz lfzaf’“( zp) for k=1,--+,n
This means in terms of the Levi forms that L0r(20; &) = Lu(wo;n),
where 1 := 0f(20) - £ and wp := f(29). The result follows. O

We have observed that plurisubharmonic functions are subharmonic
functions when considered as functions of 2n real variables, identifying
C" ~ R?". Conversely one can characterize plurisubharmonic functions
as those subharmonic functions in R?" ~ C" which are invariant under
complex linear transformations of C":

PROPOSITION 1.48. Let Q C C" ~ R?" be a domain and u :  —
[—o0, +00[ an upper semi-continuous function in 2. Then u is plurisub-
harmonic in Q iff for any complex affine transformation S : C* — C",
wo S is subharmonic in the domain S™()) C R*".
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PROOF. One implication follows from Proposition 1.47: if wu is
plurisubharmonic, then u o S is subharmonic for any complex affine
trasnformation S : C* — C".

We now prove the converse. Let » > 0 be small enough and z € 2,
By assumption for all 0 < e < 1, the function & — u(z; + &, 2’ +ref’)
is subharmonic in £ in a neighborhood of the unit sphere {|¢{| = 1} in
R?". The spherical submean value inequality yields

u(z) < A”I—l u(zy + ré&y, 2"+ re€’)do(§),

where do denotes the normalized Lebesgue measure on the unit sphere.
Since v is upper semi-continuous and locally bounded from above, by
Fatou’s lemma, we obtain as ¢ — 0

u(z) < /|§1u(21 + &y, 2 )do(§).

This means that the function of one complex variable ( — u((, 2) is
subharmonic in its domain. The subharmonicity on other lines follows
from the invariance under complex transformations. U

4. Hartogs lemma and the Montel property

4.1. Hartogs lemma.

THEOREM 1.49. Let (u;) be a sequence of functions in PSH(S2)
which 1s locally uniformly bounded from above in Q.

1. If (uj) does not converge to —oo locally uniformly on Q, then it
admits a subsequence which converges to some uw € PSH () in L}, ().

2. Ifu; — U in D'(QQ) then the distribution U is defined by a unique
function uw € PSH(S). Moreover

e u; — uin L (Q)

o limsupu;(z) < u(z) for all z € Q, with equality a.e. in .
e for any compact set K and any continuous function h on K,

li —h) < —h).
im sup m}z{mx(u] ) < IIl;{lX(U )
The last item is usually called Hartogs lemma. When the compact
set K is "regular”, we actually have an equality,
li i —h) = —h).
im m}z{mx(uj h) mlz(ix(u h)
We are not going to study this notion any further here. The reader will

check in Exercise 1.20 that if a compact set is the closure of an open
set with smooth boundary, then it is regular.

PROOF. The statement is local so we can assume that 2 € C" and
u; < 01in € for all j € N (substracting a constant if necessary).
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Since (u;) does not converge uniformly towards —oo, we can find a
compact set £ and C' > 0 such that

limsupmaxu; > —C > —o0.
j—+o0
Thus there exists an increasing sequence (jj.) of integers and a sequence
of points (xj) in E such that the sequence w;, (z;) is bounded from
below by —2C'. Extracting again we can assume that z;, — a € E. Set
for simplicity vy, := u;, for k € N.
We know that v, € Lj,.(Q2) and we claim that if B € Q is a ball

around a, the sequence [ 5 UkdA is bounded. Indeed for k large enough
there is a ball By, centered at xj such that B C B, € €2 hence

B By

By the same reasoning as in the proof of Proposition 1.37, we deduce
from this that the set X of points x € ) which have a neighborhood
W C € such that the sequence fW vrdA is bounded below is closed.
Since it is open (by definition) and not empty (by assumption), we
infer from connectedness that X = ().

The sequence (vy,) is therefore bounded in L}, (Q), i.e. the sequence
of non-negative measures py := (—vg)A is bounded in the weak topol-
ogy of Radon measures on 2. Thus it admits a subsequence which
converges weakly (in the sense of Radon measures), hence the first

assertion is now a consequence of the second one.

We now prove the second statement. Assume that u; — U in the
weak sense of distributions on €). It follows from Proposition 1.46 that
U =T, is defined by a plurisubharmonic function u.

We want to show that u; — u in L. (Q). Fix (p.) mollifiers as
earlier. We observe that the sequence (u; * p.)jen is equicontinuous in
Q. since (u;) is bounded in L; (2): indeed fix a € Q., 0 < n < /2,
then for x,y € B(a,n),

|uj * pe(x) — uj % p=(y)| < sup |p(z — 1) — ply — )| - 1wl 21 (Base)-

jt]<e

Fix K C ) a compact set and x a continuous test function in €2
such that y =1 on K and 0 < y <1 on 2. Then

/\uj—u]d)\ < /(Uj*Ps_uj>Xd>\+/X|uj*ps_u*ps|d>‘
K

+ /(u*pE — u)xdA.

We use here the key fact that u; x p. —u; > 0.
By weak convergence the fist term converges to [(u * p. — u)xd\
and by equicontinuity, u; x p. — u % p. uniformly on K as j — +o0.



32 1. PLURISUBHARMONIC FUNCTIONS

Hence
limsup/ |u; — uld\ < 2/(u*p5 — u)xdA.
J—=too JK
The monotone convergence theorem insures that the right hand side
converges to 0 as € \ 0.
Since uj x p — u* p, locally uniformly in €2, and u; < u; % p,, it
follows that limsup u; < u* p. in €, hence limsupu; < u in €.
Fatou’s lemma insures that for any fixed compact set K C €2,

/ud)\:lim/ ujd)\g/(limsupuj)d)\g/ud)\
K 7 JK K J K

As u — limsupu; > 0 in Q and [, (u — limsupu;)dA = 0, we infer
u — limsup; u; = 0 almost everywhere in K.
To prove the last property, we observe that

m[z(zx(uj —h) < m[z(mx(uj *p: —h) — m}z{mx(u *p: — h),

where the last convergence follows from the equicontinuity of the family
(u;j * p. — h) for fixed € > 0. O

The following consequence is a kind of ”Montel property” of the
convex set PSH(Q):

COROLLARY 1.50. The space PSH(S) is a closed subset of L},.(Q)

loc

for the L} -topology which has the Montel property: every bounded sub-

loc

set in PSH(Q) is relatively compact.

4.2. Comparing topologies. Plurisubharmonic functions have
rather good integrability properties: they belong to the spaces L} .
for all 1 < p < 400 and their gradient are in quoc forall 1 <g¢g<2:

THEOREM 1.51. Let (u;) be a sequence of functions in PSH ()
converging in L, touw € PSH(Q). Then
(1) the sequence is locally uniformly bounded from above;
(2) uj = win Lj, for allp > 1;

loc

(3) the gradients Du; converge in Li, . to Du for all ¢ < 2.
Together with Theorem 1.49, this result shows that
PSH(Q) c L} () Cc D'(Q)

loc
and the weak topology of distributions on 2 and the L
coincide on the space PSH(S?) for all p > 1.

p
loc

-topology

PROOF. Step 1. We first show that (u;) is locally uniformly bounded
in Lp  for all p > 1. Assume first that n =1, D C Q and u(0) > —ooc.
We can assume without loss of generality that v < 0. The Poisson-
Jensen formula yields

e K= 2 o0) + [ o=

) |2 = ([ <1 11— 2(| ’
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where do(¢) = [l is the normalized length measure on 9D and y :=

2
é—;‘ is the Riesz measure of u in ID. In particular

2m ) [
) = [ ueyg e [ tomian(c)

Set
1—|z|?

h) = [ ()= dn(0)

This is a negative harmonic function in the unit disc. It follows from
Harnack inequalities that 3h(0) < h(z) < 37'h(0) for |z| < 1/2. Thus
forp>1,

</|z<1/2 |h(z)|Pd/\(z)) v < 3(r /)7 |h(0)].

We claim that there is C}, > 0 such that for all a € D,

(4.2) g 121 pd)\(z) 1/p<—c log |l
' dae\ L zal = el

Indeed set h,(z) := —log % This is a positive harmonic function

in D\ {a} with a logarithmic singularity at a. Moreover

0 S ha(Z) S IOg m,

for |z| < 1, hence for |a|] < 1,

[ n()Pire <)
|z]<1/2
The inequality (4.2) is thus valid when |a| < 3/4 with C, such that

Cy > T(p+1)"7 (log(4/3))".

Assume now |a| > 3/4. Then h, is a positive harmonic function
near D(3/4). Tt follows again from Harnack inequalities that

0 < ha(z) < 5ha(0) = 5log(1/]al).
for |z| < 1/2. Therefore

/||<1/2 |ha(2)[PdX(2) < 57 (log(1/]al]))” .

This proves our claim with C, := max{I'(p + 1)/?/(log(4/3)),5}. It
follows now from Minkowski’s inequality that

1/p
( / |u|pdA<z>) < GnO) + [ 10g(1/Ichdu©) = Cylul0)].
|z]<1/2 [¢l<1
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In higher dimension we use this inequality n-times: if u is plurisub-
harmonic, u < 0 near a + D% C €2, and u(a) > —oo then

(4.3) / Jula+ R2)PAA(:) < O fula))

1/2

Using the same reasonning as in the proof of Proposition 1.37 we
deduce from (4.3) that the set of points where |u|P is locally integrable
is a non empty open and closed set in €, hence u € L] ().

Recall now that u; — w in L] ., thus (u;) does not converge uni-
formly to —oo on any compact set K &€ €2 and it is locally bounded
from above in ). Arguing as in the proof of Proposition 1.37 we infer
from (4.3) that the set of point where the sequence |u;|? is locally uni-
formly integrable is a non empty open and closed set in €2, hence (u;)

is locally bounded in L (Q).

loc

Step 2. We now show that u; — w in L} (). Fix a compact set
K € € and assume that v; <0 in K for all j € N.

Assume first that the sequence is locally uniformly bounded. There
exists M > 0 such that for any j € N, =M < u; <0 on K. We fix a
subsequence (v;) of (u;) such that v; — w almost everywhere. Lebesgue
convergence theorem insures that v; — w in LP(K). This implies that
w is the unique limit point of the sequence (u;) in LV ().

To treat the general case we set for m > 1 and j € N

ui' = sup{uj, —m}, u™ :=sup{u, —mj}.

Minkowski’s inequality yields
luj = ullprry < [luy — uf||oiy + U] — u™ oy + [u™ = ull o)

By the monotone convergence theorem, the last term converges to 0
as m — +oo. By the previous case, for a fixed m the second term
converges to 0 as j — 4o00. To conclude it is thus enough to show
that the first term converges to 0 uniformly in j as m — +o00. Markov
inequality yields, for m > 1 and 57 € N,

/|uj—u;n|pdA _ 2/ s P
K Kn{u;<—m}

2
< 2 [
m Jk

which allows to conclude since (u;) is bounded in LPT(K).

Step 3. We now establish local uniform bounds on the gradient of u
in LP(Q) for 1 < p < 2. Assume first that n = 1. It suffices to consider
the case when 2D € Q and u(0) > —oo and get a uniform estimate on
DI/Q-
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The Poisson-Jensen formula (4.1) shows that for z € D,

20,u(z) = 20,h(z) + /D G _1 C;(lf‘_ o3 dp(Q).

Since h is harmonic, the representation formula yields

0.h(z) = /a u(Q0.P(. o)

when z € D. Since

—z (-1 =2)

ERE S
it follows that for |z| < 1/2,

9.(2)] < 6 / u(Oldo(6) < Sl

We have used here (1.40) and the fact that u < 0.
We need a uniform estimate for the second term which we denote
by g(z). From the expression of g we get

du(¢)
l9(2)| <2 o d

Using Minkowski’s inequality we deduce that

dA(z) \*
gl zrcgizi<1/2m) o \Jisierjay |2 = CPP #©)

22-p
< 27 /du.
2—pJp

Since 2D € ) we apply Stokes’ formula to get

/Ddu = /Dddcu < %[@(4— |2|?)ddu < %/QD(—u)d/\(z).

Adding all these inequalities, we get a uniform bound on the gra-
dient of w in the disc |z] < 1/2,

9.P(z,¢)

100l o (1py < epllullrem),

where ¢, is a uniform constant depending only on p.

Using these inequalities n times we get a local uniform bound for
the gradient of any function v € PSH(S2). In particular for any p < 2,
we have PSH(2) € W?(Q) and the inclusion operator takes bounded
sets onto bounded sets.

Step 4. We finally prove that this inclusion is continuous. Let
(u;) € PSH(Q)N be a sequence converging to w in L},.. Since plurisub-
harmonic functions are subharmonic in R?", it follows from Exercise
1.21 that Du; — Du in L},., hence almost everywhere (up to extract-

ing and relabelling). The local uniform bounds for |[Du,||zq, ¢ < 2,
allow to conclude as above that Du; — Du in L}  for all ¢ < 2. O
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5. Exercises

EXERCISE 1.1.
1) Show that a (real valued) function u (on a metric space) is upper
semi-continuous iff limsup,_,, u(z) = u(a) at all points a.

2) Let u : X — RU{—o0} be an upper semi-continuous function
on a metric space (X,d) which is bounded . Show that
x> ug(z) := sup{u(y) — kd(z,y);y € X}
are Lipschitz functions which decrease to u as k increases to +oo,
3) Same question if u is merely bounded from above (replace u by

(sup{u, —j})jen and use previous question,).

EXERCISE 1.2. Let uy, ..., us be subharmonic functions in a domain
Q c C. Show that
v:=log[e"t 4 - - + "]
defines a subharmonic function in €.
Deduce from this by a rescaling argument that max(us, ..., us) is
subharmonic as well.

EXERCISE 1.3. Let I be an open subset of R. Show that f: I — R
is convex if and only if

o [FE )+ 7 = h) = 21 (@)

h—0 h2

> 0.

EXERCISE 1.4. Let I be an open subset of R and f : I — R} a
positive function. Show that log f : I — R is convez if and only if for
allceR, t el ef(t) € R is conver.

EXERCISE 1.5. Let f; : R — R be a sequence of convex functions
which converge pointwise towards a function f: R — R. Show that f

is convex and that (f;) uniformly converges towards f on each compact
subset of R.

EXERCISE 1.6.
1. Compute the Laplacian in polar coordinates in C.
2. Let u(z) = x(|2]), x a smooth function in [0, R[. Show that

Au(z) = X'(r) + X (7).

3. Describe all harmonic radial functions in C.
4. Show that u is subharmonic in a disc D(0, R) iff x is a convex
increasing function of t =logr in the interval | — oo, log R|.

EXERCISE 1.7. Let h : R? — R be a harmonic function. Assume
there exists C,d > 0 such that

|h(2)] < C[1+||z|]]%, for all x € R?
Show that h is a polynomial of degree at most d.
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EXERCISE 1.8. Let ¢ : A — R be a continuous function and let
ug denote the Poisson envelope of ¢ in the unit disc A C C.

i) Show that ug is Holder continuous on A if and only if ¢ is Holder
continuous. Is the Holder exponent preserved ¢

ii) By considering ¢(e'?) = |sinf|, show that ¢ Lipschitz on OA
does not necessarily imply that uy is Lipschitz on A.

EXERCISE 1.9. Let p be a probability measure in C.

1) Show that

ou(z) = /ec log |z — w|du(w)

defines a subharmonic function with logarithmic growth in C.
2) Show that if ¢ is a subharmonic function with logarithmic growth
in C, then there exists c € R such that ¢ = ¢, + ¢, where p = Ap/2m.

3) Approzimating v by Dirac masses, show that every subharmonic
function with logarithmic growth in C can be approximated in L' by
functions of the type j~'log|P;|, where P; is a polynomial of degree j.

EXERCISE 1.10. Let (a;) € CN be a bounded sequence which is dense
in the unit disc and let €; > 0 be positive reals such that . e; < +o0o0.
Show that the function

z = u(z) = Zé‘j log |z — a;
J

belongs to SH(C) and has an uncoutable polar set (u = —0o0).
Check that u is discontinuous almost everywhere in the unit disc.

EXERCISE 1.11. Let T' € D'(Q) be a non-negative distribution, i.e.
(T,x) =0

for all non-negative test functions 0 < x € D(2). Show that T is of
order zero, i.e. it can be extended as a continuous (non-negative) linear
form on the space of continuous functions with compact support in €2
(in other words T extends as a Radon measure).

EXERCISE 1.12. Let ¢ be a subharmonic function in R*" ~ C",
i.e. an upper semi-continuous function which is locally integrable and
satisfies

1<~ 0%
== >
A¢i=1 ZH 9207 = !

in the sense of distributions. Show that ¢ is pluri-subharmonic if and
only if for all A € GL(n,C),

pa:2€C"—p(A-2)eR

1s subharmonic.
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EXERCISE 1.13. Show that a convex function f : R — R which is
bounded from above is constant. Use this to prove that a plurisubhar-
monic function ¢ : C" — R which is bounded from above is constant.

EXERCISE 1.14. Let Q C C" be a domain. Show that ¢ : 2 — R is
pluriharmonic if and only if it is locally the real part of a holomorphic
function.

EXERCISE 1.15.
1) Let ¢ : C" — R be a plurisubharmonic function. Show that

P|Rn € Llloc(Rn) :

2) Let @; be a sequence of plurisubharmonic functions in C" such
that p; — ¢ in L,.(C"). Show that

Pipn — Prn i Ly (R").

EXERCISE 1.16. What is the limit of p;(z) = jlog||z|| in C* ? Is
it in contradiction with the compacity criteria we have established ?

EXERCISE 1.17. Let Q C C" be a domain and F' = {u = —oo}
a closed complete pluripolar set (the —oo locus of a plurisubharmonic
function w). Let ¢ be a plurisubharmonic function in Q \ F which is
locally bounded near F. Show that ¢ uniquely extends through F' as a
plurisubharmonic function.

EXERCISE 1.18. Let Q C C" be a domain and A C C" an ana-
lytic subset of complex codimension > 2. Let ¢ be a plurisubharmonic
function in Q\ A. Show that ¢ uniquely extends through A as a plurisub-
harmonic function (see [Cirka] for some help).

EXERCISE 1.19. Let f: Q — Q' be a proper surjective holomorphic
map between two domains Q C C*, ' C CF. Let u be a plurisubhar-
monic function in Q and set, for 2/ €

v(2) == max{u(z), f(z) =2}
Show that v is plurisubharmonic in .

EXERCISE 1.20. Let u be a plurisubharmonic function in C™.

1) Show that for any ball B, supg u = supg u.

2) Generalize 1) to bounded open sets 2 with smooth boundary.

3) Deduce that K = Q is a reqular set: if uj 18 a sequence of
plurisubharmonic functions which converge to u in L, then

loc?

sup uj — sup u.
K K

4) Using the Riemann mapping theorem, show that a connected
compact set K C C is regular.
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EXERCISE 1.21. Let (u;) € SH(RF)N be a sequence of subharmonic

functions converging to u in L}, .. Using the linearity of the Laplace
operator, show that

Du; — Du in L} . for all ¢ < k/(k —1).
EXERCISE 1.22. Let Q C C" be a domain. For K C Q we let
K :={z e Q|u(z) <supu, Yu € PSH(Q)}
K

denote the plurisubharmonic hull of K. Say that §) is pseudoconvex if
K is relatively compact in Q) whenever K is.

1) Describe K when n =1 and show that any € is pseudoconver.

2) Show that Q := {z € C"|1 < ||z|| < 2} is not pseudoconvex.

3) Show that Q) is pseudoconvez iff

z € Q+— —logdist(z,00) € R

18 plurisubharmonic .






CHAPTER 2

Positive currents

1. Currents in the sense of de Rham

We let in this section €2 denote an open subset of RV,

1.1. Forms with distributions coefficients. A differential form
a of degree p on §2 with locally integrable coefficients

o= E ardxy,

|I|=p

acts as a linear form on the space of continuous test forms of comple-
mentary degree ¢ = N — p: if ¢ = ydxg is a continuous test form of
degree ¢ with compact support then

<o, >= Z&,K/ xo dv,

|I|=p @

where €7k is such that do; A doeg = €7 dV, with e x = 0 unless
K = I° complements [ in [1, N] in which case e; x = %£1.

DEFINITION 2.1. A current S of degree p is a continuous linear form
on the space Dy_,(2) of test forms (i.e. smooth differential forms with
compact support) of degree N — p on ).

We let Dyy_,(2) denote the space of currents of degree p. The action
of S on a test form U € Dn_,(Q2) is denoted by < S,V >.

If o is a smooth fom of degree ¢ the wedge product of a and S is
defined as follows:

DEFINITION 2.2. For a test form ¥ of degree N — p — q, we set
< SN,V >=< S anV¥>.
We define similarly o A S := (—=1)P1S A .

Observe that the current S A a A U is a current of maximal degree
with compact support, it can be identified with a distribution with
compact support. One can similarly interpret a current of degree p as
a differential form of degree p with distribution coefficients.

41
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1.2. Closed currents. When S is a smooth form of degree p in
) and V is a test form of degree N —p — 1,
d(SAV)=dS ANV + (—1)PS A dV.

Since S A V¥ is a differential form with compact support, it follows
from Stokes formula that [, d(S A W) = 0 hence

/dS/\\I/:(—l)p“/S/\d\IJ
Q

Q
This suggests the following definition:

DEFINITION 2.3. If S is a current of degree p then dS' is the current
of degree (p+ 1) defined by

<dS, ¢ >= (-1 < S dyp >,
where Y is any test form of degree N —p — 1.

This definition allows one to extend differential calculus on forms
to currents. It follows from the definition that a current of degree p is
a differential p-form T = Z| I=p Trdxyr, with distribution coefficients.

We set ar
I
[I|=p 1<j<N

where 21 is the partial derivative of the distribution T} acting on test

ox;
functions according to Stokes formula by
aTy o
<—, ¥ >=—-—<T,—>.
a$j w ! (9.1'j

The reader can check that this is consistent with the above defini-
tion of dT.

Most properties valid in the differential calculus on forms extend to
currents. In particular if T"is a current of degree p and « is a differential
form of degree m, then

AT Na)=dT Na+ (—1)PT A da,

as the reader will check in Exercise 2.1.
The following version of Stokes’ formula for currents will be used
on several occasions:

LEMMA 2.4. Let S be a current of degree N —1 with compact support

i Q. Then
/dS =0.
Q

PRrROOF. Let y be a smooth cut off function in {2 such that x =1
in a neighborhood of K, a compact subset of {2 containing the support

of S. Then
/dS: / xdS =< S,dx >= 0,
0 Q
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since dy = 0 in a neighborhood of the support of S. O

1.3. Bidegree. Assume now 2 C C" is a domain in the complex
hermitian space C". The complex structure induces a splitting of dif-
ferential forms into types. The space of test forms of bidegree (q,q)
will be denoted by D, ,(€2), where 0 < ¢ <n.

DEFINITION 2.5. A current T of bidegree (p, p) is a differential form
of bidegree (p,p) with coefficients distributions, i.e.
T:ip2 Z T[’]dZ]/\dZJ,
[1=[J|=p
where Ty ; € D'(Q)).

A current of bidegree (p,p) acts on the space D, (), ¢ := n — p,
of test forms of bidegree (g, q) as follows: if

V=" Y ypdag Adz
|K|=|L|=q
where g 1, € D(2), then
<TVU >= Z <Trp, Y5y >,
[I|=p,|J|=q
since 1" dz; AdZ; Ni9 dzg NdzL = e ek pidz NdZ A - - Nidz, A dZy,.
One defines similarly currents of bidegree (p, q).

REMARK 2.6. We shall also say that a current of bidegree (p,p) is a
current of bidimension (n —p,n —p), since it acts on forms of bidegree

(n—p,n—p).

Recall the decomposition d = 94+0. We have defined the differential
dS of a current, we can similarly define the derivatives 05 and 0S5
as follows. If S is a smooth differential form of bidegree (p,p) and
U € Dp1,n—p)(2), observe that

OSANVU =dSAVU =d(SAV)—=SAdYV =d(SAV)—-SAOV.
hence [0S AW = — [, S AOV. This suggests the following:

DEFINITION 2.7. Let S be a current of bidegree (p,p). The current
0S is a current of bidegree (p + 1,p) defined by

<OS, ¥ >=— < 5,0V >
for all W € D_p_1,—p) (). We define 0S similarly.
We set d° := (i/27)(0 — 9). Observe that d and d° are real differ-
ential operators of order one and
dd° = 299
T

is a real differential operator of order 2. These operators act naturally
on differential forms, their actions are extended to currents by duality.
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LEMMA 2.8. Let S be a current of bidegree (p,p), 0 <p <n—1,
and ¥ a smooth form of bidegree (¢,q), 0 < ¢g<n—p—1. Ifaisa
smooth form of bidegree (n —p—q—1,n—p—q— 1) then

ASANdUNa=dU ANd°S N«
and
SANdAYNa—dd°SANVANa=d(S NIV —TAdS)Aa.
If U is a smooth test form of bidegree (n —p — 1,n —p — 1) then
<dd°S,V >=< SAddV,1 > .
ProOF. Observe that
dU NS = (0U + D) A % (3S — 0S)

= 2L(8@/\55+88/\5‘11+5\11/\5S—0111/\86’).
™
Similarly
dS N d°V = %(85A5\I/+8\11/\55+55/\5\1/—aS/\atlf),

in the weak sense of currents on ).
The currents d¥ A d°S and dS A d°V = —d°U A dS have the same
(p+q+1,p+q+1)—part hence

dUV Nd°SNa=dSNdVU A a,
since S AOU Aa =0 = 0U A IS A a. On the other hand,
d(WAd°S —SNdYP)=dVU Nd°S + U ANdd°S —dS Nd°V — S A\ ddV.
The last formula is obtained taking o = 1 and applying Lemma 2.4. [J

2. Positive currents

2.1. Positive forms. Let V' be a complex vector space of complex
dimension n > 1. Consider a basis (e;)i1<j<, of V' and denote by
(€¥)1<j<n the dual basis of V*. Then any v € V' can be written

j
v = Z ei(v)e;.
1<j<n

Since we are mainly interested in the case where V = T,X is the
complex tangent space to a complex manifold X of dimension n, we
use complex differential notations. A vector v € V acts as a derivation
on germs of smooth functions in a neighborhood of the origin in V' by

v+ f(0) := Dy f(0).
If 2= (2, , z,) are complex coordinates identifying V' with C", then
ej = % is the partial derivative with respect to z; and €} = dz;.
The exterior algebra of V' is
AVE = @APIV*, APV = APV* @ ATV*,
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where APV * is the complex vector space of alternated C—linear p—forms.
A complex basis of the space APV™ is given by the dzy, A...Adzy, where
K = (ki,...,k,) vary in the set of ordered multi-indices of length

|K| = p. Thus dimcAPV* = ( Z ) .

The complex vector space V' has a canonical orientation given by
the (n,n)—form

Bn(z) = %dzl ANdZy N N %dzn NdZ, =dry Ndyy ... Ndz, A dy,,

where z; = z; +iy;, 7 =1,...,n. If (wy,...,w,) is another (complex)
coordinate system on V, then dwy A... Adw,, = det(%)dzl Ao Ndzy
so that

B(w) = |det(Ow;/0z)[* B (2).

In particular any complex manifold inherits a canonical orientation
induced by its complex structure.

DEFINITION 2.9.

1) A (n,n)-form v € A™"V* is positive if in some local coordinate
system (21, ..., zy,) it can be written v = \(z)B,(z), with A(z) > 0.

2) A (p,p)-form f € APPV*(0 < p < n) is strongly positive if it
1s a linear combination with positive coefficients of a finite number of
decomposable (p, p)—forms, i.e. forms of the type

iOél A&l/\...iozp/\@p,

where o, -+ ,a, are (1,0)—forms on V.

3) A (p,p)—form u € APPV*(1 < p <n—1) is (weakly) positive if
for all (1,0)—forms o; € AM°V* (1 < j < q:=n—p), the (n,n)—form
uNtoag Nag A .. iog AN Qg 1S positive.

ExamMPLES 2.10.
1) For all (1,0)—forms 1, ...,v, € AY°V*, the (p, p)-form

. — . — .p2 —
MATA A AT, =P YA,
is positive, where v =y A ... N\ Y.
2) For all a € APOV*, the (p,p)—form P’ AN@ is positive, hence

any strongly positive (p, p)—form is (weakly) positive. If a € APOV*
and 3 € A?OV*, then

PaNANCBAB=iPT D ABATAB.
In particular if p+q=mn, then a AN = Adzy \N... Ndz,, A € C, hence
aNBATAB=|ABa(z) > 0.

The following lemma will be useful in the sequel.
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LEMMA 2.11. Let (21, ..., 2,) be a coordinate system in V. The com-
plex vector space APPV™* is generated by the strongly positive forms

(2.1) Y= A AT A Y AT,
where the (1,0)—forms v, are of the type dz; + dzj, or dz; £ idz,.

PROOF. The proof relies on the following polarization identities for
the forms dz; A dzy
ddzj Ndz, = (dzj +dzi) A (dzj + dzy) — (dz; — dzg) A (dzj — dzy,)

+ i(dzj +idzy) A (dz; + idzg) — i(dzj —idzy) A (dzj — idzg).
Since
dey NdZ = dz;, Ao Ndzg, NdZg A NdE = N\ dzg, A dz,
1<s<p

it follows that the (p,p)—forms 7, of type (2.1) generate the space
APPV* over C. O

COROLLARY 2.12.

1. All positive forms u € APPV* are real i.e. u = u and if u =
i’ Z\IIZ\J\ZP ur,ydzr N\ dzy then the coefficients satisfy the hermitian
symmetry relation uy y = wy for all I,J.

2. A form u € APPV* s positive if and only if its restriction to
any complex subspace W C V' of dimension p is a positive form of top
degree on W.

PROOF. Let (65) be the basis of APPV* dual to the basis of strongly
positive forms (v,) of A" P PV* given by Lemma 2.11. Observe that
strongly positive forms are real. If @ € APPV™* is positive, we decompose
it as a =) cs0s with ¢ = o Ay > 0 for any s. Thus @ = «.

Suppose that o = %’ > t=pJj=p O1,7dz1 A dZ;, then

a=(-DF# > agsdz Adzy.
I|=p.|T|=p
Since dz; A dzy = (—1)""dzy A dz;, it follows that @y ; = oy, VI, J.

If W C V is a complex subspace of dimension p, there exists a
system of complex coordinates (21, ..., z,) such that

W:{Zp+1:...:Zn:O}.

Thus ajw = cW%dzl ANdzy N ... %dzp A dz,, where cy is given by

a A %de+1 NdZp N ... %dzn N dZ, = cwBn(2).

Therefore if a is positive then oy > 0 for any complex subspace
W C V of dimension p. The converse is true since the (n — p,n — p)-
forms Ajspidz; A dz; generate the cone of strongly positive (p, p)-forms
when W varies among all complex subspaces W of dimension p. U
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COROLLARY 2.13. A (1,1)-form w =143, wjrdz; A\ dZy is positive
if and only if the matriz (wj;) is a hermitian semi-positive matriz i.e.

ijkgjék >0 forall £€C".

4.k
PROOF. Indeed, it W = C - ¢ is a complex line generated by the
vector € # 0, then wiw = (3, w;x&;&k)idt A dt. O

REMARK 2.14. There is a canonical correspondence between her-
mitian forms and real (1,1)-forms on V. Indeed in a system of complex
coordinates (z1, ..., 2n), a hermitian form can be written as

h= Y hjdz ® dz.
1<j,k<n
The associated (1,1)—form

i _
wp, = 5 Z hj,kdzj A dzZy,
1<j,k<n
is a real (1,1)-form on V. This correspondence does not depend on the
system of complex coordinates since for all £,m €V,

wn(€m) =5 D haal&T = m&) = ~Sh(E ),

1<jk<n
and hy; = hjy. Moreover

for all (§,n) € V, which proves that h is entirely determined by wy,.

Observe finally that h is a positive hermitian form on V' if and only
if the (1,1)—form wy, is positive.

The notions of positivity (strong and weak) usually differ, but they
do coincide in bidegree (1,1):

PROPOSITION 2.15. A (1, 1)-form is strongly positive if and only if
it is weakly positive. In particular if o € APPV™* is a weakly positive
form on' V' then for all positive (1,1)—forms wy,...w, with p+q < n,
the (p+q,p+ q)-form a Awy A ... A w, is weakly positive.

PROOF. Let w € AMV* be a positive (1,1)-form on V. Diagonal-
izing the hermitian form A associated to w, we see that

w= Y i AT
1<j<r
where v; € V* for 1 < j <r. Thus w is strongly positive. U
We finally define the positivity of differential forms as follows:

DEFINITION 2.16. A smooth differential (¢, q)-form ¢ € Dy ,(2) in
an open set 2 C C™ is positive (resp. strongly positive) if for all x € Q,
the (q,q)-form ¢(x) € ATIC" is positive (resp. strongly positive).
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2.2. Positive currents. The duality between positive and strongly
positive forms enables us to define the corresponding positivity notions
for currents:

DEFINITION 2.17. A current T of bidimension (q,q) is (weakly)
positive if (T, ¢) > 0 for all strongly positive differential test forms ¢

of bidegree (q,q).

It follows from the definitions that 7" is positive iff for all oy, - - - , oy €
Di1o(Q2), T Nioy Nay A ---iag A @y > 0 as a distribution on 2.

Here is an important consequence of this definition.

PROPOSITION 2.18. Let T € D', ,(X) be a positive current and set
q:=n—p. ThenT can be extended as a real current of order O i.e.

T:ip2 Z T[deZ]/\dzJ,
H|=[J]=q
where the coefficients T ; are compler measures in ) satisfying the
hermitian symmetry Ty ; = Ty; for any multi-indices |I| = |J| = q.
Moreover for any I, Tr 1 > 0 is a positive Borel measure in 2 and
the (local) total variation measure

Tl =" |7l

[I]=|J|=¢

of the current T' is bounded from above by the trace measure,

(2.2) ITN < o Y T,

|Kl=q
where ¢, , > 0 are universal constants.

PROOF. Since positive forms are real, it follows by duality that
every positive current is real, as the current 7' is defined by the formula

T(¢) :==T(¢) for ¢ € Dy_pn—p(X).

It follows from Lemma 2.11 that any form ¢ € D,,_,,_,(U) can
be written as ¢ = ) csys where (7;) is a basis of strongly positive
(n — p,n — p)—forms

If ¢ is real the functions ¢, are real C'"*°-smooth with compact sup-
port in €. Writing ¢, as a difference of non-negative C'*°-smooth func-
tions with compact support, the real form ¢ can be written as the
difference of strongly positive forms, hence T'(¢) is a difference of two
positive reals. We infer Ty ; = T for all multi- indices |I| = |J| = q.

Observe now that

.q2
Ty1Bn =T A ZQ—qdzp Adzp > 0,

while the proof of Lemma 2.11 yields

17,5278, =T ANiTdep Adzp = Y &, T A,
ve{0,1,2,3}



2. POSITIVE CURRENTS 49
where ¢, = +1, +7 and
T = /\ igu,s A EV,S,
1<s<q

where ¢, ; are C—linear forms on C". Since T\, is a positive measure
on €, the distributions 77 ; are complex measures in 2 such that

2T14|B0 <> T A

The only terms that matter here are those for which

Y, = /\ M,,,s/\m#o.

1<s<q

We can thus assume that the C—linear forms ¢, ;,...,¢,  are linearly
independent. Fix such v and set ¢, = /, ;. There exists a unitary
transformation A : C7 — C7 such that the direct image A, sends the
subspace of (C")* generated by the C-linear 1-forms (/5);<s<, onto the
subspace generated by the 1-forms (dws)i<s<,. Therefore

AN ALY = N\ Al = |det(0, /0wy [\ dwy, A duy.

1<s<gq 1<s<gq 1<k<q
Hence

Z'q

quwK VAN dwK,

AT Ny) =a,Ad(T) N A\%m%Ade:%AAT)

1<k<q

where K := (1,2,...,q) and for all v,a, > 0 is a constant which does
not depend on 7. Thus

AT ANy) < a,Al(T) N Br(w).
and
TAy <a,TANAY(B)=aTA By

since [ is invariant by unitary transformations on C". Observe that

2

ﬂq = Z (%)q /\ deS /\dgks = Z ;iquK/\dea

|K|=q 1<s<g IK|=q

hence TAB, = Z\LI Trpand TAy, <a, Z|L|:q Ty, 1, for all v. It follows
that there exists a uniform constant c,, > 0 such that

g

COROLLARY 2.19. Let T be a positive current of bidegree (p,p) and
v a continuous strongly positive (m, m)-form, p+m < n. The current
T A wv is positive.
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In particular for all continuous positive (1,1)-forms aq, ..., o,
TAa A ANag >0
1S a positive current.
2.3. Examples.
2.3.1. Currents of bidegree (1,1). Let X be a (connected) complex

manifold of dimension n. We let PSH(X) denote the convex cone of
plurisubharmonic functions in X which are not identically —oo.

PRrOPOSITION 2.20. If uw € PSH(X) then the current T, = ddu
is a closed positive current of bidegree (1,1) on X.

PRrROOF. The property is local so we can assume X = 2 is an open
subset of C". Assume first that u € PSH(2) N C?*(2). Then

. 2
ddou=""3%" N

is a strongly positive (1, 1)-form since for each z € Q,£ € C

Z 0?u(z) £ > 0.

02:.0Z,
1<jk<n =~ IOk

To treat the general case we regularize v by using radial mollifiers
and set u. := u x p.. This is a smooth plurisubharmonic function in
the open set Q. := {z € Q;dist(z;9Q) > ¢}. Since u. — w in L (),
it follows that dd°u. converges to dd‘u in the weak sense of currents,

hence dd‘u is a positive current in 2. Il

Conversely one can show that a closed positive current 7" of bidegree
(1,1) can be locally written 7' = dd“u, where u is a (local) plurisub-
harmonic function (see Exercise 2.4). Such a function is called a local
potential of T. Observe that two local potentials differ by a plurihar-
monic function h, i.e. a smooth function such that dd°h = 0 in €.

2.3.2. Current of integration over a complex analytic set.

Complex submanifolds. Let Z C X be a complex submanifold of X
of dimension m > 1. Its complex structure induces a natural orienta-
tion on Z, we can thus integrate a smooth test form v of top degree
2m on Z. Using a partition of unity we may assume that the support
of W lies in a coordinate chart (D, z). Thus ¢(z) = f(2)Bn(z) in D,
where f is a test function in D and by definition

/w=/f(zl,...,zm)fdzlAdzlA...Afdzm/\dzm.
D D 2 2

This formula does not depend on the local coordinates, as follows from
the change of variables formula.
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DEFINITION 2.21. We let [Z] denote the current of integration over
Z. 1t is a positive current of bidimension (m,m) defined by

<@g >= [ 50
z
for ¢ € Dy, (X), where j : Z — X denotes the embedding of Z in X.

If ® is a strongly positive test form of bidegree (m,m) then j*(P)
is a positive volume form on Z, hence [, j*(®) > 0, which shows that
[Z] is a positive current of bidimension (m,m) on X.

If Z if a closed complex submanifold of X (no boundary), Stokes
formula shows that for all ¥ € Dy, 1(X),

<d[Z) ¥ = < 2], di) >= —/Zj*<dw> - —/Zdj*<w> —0,

thus [Z] is a closed positive current on X.

Analytic subsets. Let Z be a (closed) complex analytic subset of X
of pure dimension m, 1 < m < n. We refer the reader to [Cirka] for
basics on analytic sets. One can consider the positive current [Z] of
integration over the complex manifold Z,., of regular points of Z i.e.
for any test form ® of bidegree (n — m,n —m) we set

qm@wzéwf@

where j : Z — X is the canonical embedding.

It is not obvious that this integral converges since 7*® is not com-
pactly supported in Z,.,. This has been proved by Lelong who showed
the following remarkable result:

THEOREM 2.22. The current [Z] is a closed positive current of bide-
gree (m,m) on X.

We refer the reader to [Cirka, Theorem 14.1] for a proof. In par-
ticular if f is a holomorphic function in X which is not identically 0,
then its zero locus Z(f) defines a positive closed current on X which
satifies the Poincaré-Lelong equation

ddlog|f| = [Z(f)]

in the sense of currents.

2.4. The trace measure of a positive current. Let X be a
hermitian manifold; for all x € X the complex tangent space T,X is
endowed with a positive definite hermitian scalar product h(z) which
depends smoothly on . We let w denote its fundamental (1, 1)-form.

DEFINITION 2.23. Let T € D', ,, be a positive current of bidegree

(p,p), 1 < p<mn. The trace measure of T is
1
op = ——=TA w" P,
(n —p)!
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In a local coordinates (U, z1, ..., z,) we can write
h = Z hj,kdzj &® de,
j?k

where (h; ) is a positive definite hermitian matrix with smooth entries
in U. For x € U, the complex cotangent space Ty X can also be endowed
with a natural hermitian scalar product: applying Hilbert-Schmidt or-
thonormalization process to the the basis (dz(z), ..., dz,(z)), we con-
struct an orthonormal basis ((;(z),. .., (. (x)) of TFX.

Thus (¢1,...,¢n) is a system of smooth differential (1,0)-forms in
U such that (¢1(z),...,¢.(x)) is an orthonormal basis of TFX. We
say that ((i,...,(,) is a local orthonormal frame (with respect to the
hermitian product h) of the cotangent bundle 7%(X') over U. Writing

h= > (@,

1<j<n
we get _
) —
w=3 Z G NG
1<j<n
and ,
wl g _
a o > ke Ak
' |K|=q

Fix T e D’;p and set ¢ :=n — p. We can decompose T" as
.q2 -
T= Z TG NGy,
[|=[J]=q

where Ty ; € D(U) and (7 := ¢, A...AG,. A simple computation yields

or = Z Trr /\ %C] /\QTja

1= 1<j<n

ie. or = Z‘ Il=q T; 1, identifying currents of top degree and distribu-
tions. We let the reader check that if X is a domain in C" equipped with
the standard euclidean metric ), .., d2; ® dz; and if T' € D', (X),

then
or = Z T[’[.

[I=q
Proposition 2.18 can now be reformulated as follows:

COROLLARY 2.24. Let T € D', ,(X) be a positive current. If we
decompose T locally, T = Z\Ilz\lep inTLJdZ[/\dZ_J, the total variation
Tl = 1= 151=p [ T1,| of T' is dominated by the trace measure or,

or < ||T|| < enpor,

where ¢, is an absolute constant independent of T'.
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In particular the topology of weak convergence in the sense of dis-
tributions coincides, for positive currents, with the weak convergence in
the sense of Radon measures.

EXAMPLE 2.25. Let u € PSH(SY), where Q C C" is a domain. The
trace measure of the closed positive current T := ddu coincides with
the Riesz measure of u, i.e.

1
or :=dduN Bh_1 = %Au

This formula can be generalized to any plurisubharmonic function on
a complex hermitian manifold (X,w), replacing B by w and A by A,
the Laplace operator associated to the hermitian metric w.

3. Lelong numbers

3.1. Lelong numbers of a plurisubharmonic function. We
consider several natural quantities measuring the local size of a plurisub-
harmonic function w.

The spherical mean-values of u are defined by

1
Sulerr) = /M RG]

02n—1

where do is the area measure on the_unit sphere in C", gq,,_1 is its area.
The mean-value of u on a ball B(z,r) C € is defined by

Vi(z,r) = - / ud\ = 1 u(z + rw)di(w)

2n |-
Fan*" ) B(zr) Fon Jjw|<1

where dX is the lebesgue measure on C" and kg, = 2nos,_; is the
volume of the unit ball in C". B
The mazimum value of u on a ball B(z,r) C Q2 is

M, (z,7) = |m|gi>§u(z + rw).

Observe that

(3.1) Vu(z,r) = L 5 / 2718, (2, t)dt.
r n

0

LEMMA 2.26. Consider Q = {(z,7) € Q x C;|7| < da(2)}. The
function

(z,7) — SU(Z,T) = L

/ ul(z + 7€)do(©)
el=1

O2n—1
is plurisubharmonic in Q. It only depends on |T| and satisfies

Su(z,7) = Su(z,|7|) forall (z,7)€ Q.
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In particular for all z € Q, r — S,(z,r) is a convex non-decreasing
function of t = logr in the interval | — oo, log da(z)], hence the following
limit exists in [0, +00],

v(u,z) = lim Su(z,7) = lim r0, S,(z,7).
r—0 logr r—ot "

PROOF. For all £ € C" with || = 1 the function
(z,7) — u(z + 7E)

is plurisubharmonic in € hence so is the function S, as an average of
plurisubharmonic functions.

Since the area measure on the sphere is invariant under the action
of the circle T, it follows that for (z,7) € €,

Su(z,7) = Sulz,|7]).

Therefore 7 — S,,(z,7) is subharmonic in the disc {|7| < dq(2)} and
only depends on |7|. We infer that for a fixed z € €, the function
r +— Syu(z,7) is convex and non decreasing in logr by Proposition
1.13. Moreover by invariance we also have

Su(z.7) = 0211 L | ( /0 e+ re“’ﬁ)d@/%) do(€).

The slopes of the increasing convex function logr —— S,(z,7) are
therefore increasing and positive. It follows that for any fixed 0 < ry <
do(z), the following limit exists in [0, +o00|

Su(z,r) = Su(z,m0) .. Sulz,7)

lim = lim = lim 70, S,(z,7).
r—0  logr —logr r—0 logr r—0+

d

DEFINITION 2.27. The number v(u, z) is called the Lelong number
of the plurisubharmonic function u at the point z.

We will also use the notation v,(z).

LEMMA 2.28. Fiz z € Q. The functions r — Sy(z,r), r— Vi(z,7)
and r — M,(z,7) are convez increasing in the variable t = logr.
Moreover if 0 < r < R < dg(z) and u <0 in B(z, R), then

(3.2) u(z) < Vi(z,7) < Sulz, 1) < My(z,7) < (1—1/R)*V (2, R—7).

In particular iof a plurisubharmonic function is bounded from above
in C™ then it is constant.

The last property is known as Liouville’s Theorem for plurisubhar-
monic functions.
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PROOF. Let f(z,r) denote any of the above functions and observe
that (z,7) — f(z,|7|) is plurisubharmonic in the variables (z,7) in
Q) and only depends on |7|. Thus r — f(z,7) is a convex increasing
function in the variable t = logr for any fixed z € €.

The first inequality in (3.2) follows from submean-value property,
the second one is a consequence of (3.1) and the third one is obvious.

It thus remains to prove the last inequality in (3.2). We can assume
that z = 0, R > 0 is such that B(0,R) C Q and u < 0 in B(0, R).
Fix z € C" with |z| < r and observe that B(0, R — r) C B(z, R). The
submean-value inequality yields

1 1

since u < 0 in B(z, R). We infer

R—r 2n

Mu(07r) S %

Assume that u is plurisubharmonic and bounded from above in C™.
We can assume without loss of generality that u(0) > —oco. Then the
function logr — M,,(0,7) is convex non decreasing and bounded from
above in R, hence it is constant and equal to its limit when r — 0F
which is equal to «(0). This implies that u achieves its local maximum
at the origin on any ball B(0,7). The maximum principle now shows
that u is constant. O

Vu(0, R —1).

COROLLARY 2.29. For all z € (),

(3.3) v(u,z) = lim Vale,r) _ im M

r—0 logr r—0 logr

PRrOOF. By (3.2) we have

vu(z) = limM < lim M
“ r—0 logr ~ r—0 logr

Fix 0 < s < 1 and observe that if r = sR, then (3.2) yields

M,(z,7) < (1 —5)""V,((1/s — 1)r).

Since log((1/s —1)r)/logr — 1 as r — 0" and S, < M,, it follows
that

V’LL ? . Mu Y
(1 —5)*lim (z,7) < lim M(z7) < wvu(z2),
r—0 logr r—0 logr
which proves our statement by letting s — 0. U

The previous result shows that if u € PSH(Q2) and a € Q then
u(z) < ‘ max u(z) + v(u,a)(log|z — al —logry)
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for all r < ry < dq(a) with |z — a| = r This shows that u has at worst
logarithmic singularities.

EXAMPLES 2.30.
1. Letwe PSH(Q) and z € Q. If u(z) > —oo then

-0 < u(Z) < SU(Z,T’)

for all r < éq(z) hence v(u,z) = 0.
2. Assume u(z) = alog|z|4+O(1) near the origin in C* with o > 0.
Then v(u,0) = a.

REMARK 2.31. The reader will check in Ezercise 2.7 that the func-
tional w € PSH(Q) — v(u, z) € RY is additive and positively homo-
geneous.

3.2. Invariance properties.
3.2.1. Lelong formula. We now show that the Lelong number of a
plurisubharmonic function u only depends on the current dd“u. Set

B = % N dzndz = %85|z|2,
1<j<n
where |2]? := 377, |z For 1 <p <n we set
P
Bp T F

and for z € Q and 0 < r < dg(2),

1 J(B(z,
[ aruns =)
Kop—or?n=2 B(z,r) Kop—or?n=2

where 1, = ddu A B,_1 = 5% is the Riesz measure of v and B(z,7) is

21

the euclidean ball of center z and radius r.

Vu(z,1) i=

THEOREM 2.32. For all z € Q and 0 < r < dq(2),

(3.4) vu(z,1) =10, Su(z,7) = 0, ,Sul(z,7),

ogr

where O = 1r0d. is the left derivative operator with respect to logr.
logr T

In particular the function r — v, (2, 1) is non-decreasing and

vu(z) = 7“l_i>r(§1+ Vu(z, 7).

This formula shows that the Lelong number depends on the positive
current dd®u rather than on the function w itself.

PROOF. We can assume without loss of generality that » = 0 and u
is psh in a neighborhood of the euclidean ball B(0, R) for some R > 0.
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Let x be a smooth radial function with compact support in B(0, R).
Integrating by parts and passing to spherical coordinates we get

1
[ @m0 =5 [ axouono

— / Sulz ) (00 (1) + (20 — )X (1) /r)dr
— s /0 Su (2, P)d(r2™ 1y (1)

= —Iigng/ X (r)r* 107 Sy (2, r)dr

0

We let x(r) tend to the characteristic function of the interval [0, R].
The function x’(r) thus converges weakly to the negative of the measure
of integration on the positively oriented boundary of [0, R], denoted by
[0] — [R], which is the difference of two Dirac masses at the end points
of the interval. We infer

pu(B(0, R)) = ko2 R*" 10, Su(z, R) = Kon—2R¥ 20, Su(z, R).

Therefore v, (z) = lim, o+ v, (2, 7). O

EXAMPLE 2.33. In dimension n = 1 the Lelong number v,(2) is the
point mass of the Riesz measure at z, i.e. v,(2) = pu({z}).

We deduce the so called Poisson-Jensen formula:

COROLLARY 2.34. Fiz z € Q. For all0 <1y <1y < dq(z2),

Su(z,7m9) — Su(z,11) :/ I/u(Z,T)% :/ vu(z,7)dlogr.

T1 1

In particular for all 0 < R < dq(z2),

1 R
u(z) = u(z + R&)do (&) — Vu(z,r)dlogr.
)= o [ s R [t aos

O2n—1

PRrOOF. The first formula follows from the formula (3.4). To obtain
the second formula we can fix r, = R and let r; — 0 in the first one. [

ExAMPLE 2.35. If u =log|f|, f a non-zero holomorphic function,
then dd®log | f| is the current of integration over the analytic set Z; =
(f =0) and p, is the area measure on the analytic set Z.

In this case the number viog (2, 1) is the quotient of the area of the
set B(z,7) N Zy in the the analytic set Zy by the volume of the ball of
the same radius v and the same dimension.

Thus v(u, z) can be thought of as a (2n — 2)-dimensional density of
the measure p, at the point z. It is the vanishing order of f at point z.
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3.2.2. Non-integrability and multiplicity.

COROLLARY 2.36. Fiz uw € PSH(Q) and zy € Q. If v,(20) > 2n
then e™" s not locally integrable in a neighborhood of z.

PrROOF. We may assume that zp = 0. It follows from (3.3) that
there exists 7o > 0 small enough and C' > 0 such that

Su(0,7) < v, (0)logr + C,

for 0 < r < rg. Using Jensen’s convexity inequality we infer

/g_le_“(rg)da(f)/agn_l > exp(—S.(0,7))

> e Cprul0)

Therefore

p
/ e_“(od)\(() > agn_le_c/ P20 gy
ICl<p

0

hence e~ is not integrable near 0 if v,(0) > 2n. O
Lelong numbers are invariant under local change of coordinates:

THEOREM 2.37. Fizu € PSH(Q), z € Q and ( € C"\ {0}. Then
2T

1 .
(3.5) vu(2) < Tlilr(])qr gt /. ulz + ¢¢)do 2,

with equality for almost every ¢ € C".
If f:Q — Q is a holomorphic map, then for z € €V,

vu(f(2)) < vuor(2),

with equality if f is a local biholomorphism at z.

Proor. We may assume that z = 0. Fix 6 > 0 small enough and
assume that u(¢) < 0 when || < 4. Consider, for r < ¢ and |{| < §/r,

I o do
(¢, r) ::/O u(re® )%

For each r > 0, the function ¢(-, ) is a continuous negative plurisub-
harmonic function in the ball || < §/r. For fixed ¢, the function ¢((, -)
is convex non decreasing in logr. This shows the existence of

H(O) = tim HET = HCE) _9(Gr)

r—0t  logd —logr ot — logr’

Note that 1({) is equal to the mass at the origin of the Laplacian
of the one variable function ue : 7 — w(7¢) unless this function is
identically —oo in the intersection of the line L. := {r(;7 € C} with
the ball |¢| < §/r.

Since u #Z —oo in a neighborhood of the origin we infer that * is
negative plurisubharmonic in C", hence it is constant by Lemma 2.28.
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We conclude that (¢) = *({) = ¥*(0) for almost all { € C" with
|| = 1, since 1 is constant on each complex ligne through the origin.
Observe that

S0 1 [ e,

log r Om-1 Jig=1 logr

a(¢)

and apply Lebesgue convergence theorem to deduce (3.5),

1a(0) = —*(0)/or = /< OO0 < (0.

We infer that v,y = v, o f for any complex affine bijection f.
To prove the same result for an arbitrary holomorphic bijection, it is
enough to assume that f(0) = 0 and f’(0) = Id is the identity in C™.
It follows from formula (3.3) that

1
w(0) = lim ———— dA
w0) =l g | w00
Since u < 0, we obtain by the change of variables ( — f(()
1
1,0) = lim—/ U o J d
O = Jim e [ e OO
1
< sw Ot e [ e OO
FOl<r 0t gt Jipg e
= I/uof(O).
Thus 1,(0) < vuer(0). If f is a biholomorphism in a neighborhood
of 0 then 1,(0) = Vyor0r-1(0) > v4oy(0), whence the equailty. O

REMARK 2.38. In the proof above the function i is constant on
any complex line through the origin in C". Thus (3.5) is an equality
for almost every ¢ in the unit sphere |(| = 1. This shows that the
Lelong number of u is invariant by restriction to almost all complex
directions in C™. In particular

(3.6) v,(0) = min {1, (0); ¢ € C"\ {0} },
where uc(1) = u(7¢) is the restriction of u to the complex line C¢

(Vuc (0) = 400 if ug = —00).

EXAMPLE 2.39. Let f = (f1,..., fn) : @ — CV be a holomorphic
mapping such that f #0. Set Z :={z € Q; f(z) =0}. Then

1
o= glog(Lfil* + -+ [/nl)

is plurisubharmonic in Q and v,(2) =0 ifa ¢ Z. If a € Z, then
vo(a) = mult(f, a)

18 the vanishing multiplicity of f at a i.e. the largest integer m such that
all the f;’s vanish at order m at the point a. We may assume indeed
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by translation that a = 0. For each j (1 < j < N), we have f;(z) =
Pj(2) + O(|z|™*Y), where P; is a non-zero homogeneous polynomial of
degree m; > m. By definition m = minm;, without loss of generality
m =my. Thus for ( € C",

N
p(rQ) = mloglr] + 3 log <|P1<<>|2 £y |Tmf—ij<z>|2)
j=2

— mlog|r| +O(1),

when Py(C) # 0. Since Py # 0, if follows that the set {P, = 0} is of
Lebesgue measure 0, hence v,(0) =m by (5.6).

3.3. Siu’s Theorem. Let u be a plurisubharmonic function in a
domain 2. We let the reader check in Exercise 2.7 that the function
z +— v(u, z) is upper semi-continuous in 2. We prove in this section, fol-
lowing [Siu74, Kis78]|, that z — v(u, z) is also upper semi-continuous
with respect to the (analytic) Zariski topology, i.e. the level sets

E(p) ={r € Q; vy(z) = c}
are analytic subsets whenever ¢ > 0.

3.3.1. Hérmander’s L?-estimates. Recall that a domain  C C" is
pseudoconver if the function — log dist(+,d€) is plurisubharmonic in 2
[Horm90]. It follows that

p(2) == |z|* — log dist(-, 09)

is a continuous plurisubharmonic function which is an exhaustion for
the domain €2, i.e. for all ¢ € R,

{z € Yp(z) <c} €.

The converse also holds: if a domain admits a plurisubharmonic
exhaustion function, then it is pseudoconvex. One can moreover show
that the exhaustion function can be chosen smooth and strictly plurisub-
harmonic in €2.

THEOREM 2.40. Let Q C C" be a pseudoconvex domain and ¢ €
PSH(Q). Letn = Y77 n;dz; be a (0,1)-form on Q with coefficients
in L2 .(Q) such that n = 0 in the sense of currents on Q. Then for

any £ > 0 the equation Oh = 1 has a solution h in L} () such that

loc
c / B2 (1 + |22)~2dA(z) < / In(2)2e ¢ G (1 + |22)22dA(2).
0 (9]

We refer the reader to [Dem, Horm90] for a proof of this funda-
mental result. We need the following consequence of Theorem 2.40,
known as the Bombieri-Skoda-Hormander theorem.

THEOREM 2.41. Let 2 C C"™ be a pseudoconvexr domain, zy € €2
and uw € PSH(Q) such that e=™ is locally integrable in a neighborhood
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of zg. For each € > 0, there exists a holomorphic function f in £ such
that f(z0) =1 and

(3.7) /Q FRA + |22 O () < +o0.

PRrROOF. We may assume that zp = 0 and choose a ball B(0,r) €
such that e™* € LY(B(0,r)). Let x be smooth function with compact
support in B(0,7) such that xy = 1 in a small neighborhood of 0.
We want to correct x by adding a smooth function A in ) such that
f = x + h is holomorphic in €2, f(z)) = 1 and the estimate (3.7) is
satisfied.

We solve the Cauchy-Riemann equation Oh = —dy in Q with the
plurisubharmonic weight function ¢(z) := u(z) + 2nlog|z|. By The-
orem 2.40 it follows that for any ¢ > 0 there exists a solution to the
equation Oh = —9dx in Q and

\h‘Qe—u(z) / ‘5){(2)\26_“('2)
3.8 d\ < dN(2).
( ) 8/{2 ’Z‘Qn(l_i_ |Z,|2)—5 (Z) >~ 0 ‘Z|2n(1 T |Z’2)5_2 (Z)

The right hand side of (3.8) is finite since Jx vanishes in a neigh-
borhood of 0 and has compact support in B(0,r) where the function
e~ " is integrable.

By construction df = d(h + x) = 0 in , hence f is holomorphic
and h is smooth in Q. The fact that the left hand side of (3.8) is finite
and u is bounded from above in B(0,r) implies that h(0) = 0, since h
is continuous. Therefore f(0) = 1 and the proof is complete. g

The following consequence will be useful in the sequel.
COROLLARY 2.42. The set
NI(u):={z € Qe™ ¢ Ly,(2)},
is an analytic subset of ).

Here L}

Le(2) means locally integrable in a neighborhood of z.

ProoOF. Fix € > 0 and let Z be the zero locus of the family of all
holomorphic function f in © such that the estimate (3.7) is satisfied.
By Theorem 2.41, Z C NI(u). The converse is clear. O

REMARK 2.43. A closed analytic subset in a pseudoconvexr domain
can be globally defined as the zero locus of a finite number of holo-
morphic functions. This is again a consequence of the L*-estimates of
Hérmander (see [Horm90] ).

3.3.2. Kiselman’s attenuating principle. We now explain a useful
method for attenuating the singularities of plurisubharmonic functions,
known as Kiselman’s minimum principle.

Let 2 be a pseudoconvex domain in C". We set
Q= {(z,w) € A x C;|w| < da(2)}.
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The reader can check that 2 is a pseudoconvex domain in C"*!. Since
Q) is Sl-invariant (rotations in the w-variable), we can choose an S'-
invariant exhaustion plurisubharmonic function p(z,w).

THEOREM 2.44. Fiz uw € PSH(Y) and o > 0. The function

2 ue(z) = inf  {S.(z,7)+ p(z,7) — alogr}
0<7’<5Q(Z)

is plurisubharmonic in Q. It satisfies uy(2) > —o00 if 1,(2) < a and
V(Ug, 2) = max{v(u, z) — a,0} forall z¢€ .

Note that an infimum of plurisubharmonic functions is usually not
plurisubharmonic: the S!-invariance is here crucial.

PROOF. The function
(z,7) = U(z,7) := Su(z,€7) + p(z,e7) — aRr.

is continuous and plurisubharmonic in the domain Q.

For z € () fixed, it only depends on ¢ := R, hence it is a convex
function in t on | — oo,logdq(z)[. It follows that wu, is upper semi-
continuous in Q. Fix z € Q such that u(z) > —oo and observe that

U(z,t) > u(z) + p(z,e") —at

tends to +o0o when t tends to either —oo or log do(2). Thus the infimum
is achieved on a compact interval [to(z), t1(2)] C] — o0, log dq(z)[, hence
Uq(2) > —o0.

Recall that 0, S,(z,7) = r0. Su(z,r) converges to v,(z) as t =
logr — —oo. Hence if v,(z) < «, the function t — S,(z,€") — at is
decreasing near —oo. Thus there is ¢ty < log dq(z) such that S, (z,e’) —
at > S,(z,e") —aty for t < tg. It follows that U,(z, 7) is bounded from
below in ¢ = R7 on the interval | — oo, log do(2)[, hence u,(z) > —oc.
Therefore v, (z) = 0 if 1,(z) < a.

To prove that u, is plurisubharmonic we consider for € > 0,

Us(z,7) := U(z,7) + ™.

Observe that U¢ is continuous and plurisubharmonic in the domain €
and only depends on (z, R7), hence it is a convex function in t = R7
on the interval | — 0o, log dg(2)[. It is even strictly convex in ¢ thanks
to the extra term cef. We set

u(z) == inf{U*(2,t);t < logda(2)}

and observe that u® decreases to u,, in €2 as € decreases to O.

It is thus enough to show that v is plurisubharmonic in §2. We first
assume that v is smooth. In this case the function U¢ is smooth in 2.
Fix z € Q and £ € C"\ {0} and consider the one variable function

o(0) == u(z + &) = inf{P(0,t);t <logd(z+ df)},
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defined in a disc (0, d) for § > 0 small enough, where
O(o,7) :=U (2 + &, 7),
is a smooth plurisubharmonic function in the domain
{(o,7) € D(0,9) x C;R1 < logd(z + df).

For o € D(0,0) fixed, it is strictly convex in t = R7 and tends to +oo
when ¢ — —oo or log§(z + o). Therefore the infimum is achieved at
a unique point

t(o) €] — oo,logd(z + of)],
characterized by the condition

0P
v = E(a, t(o)) = 0.

Since 92®(o,t(0)) > 0, we can apply the implicit function theorem
to conclude that the function o — (o) is a smooth function in (0, §),
hence ¢(c) = ®(0,t(0)) is a smooth function in D(0, ). Therefore we
can compute its Laplacian with respect to the variable o as follows

00 5 = 2 (a—q)(a,t(a))+at<1><a7t<o>>ﬁ<a>)

0005 0o \ 05 O
0%® R ot
- 8086 (O',t(O')) + 8t60 (U,t(O’))%(O’)
0%®
= - >
o7 (0:1(0)) = 0

We use here twice the fact that o — ®(o, 7) is subharmonic for 7 fixed
and 0;®(o,t(0)) = 0. The conclusion follows when u is smooth.

In the general case we choose smooth plurisubharmonic functions
u® decreasing to u, where v° is smooth in €2,y with a(e) increasing to
+00 and (24 increases to 2 as € decreases to 0.

Fix a domain Q" € 2. When z € ¥, the infimum in the definition
of (u)a(2) is achieved in Qu) when ¢ is small enough, so (u%)a(2) is
plurisubharmonic in €. Since (u®), decreases to u,, it follows that u,
is plurisubharmonic in €', hence in €. O

3.3.3. Analyticity of superlevel sets of Lelong numbers. Let u be
a plurisubharmonic function in a pseudoconvex domain 2 C C" and
consider, for ¢ > 0, the superlevel set of Lelong numbers

Au,c) :={z € Qu,(u, z) > c}.
We also consider the non integrability set of w
NI(u) = {z € Qe ¢ LL({z})},
and the polar set of u

P(u) :={z € Q;u(z) = —o0}.
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It follows from Theorem 2.41 and Corollary 2.36 that
A(u,2n) C NI(u) C P(u).
The following result has been established by Siu in [Siu74]:

THEOREM 2.45. For all ¢ > 0 the sets A(u,c) are closed analytic
subsets of 2.

Proor. Using the functions u, constructed in Theorem 2.44 we
obtain

A(u, ¢ +2n) = A(ue, 2n) C NI(u.) C P(u.) C Au,c).
If & > 2n/c, we infer
A(u,¢) = Aau, ac — 2n +2n) C NI((aw)ac—2n) C A(u,c — 2n/a).

Therefore

A(u,c) = ﬂ NI((aw)ac—2n),

a>2n/c

which is an analytic set by Corollary 2.36. O

4. Skoda’s integrability theorem

4.1. Projective mass. We establish here a formula due to Lelong
which expresses the mass of the Riesz measure associated to a plurisub-
harmonic function u in terms of the projective mass of the current dd“u.

Recall that
«(B(z,
(o) = 2 ( (Z2 r))
Kopr<P

where p, = dd‘u N\ (,_1 is the trace measure of the current dd‘u and
B(z,r) is the euclidean open ball of center z and radius r.

LEMMA 2.46. If0 <r < R < dist(a,09) then

vu(a, R) = vy(a,r) + / dd“u A (dd®log |z — a])" .
r<|z—a|<R
In particular
vu(a, R) = v,(a) + / ddu A (dd®log |z — a|)" .
0<|z—a|<R

The Lelong number v,(a) coincides with the projective point mass
of the current dd“u at a, i.e.

(4.1) vu(a) = / dd“u A (dd®log |z — a|)" !,
{a}

hence

(4.2) vula, R) = / dd°u A (dd°1og |2 — a|)" .
|z—al|<R
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ProoF. For a € C" we consider
ao(z) :=ddlog |z — a| = QLaélog |z — al?.
T

This is a smooth differential (1,1)-form in C" \ {a} with a logarithmic
singularity at the point a. An easy computation shows that in C"\ {a}

0u(z) = |z = a| *(1/m)f — |z —a|*5-0]z — al* A 9]z — af”.
7r
thus for 1 < p <n and z € C"\ {a} we obtain

o (2)P = |z —a| P PR — plz — a\_Qp_2%8|z —al* AO|z —a* APl

Observe that a,(2)? = |z — a|~?7 PSP when |z — a| = r. Thus for
0<r<R<dg(a),

vu(a, R) — vy(a,r) = / ddu A o1,
r<|z—a|<R

This follows from Stokes formula when w is smooth and by approxima-
tion in the general case. Letting »r — 07, we obtain

(4.3) vu(a, R) = v,(a) + / ddu A (dd®log |z — a|)" .
0<|z—a|<R

We consider for s > 0,
Uy s(2) := sup{log |z — al,log s}.

Oberve that if 0 < s < R, ¢, 4(2) = log|z — a| in a neighborhood of the
sphere {|z — a| = R}. It follows therefore from Stokes theorem that

/ ddu A (ddC, )",
|z—a|<R

is independent of s: this is the projective mass of the current dd‘u in
the ball B(a, R), i.e.

/ ddu Aot = / ddu A (dd“l, )" "
|z—al|<R |z—al<R

This definition will be justified in the next chapter when studing the
Monge-Ampere operator. The formulas (4.1) and (4.2) are then conse-
quences of the formula (4.3). O

4.2. The Jensen-Lelong formula. We establish in this section
the Jensen-Lelong formula, a representation formula for plurisubhar-
monic functions in terms of their boundary values and associated pro-
jective current.
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LEMMA 2.47. The Poincaré form
n(z) := d°log || A (dd®log |z|)"*

is a smooth differential form of degree 2n—1 in C"\{0}. Its coefficients
are locally integrable in C™ and n satisfies

dn = do,

in the sense of currents on C".
Moreover on any sphere S(0, R) := {¢ € C™; |¢| = R} the restriction
Nis(o,r) coincides with the normalized (2n — 1)-volume form on S(0, R).

Here dg denotes the Dirac mass at the origin.

PROOF. It is clear that 7 is smooth in C" \ {0}. A straightfoward
computation yields

n(z) = 27"z 7de 2| A (dde|2*)"

which is smooth off the origin and locally integrable in a neighborhood
of the origin. It follows from Stokes theorem that

/ n=2"R"*" (dd°|z|*)" = 1,
|z|=R |z|<R

for we have normalized d° so that dd®|z|> = 23 hence

on
dd¢ 2yn _ 1= -
(2" = nl =

where (3, is the euclidean volume form.

Observe that a defining function on the euclidean sphere S(0, R)
of radius R is pg(z) := |2|> — R? and the orientation induced by the
embedding of S(0, R) into C" is defined by dpr = d|z|>. Thus a (2n—1)-
form 7 on the sphere S(0, R) is positive if and only if dpr A n(z) is a
positive form on C™ for each z € S(0, R).

Since dpr An = (dd®|z|*)™ is indeed a positive form on C", it follows
that the restriction of 1 to the sphere S(0, R) is a positive form on the
sphere. Observe that 7 is invariant under unitary transformation of C”
and its total mass on any sphere is 1. Therefore the restriction of n

to any sphere S(0, R) coincides with the normalized area form on the
S(0, R). On the other hand for all z € C™\ {0},

dn(z) = 277 (|22 (ddC|2)" = |o] 72" 72d]2* A d[z]? A (ddC]2*)" ) = 0.

The current dn is thus supported at the origin. Let y be a smooth
test function in a neighborhood of 0 with support in some ball |z| < R.
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Since 7 is locally integrable, Stokes theorem yields

(dn.x) = —/ dx An=— lim dx A
|z|<R e=0% Joclz|<R
= 1
lm o
= x(0) + lim (x(2) = x(0))n
e—0t |z]=¢
= x(0).
Therefore dn = dy in the sense of currents in C”. O

We can now prove the Jensen-Lelong formula.

THEOREM 2.48. Fizu € PSH(Q2), a € Q, 0 < R < dq(a). Then
(44) u(a) = / u(z) d°log |2 — a| A (dd°log|z — a|)"!
|z—a|=R
+ / log(|z — a|/R) dd“u A (dd“log |z — a|)™ !
|z—al<R

PROOF. The previous lemma yields

/ u(a + REo (€)oot = / w(a+ On(0).
lel=1

I<I=R

It follows from the Poisson-Jensen formula that

1 1
ula o(&) — ula + ré)do
/|£ vl R /|£ et oo

Oon—1 02n—1

R
= / vu(a,t)dlogt.

Observe that the restriction of d°log|z — a| A (dd®log|z — a])"!
to the sphere 0B(a, R) is the normalized Lebesgue measure. Letting
r — 07 we thus obtain

R
u(a) —/ u(z)dlog |z—alA (ddclog|z—a|)"1—/ vu(a,t)dlogt.
|z—a|=R 0

Thus the integral fTR vu(a,t)dlogt is finite if and only if u(a) > —occ.
The Lelong formula yields

R R
/ vu(a,t)dlogt = / dt/ ddu A (dd“log |z — a])™ 1.
0 0 |z—a|<t

Using Fubini-Tonelli theorem we obtain

R
/ vu(a,t)dlogt = / log(|z — a|/R)dd®u A (dd°log |z — a|)" .
0 |z—a|<R

These identities imply the Jensen-Lelong formula. U
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We now derive a representation formula for plurisubharmonic func-
tion in the unit ball B of C”, similar to the Poisson-Jensen formula for
the unit disc.

For z € B, we denote by ®, the automorphism of the unit ball B
which sends z € B to the origin and consider

G(¢) == log|®=(¢)] , (2,¢) € B xB.

This is a plurisubharmonic function in B which is smooth (but at
point z) up to the boundary where it vanishes identically and has a
logarithmic pole at the point z. It is called the pluricomplex Green
function of the ball B with a logarithmic pole at the point z.

Observe that G, = ®%({y), where ¢5(() = log |(| satisfies the equa-
tion (dd°ly)™ = Jp in the sense of currents in C". Therefore G, satisfies

(dd°G,)" =0,
in the sense of currents on B.
From the Jensen-Lelong formula proved above we can now deduce

the following representation formula:

COROLLARY 2.49 (Poisson-Szego formula). Let u be plurisubhar-
monic in a neighborhood of the closed unit ball B. For all z € B,

u(e) = [ WG A (@ECON T+ [ Guddun (@G
OB B
PrRoOOF. We proceed as in the one dimensional case. Fix a point
z € B and apply the formula (4.4) to the plurisubharmonic function
vi=uo®;! (witha=0and R=1) to get

W) =o0) = [ o€ lomlel A (@ log )

+ / log |€| dd°v A (dd“log |€])™ 1.
l¢1<1

Make the change of variables ¢ := ®,(&) to conclude. O

4.3. A uniform version of Skoda’s integrability theorem.
We have observed that if a plurisubharmonic function v has a large
Lelong number v(u,a) > 2n at some point a, then e~ is not locally
integrable near a. Skoda established in [Sko72]| a partial converse: if
v(u,a) < 2 then e is locally integrable in a neighborhood of a.

We prove here a uniform version of Skoda’s theorem. If K C €21is a
compact set and U C PSH (L) is a compact class of plurisubharmonic
functions, we set

v(K,U) = sup{v(u,a);a € K,u € U}.

It follows from the upper semi-continuity property of (u,a) — v(u,a)
(see Exercise 2.7) that the number v(K,U) is finite.
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THEOREM 2.50. Fiz 0 < o < 2/u(K,U). There exists an open
neighborhood E of K and a uniform constant C = C(K,U,a) > 0

such that for all u € U,
/ e~ Mdy, < C.
E

PRroOOF. It follows from the submean value inequality that the class
U is locally uniformly bounded from above in €. Substracting a uniform
constant, we can thus assume that for a fixed neighborhood D & 2 of
K we have suppu <0 for all u € U.

By homogeneity we can assume that v = v(K,U) < 2 and we have
then to establish the uniform integrability of e™™. By compactness of
K, we can assume (after translating and rescaling) that D is the closed
unit ball B C Q.

The Poisson-Szego formula applies to all u € U: for z € B,

u(z) = /8 Bu((’)dCGZ(C)/\(ddCGZ(C))”_l—I— / G.ddu A (dd°G, )"

B
We thus set u = uy + 1y, with

wl) = [ (OGO A (GO

and
i (2) = / Gddeu A (dd°GL)™".
B

We are going to estimate each term separately.

The first term is easier to handle. Indeed the Poisson-Szego kernel
d°G.(¢) A (dd°G.(¢))™ ! is smooth and positive on dB x B, hence it
is uniformly bounded from below by a positive constant C; > 0 on
OB x {|z| < 1/2}. Since u < 0 on B we infer

u(z) > Cy /aBu(C)da(f), for |z] < 1/2.

We now estimate the second term ;. Consider the pseudo-ball of
center z € B and radius r €]0, 1 defined by

D(z,r):={CeB; [©.(O] <7},

and write for z € B,

iy(z) = /D ( )szdcu/\(dchz)"1+ / G.dd°u A (dd°G,)""

B\D(z,r)

ug(2) + us(2),
where

us(z) = /D( )szdcu A (dd°G,)" !
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and

ug(z) == /B\D( )szdcu A (dd°G,)" .

We first estimate uz fom below. Since G.(¢) = (1/2)log |®.(¢)|?,
an easy computation shows that

ddeu A (dd°|®,[2)" !

c c n—1
(4.5) dd“u N (dd°G) < 1[G, 2
ddu A (dde|¢|*) 1
S G D[22 :
Thus for |z| <1/2and 0 <r < 1/2
(4.6) uz(z) > —272 logQ/Au.
B

We now estimate exp(—us(z)) by applying Jensen’s inequality. We
need to compute the total mass of the measure o, := dd°uA (dd°G,)" ™,
on the domain D(z,r) for |z| << 1. Thisis, for z€ B and 0 < r < 1,

Du(z,1) = / ddu A (dd°G,)" .
D(z,r)
Observe that

Du(z,7) = / dd‘u o ®, A (dd°log |C])”_1 = Voo, (0,7),

r

hence for all z € B
Vu(z) == 11ﬂ1_r)1(1) Vu(2,7) = Vios. (0),

since @, is an automorphism sending the origin to z.
Since supy, 9,(0) < v < 2, there exists § > 0 such that for all u € U
Vu(z,0) <v <2, for|z] <.

Set p(z) := |z|* — 1, on B. The function p is negative smooth and
strictly plurisubharmonic in the ball B with

0,(:08) = [ A (O A (ddlog e

Since @, depends smoothly on z, the right hand side of the previous
equation is a continuous non vanishing function on B hence there exists
M, n2 > 0 such that

m < 9,(z,0) <mnp, for [z] <.

Replacing v by @ := v + €p, on B with € > 0 small enough, we can
assume that for some n > 0,

n <vY,(z,0) <v <2, for|z] <4
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We now apply Jensen’s inequality and use the last inequality to

obtain, for |z| < 0,

1
exp(—us(z)) < —/ exp(—vG.)ddu A (dd°G,)" .

1N JD(z,8)

Using (4.5) it follows that for |z| < 6,

1 ddu A (dd¢|®,|*)"1
exp( UQ(Z)) = on—1 /D(Zﬁ) |q)z|2n—2+y

Since @, depends smoothly on z and ®,(z) = 0, there exists a
uniform constant ¢, > 0 such that for |z| < 1/2,

ci'lz = ¢l < 12:(Q)] < ealz = (.

Taking 6 > 0 small enough, there exists uniform constants c; > 0
and cg > 0 such that for |z| <4,

ddeu A (dde|¢[?)n!

‘Z _ C’2n72+1/

exp(—ua(z)) < 05/

B(z,c69)
If A is a finite Borel measure, we get by Fubini-Tonelli theorem

d\(z)
_ d\ d
/{z|<6}eXp( uel))aNz) < 05/{|C<C75} M(C)/{zké} |z — g2ty

dA(z)
<of atef U
{|¢|<erd} {[c—2|<cgd} 12 — 22T

where p := ddu A (dd°|(|*)"! is the Riesz measure associated to p.
The second integral in the right hand side is uniformly bounded as
far as v < 2, it thus remains to bound integrals of the type

I(r) = d .
() /{ )

Let x be a non-negative test function with compact support in
{[¢] < 2r} such that x = 1 in {|¢| < r}. Then dd®y > —Add¢|(|? for
some positive constant depending only on r. Since u < 0 we infer

1) < [ ddun @iy
{I¢]<2r}

= [ wdan Gy
{I¢]<2r}

< A —u)(dde|¢ Py,
/{M}( u)(dde|?)

By compactness of U, the last integral is uniformly bounded. U
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5. Exercises

EXERCISE 2.1. Let T be a current of degree p and a a differential
form of degree m. Show that

dTNa)=dT Na+ (—1)PT Ada.

EXERCISE 2.2. Let T : D(Q2) — C be a positive C—linear func-
tional on D(Y). Show that there exists a positive Borel measure pip on
Q such that for any smooth test function x € D(),

<T,x>= /Qx(fﬂ)duT(x)-

EXERCISE 2.3. Give an example of a (weakly) positive form of bide-

gree (2,2) in a domain of C" that is not strongly positive. How large
should n be ¢

EXERCISE 2.4. Let T be a closed positive current of bidegree (1,1) in

the unit ball of C™. Show that there exists a plurisubharmonic function
w in B such that T = dd°u.

EXERCISE 2.5. Let T be a positive current in C™ with compact sup-
port. Show that T =0 when n > 2.

EXERCISE 2.6. Let f be a non-zero holomorphic function in a do-
main 2 C C"*. Show that

ddlog | f| = 2]
is the current of integration along the zero set Zy = (f =0).
EXERCISE 2.7. Show that the Lelong number functional
v:PSH(Q) x Q — RT
has the following properties:

(i) it is additive and positively homogenous, i.e. for all u,v €
PSH(Q) and z € , a > 0,

viou+v,z) = av(u, z) + v(v, 2);

(ii) if u,v € PSH(Q) then Vmax(uw) = inf{vy, v, };
(1) (u, z) — v(u, 2) is upper semi-continuous for the product topol-
ogy (L} .-topology on PSH () and euclidean topology on ).

loc

EXERCISE 2.8. Fiz o = (a1, ,a,) € RY positive real numbers
and consider

2 € C" 5 uy(z) = Jnax {ajlog |z}
SJSn

Show that v, (0) = min o;.
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EXERCISE 2.9. Let f = (f1,..., fx) : @ — C* be a holomorphic
map from a domain Q@ C C" into C¥ such that f # 0 in Q. Fix
a:=(oq, - ,0,) € RY positive reals. Show that the function

1
o= Glog(Iif* + -+ [AlY)

18 plurisubharmonic and compute its Lelong numbers.

EXERCISE 2.10. Let w € PSH(Q) and x be a convex increasing
function in some interval containing u(2). Compute the Lelong num-
bers of the plurisubharmonic function x o w. Show that vye, = 0 if
X'(—00) = 0.

EXERCISE 2.11. Let u be plurisubharmonic function in the unit ball
of C" such that u > 1.

1) Show that u? is plurisubharmonic and prove that the current
dd“u?® dominates ddu.

2) Prove that Vu € L}

loc*
3) Show that u = log |z1| is an unbounded plurisubharmonic func-

tion whose gradient does not belong to L7 .






CHAPTER 3

The complex Monge-Ampeére operator

The complex Monge-Ampere operator is the operator
p = (ddp)"

which associates, to a given plurisubharmonic function, a non-negative
Radon measure. When ¢ is C?-smooth, this Monge-Ampere measure
is
e\ 0%
(dd°p)" = ¢, det (8%8@) av,

where dV' denotes the Lebesgue measure and ¢, > 0 is a normalizing
constant chosen so that the Monge-Ampere measure of the plurisub-
harmonic function ¢(z) = $log[1 + [|z||?] has total mass 1 in C".

The above formula still makes sense almost everywhere for plurisub-
harmonic functions ¢ which belong to the Sobolev space VVlQOC" It is
however crucial for applications to consider plurisubharmonic functions
which are far less regular.

In this chapter (and the rest of Part 1) we explain how to define
and study the complex Monge-Ampere operator acting on plurisub-
harmonic functions which are locally bounded following the pioneering
work of Bedford and Taylor [BT82]. We show that it is continuous
along monotone sequences but that it is not continuous for the L} -

convergence.

In the whole chapter ) denotes a smoothly bounded strictly pseu-
doconvex subset of C", usually equipped with a smooth strictly psh
defining function p, i.e. Q@ = {z € C"; p(z) < 0}.

The whole theory could be developed in the slightly more general
context of hyperconvex domains but we shall not need this in the book.
The reader may even like to think that €2 is the unit ball (and p(z) =
||z||> — 1), this is sufficient for most applications we have in mind.

1. Currents of Monge-Ampere type

1.1. Definitions. Let T be a closed positive (p,p)-current in a
domain 2 C C", 0 < p < n —1. It can be decomposed as
T =1 Z TLszI/\dZ],
[I|=p,|J|=p
where the coefficients 77 ; are complex Borel measures.

75
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A locally bounded Borel function u is locally integrable with respect
to the coefficients of T" hence uT is a well defined current of order 0,
setting

<ul\U >=<T u¥ >,
U a continuous form of bidegree (n — p,n — p) with compact support.
If u is a smooth function the current ddu AT is a (p + 1,p + 1)-
current in €2 defined by
<dduNT, ¥ >=<T,dduNV >

for U e D,,(2), ¢ =n—p—1. Observe that © = d°u AV —ud°V¥ is a
smooth form with compact support such that dd°u A ¥ — udd*V = dO.
Since dT' = 0 we infer
<T,dduNV > = <T uddV >+ <T doO >
= <T,uddV>=<dd(ul),¥ > .

This motivates the following:

DEFINITION 3.1. Let T be a closed positive current of bidegree (p, p)
in a domain Q@ C C" andu € PSH(Q)NL.(Q). The current dd“uNT
is a (p+ 1,p+ 1)-current defined by

ddu N'T = dd°(uT),
1.€.
<dduNT, ¥ >=<uT,ddV >,
for all test forms V of bidegree (q,q), ¢ :==n —p— 1.

We also need to consider currents of the type du A d°u AT, where
uw e PSH(Q)NLE.(Q). Recall that du is locally in L7 (€2) (with respect

loc

to the Lebesgue measure) for any p < 2. When u is locally bounded
du actually belongs to L2 () as we now explain.

Since u is (locally) bounded from below, we can add a large constant

and assume that v > 0. It follows that u? is plurisubharmonic hence

dd°u? AT is a well defined closed positive current if u is smooth, with

dd°u? = 2udd®u + 2du N d°u.

This motivates the following:

DEFINITION 3.2. Let u € PSH(Q) N L>®(Q2). We set
1
du NduNT := §ddc(u —m)* AT — (u—m)dduAT,
where m s a lower bound for u in €2.

This is a well defined closed current in €2 which does not depend on
m (note that du = d(u —m)). These currents (a priori of order 2) are
of order zero, as they are positive:
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PROPOSITION 3.3. Let (u;) be locally bounded plurisubharmonic
functions in Q which decrease to w € PSH(Q) N LS. Then

loc*
dduj NT = dduNT, duj Ndu; NT — du NduNT,

in the weak sense of currents on ).
In particular dd°u N'T and du Ad“uN'T are closed positive currents,
hence their coefficients extend as complex Borel measures on €2.

PROOF. By definition dd“u AT = dd°(uT’) is a closed current. By
assumption the sequence (u;) converges in Lj, (2, or) hence u; T — uT
in the weak sense of currents in €). The operator dd¢ is continuous for
the weak convergence of currents hence dd“u; AT — dd“u AT in the
sense of currents in €.

The second statement follows from the first one and the fact that
ujddu; AT converges to udd“u A T'. This latter convergence relies
on several technical results that we establish below: it follows from
Chern-Levine-Nirenberg inequalities (Theorem 3.9) that the currents
ujdd“u; AT have uniformly bounded masses. We can thus consider a
cluster point o. The reader will check in Exercise 3.1 that

o <udduNnT,

since (u;) is decreasing and dd“u; AT — dd“uA\T. To prove the reverse
inequality we can use the localization principle (Proposition 3.6) to
insure that u; and u coincide near the boundary of {2 and then use
Proposition 3.7 to show that the currents ¢ and udd®u A T have the
same total mass.

It remains to prove the positivity property. Since this is a local
property we can reduce to the case where u is plurisubharmonic in a
neighborhood of Qand 0 < u < M on . We can then approximate u by
a decreasing family of smooth plurisubharmonic functions, u. := uxp.,
using standard mollifiers.

We know that dd“u. AT — dd“uNT and du. Ad“u. AT — duANd“uNT
in the sense of currents in €2. Since dd“u. is a positive form of bidegree
(1,1), we infer that dd“u. AT and du. A d°u. AT are positive currents
in €2, hence so are their limits. U

Iterating this process we define by induction the intersection of
currents of the above type.

DEFINITION 3.4. If uy,...,u, € PSH(X)NLZX(X), and T is a

loc
closed positive current of bidimension (m,m), we define the current

dd®uy A ... Nddup N'T by
dd®uy A ... Nddup AT := dd° (urddug A ... A ddup NT) .
We define similarly du; A duy A ... A dug A du AT.

It turns out that these definitions are symmetric in the u}s, as we
shall soon show.
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In particular if V € PSH(Q) and uy,...,u, € PSH(Q) N L2 (£2),
the current dd®uq A ... A dd°us N dd°V is a well defined closed positive
current on ).

DEFINITION 3.5. The complex Monge-Ampére measure of a locally
bounded plurisubharmonic function is

(dd°u)"™ :=dd°u A - -+ A dd°u.
It remains to make sure that this is a good definition.

1.2. Localization principle. A technical point that we are going
to use on several occasions is that we can arbitrarily modify a bounded
plurisubharmonic function near the boundary of a pseudoconvex do-
main without changing it on a given compact subset.

Fix Q = {p < 0} € C™ a bounded strictly pseudoconvex domain,
with p smooth and strictly plurisubharmonic in a neighborhood of €.

PROPOSITION 3.6. Fiz K C Q a compact set and M > 0. There
exists C' > 0 depending only on K and €2, a compact subset £ C €
such that K C E° and for any w € PSH(2) N L®(Q) with u < 0 in
Q, there exists A > 0 and a bounded plurisubharmonic function u in a
neighborhood of Q) such that

(1) @ =u in a neighborhood of K,

(it) u = Ap in Q\ E, with A < C |Ju| (0,

(7i1) u < u < Ap on (.

In particular ||@||Lepy < C ||ul|zeeq).-

ProoF. Consider, for ¢ > 0, D, = {z € ; p(z) < —c}, and choose
a > 0 such that K C D,. Set M := ||u||p~(q) and A := M/a so that

u> Ap on 0D,.

Pick b > 0 so small so that a < b and Ap > u on 0D,. The gluing
lemma for plurisubharmonic functions shows that the function

u(z) for =z € D,,
w(z) = ¢ max{u(z), Ap(z)} for z€ Dy\ D,,
Ap(z) for 2z € Q\ Dy,

is plurisubharmonic in €2 and satisfies all our requirements with £ :=
Dy and C' := max{maxg |p|/a, 1}. O

We now establish an integration by parts formula due to U. Cegrell
[Ceg04]:

PROPOSITION 3.7. Let T be a closed positive current of bidimen-
sion (1,1) in Q. Let u,v € PSH(Q) N LS.(Q2) be such that u,v < 0,

lim, oo u(z) =0 and [, ddv AT < +oco. Then

/vddcu/\TS/uddcv/\T,
Q Q
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where the inequality holds in [—oo,0[. If lim, ,9qv(z) = 0, then

(1.1) /Uddcu/\T:/uddcv/\T,
Q Q

provided that fQ ddu N'T < 4o00.

PROOF. For ¢ > 0 set u. := sup{u, —e} and observe that u. is
plurisubharmonic in €2 and increases to 0 as € decreases to 0. The
monotone convergence theorem yields

/ uddv AT =lim [ (u—u:)ddvAT.
Q e—0 Q

Set Q. := {u < —e}. Then K := . C Q is a compact subset such
that u. = v on 2\ K. Let D; € Q be a domain close to €2 such that
K C D;. Let (p;)y>0 be standard mollifiers. For n > 0 small enough,
the smooth function (u — u.) % p, has compact support contained in
the n—mneighborhood K, C € of K and converges to u — u. on € as 7
decreases to 0. It follows from Lebesgue’s convergence theorem that

/ (u—u)ddv AT =lm [ (u—u:)*p,ddvAT.
D1

n—0 Dy

Since (u —u.) * p, is smooth and has a compact support in D; we infer

/(u—us)*pnddcv/\T:/ vddc((u—us)*pn)/\Tz/ vdd®(uxp,)N\T.
D1 Dy

Dy

Assume first that v is continuous in a neighborhood of D; and
observe that we can choose D; so that the positive Borel measure
(—v)dd“u AT has no mass on dD;. Thus

(—v)dd“(ux py) NT — (—v)dd°u AT

weakly in the sense of Radon measures in 2. Therefore

lim vddc(u*pn)/\T:/ vdduNT.

n—0 Dy Dy

We infer

(1.2) / uddcv/\TZ/ vddcu/\T—s/ dd‘v \'T.
D1 D, Dy
If v is not lower semi-continuous we take a decreasing sequence
(v;) of negative continuous plurisubharmonic functions in € which con-
verges to v in a neighborhood of D; and apply the last inequality to
each function v;. Choose a domain D, such that D, € D; @ ). By
upper semi-continuity on the compact set L := Dy, C Dy, it follows
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from (1.2) that

/uddcv/\T > limsup/uddcvj AT
L j L

J

> lim viddu NT — ¢ lim.inf/ dd‘v; N'T
Dy

J D1 J

> /Uddcu/\T—e/ dd°v N'T.
D: D

Letting D; and Ds increase to ) and taking the limit as ¢ — 0, we
obtain the required inequality provided that fQ ddv AT < +o0. O

Simple examples show that the total mass of the current dd®u A T
in 2 need not be finite:

EXAMPLE 3.8. Fiz 0 < o < 1 and consider
zeD s u(z) = —(1—|2])*€R

This is a smooth and bounded subharmonic function in the unit disc D,
which extends as a Holder continuous function up to the boundary. The
reader can check (Exercise 3.3) that the total mass of Au is infinite,

/ dd‘u = 4-o00.
D

2. The complex Monge-Ampere measure

2.1. Chern-Levine-Nirenberg inequalities. The following in-
equalities are due to Chern-Levine-Nirenberg [CLN69]. They are the
first step towards defining the complex Monge-Ampere operator on
bounded plurisubharmonic functions:

THEOREM 3.9. Let T' be a closed positive current of bidimension
(k, k) in Q and uy,...,up € PSH(Q) N L2(2). Then for all open

loc

subsets (1 € )y € (2, there exists a constant C' = Cq, o, > 0 such that
for any compact subsets K C €y

(2.1) / ddus A .. A ddug AT < Cllulls .. . ullsl| T,
951
and
(2.2) / dui AdCui AddusA. . Nddup AT < C||U1H2E||U2HE‘ . ||Uk||E”THEa
951

where E = (Qy \ Q1) N Supp(T).

Here (and in the sequel) we let ||u||g denote the L*-norm of the
function u on the Borel set E.
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PROOF. It is enough to prove inequality (2.1) for £ = 1 and then
use induction on k. Set u = u;. We can always assume that v < 0 on
(2, since the function v := u — supq, v is negative on €2, and satisfies
dd®v = dd°u and [[v||o,\0, < 2lulloa,-

Let x € D(22) be a non-negative test function with y = 1 in €.
Then

/ TN ddu < / X1 A dd“u.
(951 Qo
Since dd°y = 0 in ); we obtain

/ xdduNT = / uddy NT = / uddx N'T.
Qo Qo Q2\ Q1

Fixing A > 0 such that dd“y < Af on {2 we infer

/ VdduNT < AHuHQZ\Ql/ TAB
QQ QQ\Ql

We now prove the second inequality (2.2). We can assume without
loss of generality that u := u; > 0 in Q,. Then %2 is plurisubharmonic
and

dd°u® = 2udd®u + 2du A d°u,
in the sense of currents in . Thus (2.2) follows from (2.1) applied
with u; replaced bu 2,

Q

g

COROLLARY 3.10. For all subdomains 21 € Qy E (2, there exists a
constant C' = Cq, 0, > 0 such that if V.€ PSH(Q), and uy, ... ,u, €
PSH(Q) N LE.(Q), then

loc

(2.3) / ddéur A .. Nddug A AV A By < Cllualls - Nl V] o),
Q1

where B := Qs \ Q1 and g=n— (k+1).

PRrOOF. It suffices to find an upper bound for the mass of the cur-
rent T = dd°V A B,_1 on €y and apply previous inequalities.

We use the same notations as in the previous proof and assume first
that V < 0 in Q5. Then

/ dd°V A B,_1 < / xddV A B,_1 = / Vddx N Brn_1.
o Qs 0y
Since dd°x A Bn_1 = AxfB,, it follows that

/ 4V A By < [ Dx oo / V|5..
K

Q2\

which proves the required inequality.
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We now treat the the general case. The submean-value inequality
insures that we can find an open set €)' such that Q; € ' € Qy and
a constant C' > 0 such that maxg V < CfQ2\Ql Vi B,. We can now

apply the last inequality to V' — supg, V' in ' and obtain the required
estimate. O

2.2. Symmetry of Monge-Ampere operators.

PROPOSITION 3.11. Let T be a closed positive current on §2 of bidi-
mension (m,m). Let (u;) be bounded plurisubharmonic functions in
Q which decrease to u € PSH(QY) N Lys.. Then for any continuous
plurisubharmonic function h on 2,

hdd®u; NT — hdd‘u N'T
and
dd°h N\ dd°u; NT — dd°h AN ddu AT
in the weak sense of Radon measures on ).
Proor. We already know that dd“u; AT — dd“u AT in the weak
sense of currents by Proposition 3.3.
The Chern-Levine-Nirenberg inequalities insure that the currents

dd“uj AT have locally uniformly bounded masses in €2, hence the weak
convergence holds in the sense of Radon measures on 2. Thus

hdd®u; AT — hdd°u AT

in the weak sense of Radon measures.

Since the operator dd¢ is continuous for the weak convergence of
currents, it follows that dd°h Add“u; N'T" — dd°h Add“u AT in the sense
of currents in €).

Now these are positive currents (h is plurisubharmonic ) hence the
convergence actually holds in the sense of Radon measures. U

This shows that these operators are symmetric:

COROLLARY 3.12. Let T (resp. S) be a positive closed current of
bidimension (2,2) (resp. (k,k)) and u,v be locally bounded plurisub-
harmonic functions in a domain 2 C C*. Then

ddu N ddvNT = ddv A\ dduNT.
More generally the Monge-Ampére type operator
(ur,...,ux) € PSH(Q) N Ly () — dduy A ... Addup NS
18 symmetric.

PROOF. The formula is clear when both functions are smooth. As-
sume now that u is smooth and take a sequence of smooth psh functions
v; which locally decrease to u. Then

dd“u A\ ddv; NT = dd°v; ANddu NT
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hence the previous convergence result yields the required identity.

We now treat the general case. Since the property is local we can
use the localization principle and assume that u,v are negative in a
ball B € 2 and equal to 0 on 0B. Let p be a strictly plurisubharmonic
defining function of B. It follows from Proposition 3.7 that

/ pdd‘u A ddv \N'T = / uddp A ddv N'T.
B B

As p is smooth, the first part of the proof yields dd°p A ddv AT =
dd®v A dd°p AT in the sense of currents. Thus

/ pdd‘u A ddv \N'T = / udd®v Addp N'T.
B B

Using again the formula (1.1) and the fact that ddp A ddu AT =
dd“u AN ddp N'T, we get

/ pddu ANddvNT = / vddu Addp N'T
B B
= / vddp N dd“u N'T
B

= / pdd‘v A\ dd“u N'T.
B

Observe finally that any smooth test function y with compact sup-
port in B can be written as the difference of two defining functions for
B. Indeed Add¢p > —dd®y for A > 1 large enough, thus x = p; — po,
where p; := x + Ap and py := Ap. O

Here is a first example of an explicit non-smooth complex Monge-
Ampere measure:

ExXAMPLE 3.13. Fix r > 0. The function

u,(2) == log™ (|2 /r) = max{log |z|;logr} — logr
1s a continuous plurisubharmonic function in C" which is smooth in
C"\ {|z| = r} where it satisfies (dd°u)™ = 0.
The Borel measure (dd“u,.)"™ is invariant under unitary transforma-

tions and has total mass 1 in C" (see Proposition 3.34). It coincides
with the normalized Lebesgue measure o, on the sphere |z| = r.

2.3. Integrability with respect to Monge-Ampére measures.

THEOREM 3.14. Fix V. € PSH(Q) and uy,...,u, € PSH(Q)N
L2 (). For any subdomain D € ) and any compact subset K C D,
there exists a constant C = C(K, D) > 0 such that

/ |V\ddcu1 VANPIWAN ddcun < CHulHD c HunHDHVHLl(D)
K

In particular the Monge-Ampére measure ddu; A ... A ddu, does
not charge the polar set P = {V = —oo}.
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PROOF. Since K is compact, we can cover it by finitely many small
balls. Using the localization principle we can thus assume that there
are euclidean balls such that K € B; € B € Q2 and that u; coincides in
a neighborhood of B\ B; with Axp. Here p denotes a defining function
for the ball B and Ay, < C||ugl|z=(®) with a uniform constant C'.

We first assume that V' < 0 on B and set V; := sup{V, jp}, for
j € N. The (V})’s are bounded plurisubharmonic functions on B with
boundary values 0 which converge to V. It follows from Proposition 3.7
that

/ (=V5) Ni<kzn dduy, < /(—Vj) A<k<n dduy
K B
= /(—ul)ddcvj A ddus . .. N ddu,.
B
The Chern-Levine-Nirenberg inequalities (2.1) yield
/ (—u)dd°V; A dd°us . .. A dd°uy < C nlskgnnukn]g/ V] dA.
K B

where C,, > 0 is a uniform constant.
On the other hand the formula (1.1) yields, setting A = A, --- A4,

/ (—uy)ddV; A dduy ... A\ ddu, = A/ (—p)ddV; A Br—1
B\B; B\B,

= A/(—Vj)ddcp/\ﬁnl
B
< 418,
B
Altogether this yields

/ (=V)ddouy A ... A ddou, < (C + A) /(—vj)ﬁn.
K B
Since (V;) decreases to V € L'(B), the monotone convergence theorem

implies

/ (=V)dduy A ... Nddu, < (C+ A) /(—V)Bn < +o0.
K B

We can finally replace V' by V' := V — supg V, note that dd°V =
ddV’, and use the submean value inequality to obtain

Vi@ < CollVIILie,)

where B @ By € (). This proves the required estimate. U
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2.4. Compact singularities. The estimates (2.1) and (2.2) only
require a control on the functions near the boundary of 2. We can thus
improve the last estimate as follows:

PROPOSITION 3.15. Let T be a closed positive current of bidimen-
sion (p,p) and ¢ € PSH(S). Assume there exists a compact set E
and a strictly pseudoconvex domain D such that E C D C € and a
constant M > 0 such that —M < ¢ <0 on Q\ E. Then there ezists a
constant C' > 0 which does not depend on ¢ and M such that

/ e ag,<cM [ Thg,
D D\E

In particular

dd°o N T := dd°(pT),

is a well defined closed positive current in Q.

PROOF. Let p be a defining function for D which is stricly plurisub-
harmonic in a neighborhood of D. We can assume that 8 < dd‘p on
D. Set ¢; := max{p, —j} and observe that ¢; is plurisubharmonic,

bounded on D and ¢; = ¢ on D\ E for j > M. It follows from
Proposition 3.7 that

/(—SOj)T/\ﬁp < /(—%‘)ddcﬂ/\T/\ﬂpl
D D

= /(—p)ddcgpj NT N Bpq
D

< sup(—p)/ddcgoj/\T/\ﬁpl.
D D

Since ¢; = ¢ on 2\ D for j > M, Chern-Levine-Nirenberg in-
equalities show that the last integral is bounded from above by Cf - M.
Letting 7 — oo yields the required estimate. O

COROLLARY 3.16. The Monge-Ampére measure
dd°p1 N\ -+ NddCp,

1s well defined for all plurisubharmonic functions which are locally
bounded near the boundary of €.

Such plurisubharmonic functions are called psh functions with com-
pact singularities.

ExXAMPLE 3.17. The function
l(z) :=loglz],z € C"

18 plurisubharmonic in C™ and has an isolated singularity at the origin.
Its Monge-Ampére measure (dd°0)" is therefore well defined. The reader
will check in Exercise 3.15 that

(dd°0)™ = &,
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is the Dirac mass at the origin, hence € is a fundamental solution of
the Monge-Ampére operator. This latter notion is however of limited
interest as this operator is non-linear when n > 2 and there are very
many fundamental solutions !

3. Continuity of the complex Monge-Ampere operator

When the (complex) dimension is n = 1 the complex Monge-
Ampere operator is nothing but the Laplace operator dd¢. It is then a
linear operator which is well defined on all subharmonic functions and
is continuous for the weak (L},,) convergence.

The situation is much more delicate in dimension n > 2. The
complex-Monge-Ampere operator is then non linear and can not be
defined for all plurisubharmonic functions. It is moreover discontinous
for the the L}, -convergence. We will nevertheless show that it is con-

tinuous for the monotone convergence.

3.1. Continuity along decreasing sequences. We first show
that the complex Monge-Ampere operators is continuous along decreas-
ing sequences of plurisubharmonic functions.

THEOREM 3.18. Let T be a closed positive current of bidegree (p,p)
and let (w})jen, .-, (ug)jeN be decreasing sequences of plurisubharmonic
functions which converge to uo, ...,u, € PSH(Q) N LS.(), p+q < n.
Then

wh ddw A .. A ddul AT — ug dduy A ... Addug AT
in the weak sense of currents.

PRrROOF. The proof proceeds by induction on q. For ¢ = 0 the
theorem is a consequence of the monotone convergence theorem. Fix
1 < ¢ < n —pand assume that the theorem is true for ¢ — 1 so that

Sj = Algkqudcui ANT — S = Algkqudcuk AT.

It follows from Chern-Levine-Nirenberg inequalities (2.1) that the
sequence (u57) is relatively compact for the weak topology of currents.
Up to extracting and relabelling, it suffices to show that if the sequence
(u}S7) converges weakly to a current © then © = ugS.

By upper semi-continuity we already know that for all elementary
positive (n —p—q,n—p—q)-form I', © AT < upS AT hence upS — O
is a positive current on 2. It thus remains to prove that

/ upS A\ BT < / OAp["PT.
Q Q

The problem being local, it is enough to prove that the total mass of
the positive current uoS — © on each ball B = B(a, R) € (2 is zero. By
the localization principle we can assume that the functions ué coincide
with the function p(z) = A(|z — a|* — R?) in a neighborhood of 9B,
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where A > 1 is a large constant, and that —1 < u{) < 0 in an open
neighborhood Q" € Q). Integrating by parts (using (1.1)), we infer

/ Uo /\ISiSq ddcuz A\ T A 6n—p—q S / ujo /\lgigq ddcuz A T A Bn—p—q
B B
= /ul A ddcug) /\2§i§q ddcu, AT A 5n—p—q
B
B

We use here the symmetry of the wedge products (see Corollary 3.12).
Since the positive measures (—u)) A1<i<gdd“u] NT A" 7P~9 converge
weakly to —© A f"7P~1 it follows from the lower semi-continuity that

linlinf/(—ué) /\1<i<q ddcui ANT A anp*q 2 / _@ A Bn*pﬂ%
J—+oo B - - B
which proves the theorem. O

The reader can use decreasing sequence of smooth approximants to
compute the following complex Monge-Ampere measure:

ExAMPLE 3.19. Consider
Yz €C"— max{log” |z];1<j<n}eR.

The function 1 is Lipschitz continuous and plurisubharmonic in
C". Its Monge-Ampére measure (dd°i)" coincides with the normalized
Lebesgque measure 1, on the torus

T" ={z€C"; |z| == |z, = 1}.
(See Exercise 3.9).

COROLLARY 3.20. Ifu,v are plurisubharmonic and locally bounded,
then

n

(dd°Tu+ )" =Y ( 7; ) (dd°u)) A (ddv)™.

j=0

PROOF. The formula is clear if u,v are smooth. The general case
follows by approximation by smooth decreasing sequences. U

The following estimates are due to Blocki [Blo93]:
ProposITION 3.21. Fiz u,v,w € PSH™(2) N L>®(Q) such that

lim, 90(w(z) —v(z)) =0. Then

/Q(w —v)(ddu)" < (n+ 1)!M™ /Q(w —v)y (ddv)",

where M = supg u — infgu and (w —v); := sup{w — v, 0}.
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PRrROOF. We can assume without loss of generality that supg u = 0.
Observe that for ¢ > 0 the function w, := sup{v,w — €} is a bounded
plurisubharmonic function on € such that w. ' sup{v,w} as e \, 0
and w. = v near 0§2. By the the monotone convergence theorem we
may thus assume that w = v near 0f).

Set h := (w —v); on Q and fix a compact set K C  such that
h =0in Q\ K. Consider smooth approximants h. := h*p. of h. These
functions are smooth in a neighborhood 2" of K with compact support
in the e—neighborhood K. of K. By definition ddu A T := dd°(uT)
hence

/ Pddeu AT = / uddz AT,
On the other hand i?p >1,
ddh? = ph?=\ddCh. + p(p — DhP~2dh. A d°h. > ph*~'ddh.,
thus u dd°h? < puh?~'dd°h. and

/ Wddu AT < / puh?~'ddh. AT

< pM R~ (—dd°h.) AT
Q//
< pM R~ tddv. A T.
Q//
The last inequality follows from the observation that

h = max{w —v,0} = max{w,v} — v,

hence —dd°h. < ddv..
We can use this argument n + 1 times and obtain

/ R (ddu)™ < (n+ 1)!]\/[”“/ he(dd®v.)".

Since h = sup{w, v} — v, h. = (sup{w,v}). — v. is the difference of
decreasing sequences of bounded plurisubharmonic functions, we can
use the continuity of the Monge-Ampere operator along decreasing se-
quences and apply Lebesgue’s convergence theorem to obtain

[y < et [

"

which is our claim. O

3.2. Continuity along increasing sequences. In this section
we show that complex Monge-Ampere operators are continuous along
increasing sequences.

To this end we need the following technical result which relies on
the quasicontinuity of plurisubharmonic functions:
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LEMMA 3.22. Let P be a family of plurisubharmonic functions which
are locally uniformly bounded. Let T denote the set of currents of the
form T := /\1<i<p ddu;, where uq, ..., u, € P.

If (T})jen is a sequence of currents in T converging weakly to a
current T € T, then for all locally bounded plurisubharmonic function
f, the currents fT; weakly converge to fT.

The proof of the quasi-continuity will be given in the next chapter
so we postpone the proof of this Lemma as well.

THEOREM 3.23. Let (u?), ..., (u{l) be sequences of locally bounded

plurisubharmonic functions which increase almost everywhere towards
Ug, .., ug € PSH(Q) N LS. (Q). Then

whddwl A ... A ddul — ugdd®uy A ... A ddCu,
in the weak sense of currents.

ProoOF. We proceed by induction on ¢. The case ¢ = 0 follows from
the monotone convergence theorem.

Suppose that the theorem is true for ¢ — 1. By continuity of dd® we
infer that the currents S; := dd°u] A... A ddcug converge to the current
S i=dduy A ... A\ ddCuy.

“The Chern-Levine-Nirenberg inequalities insure that the currents
(u}S;) form a relatively compact sequence. We need to show it has a
unique limit point. Extracting and relabelling, we need to show that if
u}S; — © weakly then © = 1S on .

The problem is local so it suffices to prove the convergence in a ball
B = B(a;r) € Q. We can modify the functions in a neighborhood of
OB so that they all coincide with p(z) = A(|z — a|* — R?) near JB,
A > 1 a uniform constant. '

Note that u)S; < upS; since (u) is increasing. It follows therefore
from the upper semi-continuity that © < wugS. We now show that
O = upS by proving that

/@ A Bn—q > /uoS A Bn—q-
B B
Indeed for 7 > k > 0, the integration by parts formula yields

/U%Sj VAN ﬁn—q Z /US /\lﬁiéq ddcuz A /Bn—q'
B B

The induction hypothesis and Lemma 3.22 yield
hHllIlf / U%S] A Bn—q Z / Ulg /\lgigq ddcuz A Bn—q
J B B

= / ulddcug /\ggigq ddcuz A 5n—q~
B
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Applying Lemma 3.22 and Stokes’ theorem again, we get
11]I€Il /B ulddculg /\QSZ‘Sq ddcuz VAN ﬁn—q
= /ulddcuo /\Qgigq ddcuz A ﬂnfq
B

= /Uo Ni<icq ddu; N Bnq,
B

hence
hm inf / U%Sj A 6n—q Z /UO /\1<i<q ddcuz AN Bn—lp
J—+oo B B -
and the proof is complete. O

The following corollary will allow us to show in the next chapter
that "negligible sets are pluripolar”, answering a celebrated question
of P.Lelong.

COROLLARY 3.24. Let (V) be plurisubharmonic functions increas-
ing almost everywhere to V-€ PSH(S). Then the exceptional set

N :={supV; <V}
J

has measure 0 with respect to all Monge-Ampére measures of the type
dduy A .. .dd°u,, where uy, ..., u, € PSH() N L®(Q).

We have already seen (see Theorem 1.49) that

sup Vj(z) = limsup Vj(z) = V()

J

for almost every x with respect to Lebesgue measure. This corollary
gives much more precise information.

PRrROOF. Set V; :=sup{V, s} and V; ; = sup{V}, s} and observe that

N C U N,, where Ny := {sup Vis < Vs}.
seQ J

By the subadditivity property of Borel measures, we can therefore as-
sume that all the functions (V}) are locally bounded.

Set W :=sup; V;. Then W is a locally bounded Borel function such
that W <V with equality almost everywhere. Again by subadditivity,
it is enough to prove that

/ dduy A ... dd°u,, =0,
KNN
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where K C 2 is a compact subset. Pick x a non-negative cutoff func-
tion such that y = 1 near K. The previous convergence theorem yields

/ xWddu, A ...dd°u, = lim/ XVidduy A ... dduy,
Q J Ja
= / xVdduy A ... dd°uy,,
Q
which proves the required result since W < V. U

3.3. Discontinuity of the Monge- Ampeére operator. We have
proved that the complex Monge-Ampere operator is well defined on the
set PSH(Q)NL5e, and is continuous under monotone convergence. This
operator is however not continuous under the weaker L;, . convergence

as was first emphasized by Cegrell [Ceg84|. Here is a simple example:

ExAMPLE 3.25. The functions
1 . .
wi(21, 22) = % log [|2 + 23|° + 1]

are smooth and plurisubharmonic in C2. They form a locally bounded
sequence which converges in Li,.(C?) towards

u(z1, 22) = log maX[la ‘Zl|7 |Z2”‘

Observe that (dd“u;)? = 0 while (dd°u)? is the Lebesque measure on the
real torus {|z1| = |z2| = 1}.

We leave the details as an Exercise 3.10. Another example is given
in Exercise 3.7. This discontinuity is actually rather common as was
observed by Lelong [Lel83] who showed the following:

PROPOSITION 3.26. Every locally bounded plurisubharmonic func-
tion can be approzimated in L} . by locally bounded plurisubharmonic

functions with vanishing Monge-Ampére measures.

Such plurisubharmonic functions are natural generalizations of har-
monic functions, they are called mazimal plurisubharmonic functions.

4. Maximum principles

The comparison principle is one the most effective tools in pluripo-
tential theory. It is a non linear version of the classical maximum
principle.

4.1. The comparison principle. We establish in this section
several types of maximum principles starting with the following local
mazximum principle:
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THEOREM 3.27. Set T = dd“wy A\- - - Add“w,,—p, where 0 < p <n—1
and w; € PSH(Q) N L2 (Q). Then for all u,v € PSH(Q) N L (S2),
s (dd®max{u, v})P AT = Ly (ddu)? AT,
in the sense of Borel measures in 2.

PROOF. Set D := {u > v}. If u is continuous then D is an open
subset of Q and max{u,v} = u in D hence

(dd max{u,v})P AT = (dd“u)? AT,

so our claim is easy in this case.

We now treat the general case. Let (u;) a sequence of continuous
plurisubharmonic functions decreasing to u. Since the problem is local
we can assume that ) is a ball and all functions are bounded and
plurisubharmonic on a fixed neighborhood of €. We know

1w, >0y (dd max{u;, v})P AT = 1y, 50y (dduy)P AT,
Set f; := (u; —v)" and f = (u—v)*. The previous identity yields
fi(dd® max{u;, v})P AT = f;(dd°u;)’ NT,

in the weak sense of measures in (2.

Observe that f; = max{u;,v} — v, f = max{u,v} — v and the
sequence (max{u;,v}) decreases to max{u, v}. It follows therefore from
Theorem 3.18 that

f(dd°max{u,v})’ AT = f(ddu)’ NT

in the sense of Borel measures on (2.
Fix e > 0. Since 1/(f + ¢) is a bounded Borel function, we infer

#(aldC max{u,v})P AT = #(ddcu)p AT.
Let € N\, 0 and observe that f/(f +¢) / 1{use} to conclude. O

COROLLARY 3.28. With the same hypotheses as in the theorem,
(dd® max{u, v})’ AT > 1>y (ddu)? A +1pcpy (ddv)? AT
in the sense of Borel measures in 2.
The following is often called the comparison principle:

THEOREM 3.29. Assume u,v € PSH(2) N L>(2) are such that
liminf, ,p0(u(z) —v(z)) > 0. Then

/ (dd°v)" < / (dd°u)".
{u<v} {u<v}

PROOF. By assumption we can find a compact subset K C €2 and
an arbitrarily small € > 0 such that sup{u,v — e} =u in Q\ K. Fix a
domain ' such that K € Q" &€ Q. Then

(4.1) / (dd"sup{u, v —e})" = / (dd°u)"
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Indeed set w := sup{u, v —e} and observe that (dd“w)" — (dd‘u)"™ =
dd°S, where S := w(dd°w)" ! — u(dd°u)""! is a current of bidimension
(1,1). Since w = u in 2\ K, we get S = 0 there, i.e. the support of
the current S is contained in K. Pick a smooth test function y on €
such that x = 1 in a neighborhood of K, we conclude that

/ddCS:/ deCS:/ S Addy =0,

since dd°x = 0 on the support of the current S. This proves (4.1).
We now apply Theorem 3.27 and (4.1) in Q' to get

/ (ddv)" = / (dd° sup{u,v — e})"
{u<v—e} {u<v—e}
_ / (dd° sup{u, v — £})" — / dd® sup{u, v — £})"
/ {u>v—e}

/alclC )" / dd’ sup{u,v —e})"
{u>v—e}
= / (ddu)" / (ddu)
{u>v—e}
_ / (dd°u)" < / (dd°u)".
{u<v—ce} {u<v}

The conclusion follows by letting € N\, 0. U

IN

We now deduce the following global maximum principle:

COROLLARY 3.30. Assume u,v € PSH(2) N L*(Q) are such that
liminf, ,s0(u(z) —v(z)) > 0. If (dd°u)™ < (ddv)™ then v < u in Q.

PROOF. For ¢ > 0 we set v, := v + ep, where p(z) := |z|? — R? is
choosen so that p < 0 on Q. Then {u < v.} C {u < v} € Q. The
comparison principle yields

/ (dd°v.)" < / (dd°u)".
{u<ve} {u<wve}

It follows from Corollary 3.20 that
(ddve)"™ > (ddv)"™ 4+ " (ddp)"™ > (ddu)™ + " (dd p)"
hence f{u@g}(ddcp)” = 0. We infer that the set {u < v.} has Lebesgue
measure 0. Since {u < v} = ;5 {u < vyy;}, it follows that the set

{u < v} has Lebesgue measure 0 as well, hence v < w on Q by the
sub-mean value inequalities. Il

We now prove the domination principle.

COROLLARY 3.31. Fizu,v € PSH(Q)NL>($) such that v < u on
0. Assume that v < u a.e. in Q with respect to the measure (dd‘u)".
Then v < u in €.
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PROOF. For ¢ > 0 we set v, := v + ep, where p(2) := |z|? — R? is
choosen so that p < 0 on Q. Then {u < v.} C {u < v} € Q. The
comparison principle yields

/ (dd°v.)" < / (ddu)" < / (dd°u)" = 0.
{u<ve} {u<ve} {u<v}

Since (ddv.)™ > €™(ddp)™, it follows that the set {u < v.} has volume
zero in €2 hence it is empty by the submean-value inequality. Therefore
{u < v} is empty, i.e. v < win . O

4.2. The Lelong class. We have defined above the complex Monge-
Ampere measure of plurisubharmonic functions that are bounded or
with compact singularities.

One can not expect to define the Monge-Ampere measure of any
unbounded plurisubharmonic function as the following example due to
Kiselman [Kis83| shows:

EXAMPLE 3.32. Set
o(z) == (—log |21])1/” (\22]2 4+t \zn\z — 1) )

We let the reader check in Fxercise 3.8 that o is a smooth plurisubhar-
monic function in B" \ {21 = 0} such that

- =2 |z

dd°p)" = ¢,
dd"p) 1 log [=4]]

dVLeb

and that this measure has infinite mass in B™ \ {z; = 0}.

We now introduce an important class of plurisubharmonic functions
in C™ for which such a phenomenon cannot occur.

DEFINITION 3.33. The Lelong class L(C") is the class of plurisub-
harmonic functions uw in C* with logarithmic growth, i.e. for which
there exists C, € R such that for all z € C,

u(z) < log™ |z| + C,.

The reader will check in Exercise 3.13 that a non constant plurisub-
harmonic function in C™ has at least logarithmic growth. This class of
functions will play an important role later as it induces the model class
of quasi-plurisubharmonic functions on the complex projective space
CP™.

We also consider
LT(C") :={ue L(C"|3C!, st. —C! +logt|z] <u(z), Vz € C"}.

We let the reader check in Exercise 3.14 that locally bounded func-
tions from the Lelong class have finite total Monge-Ampere mass:
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PROPOSITION 3.34. If u belongs to L(C™) N LS. (C™) then

loc
/ (ddu)™ < 1.

Moreover if u belongs to L1(C™), then

/ (dduy =1

The proof of these facts relies on the following result of independent
interest:

LEMMA 3.35. Let u,v be locally bounded plurisubharmonic functions
in C" such that u(z) — 400 as z — oo. Assume that v(z) < u(z) +
o(u(z)) as z — +oo. Then

/ (dd)" < / (dd°u)"

PROOF. Fix € > 0. Our assumption insures that for R > 1 large
enough, v(2) < (1+¢€)u(z) if |z| > R. The comparison principle yields

/ (ddv)" < (1 +5)"/ (ddu)"
BrN{(14+e)u<v} BrN{(1+e)u<v}

< (1 —|—5)”/ (ddu)".
Letting R — 400 and € — 0 we obtain the required inequality. U

For classes of plurisubharmonic functions with prescribed Monge-
Ampere mass, one might hope that it is easier to define the complex
Monge-Ampere measure. This is however a delicate problem. The local
domain of definition of the complex Monge-Ampere operator has been
characterized by Blocki and Cegrell in [Ceg04, Blo04, Blo06].

5. Exercises

EXERCISE 3.1. Let (f;)jen be a decreasing sequence of upper semi-
continuous functions in a domain 2 converging to f. Let (11;)jen be a
sequence of positive Borel measures in £ which converges weakly to a
Borel measure . Show that any limit point v of the sequence of mea-
sures vj := f; - p; satisfies the inequality v < f - in the weak sense of
Radon measures on €, i.e.

limsup fpn; < fu.
J

EXERCISE 3.2. Let (11;)jen be a sequence of positive Borel measures
on ) which converges weakly to a positive Borel measure j on €. Show
that for any compact set K C ) and any open subset D C (2,

limsup p;(K) < p(K) and liminf p;(D) > p(D).
j j

J
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EXERCISE 3.3. Fizx 0 < a < 1 and consider
z€D s u(z) = —(1—2)*)* € R.
Show that u is a smooth subharmonic function in the unit disc D,
which s Héolder continuous up to the boundary. Check that
0%u
020z

and conclude that fD ddu = +00. Is this in contradiction with Chern-
Levine-Nirenberg inequalities ¢

(2) = (1 = 2] + a(l — a)[z[*(1 — [2]*)* 77,

EXERCISE 3.4. Let u be a locally bounded plurisubharmonic func-
tion in a domain € and x : I — R a smooth convexr non-decreasing

function with u(Q2) C 1. Check that v := x o u is plurisubharmonic in
Q with

dd®p = x'(u) ddu + X" (u) du A du,
and
(ddp)™ = x(u)™ (dd°u)™ + X" (u) - X' (u)" ' du A du A (ddu)" .
2. Fir 0 < a <1 and consider
z€B— u(z) = —(1—|2)*€R.

Prove that w is is plurisubharmonic in the unit ball B, Holder con-
tinuous up to the boundary and satisfies [;(dd°u)" = +oo0.

EXERCISE 3.5. Let Q,€) be domains in C", F : Q' — Q a holo-
morphic map and w € PSH(S2) N L>(2).

1) If u € C?(2), show that
(dd°uo F)"(C) = [Jr(Q)*(dd°u)"(F(C)),
as differential forms in €Y', where Jp denotes the Jacobian of F.
2) Check that if F' is proper, then

F.(dd°uo F)" = (dd“u)"
in the sense of currents.
3) Deduce that if F is a biholomorphism, then
(FY).(dd°u)™ = (ddu o F)™.
EXERCISE 3.6. Consider, for 1 < j <n.
2z € C" > uy(2) :== (Imz;)T €R.
1) Check that these are continuous plurisubharmonic functions s.t.
dduy A - Nddu, = (47) "L,

in the sense of Borel measures on C", where A, is the Lebesque measure
on R™ and v : R® — C" is the embedding induced by R — C.
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2) Using Theorem 3.1j deduce that the restrictions of plurisub-
harmonic functions to R™ are locally integrable with respect to the n-
dimensional Lebesque measure A, on Q NR™.

8) Consider similarly v : z € C" v 377 (Imz;)™ € R". Show that
v 18 a Lipschitz continuous psh function in C™ such that

(ddv)" = (n!/27)" L )\

EXERCISE 3.7. Forn > 2 we set
o 2 . o _ 2 .
uj(2) =log(|z1 -+ 2al* + 1/4) and v;(z) = " log(|z|” +1/7).
=1

Show that these sequences of bounded plurisubharmonic functions
both decrease to p(z) = 2log|z1---2z,| and that (ddu;)™ = 0 while
(dd°v;)™ converge to a positive multiple of the Dirac mass at the origin.

EXERCISE 3.8. Set
p(2) = (=log |21 )" (Jzof* + - + [z — 1)
1) Prove that ¢ is a smooth psh function in B"\ {z; = 0} such that

i D 21
[21]?[ 1og |z ]

(dd°p)" = ¢y, AVieb

and that this measure has infinite mass in B™ \ {z; = 0}.
2) Observe that p(z) = uo L(z), where

L=z¢€(C"w (logl|zl,...,log|z]) € R

and w is an appropriate convex function. Express (dd°p)™ in terms of
the real Monge-Ampére measure of u and give an alternative proof of
the fact that (dd°p)™ has infinite mass near {z, = 0}.

EXERCISE 3.9. Fiz r:= (ri,re, -+ ,1,) €]0,+00[" and consider
¥, 1 2 € C" — max{log™(|z;]/r;);1 < j <n} eR.

1) Prove that v, is a Lipschitz continuous plurisubharmonic func-
tion and (dd“,)" is supported on the torus

Tn(’r’) = {Z e C™, |Zl| =ry-, |Zn| — Tn}-
2) Observe that (dd,)™ is (S*)"-invariant and conclude that (ddp, )"

is the normalized Lebesgque measure on T"(r).

EXERCISE 3.10. Set

o(z) = nax log" |2;] where log* x := max(log z, 0),
<jsn

and @;(z) = % max(0,log 2] + -+ + 2}).
1) Show that p; — ¢ in L,.(C™).

loc
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2) Show that (dd°p;)™ = 0 when n > 2, while (dd°p)" is the nor-
malized Lebesque measure on the torus (S*)" C C". Conclude that the
complex Monge-Ampére operator is not continuous for the L*-topology.

EXERCISE 3.11. Let ¢ be a plurisubharmonic function in C* whose
gradient is in L3,.. Let p; be a sequence of plurisubharmonic functions
decreasing to p. Show that Vp; € L7 . and that p; — ¢ in the Sobolev
sense VVl})c2

EXERCISE 3.12. Let uy, ..., u, be continuous non-negative plurisub-
harmonic functions in C" such that for all i, u; is plurtharmonic in
(u; > 0). Show that

(dd° max(uy, ..., u,))" = dduy A--- A dduy,.

EXERCISE 3.13. Let u be a plurisubharmonic function in C". Show
that if

lim sup u(z) =
|z]—+o0 10g|Z|

then u s constant.

EXERCISE 3.14. Show that if u belongs to the Lelong class L1(C™),
i.e. if there exists a constant C, € R such that for all z € C",

log™ [|z]| = Cu < u(z) < log™ ||2] + Cu,

then [, (ddu)" =1

EXERCISE 3.15. Set u(z) :=log|z|, v(z) = maxi<;<,log|z;|, and

w(z) = max(log |21 |,log |22 — 221, ..., log |z, — 22_1]).
Show that
(dd°u)" = (ddv)" = (dd“w)"™ = dy

is the Dirac mass at the origin of C*. Conclude that the comparison
principle can not hold for these functions.

EXERCISE 3.16. Set ¢(z) = log" |2| = max(log |2],0).

1) Let x : R — R be a smooth convex function and set ¥ (z) =
x(log|z|). Show that v is a psh function with compact singularities.
Prove that (dd“y)" is absolutely continuous with respect to Lebesgue
measure if 1 has zero Lelong number at the origin.

2) Approximate max(z,0) by a smooth decreasing family of convex
functions x., use 1) and let € decrease to zero to conclude that (dd®p)™
15 the normalized Lebesgue measure on the unit sphere.

3) Use the invariance properties of ¢ and Exercise 3.1} to give an
alternative proof of this result.
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EXERCISE 3.17. Let u be a smooth plurisubharmonic function in
some domain 2 C C".

1) Assume that for all p € Q) there exists a holomorphic disc D C Q
centered at p such that ua is harmonic. Prove that (dd‘u)" = 0.

2) Show conversely that if (dd°u)™ = 0 and (ddu)"~! % 0 then there
exists a holomorphic foliation of Q2 by Riemann surfaces L, such that
), is harmonic for all a (see [BKTT] for some help).

EXERCISE 3.18. Let p be a probability measure in the unit ball B of
C"™ and set

Vi(z) = /GB log |z — w|du(w).

Check that 'V, is plurisubharmonic. Give conditions on u to insure
that V,, is locally bounded, and check that in this case (dd°V,)" is ab-
solutely continuous with respect to Lebesque measure (see [Carl99] for
more information).






CHAPTER 4
The Monge-Ampere capacity

As we saw in Chapter 3, the polar locus (i.e. the —oo locus) of
a plurisubharmonic function is the null set of several Borel measures.
These small sets cannot be characterized by a single measure, one has
to introduce capacities, a non-linear generalization of the latter.

Capacities play an important role in Complex Analysis as they allow
to characterize small sets. There are various capacities, depending on
the problem of study. We introduce here a generalized capacity in the
sense of Choquet, whose null sets are pluripolar sets (i.e. sets that are
locally contained in the polar locus of a plurisubharmonic function).

We follow the seminal work of Bedford and Taylor [BT82] (with
subsequent simplifications by Cegrell [Ceg88] and Demailly [Dem91]).

1. Choquet capacity theory

The systematic study of general(ized) capacities was performed by
Choquet in a famous work [Cho53]. We present here just a few aspects
of Choquet theory that we use in the sequel.

1.1. Choquet capacities. Let 2 be a Hausdorff locally compact
topological space which we assume is o-compact. We denote by 2% the
set of all subsets of (2.

DEFINITION 4.1. A set function c : 2% —s R := [0, +0o0] is called
a capacity on §2 if it satisfies the following properties:

(i) e(0) = 0;
(1) ¢ is monotone, i.e. AC B C Q=0 < c(A) < ¢(B);
(31) if (Ap)nen is a non-decreasing sequence of subsets of Q, then

c(UpAy) = limy, 1 0c(Ay,) = sup c(A,);
(iv) if (K,) is a non-increasing sequence of compact subsets of €2,
c(NpK) = limye(K,) = inf ¢(K,).

A capacity c is said to be a Choquet capacity if it is subadditive, i.e.
if it satisfies the extra condition
(v) if (Ap)nen is any sequence of subsets of €2, then

c(Undn) <) e(Ay),

101
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Capacities are usually first defined for Borel subsets and then ex-
tended to all sets by building the appropriate outer set function (see
Example 4.5). This motivates the following definition, where we let
B(2) denote the o-algebra of Borel subsets of

DEFINITION 4.2. A set function c : B(Q) — R* is a precapacity
if it satisfies the properties (i), (i1), (iii) for all Borel subsets of Q.

A precapacity c is subadditive if it satisfies (v). It is outer regular
iof for all Borel subsets B C (2,

¢(B) = inf{c(G); G open & B C G C Q}.
A precapacity c is inner reqular if for all Borel sets B C €,
¢(B) = sup{c(K); K compact & K C B}.

Note that a Choquet capacity is a precapacity when restricted to
Borel sets; the converse however does not hold (see Example 4.5 below).
The relation beween these two notions is given by the following result.

PROPOSITION 4.3. Let ¢ : B(Q2) — R* be a precapacity on Q. The
associated outer capacity, defined for any subset E C ) by

(1.1) c(E) = inf{c(G); G open & E C G C 1}

s a capacity on Q.
If ¢ is moreover subadditive then c* is a Choquet capacity.

PROOF. It is clear that c¢* satisfies (i), (i1). We prove the upper
continuity property (iii). By definition there exists a sequence of open
sets (G;) such that A; C G; and

c'(4;) < o(Gy) < (Ay) +1/)

for all j > 1.

Since (A;) is a non-decreasing sequence, we can arrange so that
that the corresponding open sets (G;) are non decreasing (replacing
G, by Ni>;Gy). Since c satisfies the condition (i77) for Borel sets and
A C G :=U,;G;, we conclude that

c(A) < c(G) = 11?16<Gj) = lijm c*(4A;).

Since the opposite inequality is trivial, we have proved that ¢* satisfies
condition (47).

We now check that ¢* satisfies condition (iv). If (X)) is a decreasing
sequence of compact subsets, any open set G' containing K := N;K;
will contain K for any j large enough. Thus ¢(G) > lim; ¢*(K;) hence
c¢*(K) > lim; ¢*(K;). Since the opposite inequality is again trivial, it
follows that ¢* satisfies the lower continuity property (iv).

Assume that c is subadditive and let (A4;) be a sequence of subsets
of Q. To prove (v) for ¢* we can assume that ¢*(A;) < +oo for all j.
By definition given € > 0 there exists an open set G; D A; such that
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c(Gj) < ¢*(Aj) + 2777t Then G := U;G, is an open set such that
UjAj C G and

c(G) < ZC(GJ‘) < ZC*(Aj) + e,

We infer ¢*(U;A;) < > ¢*(A;)+e and (v) follows by lettinge — 0. [

EXAMPLE 4.4. A Borel measure is a positive measure defined on all
Borels sets which is locally finite, inner and outer reqular. Therefore
any Borel measure p on ) is an outer regular precapacity and its asso-
ciated outer measure pu* is a Choquet capacity on ) by Proposition 4.3

EXAMPLE 4.5. Let M be a family of Borel measures on 2. The set
function defined on any Borel subsets A C Q0 by the formula

cm(A) = sup{p(A); p € M}

is a precapacity on 2. It is called the upper envelope of M.

Observe that this precapacity need not be additive. Indeed let A be
a probability measure and A, B be disjoint Borel subsets of positive \-
measure. Set i := 14 A/A(A) and py = 1gA/A(B). Then the upper
envelope ¢ of {1, o} satisfies

c(A)=¢(B)=1 and ¢(AUB) = 1.

The precapacity cyq need not be outer reqular either unless M s a
finite set (see Ezercise 4.4). However if M is a compact set for the
weak*-topology then ¢y, is a Choquet capacity (see Exercise 4.5).

The problem we address now is whether a Choquet capacity is inner
and outer regular. We first need a definition.

DEFINITION 4.6. Let ¢ : B(Q) — RT be a precapacity. A subset
E C Q is said to be capacitable if ¢*(E) = c.(F), where

ci(E) :=sup{c(K);, K C Q is compact}
is the inner capacity of E.

THEOREM 4.7. Let ¢ be a Choquet capacity on ). Then every Borel
subset B C () satisfies

¢(B) = sup{c(K); K compact K C Q}.

This result is a special case of Choquet’s capacitability theorem
which we prove in the next section.

COROLLARY 4.8. Let ¢ : B(Q) — R be a precapacity on Q satis-
fying (iv). Then c* is inner regular i.e. for every Borel set B C

" (B) = sup{c(K); K compact, K C B}.
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PROOF. Property (iv) implies that ¢*(K) = ¢(K) for any compact
subset K C €). Indeed, given a compact set K there exists a sequence
of compact subsets (Kj); such that K C K; 1 C K7 for all j > 1. We
infer

“(K) S () < ol
for all j > 1 hence ¢*(K) < lim; ¢(K;) = ¢(K) since c satisfies property
(1v), thus ¢*(K) = ¢(K).

It follows from Proposition 4.3 that ¢* is a Choquet capacity on §2.

Choquet’s theorem therefore yields

" (B) = sup{c"(K); K compact K C B},
for any Borel subset B C Q. Thus ¢*(B) = c.(B). O

1.2. Choquet’s capacitability theorem. We prove here a gen-
eral version of Choquet’s capacitability theorem. In what follows all
topological spaces to be considered are Hausdorff and locally compact.

DEFINITION 4.9.

(1) A F,-set is a countable union of closed subsets of X.

(2) A Gs-set is a countable intersection of open subsets of X.

(3) A Fys-subset is a countable intersection of F,-subsets of X.

(4) A space X is a Ky (resp. Kos) space if it is homeomorphic to
a F,-subset (resp. Fys-subset) in some compact space Y.

Here are some elementary properties which we use later on:

PROPOSITION 4.10.

(1) Every closed subset of a Kys space X is a Ky5 space.
(2) Ewvery countable cartesian product of Ky spaces is a Kqs space.
(3) Ewvery countable disjoint sum of Kqs spaces is a Kys space.

PROOF. 1. Let F be a closed subset of X = N;>1G;, where (G;) is
a sequence of F, subsets of some compact space Y and G; = UK is
a countable union of closed subsets K, of Y. If F denotes the closure
of FinY, we have

F=XNF=(\GnF, GnF=|JFNKj;
j>1 1

thus F' is a F,5 subset of Y.
2. Write X = [Ljen« X as a cartesian product of a sequence (Xj)
of Kys spaces. Write for every j eN

J
Xj = Neen-G U Ky s
meN*
where K7 are closed subsets of a some compact space Y;. Then

X = () Ge, with Gy =Gy x G7_y x -+ x Gy x ien- Y1,

LeN*
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and

Gy = U Kelm1 fo_lmzx---xKé

1my X ien+Yoy1,

miy,- ,my>1
where each term in the countable union is a closed subset in the com-
pact space Y := Iljen+ Y.
3. With the same notations as in 2, define X := [[X; and YV :=

[1Y;. ThenY can be embedded in the compact space Y := I1;(Y; [ [{a}),

where {a} is any one point topological space, by sending a point w € Y;

to the point (a,--- ,a,w,a,---) where w is in the j* position. Then

X =[] X can be written as
X = ﬂgzng, Gg = U HKgm

m>2 j>1

Since K Zm can be embedded into a closed subset of the compact space
Y, it follows that X is a K, space. U

Observe that a F,s-subset in X is a Borel subset of X. It is well
known that the continuous image of a Borel subset is not in general a
Borel subset (see Exercise 4.1). This motivates the following definition:

DEFINITION 4.11. A subset A in a topological space X is a K-
analytic subset of X if it is the continuous image of a KCyps space of some

topological space Y i.e. there exists a continuous map f : E — X from
a Kys space E into X such that f(E) = A .

PROPOSITION 4.12. Let (A;) be a sequence of K-analytic subsets of

Q. Then
UAj and ﬂAj
are IC-analytic subsets of €.

PRrROOF. Let f; : X; — Q be a continuous map from a K,s-space
Xj onto A] = f](XJ) Let X := HX] and f = Hf] X — Q. It
follows from Proposition 4.10 that X is a K,s space and f(X) = UA,.
For the intersection we set

Y i={z=(z;) € X;Vj e N fi(x;) = fi(z1)}
and g(z) = fi(x1) = fj(z;) for all j € N*. Then Y is closed in X hence
it is a Kye-space and ¢g(Y) = N;A;, by Proposition 4.10 again. O
COROLLARY 4.13. Let X be a Hausdorff locally compact space.
Then any Borel subset of X is a KC-analytic subset of X.

PRrooOF. Observe that any open or closed subset of X is a countable
union of compact subsets, hence K-analytic. On the other hand, by
Proposition 4.12, the family

T :={F €2 Eand Q\ E are K — analytic}
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is a o-algebra on X. Since it contains all open subsets of X, it also
contains all Borel subsets of X. U

We need the following structural lemma about KC-analytic sets:

LEMMA 4.14. Let A be a relatively compact K-analytic subset of a

topological space X . There exists a compact space H, a continuous map
h:H — X and a Fys subset Y C H such that h(Y') = A.

PROOF. There exists a compact space Y, a F,s5 subset £ C Y and
a continuous map g : £ — A such that A = g(F). Let

={(y,9(y);ye E} CEx A

be the graph of the map ¢g. Let H := Z be the closure of Z in the
compact space £ x A . Then A is the image of Z under the second
projection h : H — Aie. A= h(Z).

As g is continuous, Z is closed in E x A, thus Z = HN (E x A).
Now F is a F,s subset of E hence E x A is a F,5 subset of £ x A and
7 is a F,4 subset of H = Z. The lemma follows since A = h(Z). O

We are finally ready to prove Choquet’s capacitability theorem:

THEOREM 4.15. Let X be a K, space and ¢ a capacity on X. Then
every K-analytic subset A C X satisfies

c(A) = sup{c(K); K compact C A}.

PROOF. Since X is the union of an increasing sequence of compact
sets K, it follows from property (éii) of Definition 4.1 that

c(A) = lijm c(ANK;).

We may thus assume that A is relatively compact.

It follows from Lemma 4.14 that there exists a F,s-subset H in
some compact space and a continuous map h : H —> €2 such that
h(H) = A.

We let the reader check in Exercice 4.6 that the set function ¢;, :=
h*c defined on subsets of H by ¢;,(E) = ¢(h(FE)) is a capacity on H. We
are thus reduced to proving the theorem when X is a compact space
and A is a F,s-subset of X. We then write

A= mieNGh and Gl = UjENKijy

where K ; are closed subsets of X (hence compact), increasing with j.
Fix a real number 0 < a < ¢(A). Decomposing

A:Glﬂ (ﬂGZ> = U (KljmﬂG€> )
>2 j>1 >2

and using property (ii) of Definition 4.1 we can find a subset

Al = K1j1 N ﬂ Gz such that C(Al) > .

>2
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By induction we find a decreasing sequence of subsets A D A; D
- D A,, such that

A, =Ky NN Ky, N ﬂ Gy, and c(4,,) > a.
>m+1
Set K = NK,,;,, = NA,, C A. This is a compact subset of A. By
property (iv) of Definition 4.1, it follows that

c(K) =lime(Kyj, NN Kyj,) > lime(4,,) > a,
which implies that ¢,(A) > ¢(A) and the proof is complete. O

1.3. The Monge-Ampere capacity. In classical potential the-
ory the capacity is defined as the maximal amount of charge supported
on a compact set K C 2 C R™ so that the difference of potentials in
the condenser (K,€) is 1. This definition can be formalized by setting

Cap(K) := sup{u(K); n € I'(K)},

where ['(K) is the set of Borel measures that are supported on K and
whose potential U, is bounded between 0 and 1 in Q. Here U, denotes
the Green potential of u, i.e. the solution of the Dirichlet problem
Au = p in Q\ K with boundary values u = —1 on 0K and 0 on 0f.
There is no simple formula for U, in C" when n > 2, as the cor-
responding complex Monge-Ampere operator is non linear. We will
nevertheless mimic the above definition, using the family of bounded
plurisubharmonic functions with zero boundary values on 0f2.

1.3.1. Definition. Let 2 € C" be a smoothly bounded pseudocon-
vex domain. The Monge-Ampere capacity is defined as follows:

DEFINITION 4.16. For any Borel subset E C () we set
Cap(F; Q) := sup {/ (dd°u)";u € PSH(Q),—1 <u < O} :
E

We shall also use the notation Capg(E) in the sequel.

It follows from Chern-Levine-Nirenberg inequalities that the capac-
ity of relatively compact subsets F € € is finite, Cap(FE;Q) < +o0.

The real number Cap(F;?) is the (inner) Monge-Ampere capacity
of the condenser (£,(2). Since any Borel measure is inner regular,
it follows that the set function Cap(-;€2) is inner regular. The outer
Monge-Ampere capacity is then:

DEFINITION 4.17. For a any subset E C §2, we set
Cap*(F, Q) := inf{Cap(G, ), G open, E C G C Q}.
We say that E is capacitable if Cap™(E, Q) = Cap(E, Q) < +oo.

We show hereafter, using Choquet’s Theorem, that all Borel sets
are capacitable. We start by establishing some elementary properties
of this capacity:
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PROPOSITION 4.18.
1) If Q C B(a, R) € C", then for any Borel subset E C €,
2

Aan(E) < (%)"Cap*w; ).

2) [fEl C E2 C QQ C Ql; then Cap*(El,Ql) S Cap*(Eg,Qz)
3) The set function Cap™(-;€2) is subadditive, i.e. if (E;)jen is any
sequence of subsets of 2, then

Cap”(E;Q) < ZCap*(Ej; Q).
J

4) Let ¥ € Q" C Q C C™ be open subsets. Then there ezists a
constant A = A(Q, ', Q") > 0 such that for all E C

Cap®(E; ) < Cap(E; Q") < ACap™(£; Q).

5) Let f : Q C C" — Qy C C" be a proper holomorphic map.
Then for any Borel subset EE C Q9 we have

Cap(E, Q) < Cap(f~1(E), ).

PROOF. The function p(z) := |z — a|?/R? — 1 is plurisubharmonic
in Qand —1 < p <0in Q C B(a, R). By definition we thus get

/E (ddp)" < Cap(E: ).

which proves the first property since ddp = (2/7R?)8.

We let the reader check the properties 2,3 and prove property 4.
Fix p a plurisubharmonic defining function for €2 and ¢ > 0 such that
Q" C Q. :={p < —c}, hence Cap(-,Q") > Cap(-,Q,.). It is sufficient
to prove the inequality for .. Choose A > 1 so that ¥ := A(p + ¢)
satisfies ¥ < —1 on . Fix u € PSH(.) with —1 < u < 0 and define

| max(u(z),¥(z)) if zeQ.
(2) '_{ w(z) it zeQ\Q,
so that @ is plurisubharmonic on €2 and satisfies @ = u on €V'.

The function v := (a + 1)~(¢ — a), where a := supq, @, is plurisub-
harmonic in Q and —1 < v < 0. Thus [,(ddv)" < Cap(FE;Q). Since
v=(a+1)" (u—a)in @, we infer

/(ddcu)" < (a+1)"Cap(F; ),

hence Cap(E;Q.) < (a+ 1)"Cap(FE; Q).
We finally prove property 5. Fix u € PSH(Q2)NL{S.(€2s). 1t follows
from Exercise 3.5 in Chapter 3 that f,(dd°uo f)" = (dd“u)™ in the sense

of Borel measures in €);. Thus if E C (), is a Borel subset,

/E(ddcu)” = /f_l(E)(ddcu o f)" < Cap(f~HE), Q).

U
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Taking the supremum over all such u yields the required inequality for
the inner capacities. U

1.3.2. Polar sets are null sets. We now show that the polar locus
of a plurisubharmonic function has zero outer capacity.

PROPOSITION 4.19. Let € € Q@ C C™ be two open sets and K C
Y a compact set. There exists A = A(K,Q') > 0 such that for all
plurisubharmonic functions V-€ PSH(S) and for all s > 0,

(12)  Cap'({z € KiV() < —s3:9) < 2V,
In particular the polar locus P := {z € Q;V(z) = —oo} satisfies
Cap*(P,Q) = 0.
PROOF. Let u € PSH(Q2) be so that —1 < u < 0. It follows

from the Chern-Levine-Nirenbeg inequalities that there exists A =
A(K, Q') > 0 such that

/ V|(ddu)" < A [V |dAap,.
K o
We infer

1 A
/ (ddu)"™ < —/ |V |(ddu)™ < —/ |V |dAay,.
{zeK;V(2)<—s} S JK S Jor

The desired estimate for the inner capacity follows.

Since for any open set D € (2, the sublevel sets {z € D;V < —s}
are open sets, it follows that the same inequality holds for the outer
capacity. The last statement follows from subadditivity of the outer
capacity. U

We will later on show that conversely, if Cap*(P,2) = 0, then P is
(locally) contained in the polar set of a plurisubharmonic function.

2. Continuity of the complex Monge-Ampere operator
2.1. Quasi-continuity of plurisubharmonic functions.

THEOREM 4.20. Let V' be a plurisubharmonic function in ). For
all e > 0, there exists an open set G C Q such that Cap(G,Q)) < ¢ and
VI(Q\ G) is continuous.

PRroOOF. Let D € 2 be an open subset. It follows from Proposition
4.19 that Cap(Gy,Q) < ¢ if s > 1 is large enough, where

Gr:={z€ D;V(z) < —s}.

Set v = vg := sup{V, —s}. The function v is plurisubharmonic and
bounded in a neighborhood of D, and v = V in Q\ G;. Let (v;) a
decreasing sequence of smooth plurisubharmonic functions in a neigh-
borhood € € Q of D which converges to v. We can assume that
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v; = v = Ap in a neighbourhood of 9€V. It follows from Proposi-
tion 3.21 that for all § > 0,

(n+1)!

T / (v —v)(ddv)".

The monotone convergence theorem therefore yields

lim Capg (D N {v; —v > 6}) = 0.
J

Capg (DN{v; —v > 0}) <

Thus for all £ € N* there exists j, € N large enough so that
Capg (D N {vj, —v > 1/k}) <e27F.
We can assume that the sequence (j) is increasing. Set

G2 = U{Ujk -V > 1/l€} and G := G1 UG2

k>1

The sequence (vj,) decreases uniformly to v on the compact set
D\ Gy and Capg(Gy) < e, thus the open set G satisfies the required
properties: it has small capacity and V' = v is continuous in D \ G.

To complete the proof of the theorem we take an exhaustive se-
quence (D;) of relatively compact domains such that |J; D; = Q and
apply the first part of the proof to find a sequence (G;) of open subsets
of Q such that Capg(G;) < €277 and V|(D; \ G,) is continuous. We
finally set G := | ;G and use the subadditivity of the capacity to
conclude that Capg(G) < € and V|(Q2\ G) is continuous. O

The following lemma has been used in Chapter 3:

LEMMA 4.21. Let P be a locally uniformly bounded family of plurisub-
harmonic functions in Q. Let T be the set of currents of the form
T = A <ic, dd°u;, where uy, ..., u, € P.

Assume that (Tj)jeN is a sequence of currents in T converging
weakly to T € T. Then for any locally bounded quasi-continuous func-
tion f in Q, fT; — fT in the weak sense of currents in €.

The notion of quasi-continuous function is defined as follows:

DEFINITION 4.22. A Borel function f : Q@ — R is quasi-continuous

iof for all e > 0 and all compact subsets K & () there exists an open
subset G C Q such that Cap(G,) < e and f|(K \ G) is continuous.

It follows from Theorem 4.20 that any plurisubharmonic function is
quasi-continuous. So are the differences of plurisubharmonic functions.

PROOF. Let © be a positive continuous test form of bidegree (n —
p,n—p)in Q, K C Q its compact support and fix € > 0 small.

It follows from the quasi-continuity of f that there is an open subset
G C Q with Cap(G,Q) < € such that f|(K \ G) is continuous. Let g
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be a continuous function in 2 with compact support such that g = f
on K\ G. Then

/f(Tj/\@—T/\@):/g(Tj/\G—T/\@)Jr/(f—g)(TjA@—TAG)).
Q Q G

Observe that lim;_, o [, g(T; AN© —T A ©) = 0 since T; weakly
converges towards 7. We claim that the second term is O(g). Indeed,
since |f — g| is bounded by a constant M > 0 on the support of O,

|/G(f—g)(Tj/\@—TA®)|SM/G(TjA@+TA®).

Observe that T3 A © < CT; A B"7P for some C; > 0, where 8 =
dd®|z|?. Moreover there exists a uniform constant Cy > 0 such that for
all Borel subsets E C (2,

[\ ) n g < cuCap(e,)

Ea<icp

as vy, -+ ,v, € PSH(Q) N L. () with |v;] < A (see Exercise 4.7).
Therefore

/T}/\@—FT/\@ S 201028,
a
and the proof is complete. U

2.2. Convergence in capacity. We have shown that the complex
Monge-Ampere operator is continuous along monotone sequences of
plurisubharmonic functions. We introduce here, following [X96], a
more general notion of convergence which contains the above continuity
properties as a particular case.

DEFINITION 4.23. A sequence of Borel functions (f;);>0 converges
i capacity to a Borel function f in Q if for all 6 > 0 and all compact
subsets K C €2,

lim_Cap*(K N{If; — f] = 6},9)) = 0.

. . . . . 1
Convergence in capacity implies convergence in L; . (but the con-
verse is not true):

LEMMA 4.24. Let (f;);>0 be sequence of (locally) uniformly bounded
Borel functions which converges in capacity to a Borel function f in 2.

Then f; — f in L, .().

loc

Proor. Fix K C Q a compact set and § > 0. Since the sequence
(fj)jen and f are uniformly bounded in K (by some M > 0), we get

/K 1y — F1AA < 2MAE N {|f, — f| > 6}) + SA(E).
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By Proposition 4.18, the Lebesgue measure A is dominated by capacity,
hence the first term in the right hand side converges to 0. The claim
follows since d > 0 is arbitrarily small. U

We note that convergence of monotone sequences of plurisubhar-
monic functions implies convergence in capacity.

PROPOSITION 4.25. Let (Vj)jen C PSH() be a monotone se-

quence of plurisubharmonic functions which converges almost every-
where to V.€ PSH(Y). Then (V;) converges to V' in capacity.

We treat here two rather different settings at once. If (v;) is non
increasing, then v;(z) converges towards v(z) at all points = (see Chap-
ter 1). When (v;) is non decreasing, then w = sup; v; is usually not
u.s.c. hence equality w(z) = v(x) does not hold everywhere.

Proor. By subadditivity and monotonicity of the capacity, it is
enough to prove that for any euclidean ball B € €2, any compact K C B
and any 0 > 0 we have

lim Capg(K n{|V; —V]|>d}) =0.
J—>+oo

We use here the fact Capg(-) < Capg(-).
We first reduce to the case where the sequence (V) is locally uni-
formly bounded. Indeed fix s € N and define

V= sup{Vj, —s}, V*:=sup{V, —s}.
Then
{IVi =V =26} c{IV; =V 26} U{V < —s} U{V; < —s}
Now by (1.2) we have for any s > 1 and j > 1

. A
Capp(K N {V; < =5} < ~[Villn),

where A > 0 is a constant which does not depend on j. Therefore

!/

A
Capp™ (K N{|V; = V| 2 0}) < Capg(K N{|V; = V*| 2 6}) + —,

hence it suffices to treat the case of sequences of plurisubharmonic
functions that are uniformly bounded.

Assume thus that —M < V;,V < +M in B, for some M > 0. Using
the localization principle (see Chapter 3), we can assume all the V}’s
are equal in a neighborhood of JB.

Fix ¢ > 0. The quasi-continuity property of plurisubharmonic func-
tions and the subadditivity of the capacity insure that we can find an
open set G C Q such that Cap(G,B) < € and all V;’s and V' are con-
tinuous in B\ G. Since the sequence (V;) is monotone, it follows from
Dini’s lemma that the convergence is uniform on the compact set B\ G.
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Assume first that (V});en is a non-decreasing sequence. It follows
from Chebyshev inequality and Proposition 3.21 that
1

mCaPB(K N{V =V, > d})

< g / (V - V;)(ddV;)"

5t / (V = V) (ddVy)" + 67 / (V = V))(ddV;)"
B\G BNG

IN

< TN Vil @V v 2ms [ @y
B G
Now fB(ddCVj)" is uniformly bounded by Chern-Levine-Nirenberg in-
equalities and [ (dd°V;)" < M"Cap(G,B) < eM". The conclusion
follows since lim; ||V; — V|g\c = 0.
Assume now that (V});en is non-increasing. We proceed as above
to obtain

Capg(K N {V; — V| > 6},B) <5 (n+1)! /(vj VY ddEVY".

The conclusion follows from the monotone convergence theorem and
the capacitability of Borel sets (Corollary 4.36). g

2.3. Continuity of the Monge-Ampere operator. Our aim
in this section is to show that the complex Monge-Ampere operator is
continuous for the convergence in capacity.

THEOREM 4.26. Let (f;)jen be positive and uniformly bounded quasi-
continuous functions which converge in capacity to a quasi-continuous
function f in €. Let (u})jeN, <oy (Uf) jen be uniformly bounded plurisub-
harmonic functions which converge in capacity in 2 to locally bounded
plurisubharmonic functions ul, ..., uP respectively. Then

fi N\ ddoui — f )\ ddu’

1<i<p 1<j<p
in the weak sense of currents in Q.

PRrROOF. The proof proceeds by induction. It follows from Lemma
4.24 that f; (resp. wu;) converges in Lj () towards f (vesp. w). If
p =1, we know that ddu; — dd‘u' weakly. Using induction on p and
setting

T:= N ddu', T;:= )\ ddul,
1<i<p 1<i<p
it is enough to prove that if T; — T weakly then f;7; — fT weakly.
The statement is local so we can assume that {2 is the unit ball and
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all the functions are bounded between —1 and 0. Fix © a test form of
bidegree (n — p,n — p) and observe that

| 5100~ [ 5100 = [ (=nTit [ 1T 80 =T n8) = It

It follows from Lemma 4.21 that lim; J; = 0. It thus remains to
prove that lim; /; = 0. Fix 6 > 0 small, let K be the support of © and
set B, == KN {|f; — f| > 0}. Then

n< [i-rmnes [ ig-smne+s [ Tne.
Q KNE; K

It follows from previous estimates that
|[J| S C”Cap*(Ej, Q) + 5M(K),

where M(K) := C'sup; [, T;AB" 7 is finite by Chern-Levine-Nirenberg
inequalities, thus lim; [; = 0. Il

COROLLARY 4.27. Let (h;)j>0 and (u;);>0 be monotone sequences
of uniformly bounded negative plurisubharmonic functions which con-
verge almost everywhere to plurisubharmonic functions h and u respec-
tively. Then for all p > 0,

(=hy)P(dd°w;)" — (=h)"(dd"u)".

ProOOF. It follows from Proposition 4.25 that the sequences (u;)
and (h;) converge in capacity to u and h respectively.

Observe that if uw € PSH™(Q2) then (—u)? is quasicontinuous on
(2. Thus the sequence (—h;)P converges in capacity to (—h)?. The
conclusion follows therefore from the previous theorem. O

COROLLARY 4.28. Let P be a family of plurisubharmonic functions
i a domain 2 C C™ which is locally uniformly bounded from above and
set U := sup{u;u € P}. Then the exceptional set

E={U<U"}
1s negligible with respect to any measure dd°uy A --- N dd°u,, where

Uy, -, u, € PSH(Q)N L (Q). In particular

loc

Cap(E,Q) = 0.

PrOOF. By Choquet’s lemma (see Lemma 4.31 below) we reduce
to the case when P is an increasing sequence of plurisubharmonic func-
tions. Fix (v;) be a sequence of locally uniformly bounded plurisub-
harmonic functions which increases almost everywhere to v and set

E = {supv; < v}.
J

It follows from Corollary 4.27 that
vidd“uy A -+ - A ddu, — vdduy A -+ - A ddu,
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weakly in Q. Thus the positive currents (v — v;)ddu; A --- A dd°u,,
converge to 0, hence for any compact subset K C €2,

lim/ (v —w;)dduy A - N ddu, = 0.
K

J

On the other hand if we set w := lim; v; in , then w < v and the
monotone convergence theorem yields

lim/ (w —v;)dduy A -+ - A ddu, = 0.
7 JK

Therefore fK(w — v)dduy A -+ A ddu, = 0, hence w = v almost
everywhere in K for the measure dduy A - - - A ddu,,. U

THEOREM 4.29. Let (u}) >0, - - -, (u})j=0 be decreasing sequences of
bounded plurisubharmonic functions in §2 which converge respectively
tous,...,ug € PSH(Q)NLYE.(Q). Let (V;) be a decreasing sequence of

loc

plurisubharmonic functions which converges to V€ PSH()). Then
Viddu] A ... A ddu) — Vdduy A ... A ddCu,.

PROOF. We already know that dd“u] A... Addu} — ddus A... A
dd‘uq. It follows from Chern-Levine-Nirenberg inequalities that the
currents dedcu{ AN ddcug have locally uniformly bounded masses.

Assume that V; Aj<i<q dd°u;? A B"P~% — O. The reader can check
that © < Vdd®uy A ... A dd°u, (using an argument that we have al-
ready used in previous such proofs) and the problem is to show that
fB V Ai<i<q ddu; A P79 < fB O, for an arbitrary ball B.

We can assume all the Vs are negative and set V]k = sup{Vj}, kp}
for k£ € N, where p is a defining function for the ball B. Since V <
Vi §Vj’“ on B and ij:OinalB%, we get

B

/ \% /\lgigq ddcuz AN ﬁniq S /‘/Jk /\lgigq ddcuz VAN ﬁniq
B

= /Ul VAN ddc‘/;k /\QSigq ddcu, VAN Bn—q
B
S /Ulj N ddc‘/f /\2§i§q ddcuz A ﬁniq

B
S N S /‘/Jk /\lgigq ddcuf VAN ﬁn—q’
B
for all j, k € N. The monotone convergence theorem yields

/V /\1§i§q ddcuz N ﬂn—q S / ‘/3 /\lﬁiﬁq ddcuij N /Bn—q7
B B

for all j € N. Letting now 5 — 400, we obtain

/ V Ni<icq ddu; A "7 < lim sup/

B Jj—+o0

‘/j /\1§i§q ddcuij VAN Bn—q S / @,

B B
and the proof is complete. U
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3. The relative extremal function
3.1. Definition and Choquet’s lemma.

DEFINITION 4.30. Let E2 C 2 be a Borel subset. The relative ex-
tremal function associated to (E,$)) is

hg(z) = hpao(z) = sup{u(z);u € PSH(Q),u < 0,ulE < —1}.

*

Observe that the upper semi-continuous regularization hj  is a
plurisubharmonic function in 2. This function was first defined by
Siciak as a multidimensional analogue of the classical harmonic measure
in one complex variable [Sic69].

We use on several occasions the following elementary topological
lemma due to Choquet:

LEMMA 4.31. Let U be a family of upper semi-continuous functions
and let U = sup{u;u € U} be its upper envelope. There exists a
countable sub-family (u;) in U such that U* = (sup, u;)* in 2, where

U*(z) = limsup U(2").
2=z

PROOF. Assume first that U is locally uniformly bounded from
above. Let B(z;,7;) be a countable basis for the topology of Q2. For
each j let z;; a sequence in the ball B(z;,;) such that

sup U =supU(z;x).
Blzjyrj) k

For each (j, k) there exists a sequence (U?k)geN in U such that
U(zjk) = sup u’ i (Z)-
Set V :=sup; ., uﬁk Then V < U hence V* < U*. Now
sup V >supV(zj)) > sup uﬁk(zjk) =supU(z;x) = sup U,

B(zj,r;) k k.t k B(zj,r;)
hence supp,, .y V = supp., ,y U for all j. Since any B(z,¢) is a union
of balls B(zj,7;), we get supp(, )V = supp, o) U hence V*(2) = U*(2).

To treat the general case we define, for v € U, @ := x o u, where
X:teR—t/(1+|t) € —1,+1] is an increasing homeomorphism.
Observe that ) )

U=xoUand U" = xoU"

hence the conclusion follows from the previous case applied to U. O

The first basic properties of the relative extremal functions are sum-
marized in the following:

THEOREM 4.32.
1. [fEl C Ey C Q9 CQy then —1 < hE‘27Q2 < hEth <0.

2. If E € then h o(2) — 0 as z — 0.
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3. Let (K;) be a non-increasing sequence of compact subsets in €
and K :=N;K;. Then hj increases almost everywhere to hj.

4. Forall E C €,
(3.1) (dd°h )" = 0in Q\ E.

PROOF. The first property is clear. Let p : Q@ — [—1,0[ be a
defining function for Q. If £ € Q there exists a constant A > 1 such
that Ap < —1 on E. Thus Ap < hg < hj; <0 in Q and 2) follows.

We now prove 3). Since (K;) is a non-increasing sequence of com-
pact subsets in €, the sequence (hj ) increases almost everywhere to
a plurisubharmonic function A in §2 which satisfies —1 < h < hj; in .

Let u be a plurisubharmonic function in € such that © < 0 in Q
and u < —1 in K. Fix ¢ €]0,1[. The open set

{u<—1+€}:{1ﬁ€<—1}

contains the compact set K, hence contains K; for j large enough. We
infer u < (1 — ¢)hg, in ©, hence u < h in Q. Therefore hxg < hin €,
hence hx < h < hj; in Q.

It follows from Corollary 4.28 that the set {hx < hj } has Lebesgue
measure 0. Thus h = hj, almost everywhere in €2, hence everywhere
by the submean value inequalities: the proof of 3) is complete.

We now prove 4). It follows from Choquet’s lemma that there exists
a sequence (u;) of plurisubharmonic functions such that u; = —1 on
E, u; <0in © and u; increases almost everywhere to hJ.

Fix B a small ball in Q\ E. It follows from Corollary 5.21 that
there exists a unique plurisubharmonic function @; such that

e j — 1, is increasing and (dd°a;)" =0 in B.

We infer that 4; again increases a.e. to hj,, therefore (dd°h};)" =0

in B. Since B is an arbitrary ball in © \ £, this proves 4). d

The technique used in the proof of 4) is the classical balayage. The
key technical tool here is the solution of the Dirichlet problem for the
complex Monge-Ampere operator, a fundamental result of Bedford and
Taylor [BT82] that we prove in Chapter 5.

REMARK 4.33. It is also true that Wy, decreases to hy if Ej; in-
creases to E. The proof is however more involved and will be achieved

in Corollary 4.44.

3.2. Capacity and relative extremal function. We connect
here the capacity of the condenser (F,(2) to the Monge-Ampere mass
of its extremal function, and use this to show that the Monge-Ampere
capacity is a Choquet capacity.
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THEOREM 4.34.
1. For any relatively compact subset E € Q) and any p > 0,

32 Cap'(BQ) = [ (hpprdhy) = [ (~hppldang).
Q E
The measure (dd°hy)" is carried by {z € OE; h}; o(2) = —1}.
2. Let (K;) be a decreasing sequence of compact subsets of Q0 and
K :=nN;K;, then
lim Cap(K;,Q) = Cap(K,Q) hence Cap*(K,Q) = Cap(K, Q).
3. Let E; C ) be an increasing sequence and E := U;E;. Then

(3.3) Cap*(£;Q) = lim Cap™(Ej; Q).
J—r+oo
4. Let (E;) be any sequence of subsets of Q and E := U;E;. Then
Cap*(E,Q) <Y Cap*(E;, Q)

J

PRrROOF. We first prove (3.2) when £ = K is a compact set. Observe
that [, (dd°hj)" < Cap(K, ). Let u be a plurisubharmonic function
in Q with —1 < u < 0. We can modify u in a neighborhood of 02 and
assume that it has boundary values 0. It follows from Corollary 4.28
that N := {hx < hj} has zero (dd°u)"-measure. As K C N U {h}; <
u}, the comparison principle yields

/ (ddeu)" < / (ddeu)" < / (ddehi)",
K {h} <u} {h} <u}
hence Cap(K, Q) < [,(dd°h};)". Now (3.1) yields

Jtaaniy = [ @ < can(ic,0),
Q K
thus
Cap(ks ) = [ (@dhigq)" = [ (@rhigo)
Q K

The set K N {hjq > —1} C {hka < hkgq} is a null set for the
measure (dd°hj )" (again by Corollary 4.28). Therefore

Cap(K;Q) = /K (dd°h.o)"

= [ it = [ rorarnir,

Q
using (3.1). This proves 1) for compact sets.

We now prove 2). It follows from Theorem 4.32 that the sequence
N, increases to k. almost everywhere in 2. By Theorem 4.26 the mea-

sures (—hj )P(dd°hj )" converge to (—hj)P(dd°hj;)" weakly. These
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measures all have support in the same compact set Ky C €2, hence
lim [ (=hj )P (ddh,)" = / (=hi )" (dd°hy)"
Jo+oo Jq J J Q

and lim Cap(K;, Q) = Cap(K, ), using (3.2).

This property insures that Cap* (K, ) = Cap(K, Q) for any com-
pact set K. Indeed we can find a decreasing sequence of compact sets
(K;) such that K C K; C K3, and K :=N;Kj;. Thus

Cap" (K, ) < Cap(K7,,,Q) < Cap(Kj11, Q).
and the previous property yields
Cap*(K, Q) = lim Cap(K,4+1,2) = Cap(K, Q).
J

We now establish (3.2) when £ = G € () is an open subset. Fix an
exhaustive sequence (K;) of compact subsets of G which increases to

G. We let the reader check in Exercise 4.10 that hj | he on § thus
(=hi,)P(dd°h, )" = (=he)"(dd°he.0)"

Since these measures are all compactly supported in G, we infer

[ -tartadhear = tim_ [ (- riadhi o
Q J—+oo O
= lim Cap(Kj, Q) = Cap(G, Q).
J—+oo

This proves (3.2) when E C Q is an open subset.

We finally prove (3.2) for an arbitrary subset E € ). By definition
there is a sequence of open subsets (O;);>1 C € containing F such that
Cap*(E, Q) = lim; ., Cap(0;, Q). Replacing O; by Ni<x<;Or C O;,
we can assume that (O;);>1 is decreasing.

It follows from Lemma 4.31 that there exists an increasing sequence
(uj);>1 of negative plurisubharmonic functions in € such that u; = —1
on £ and u; /' h}; almost everywhere on 2. Set

These are decreasing open subsets of €2 such that £ C G; C O; and
u; —1/j < hg; < hp. Thus hg,; T hi almost everywhere on €2 and

(—ha,)P(dd°hg;0)" — (—hE)’(dd° Py o)™
Since these measures are supported in a fix compact set, we infer
/ (—hpP(ddhi) = T [ (—hg P(ddoh, o)
Q J=too Jo

On the other hand
Cap*(E,Q) < lim Cap*(G;,Q) < lim Cap*(0,,Q) = Cap* (£, Q).

Jj—+oo Jj—+oo
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The formula (3.2) for open subsets therefore yields
/(—h})p(ddchﬂg)” = Cap*(E, Q).
Q

Recall that the measure (dd°h};)™ is supported on OF. Set
E*={z € 0F; hj(z) = —1}.
Thus
Cap(B:) = [ (-hpr(ainp) = [ @ahpr s [ (hppadng)
Q B OB\ E*

Since 0 < —h% < 1 on E\ E*, we can let p — +oo and use the
monotone convergence theorem to obtain

[ arny = cop(Ei) = [ (arn),

*

The measure (dd°h};)™ is therefore supported on E*.

We now prove 3). Since the sequence (E;) is non-decreasing, the
plurisubharmonic functions h*Ej decrease to a plurisubharmonic func-
tion h in 2 which satisfies h}; < h < 0 1in Q. Observe that h = —1 in
E'\ N1, where Ny := U;j{hg,) < hj; }. Set

N = {hg <y} UN = {hg < hp} U J{he,) < b3}
J

We infer h = —1 in £\ N, hence h < h}, in €2, where E/ := E '\ N.
Therefore h = h}, and Theorem 4.26 yields

(=hig, )P (ddh,)" — (=hp)"(ddh,)".

By lower semi-continuity and (3.2) we infer
Cop' (E59) = [ (b (ddhy )"
Q

< liminf / (—hp, )P (dd°hy;, )" = lim Cap*(E}; Q)
Q ’ ’ J

J

< Cap*(E;Q),

since (E;) in non-decreasing.
We conclude by checking that Cap*(E’; Q) = Cap*(E;(2). Observe
that £ C E' U N hence by subaddivity

Cap™(E,Q) < Cap*(EF', Q) + Cap*(N, Q) = Cap(E', Q),

since the set NV has zero outer capacity in §2. This proof of (3.3) is
complete.

We finally prove 4). We can assume that Cap™(£};,2) < oo for all
J. Fix € > 0. There exists an open set G; C €2 such that F; C G; and

Cap(G]’, Q) < Cap*(Ej’ Q) + 52*]'71;
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Thus G := U, is an open set which contains £ and satisfies

Cap*(E,Q) < Cap(G, Q) < ZCap(Gj,Q) < ZCap*(Ej,Q) + €,
J J

which proves the required inequality. O

DEFINITION 4.35. The measure (dd°h})" is called the equilibrium
measure of E.

COROLLARY 4.36. The set function E — Cap*(F; Q) is a Choquet
capacity on ), hence any Borel subset B C €) is capacitable,

Cap*(E, Q) = sup{Cap(K,Q); K compact C Q}.
PrROOF. This is a straightforward consequence of Theorem 4.32 and
Theorem 4.15. U

EXAMPLE 4.37. Let B(a,r) C C" be the euclidean open ball centered
at a, of radius r > 0. For 0 <r < R we have

log [z —log R?
P(a,r)B(a,R) (?) = max {— 1,

log R —logr ’
and .
Cap(B(a,r),B(a, R) = (log /1)

We let the reader check these facts in Exercise 4.13.

4. Small sets

4.1. Pluripolar sets and extremal functions. Our purpose in
this section is to show that pluripolar sets are exactly the sets of zero
outer capacity.

DEFINITION 4.38. A set E C § is pluripolar in € if for all zp € £
there exists an open neighborhood U of zy in () and a plurisubharmonic
function p € PSH(U) such that ENU C {z € U;¢(z) = —o0}.

The set E is called complete pluripolar (in Q) if it coincides with
the polar set of a plurisubharmonic function V€ PSH ().

EXAMPLES 4.39.

1. A proper complex analytic subset of 2 is complete pluripolar.

2. A countable union of pluripolar sets is pluripolar.

3. The image of a pluripolar subset of 2 by a biholomorphic map
f:Q — Q is pluripolar in Q) (see Exercice 4.8).

4. The set R™ C C™ (the real part of C") is not pluripolar since the
restriction of any uw € PSH () is locally integrable on 2 NR™.

5. Any subset of positive n-dimentional Lebesgue measure in a to-
tally real analytic submanifold of dimension n is non-pluripolar [Sad76].

6. There exists a smooth curve in C"™ which is non-pluripolar [DF82]
(see [CLPO5| for recent developments).
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Lelong asked in [Lel69] wether a (local) pluripolar set £ in C" can
be defined by a global plurisubharmonic function ¢ € PSH(C™). This
delicate problem has been solved by Josefson using techniques from
Padé approximation [Jos78|. We explain in this section an alternative
proof using the Monge-Ampere capacity, following [BT82].

THEOREM 4.40. The following properties are equivalent:
(i) There exists w € PSH(Y) such that E C {u = —o0},

(i) Cap*(E, Q) =0,
(4ii) R0 =0 in Q.

Proo¥r. The implication (i) = (i) follows from Proposition 4.19
and o-subadditivity of the capacity.

We now prove (iii) == (i). Assume that hj o = 0 in Q. By
Corollary 4.28 the set {hpqo < hjq} is negligible hence there exists
a € Q such that hgq(a) = 0. By definition we can find a sequence
(uj)jen C PSH(Q) such that forall j e N, u; <0in Q, u; < —1lon £
and u;(a) > —277. Therefore

+oo
z = u(z) = Z u;
=0

is a negative plurisubharmonic function in , such that u(a) > —1
(hence u € PSH(2)) and u | E = —o0, as desired.

To prove (ii) = (i7i) we first assume that £ € 2 is relatively
compact. Assume Cap*(E,§2) = 0. It follows from Theorem 4.34.1
that (dd°hj; o)" = 0 in Q. Since hy o — 0 at 92 (by Theorem 4.34.2),
the comparison principle insures that hj; o =0 in Q.

To treat the general case we fix an increasing sequence £; € (2 such
that U;E; = E. If Cap(E, Q) = 0 then Cap(Ej, Q) = 0, hence hj, o =
0 for all j. Thus there exists u; € PSH™(Q2) such that u; | £, = —o0.
Fix a € Q such that u;(a) > —oo for all j € N and choose for each
j € N a constant ¢; > 0 such that ¢;u;(a) > —277. Then

+o00
U= Zé?juj, z €,

j=1
is a negative plurisubharmonic function on 2 such that u(a) > —1
and ujp = —oco. We infer hj, o = 0 in {2 indeed for all € > 0, cu is a
negative plurisubharmonic function in 2 such that eu | E = —oo < —1.
Thus eu < hpg < hj g in (2. Letting € — 0 we obtain 0 < hj; o almost
everywhere in 2, as the set {u = —oo} is negligible since u # —oco. [

We are now ready to prove Josefson’s theorem:

COROLLARY 4.41. Let E C C" be a pluripolar set. There exists
V € L(C™) such that E C {V = —oc0}.
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Proor. Applying Theorem 4.40, we find a sequence of subsets £;
and bounded strictly pseudoconvex domains (euclidean balls) €2; such
that Ej < Qj - (Cn, E = UjEj and Cap(Ej,Qj) =0.

Let m; be a labelling of the positive integers so that each inte-
ger appears infinitely many times. Choose an increasing sequence of
positive numbers R; > 1 such that Q,, € B; := {|z| < R;} and
log* |z| —log R; < —27 in E,,,. Observe that

0 < Cap*(Em,;,B;) < Cap(Ep,;, O, ),

hence Cap*(Ey,;,B;) = 0.
It thus follows from Theorem 4.40 that h*Em‘Bj = 0in B;. Applying

Lemma 4.31, we find for each j a plurisubharmonic function u; in B,
such that u; < 01in B;, u; = —1in E,,, and [; (—u;)d\ <277, Set
J

Vi(2) == max{u;(2),2 7 (log™ |z| — log R;)}, if z € B,

and V;(z) := 279 (log™ |z] — log R;) if z € C"\ B,. The function V; is
plurisubharmonic in C" and V; = —1 in E,,;. Therefore

V=YV, e PSH(C")

j
Since V;(z) < —1 for infinitely many integers k = m;, we infer
E C{V = —o0}.

Our growth estimates yield V' (z) < log™® |z| in C", hence V belongs
to the Lelong class. O

4.2. Negligible sets. We have shown earlier that the set where
an upper envelope of a family of plurisubharmonic functions is not
plurisubharmonic has zero inner capacity. We now show the following
stronger property:

THEOREM 4.42. Let P C PSH(Q) be a family which is locally
uniformly bounded from above and set U := sup{u;u € P}. Then
N :={U < U*} has zero outer capacity, Cap*(N,Q) = 0.

PrOOF. Using Lemma 4.31 we can find (u;)jen an increasing se-
quence of plurisubharmonic functions such that and U := sup; u;. Re-
call that plurisubharmonic functions are quasi-continuous. Given ¢ > 0
we can thus find an open set G C 2 such that Cap(G,Q2) < € and u
and the u;’s are continuous on F':=Q\ G.

Fix K C € a compact set and observe that for all rational numbers
a < 3, the sets

Kyg=KNFNn{U<a<p<U'}.
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are compact, since U is lower semi-continuous in K NF' and U* is upper
semi-continuous. Observe also that

KNNCGU|J K.
a<f
By subadditivity

Cap"(K NN, Q) < Cap(G, Q) + Z Cap*(Kap)-
a<p
Since U is lower semi-continuous on K there exists m € R such
that U > m in K. Set U, := sup{U, m} and observe that

Kos CLyg=KNFN{U,<a<p<U},

and L,g is a compact subset. It follows from Theorem 4.34 that
Cap*(Lag) = Cap(Lag) = 0 since the set {U,, < U} } has inner ca-
pacity 0 by Corollary 4.28. O

COROLLARY 4.43. Let (u;) be a sequence of plurisubharmonic func-
tions in 0 which are locally uniformly bounded from above and set
w:=limsup, u;. Then N := {u < u*} has outer capacity zero,

Cap*(N,Q) = 0.

PROOF. Set v; := (supys; ux) for j € N. Then v} is plurisubhar-
monic and the set N; := {v; < vj} has outer capacity 0, Cap®(Ny,(2) =
0, by the previous result.

Moreover (v;) is a decreasing sequence of plurisubharmonic func-
tions which converges to a plurisubharmonic function v satisfying v >
u* in Q. Since v* = u = v on Q \ U;N;, it follows that v = u* and
N :={u < u*} C U;N;, hence Cap*(N, ) = 0 by subadditivity of the
capacity Cap™. O

COROLLARY 4.44. Let (E;) jen+ be a non-decreasing sequence of sub-
sets of 1 and E := U;E;. Then (hj; o) decrease to hiq.

PROOF. Observe that h; := hj; g is a non-increasing sequence of
plurisubharmonic functions which lie between —1 and 0. It converges

to a plurisubharmonic function h, bounded between —1 and 0 and such
that hpo < h < 0. Set

N = Ui{hre < o}

and observe that h < —1 in E \ N. It follows from Corollary 4.43
and Theorem 4.40 that there exists u € PSH () such that v < 0 and
N C P :={u= —o0}.

Thus for all € > 0, the function h + eu is plurisubharmonic and
negative in 2 and satifies u < —1 in E. Hence h + cu < hg g and

h<hpo<hyg in Q\P.

By plurisubharmonicity we infer h < hj o in € since P has Lebesgue
measure 0, hence h = h; q. El
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REMARK 4.45. Recall that the Lelong class L(C™) is the set of
plurisubharmonic functions v in C"™ with logarithmic growth, i.e. for
which there exists C, > 0 such that for all z € C",

v(2) < log™ [|z]| + C..
Corollary 4.41 shows that any pluripolar set is contained in the polar

locus of a function from the Lelong class L(C™). Given a bounded set
E € C", its global extremal function is

Vi(z) == sup{v(z);v € L(C"),v|E < 0}.

This function has been introduced by Siciak [Sic69] (by using poly-
nomials P of arbitrary degree d and functions v = d~1'log|P|) and
further studied by Zahariuta [ZaT6]. We let the reader establish some
of its basic properties in Exercise 4.14. We develop in Chapter 7?7 a
theory that contains the Siciak-Zahariuta functions as a particular case.

5. Exercises

EXERCISE 4.1. Let T C R be the set of real numbers having a
developement in continued fractions x = (ag,ay,- - ,ag,---) such that
the sequence (ag,ay,...) admits a subsequence which is non-decreasing
with respect to the divisibility order.

Show that T is an analytic subset (continuous image of a complete
separable metric space) which is not a Borel subset of R. We refer the
reader to [?] for more details.

EXERCISE 4.2. Prove that if ¢ is a capacity in © and x : Rt — R*
s a continuous increasing function, then x o ¢ is a capacity in 2.

EXERCISE 4.3. Prove that if ¢ is a precapacity (resp. a Choquet
capacity) in Q) then the associated outer capacity c* defined by
c*(E) = inf{c(G); G open G D E}
is also a precapacity (resp. a Choquet capacity) which is outer reqular.
EXERCISE 4.4. Let M be the family of measures
dpe = e ' p(x/e)dx

for e >0, where p is a continuous function in R with compact support
in [—1,+1] such that [ p(x)dz = 1. Prove that its upper envelope ¢
satisfies ¢({0}) = 0 while any neighborhood of 0 has capacity 1, i.e.
c*({0}) = 1. Hence it is not outer regular

EXERCISE 4.5. Let M be a compact (for the weak*-topology) family
of Radon measures on ). Define the associated precapacity on Borel
sets £ C € by the formula

cm(E) = sup{u(E); p € M}.
Show that the associated outer capacity ¢y, s a Choquet capacity
on § which is outer and inner regular.
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EXERCISE 4.6. Let h : X — Y be a continuous map and c a
capacity in Y.

1) Prove hat the set function ¢;, := h*c defined on subsets of X by
cn(E) = c(h(E)) is a capacity in X .

2) Show that ¢, is not additive in general even when c is the exterior
measure associated to a Borel measure.

EXERCISE 4.7. Let vy,...,v, be plurisubharmonic functions in a
domain @ C C" such that 0 < v; < A;. Set p = ddvy A -+ A\ ddv,.
Show that

p(-) < Ap--- A, Cap(+, Q).

EXERCISE 4.8. Let f : Q — Q' be a proper holomorphic map from
a domain in C" into a domain in C™. Show that if E is a pluripolar
subset of Q, its image f(F) is a pluripolar subset of €Y.

EXERCISE 4.9. Let Q C C" be an open set, v € PSH™(Q)N L. ()
and B C Q a Borel subset.

1. Set s :=supp |v| and w := sup{v/s, —1}. Show that

(ddw)™ > 1y s>—13(ddv/s)".
2. Deduce the following inequality

(5.1) /B(ddcv)” < (s%p |v])" Cap(B;Q).

EXERCISE 4.10. Let G C €2 be an open set. Let K; C Kji1 C G be
an exhaustive sequence of compact subsets of G, i.e. U;K; = G. Show
that the relative extremal functions hy o decrease pointwise to he, .

EXERCISE 4.11. Prove the following variational characterization of
the complex Monge-Ampére capacity in terms of the complex Monge-
Ampére energy: for all subsets E € 2

Cap™(F, Q) = inf {/Q(—u)(ddcu)";u € PSH(Q)NL>™(Q),u < —1E} :

EXERCISE 4.12. Let K C [0,1]? C R? ~ C be the standard Cantor
set, so that the set obtained in n'" step, consists of 2°™ intervals with
edges of length (,. Let B denote the ball of radius 2 centered at the
origin of C. Show that

Cap(K,B) > 0 — 24’" log £,, > —o0.
n>1
We refer the reader to [Carl67, Ra] for details and more examples of

that sort in complex dimension 1.

EXERCISE 4.13. Let B(a,r) C C™ be the euclidean open ball of
center a and radius v > 0. Show that for 0 <r < R,
log |z| — log R 1}

h _ —
B(a,r),B(a,R) (Z) max { 10g R — IOg r ’
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and
1

(log R/r)™

EXERCISE 4.14. Let E €@ C" be a bounded subset. Show that

1) E is pluripolar if and only if Vi = 400 in C™;

2) if E in non-pluripolar and E C Br := {z € C";|z| < R}, then
Vi € L(C") and there exists a constant C > 0 such that

log®(|z|/R) < Vji(z) <log™|z| + C, if z € C™

3) if E in non-pluripolar, then Vi =0 in E°,

Cap(B(a,r), B(a, R) =

(ddVE)* =0 in C"\ E, and / (ddVg)" = 1.

EXERCISE 4.15.

1) Let u be a bounded subharmonic function in C. Show that it can
be written as a countable sum of continuous subharmonic functions
(this result does not hold for plurisubharmonic functions, see [Kol01]
for a counterexample).

2) Let p be a probability measure on C. Use 1) to prove that pu does
not charge polar sets if and only if it can be decomposed as

i>1

where p; = Au; is the Laplacian of a continuous subharmonic function.






CHAPTER 5

The Dirichlet problem

Let 2 € C" be a bounded strongly pseudoconvex domain in C".

Given ¢ € C%09RQ) and 0 < f € C°Q), we consider the Dirichlet
problem for the complex Monge-Ampere operator:

u € PSH(Q)NC%Q)
(0.1) (ddew)™ = fp3" in Q
U= on 0f)

When n = 1 this is the classical Dirichlet problem for the Laplace
operator. In this case one can find an explicit formula for the solution,
when the domain is sufficiently regular, generalizing the Poisson-Jensen
formula in the unit disc proved in Chapter 1.

For more general domains, as well as for the higher dimensional
setting, one uses the method of upper-envelopes due to Perron and
the comparison principle to build the solution and show it is unique.
Namely we consider

(0.2) U(z) = Ugr(2) = sup{u(z);u € B(Q, ¢, )},
where B = B(£2, ¢, f) is the class of subsolutions,
B:={ue€ PSHNL>®Q);(ddu)" > f5" in Q and u* < ¢ on 0Q}.

Our goal is to show that U is the unique solution to ( 0.1).

When f = 0, Bremermann [Bre59] has shown that the envelope U
is plurisubharmonic and has the right boundary values, by constructing
appropriate barriers (this is where the pseudoconvexity assumption is
used). Later on Walsh [Wa68| proved that U is continuous up to
the boundary. Then Bedford and Taylor showed in [BT76] that the
complex Monge-Ampere measure (dd°U)" is well defined, and U solves
the Dirichlet problem (0.1 ).

We give in this chapter a complete proof of these results using sim-
plifications due to Demailly [Dem91], as well as ideas from optimal
control and viscosity theory developed recently in [?]. These meth-
ods allow a new description of the Perron-Bremermann envelope using
Laplace operators associated to a family of constant Kahler metrics
on (2, following an observation by Gaveau [Gav77]. This avoids the
general measure-theoretic construction of Goffman and Serrin [GS64]
used in [BT76].

129
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1. The Dirichlet problem for the Laplace operator

We have shown in Chapter 1 that the Poisson transform solves
explicitly the Dirichlet problem for the Laplace equation in R? (complex
dimension n = 1). We study here the Laplace operator in RY with
N > 3. This will help us later on in getting some information on
plurisubharmonic function in domains of C", with N = 2n.

1.1. The maximum principle. We fix here an integer N > 3 and
adomain Q C RY. Let z = (21, .., xxy) denote the canonical coordinates
in RY. For x = (21, -+ ,oy) € RY and y = (y1,- -+ ,yn) € RY we set

N
-y = Z.Z‘jyj.
7j=1

and [z]? =2 -2 = Zjvzl 3. The Laplace operator in R is defined by

Harmonic functions in a domain 2 C RY are those which satisfy
the Laplace equation Ah = 0 in Q (in the smooth or weak sense of
distributions). They can also be characterized as continuous functions
which satisfy the spherical mean-value property.

DEFINITION 5.1. A function u : Q C— [—o0, +00[ is subharmonic

if it is upper semi-continuous, and for any ball B(a,r) € €2,

u(a) < ! /|£1u(+a+7“§)d0(5)7

ON-1

where do is the area measure on the unit sphere S :== {x € RY;|z| = 1}.

It follows from Chapter 1 that plurisubharmonic functions in a do-
main {2 C C" are subharmonic as functions of 2n-real variables.

We denote by SH(Q2) the positive cone of subharmonic functions
in the domain 2 which are not identically —oo. It follows from the
submean value inequalities that

SH(Q) C L, ().

PROPOSITION 5.2. Let u be a subharmonic function in a bounded
domain Q € RY such that limsup, 5o u(x) < 0. Then u < 0 in Q.
Moreover for all x € €,

u(x) < supu
o0
unless u is constant in €.

The proof of this maximum principle is similar to the one given in
Chapter 1.
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1.2. Green functions. For N > 3, the Newton Kernel
-1
K = |z*V
N(x> (N_2)0N71|$|
is a locally integrable function in RY which satisfies
AKy =

in the sense of distribution in RY, where §, is the Dirac measure at
the origin. In particular, Ky is subharmonic in RY and harmonic in
RN\ {0}. Tt is the fundamental solution to the Laplace operator in R¥.

DEFINITION 5.3. The Green function for the unit ball B s

G(z,y) = Ge(z,y) = Kn(z —y) = Kn(lyle = y/lyl),
where (z,y) € B x B.
Observe that G is well defined in B x B and has the same singu-
larities as K (x — y) since the second term is smooth. It satisfies the

following properties:
(1) For all y € B, 2 — G(z,y) is subharmonic in B,

(2) G(z,y) = G(y,x) in B x B,
(3) G <0in B x B, and G(z,y) =0 if (z,y) € 0B x B,
(4) for all y € B, A,G(x,y) = 0,.

DEFINITION 5.4. The function x — G(x,y) is called the Green
function of the ball B with pole at y.

It follows from the maximum principle for the Laplace operator that
G is unique function satisfying these properties.
The explicit formula for the Newtonian Kernel Ky yields
-1
(N —2)on_1

Recall that if u,v are smooth functions in B, then

ov ou
/B(UAU — vAu)d\ = /8]B (ua - v@> do.

Here 0/0v is the derivative along the outward normal vector v in OB
and do is the euclidean area measure on OB = S. To get a representa-
tion formula for a subharmonic function u we apply this formula with
v:=G(z, ) and z € B fixed. We thus consider the Poisson kernel

P(z,y) = 0G(x,y)/0v(y), (x,y) € B x IB.
An easy computation shows that
1 1— |z
(N =2)oy1 |z —y[¥

G(z,y) = (lz =y = (1 =22y + 2y N?) .

P(z,y) = (x,y) € B x JB.
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PROPOSITION 5.5. Let u € SH(B) N C°(B). Then for all x € B,

(L1) mmzjﬁwwwwwdw+/awwmm@x

S B
where 1, := Au is the the Riesz measure of u. B
In particular if u is harmonic in B and continuous in B then

(1.2) u@wa/wa@dew.

S
The proof is left as an Exercise 5.2. We can thus solve the Dirich-

let problem for the homogeneous Laplace equation with continuous
boundary values:

THEOREM 5.6. Fiz ¢ € C°(OB). The Poisson transform of ¢,
(13) P = [ et yint) « < B
y|l=1

is harmonic in B, continuous in B and satisfies P,(x) = ¢(x) forz € S.
The proof is identical to the one for the unit disc (see Chapter 1).

1.3. A characterization of subharmonic functions. The fol-
lowing characterization of subharmonic functions will be quite useful:

PROPOSITION 5.7. Let u : Q — RY be an upper semi-continuous
function in a domain Q C RN. The following conditions are equivalent:
1. the function u is subharmonic in §2;

2. Aq(xo) > 0 for all zg € Q and all C?*-smooth functions q in a
small ball B of center xqy such that u < q in B and u(zy) = q(z0);

3. u < hin B, for all balls B @ Q and all functions h : B —R
continuous in B and harmonic in B such that uw < h in 0B.

A C?-smooth function ¢ in a ball B = B(zg,r) s.t. u < ¢ in B and
u(zog) = q(zo) is called an upper test function for v at the point z.

PrROOF. We first prove (1) = (2). Assume that u is subharmonic
and fix zp € Q. If there exists a C%-smooth upper test function ¢ at
xo such that Ag(zg) < 0, then for ¢ > 0 small enough the function
xr — u(x) — q(x) — |x — x0|? is subharmonic in a small ball B(zg, ),
equal to 0 at o and negative for 0 < |z — x¢| < r small enough. This
contradicts the maximum principle.

We now prove (2) = (3). Let h be a harmonic function in some
B(a,r) € Q, continuous on B(a,r), and such that « < h in dB(a,r).
Fix ¢ > 0 and observe that

u(z) < he(x) := h(z) — e(|lz — al* = r*) on dB(a,r).
By upper semi-continuity, there exists zy € B(a,r) such that

u(zo) — he(x0) = g(lgg(u — h,)
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If zg € B, we can fix B(zy,s) C B(a,r) so that ¢ := h. — h.(zg) +u(xo)
is a smooth upper test function for u at g s.t. Ag(zg) = —2ne <0, a
contradiction. Thus xzy € OB and u < h. in B(a,r) for all € > 0. We
infer u < h in B(a,r) by letting ¢ — 0.

We finally prove (3) = (1). Fix a € Q and r > 0 such that
B(a,r) C Q. Let (p;) be a sequence of continuous functions decreasing
to u in OB. It follows from Theorem 5.6 that there exists a harmonic
function h; in B continuous in B such that h; = ¢; in dB. Property
(3) yields u < h; in B for any j > 1. Thus

=] et oty

ON-1
We infer (j — +00) that u satisfies the submean value inequalities. [

u(a) < h;(a) =

The implication (1) = (2) is a soft version of the maximum prin-
ciple. Property (2) can be used to define plurisubharmonicity in the
sense of viscosity as we explain in the sequel.

2. The Perron-Bremermann envelope

2.1. A characterization of plurisubharmonicity. Let H," de-
note the set of all semi-positive hermitian n x n matrices. We set

Hf:={H c H'; det H =n""}.
The following observation of Gaveau [Gav77| is quite useful:
LEMMA 5.8. Fiz Q € HF. Then
(det Q)" = inf{tr(H Q) ; H € H*}
PROOF. Every matrix H € H has a square root which we denote

by H'Y? € H¥. Thus H'/?.-(Q - H'/? € HF. Diagonalizing the latter
and using the arithmetico-geometric inequality, we get

(det Q)7 (detH)w = (det(HY? - Q- H'?))w < %tr(HW Q- H'Y?).

3=

Therefore (detQ)% (detH)™ < tr(Q.H), hence
1

(det Q)= < inf{tr(H.Q);H € H;}.

Suppose now that Q € H is positive. There exists P an invertible
hermitian matrix and a diagonal matrix A = ()\;) with positive entries

A\; > 0 such that Q = P.A.P7%. Set

a = =
Observe that H = (o;) € H and (detA)n = tr(A.H), hence
(det Q)n = (detA)w = tr(H - A)=tr(H -P-A-P V) =tr(H - Q),

WhereH’:P-HoP_IEH,j.
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If @ is merely semi-positive we consider Q). := Q + €l,,, € > 0, and
apply the previous argument to obtain

(det Q.)" = inf{tr(H.Q.); H € H} > inf{tr(H.Q); H.}.
We conclude by letting ¢ — 0. U

For H € H;f, we consider

(2.1) Ag = Z hkjmv

J,k=1

the Laplace operator associated to the (constant) Kahler metric defined
by H=! in C*. The previous lemma yields the following interesting
characterization of plurisubharmonicity:

PROPOSITION 5.9. Let u : Q@ — [—o00,+00[ be an upper semi-
continuous function. The following properties are equivalent
(1) The function u is plurisubharmonic in §2;

(1) dd°q(z0) > 0 for all zy € Q and all functions ¢ C* in a neigh-
borhood B of zy such that u < q in B and u(z) = q(20);

(i1) u is subharmonic and for all H € H, Agu > 0 in the sense
of distributions.

PROOF. We first prove (i) = (4i). Assume that is u is plurisub-
harmonic and fix z, € Q. If there exists a C%-smooth upper test ¢ at
2o such that dd®q(zp) is not semi-positive, there is a direction £ € C",

& # 0 such that Zj,k’ §j§k%(zo) < 0. Then for € > 0 small enough
7 u(zo + 7€) — q(20 + 7E) — g|7|?

is subharmonic in a neighborhood of the origin where it reaches a local
maximum, contradicting the maximum principle.

We now prove (ii) == (4i). Let h be a function that is harmonic
in a ball B = B(a,r) € 2, continuous on B(a,r), and such that u < h
in 0B(a,r). We claim that u < h in B. Fix ¢ > 0 and observe that

u(z) < ho(x) := h(z) — e(|lz — al* = r*) on dB(a,r).
By upper semi-continuity, there exists zo € B(a,r) such that

u(zo) — he(zo) = g(lg};{)(u — he).

If zy € B, we can choose a small ball B(zg,s) C B so that
q:= he — h(zo) + u(zo)

is an upper test for u at xp which satifies Ag(xg) = —2ne < 0, a
contradiction. Therefore zp € 0B and u < h. in B(a,r) for all € > 0.
We infer w < h in B(a,r) as € — 0.
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This proves that u is subharmonic in 2 by Proposition 5.7, hence
Awu > 0 in € in the sense of distributions. To prove that Azu > 0 for
all H € H}, we use the following observations:

(a) Let T: C" — C" be a C-linear isomorphism and ¢ : C¢ — C7
be a C?-smooth function in a neighborhood of a point z. Set z = T'(()
and qr(¢) := q(z) = ¢(T(¢)), then gr is C*-smooth function in a
neighborhood of ¢y := T71(2y) and

Agr(¢ Z%T = tr(T"Q(2)T),

8C36Ck
where 7™ denotes the complex conjugate transpose of 7' := (g—gi) and
Q(z) = (dquzk( ) is the complex hessian of ¢ at z. If H € H we can

find a hermitian positive matrix 7" s.t. T*T = H, one then gets

Aqr(C) = Anq(z).

We leave the details as an Exercise 5.4.

(b) Fix u : Q — [—00, +00[ an upper semi-continuous function and
29 € Q. Then q is an upper test function for u at zy iff ¢ := qr :=qoT
is an upper test function for uz at the point (o := T71(2).

Observation (b) shows that the condition (i7) is invariant under
complex linear change of coordinates. Observation (a) and the proof
preceeding it show that (i7) implies (7iz).

We finally show that (iii) = (7). Assume first that « is smooth.
Condition (i77) means that the complex hessian matrix A of u at zy € Q
is a hermitian matrix that satisfies tr(HA) > 0 for all H € H,. We
infer, by diagonalizing A, that A is a semi-positive hermitian matrix.
Thus w is plurisubharmonic in 2.

To treat the general case we regularize u. = u x p. (see Chapter 1)
and obtain smooth functions satisfying the Condition (7i7) since

Apu. = (Agu) * pe in €,

by linearity. Thus wu. is plurisubharmonic in €2.. Since u is subharmonic
in €2, it follows that u. decreases to u as £ decreases to 0 hence u is
plurisubharmonic in €. Il

2.2. Perron envelopes.

2.2.1. The wiscosity point of view. We establish here some useful
facts which are also the first steps towards a viscosity approach to
solving complex Monge-Ampere equations (see [GZ17]).

PROPOSITION 5.10. Letu € PSH(Q)NLX.(Q) and 0 < f € C°(Q).
The following conditions are equivalent :

(1) (dd°w)™ = fB";
(2) Agu > f/" for all H € H .
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This equivalence has been observed by Blocki [Blo96, Theorem
3.10] when u continuous, by using a slightly different argument.

PROOF. We first prove (2) = (1). Suppose that v € C?*(Q). It
follows from Lemma 5.8 that

Agu> fY" VH € H

is equivalent to

0*u 1/n 1/n
(dettggm)) =1
which is itself equivalent to (dd“u)™ > ff™. All these inequalities hold
pointwise in 2.

When u is not smooth, we fix H € H and let (y.) be standard
mollifiers. The functions u,. := u x x. are plurisubharmonic in €2, and
decrease to u as € decreases to 0. Since the conditions (2) are linear
we infer Agu. > ( Y "), pointwise in Q.. We can use the first case
since wu, is smooth, obtaining (dd®u.)” > ((f*/™).)"B"™ pointwise in Q..
Letting € ~\, and applying the convergence theorem for the complex
Monge-Ampere operator, we obtain (dd®u)™ > f™ weakly in €.

We now prove that (1) = (2). Fix zy € Q and ¢ a C*-smooth func-
tion in a neighborhood B of x4 such that v < ¢ in this neighborhood
and u(xg) = q(z9). We know from Proposition 5.9 that dd°q(zq) > 0.
We claim that (dd°q(xg))™ > f(xo)B". Suppose by contradiction that
(dd°q)y, < f(w0)B™ and set

r

¢ 0) =)+ (ol - ).

If 0 < e <1issmall then 0 < (dd°q(z¢))" < f(x¢)B". Since f is lower
semi-continuous at xg, there exists r > 0 such that

(dd°q (z))" < f(z)B™ in B(zo,r).

It follows that (dd°¢®)" < (dd‘u)"™ in B(zg,r) and ¢¢ > ¢ > u on
OB(zo,7). The comparison principle implies that ¢ > u on B(xg,r).
But ¢°(x) = q(xo) — e§ = u(zg) — e§ < u(xp), a contradiction.

It follows from Proposition 5.9 that for any zy € 2, and every upper
test g for u at zo, we have Agq(zo) > f/"(x0) for any H € H.

If f is positive and smooth, there exists ¢ € C*(2) such that
Apg = f". Thus h = u — g is Ag-subharmonic by Proposition 5.7,
i.e. Agh >0, hence Ayu > fY/" for any H € H.

If f is positive and merely continuous, we observe that

f=sup{g; g € C™(Q), f > g >0},

hence (dd°u)™ > fB" > gp" for any such g. The previous case yields
Agu > g*/™. We infer Agu > fV/" for all H € H.
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Assume finally f is merely continuous and semipositive. Observe
that u®(z) = u(z) + €||2||* satisfies
(ddu)" = (f +€")B".
It follows from the previous case that for all H € H},
Agus > (f +€em)im.
Letting € decrease to 0 yields Agu > fY/" for all H € H;’ Il
2.2.2. Perron-Bremermann envelopes. Previous proposition allows

us to reinterpret the Perron-Bremermann envelope by using the Laplace
operators Ay. Consider

V={ve PSHNL®Q),v|sq < ¢ and Agv > fY"VH € H'}.

PROPOSITION 5.11. The class V is non-empty, stable under maxima
and bounded from above in ). The Perron-Bremermann envelope

(2.2) Uq,p.f(z) = sup{v(z);v € V}
18 plurisubharmonic in €.

PROOF. Let p be a strictly plurisubharmonic defining function for
Q). Choose A > 0 big enough so that Add°p > M'"3, where M :=
| fllLo()- We use here that € is bounded and p is strictly plurisub-
harmonic near 2. Fix B > 0 so large that —B < ¢ < B. Then
vg := Ap — B € V since

Apvo > ADgp > MY" > fim,

for all H € H;. Thus V # ().

Since ¢ is bounded from above by B, the maximum principle shows
that all functions in V are bounded from above by B. It follows that
U :=Uq,,s is well defined and given by

U(z) = sup{v(z);v € Vo}, z € 0,
where
Vo :={ve Vv <v< M}
We claim that V, C L*(9) is compact. Indeed let (v;) be a sequence
in V. This is a bounded sequence of plurisubharmonic functions in

L}(2). Thus there exists a subsequence (w;) such that w; — w in
L'(9), where w is plurisubharmonic and satisfies w = (limsup; w;)* in

Q. We infer vo < w < B and for all H € H:[,
U< Apgw; = Agw,

hence Agw > fY/". Therefore w € V,, which proves the claim. It
follows that U is plurisubharmonic in 2.

We now prove that the class V is stable under maxima, that is if
u,v € V then max{u,v} € V. It suffices to show that for all H € H"

(2.3) Ay max{u,v} > min(Agu, Agv)
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Indeed let p := min{Apu, Agv} in the sense of Radon measures in
2 and suppose that p({z;u(z) = v(z)}) = 0. The local maximum
principle shows that Ay max{wu,v} > p in the sense of Borel measures
in the Borel set ' = {u # v}. Since p(Q\ Q') =0, we get

Ay max{u,v} > p:=min{Agu, Agv}.

When p({z;u(z) = v(z)}) # 0 we replace v by v + €, and observe
that u({z;u(z) = v(z) + €}) # 0 for at most countably many €’s.
The previous case yields Ay max{u,v + ¢} > min{Agyu, Agv} = p
for those €’s. Since Ay max{u,v + €} converges to Ay max{u,v}, we
obtain (2.3). O

2.3. Continuity of the envelope.

THEOREM 5.12. Let 0 < f € C(Q) be a continuous function in €
and ¢ € C(0R2). The Perron-Bremermann envelope

U = sup{v; v e V(Q, 0, )}

is a continuous plurisubharmonic function which belongs to V(82, ¢, f)
and satisfies U = ¢ on 0S2.
If ¢ € CH1(00) then the modulus of continuity of U satisfies

wy (8) < O6|¢llerran) + Bwsiym(0),

where B, C" only depend on the geometry of the domain §2. In particular
U is Lipschitz on Q whenever fY™ is Lipschitz on .

PROOF. The proof proceeds in several steps.

Step 1. We first show that U € V. We have already shown in
Proposition 5.11 that U is plurisubharmonic and bounded. It follows
from Choquet’s lemma that there exists a sequence (v;) in V(Q, ¢, f)
such that

U = (sup; v;)* in €.

By Proposition 5.11 (stability of the family under max), we can further
assume that (v;) in non decreasing. Fix H € H}. Since Agyv; > f1/7
for all j and v; — u in LY(Q), we infer Agu > fY/" hence U € V.

Step 2. Contruction of barriers at boundary points. Let p be a
strictly plurisubharmonic defining function for Q, dd°p > codd®|z|?, for
some ¢g > 0. Fix € > 0 and let ¢ be a C''-smooth function in Q such
that |t — ¢| < e on 0. For K > 1 large enough,

vo = Kp+ 1 — 2¢,
is a smooth function near Q such that vy < ¢ on 9 and
ddvy = Kdd°p + dd*p > M3,

where M = supg f. Observe that K depends on the C'-bound of 4.
Fix H € H,. Then
Agvg > 1"
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Therefore vy belongs to the class V and vy < U. It follows that
liminf U(2) > 9(C) — 2¢,
z2—(

for all ¢ € 9. Letting ¢ converge to ¢ and then ¢ — 0, we obtain
liminf U(z) > ¢(().
z—(

The same argument shows that
wy = Kp—1 —2¢

is plurisubharmonic and continuous on 2, with —p — & < wy < —.
Observe that U < —wy. Indeed if v € V(Q, ¢, f) then v + wy is a
bounded plurisubharmonic function in €2 that satisfies v* 4+ wy < 0 on
0f). The maximum principle yields v + wg < 0 hence U < —wy in Q.
We infer that limsup, . U(z) < ¢(¢), for all ¢ € 9. Thus

(2.4) lim U (2) = ¢(C)-

Step 3. U is continuous on €. It follows from the above estimates

that for ¢ € 092 and z € Q,

(2.5) U(z) = ¢(Q) < —wo(z) — () < —Kp(z) +¢.

Fix C' > 0 such that —p(z) < C|z — (| for ( € 9Q and z € Q. If § > 0
is small enough we infer, for z € Q, ¢ € 09,

2 —( <= U(z) —p(() < KCO +¢.
Fix a € C", |a| < ¢, and define Q, := Q — a. For v € V we set
vy = max{v, vg}.

It follows from (2.3) that v; € V and ¢ — ¢ < v; < ¢ in I
Moreover if ¢ € Q, N OS2,

vi(C+a) <UK+a) <)+ KC+e¢,
while v1(z +a) < p(z+a) + KC§ + ¢, if z € QN IQ,. Therefore

(2) = v1(2), ifz € Q\Q,
YT max{uy(2),vi(z +a) —e — KO8} ifz € QNQ,

is a bounded plurisubharmonic function in €2 such that w < ¢ in 99
and, by (2.3), for all H € H;,

Apw(z) > min{f'/"(z), f"(z + a)}
in QN Q,, while Agw(z) > fY7(z) in Q\ Q.

Let wsi/n denote the modulus of continuity of Y7 in Q. Since
la| <6, it follows that f/"(z 4+ a) > f/"(2) — wi/(6) hence

Agw(z) > f"(z) - Wi/ (0)
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in ). The function
W(z) := wpym(6)p(z) +w(z), z € Q,
therefore satisfies w € V and w* < ¢ in 0€2, hence w < U in 2. Thus
v(z+a) <vi(z+a)—e— KOS5 <U(z) + Bwpya(6),
if z€ Qand z+a € Q, where B = —infq p. Since v was arbitrary in
V, it follows that
U(z+a) —e— KCO — Bwsm(d) <U(2),

if ze Qand z+a € Q.

This proves that U is continuous in €2, hence on Q by (2.4). There-
fore U € V satisfies the requirements of the first part of the theorem.

Step 4. Modulus of continuity of U. In the construction above the
constants B, C' do not depend on ¢ and d, while the constant K = K (1)
depends only on the C*!-bound of an e-approximation v of ¢ in 9.
When ¢ is Cll-smooth we can take ¢ = ¢ and thus get a precise
control on the modulus of continuity of U: for 6 > 0 small enough,

wU((S) < C(SH(pHcl,l + BWfl/n((S),
as desired. 0

3. The case of the unit ball

We are going to show that the Perron-Bremermann envelope U
solves the Monge-Ampere equation (dd°U)" = f5™ in . Following
[BT76] (and simplifications by [Dem91]) we first prove this statement
when 2 = B is the unit ball and f, ¢ are regular enough.

3.1. Cll-regularity.

THEOREM 5.13. Assume Q = B is the unit ball, fY/» € CV(B)
and p € C*(OB). Then the Perron-Bremermann envelope U = Ug ,
admits second order partial derivates almost everywhere in B which are
locally bounded in B, i.e. U € Cl’l(]B%).

loc
Here and in the sequel we set
Co(Q) = {v € C(Q); |vlla < +o0}
for 0 < a < 1, where the a-Hélder norm is given by

ol = Dolls = sup{lo(2)] : = € )+ sup { L2002 e},

If0 < a < 1and k € N*, then C**(Q2) denotes the class of functions
which admits continuous partial derivatives up to order k, and whose
k-th order partial derivatives are Holder continuous of order o in Q.
We shall also consider the spaces C/2%(92) and C**(9Q) with obvious
notations.
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PROOF. The proof of Theorem 5.13 consists of several steps and
occupies the rest of this section. Recall from Theorem 5.12 that U €
C%'(B). We are going to show that for any fixed compact K C B, there
exists C'= C(K) > 0 such that for any z € K and |h| small enough,

(3.1) U(z+h)+U(z —h) —2U(z) < C|h|.
This implies that U has second order partial derivatives almost every-
where that are locally bounded.

Step 1: Using automorphisms of the ball B as translations. The
main difficulty with the expression U(z+h)+U(z —h) —2U(z) is that
it is not defined in B since translations do not preserve the ball. We
use automorphisms of B instead and study the corresponding invariant
symmetric differences of second order. For a € B, we set

Py(z) —a++/1—|a]?(z — Pu(2)) = <z,a)a
1—{(z,a) ' Fal2) |af?

where (-, -) denote the Hermitian product in C". The reader will check
in Exercise 5.7 that T, is a holomorphic automorphism of the unit ball
such that T,(a) = 0. Note that T} is the identity. We set

(3.2) h=h(a,z):=a—(za)z.
Observe that h(—a, z) = —h(a, z). If |a] < 1/2 then
Tu(z) =z = h+O(lal),

where O(|a|?) < Cal?, with C' a uniform constant independent of z € B
when |a| < 1/2. Thus Ty, is the translation by Fh up to small second
order terms, when |a| is small enough.

To(z) =

Step 2: Estimating the invariant symmetric differences of U. The
invariant symmetric differences of U in B are

2€Br—UoT,(2)+UoT_4(2) —2U(z) € R,

We also consider the plurisubharmonic function
1
2z Vo(z) = §(U oTu(2) + U oT_,(2)),
and try to compare it to U in B. We claim that
Va(2) U(2) + Clal?,

for some constant C' > 0 and for all z,a € B with |a|] < 1/2. We
verify this by showing that V, belongs to the Perron-Bremermann class
V(B, ¢, f), i.e. V, is a subsolution to the Dirichlet problem.

2.1 Boundary values of V,. Observe that if g € C%!(B), then
(3.3) lgoTu(2)=g(z=h)| < llgllcor @) |Tu(2) —2+h| < crlallgllcor ),
where ¢; > 0 is a geometric constant. Using Taylor’s expansion we get

g0 Tu(2) = g(z — h+O(lal*)) = g(2) + dg(2).h + O(a[*)
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for g € CY*(B), hence
(3.4) goT,(z) +goT_.(2) <2¢(z) + 2Cs]al,

where (3 = C5(g) depends on the C'-norm of g.
Extending ¢ as a function in CY'(B) and applying (3.4) yields

(3.5) woT, +poT_ 4 <20+ 2C|al?,
where Cy = Cy(¢) depends on the C*'-norm of ¢. We infer
Va(2) < @+ Cylal?, ¢ € IB.

2.2. Estimating the Monge-Ampere measure of V,. We now esti-
mate Ay V, from below, for H € H; fixed. Observe that

Ap(UoT,) > (det T))*"™ (fY" o T,).
where det T!(z) =1+ (n+ 1){z,a) + O(|a|?), hence

2(n+1)

(et T (z)" =1+ (z,a) + O(|a]?).

Since fY/™ € CY1(B), it follows from (3.4) that
FMoTu(z) = F7(z = ht oflal?)) = f1/"(2) + (2, a) + O(|af).
setting 11 (2, a) := df'/™(2).h.

An elementary computation yields
|det T, (2) 7™ (£ 0 Tu(2))+|det To(2) 7™ (F/" 0 T_u(2)) > 2£Y"(2)—cr|al?,
for z € B and |a| < 1/2, where C; = Cy(n) > 0. Therefore
Ag(UoT,)+ Ap(UoT_y) > 2fY" — Cylal?,

hence
AV, > fn — Cslal?,

weakly in B.
For |a| < 1/2 we consider the continuous plurisubharmonic function

2+ 0,(2) = Vo (2) + Cslal*(|2]> — 2).
Observe that v, < ¢ on B and for every H € H,

1
Apva = 5ArVe + ClaAn(|2) = f1/" = Cslaf* + Cslal* > /7.
Thus v, € V(Q, ¢, f), hence v, < U. Therefore

1 1
5Va(2) = Gsla® < SVa(2) + Colal*(12]° = 2) < U(2)

for z € B, hence
UoTy(2) +UoT_4(2) —2U(z) < 2Cs]al?,

as claimed.
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Step 3: Comparing invariant/usual symmetric differences. We now
compare U o T,(z) + U oT_,(z) and U(z — h) + U(z + h), where h is
defined by (3.2). Fix K C B a compact set and |h| small enough.

Applying (3.3) with g = U, z € K and |h| < dist(K,0B), we get

U(z—h)+U(z+h) —2U(z)

UoT,(2) +UoT o(z) — 2U(2) 4 2¢1||U|| cor gy al?
(2¢1[[U]l o @y + 2Cs)|al?.

Observe that a — h(a,z) = a — (z,a)z is a non singular endomor-

phism of C™ which depends smoothly on z € B. The inverse mapping
h +— a(h, z) is a linear map with norm less than —— since

<
<

1- | \
Al > la] — [{z, a)l|z] > |al — |2]*|al| > |al(1 — |2]*).

For z € K and |h| < dist(K,0B)/2, we infer

Cy

Ul(z+h)+U(z—h)—2U(2) < SEEE

o

where Cy 1= (2¢1||U|| o1 @y + 2C3).
Consider now a convolutlon with a regularizing kernel ., ¢ > 0
small enough. For z € K and |h| small we obtain

P
(1= (lz[ +¢)%)?
The Taylor expansion of order two of U, yields

Cy
(1= (2] +2)?)?
for z € K,h € C", where A := Cy/dist(K,0B)?. Since U. € PSH(B.)

Ucdz+h)+U(z—h)—2U.(z2) <

D?U.(z).h2 < |h|* < AR,

2
D?U.(2).h? + D*U.(2).(ih)* = 42 a—UE_.hjEk > 0.

Hence for z € K and |h| small enough,
D?U.(z).h* > —D?U.(2).(ih)* > —A|h|>.

Therefore for z € K we have a uniform bound |D?U,(z)| < A.

The Alaoglu-Banach theorem insures that there exists g € L®(K)
such that D?U. converges weakly to g in L=(K). Since D*U. — D*U
in the sense of distributions, we infer D*U = g in the sense of dis-
tributions. The second order derivatives of U therefore exist almost
everywhere and are locally bounded in B with

| D*U|| ooy < A4,

where A := C,/dist(K,9B)? and C, depends on the C®! norm of U, the
C! norm of ¢ and f1/". We have thus shown that U € C'(B). O

In general U does not belong to CY!(B) as Exercise 5.11 shows.
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3.2. Solution to the Dirichlet problem. We now show that the
Perron-Bremermann envelope is the solution to the Dirichlet problem:

THEOREM 5.14. Assume 0 < f1/" € CYY(B) and ¢ € CHH(OB).
Then U = U(B, ¢, f) is the unique solution to the Dirichlet problem

u € PSH(B)N C(B)
(3.6) (dd°u)" = fp™ in B
u=q in OB.
PRrROOF. We already know that U € Cllo’cl(B) NV(B, ¢, f) and has
the right boundary values. It remains to show that (dd°U)" = fp".
Since U € CL1(B), it suffices to show that for almost every z € B

loc
02U
det <3zj02k (z)) = f(z2).

The inequality > holds almost everywhere since U is a subsolution.
Suppose by contradiction that there exists a point z5 € B at which
U twice differentiable and satisfies

for some € > 0. Then for any H € H},

(3.7) ApU(z) > (f(20) + 26)V/™

Using the Taylor expansion of U at order 2 at the point 2y, we get
U(z) = U(z) + ReP(z — z) + L(z — ) + o]z — 20/?),

where P is a complex polynomial of degree 2 and
L(¢) = — G
(©) Z 525 ()G

is the Levi form of U at z.
Since L is positive, for any 0 < s < 1 close to 1, there exists §,7 > 0
small enough such that B(zy,r) € B, and for |z — z| =7,

U(z) > Ul(z) + ReP(z — z9) + sL(z — z) + 0,
Observe that the function defined by
w(z) :=U(zp) + ReP(z — 29) + sL(z — z0) + 6

is smooth and plurisubharmonic in C".
Then the function

U(2), z € B\ B(z0,7)
(3.8) v(z) = { max{U(z),w(2)}, z € B(z,r)

is plurisubharmonic in B, continuous near OB with v = ¢ in JB.
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We claim that Agv > fl/" for all H € H;[ Indeed if A is the com-
plex hessian matrix associated to U at zy, we have Agw = str(HA).
Lemma 5.8 yields tr(HA) > (det A)Y/™, hence by (3.7) for z € B(z, 1),

Apw(z) 2 s(f(20) +26)'" = (f(20) +)"",

if s < 1 is choosen close enough to 1.
Since f'/™ is continuous in B, shrinking r if necessary, can assume

that (f(zo) + €)™ > f(2)'/" for z € B(z,r), hence
Ayw(z) = f(2)'",

pointwise in B(zg,7). It follows therefore from (2.3) that Agyv > f1/™.
We infer v € V(B, ¢, f) hence v < U in B. On the other hand
v(z0) = U(z0) +9 > U(zp), a contradiction. The proof is complete. [

Using an approximation process, we can now solve the Dirichlet
problem in the unit ball with continuous data:

COROLLARY 5.15. Assume ¢ € C(OB) and 0 < f € C(B). Then
U=U(B,, f) is the solution to Dirichlet problem (3.6).

PRrROOF. Let (f;) be a sequence of smooth positive functions which
decrease to f uniformly on B. Fix also ¢; C*°-smooth functions in OB
such that ¢; increases to ¢ uniformly on 0B.

The upper envelope U; := U(B, ¢;, f;) is the unique plurisubhar-
monic solution to the Dirichlet problem (3.6) with boundary data ¢;
and right hand side f;. Observe that (U;) is non decreasing in B.

Fix € > 0 small and set p(z) := |2|*> — 1. Note that for k > j,

(dd°(Uy, +ep)™ > (dd°Up,)" +€"B" = (fr +€™)B"

Since (fy,) decreases fo f uniformly in B, we can find jo > 0 such that
fi < fe+e"inBfor k> j > jo, hence

(dd° (U + 2p)" = f,6"

Since Up+£(|z|°—1) = fi < f; in OB, it follows from the comparison
principle that Uy +¢ep < U; in B. Since U; < U, we infer for £ > j > jo,

Hl_aX|Uv]€ - U]’ <e.
B

The sequence (U;) therefore uniformly converges in B to a function
u € PSH(B)NC°(B) such that u = ¢ in OB. The uniform convergence
insures that (dd°U;)"™ converge to (dd‘u)™ weakly hence (ddu)" = f3".
The comparison principle guarantees that u = U(B, ¢, f) is the
unique solution to the Dirichlet problem (3.6). O
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4. Strictly pseudo-convex domains

4.1. Continuous densities. We generalize here Corollary 5.15 to
the case when (2 € C" is a strictly pseudo-convex domain in C".

THEOREM 5.16. Assume ¢ € C(0Q) and 0 < f € C(Q). The
envelope U = U($2, v, f) is the unique solution to Dirichlet problem.

PROOF. We already know that U € PSH(Q) N C%(2) and satisfies
(dd°U)™ > fp"™ weakly. It remains then to check that (dd°U)™ < fp".
We use the classical balayage technique. Let B € 2 be an arbitrary
euclidean ball. By Corollary 5.15, we can solve the Dirichlet problem

(ddu)" = ff"in B and u=U on 0B.

The comparison principle insures U < u in B. It follows therefore from
Proposition 5.10 that

o () = u(z) ifzeB
VT U() itzeQ\B
belongs to the class V(£, ¢, f) and v = U = ¢ on 92. We infer v < U,
hence u = U in B so that (dd°U)" = (dd°u)™ = ff" in B. The equality
holds in € since B was arbitrary. O

4.2. More general densities. We start by extending Theorem
5.16 to the case when the density is merely bounded:

THEOREM 5.17. Assume ¢ € C(0R2) and 0 < f € L>®(Q). Then
the envelope U(2, @, f) is a bounded plurisubharmonic function in €
which is the unique solution to the Dirichlet problem

we PSH(Q) N L®(Q)
(4.1) (dd°u)™ = f™ in
lime_cu(z) = p(C)  for C €09

PROOF. Let (f;) be a sequence of continuous functions in 2 which
converge to f in L'(Q2) and almost everywhere. Theorem 5.16 yields, for
each j € N, asolution U; € PSH(Q)NC(Q) such that (dd°U;)" = f; 8"
in 2 and U; = ¢ in OS2

Set Vo = U(Q,,0) and V; := U(Q, ¢, M), where where M is
a uniform L°-bound for the f;’s. The comparison principle yields
Vi < U; <Vy Hence the U;’s are uniformly bounded.

Extracting and relabelling we can assume that (U;) converges in
L'(Q2) and almost everywhere to a bounded plurisubharmonic function
U such that U = (limsup, U;)* in €.

We claim that (U;) converges to U in capacity. Indeed fix a compact
set K C Q and §,e > 0. There exists an open set G C 2 such that
Capg(G) < ¢ and all the function U;,U are continuous in 2\ G, by
quasocontinuity. Hartogs lemma yields

limsupmax(U; — U) <0,
j—>+oop K\G( ! )<
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hence {U; — U > 20} C G for j > 1 large enough. We infer
lim Capo({U; —U > 26}) = 0.

Jj—+oo

On the other hand, Lemma 5.18 shows that for all j € N,

Capo({U — U; > 26}) < 5_"/ (dd°U;)"
{U-U;=>6}

ey

The right hand side converges to 0 since U; — U in L', hence
lim Capo({U — U; > 26}) = 0.
J—+o0

Our claim is proved.

We infer (dd°U;)" — (dd°U)"™ and (dd°U)" = fpB™ weakly in ).
Since V; < U < Vp, Theorem 5.16 shows that U tends to ¢ at the
boundary of (2.

The comparison principle insures that U = U(£2, ¢, f) is the unique
solution to the Dirichlet problem (4.1). O

We need to prove the following lemma which was used in the pre-
vious proof.

LEMMA 5.18. Assume u,v are bounded plurisubharmonic functions
such that {u < v} € Q. Then for all s,t >0

t"Capo({u —v < —s —t}) < / (ddu)"
{u—v<—s}
ProoOF. Fix w € PSH(Q2) s.t. —1 <w <0, s,t > 0 and note that
{u<v—s—t}c{u<v—s+tw} C{u<v—s} €.

The comparison principle thus yields

" / (ddw)" < / (dd°(v — s + tw))"
{u<v—s—t} {u<v—s+tw}
< / (dd°u)"
{u<v—s+tw}

< / (ddu)".
{u<v—s}

The required estimate follows by taking the sup over all such w’s. [J

When the density f is merely in L} (), we can show that the

loc

existence of a subsolution implies the existence of a solution:

COROLLARY 5.19. Fiz ¢ € C°9Q) and 0 < f € L. (). As-
sume there ezists v € PSH(Q) N L>®(Q) such that v = ¢ in 0 and
(dd°v)™ > fp"™ in the weak sense. Then the Perron-Bremermann en-

velope U(Q, v, f) is the unique solution to the Dirichlet problem (4.1).
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PROOF. Set f; := min{f,j}. Then (f;) is a sequence of bounded
densities which increase to f everywhere and in L} ().

Theorem 5.17 guarantees the existence of a unique U; € PSH(2)N
L>(Q2) such that (dd°U;)" = ;5™ in Q and U; = ¢ in 0. Set

u, = U(,¢,0).

The comparison principle yields U; < Ujiy < uy,, therefore (U;) is
uniformly bounded in €.

Since (U;) is non decreasing, it converges to a bounded plurisub-
harmonic function U in  such that Uy < U < w,. The continuity of
the complex Monge-Ampere operator for decreasing sequences insures
(dd°U)™ = f3™. The comparison principle implies that U = U(Q, ¢, f)
is the unique solution to the Dirichlet problem (4.1). d

REMARK 5.20. The result above is due to Cegrell and Sadullaev
[CS92] who also gave examples of densities 0 < f € LY(Q) for which
there is no bounded plurisubharmonic subsolution to the Dirichlet prob-
lem (4.1) (see Exercise 5.8).

When 0 < f € LP(Q2), p > 1, Kolodziej has shown in [Kol98] that
the Dirichlet problem (4.1) has a unique continuous solution. The case
p = 2 was proved earlier by Cegrell and Person [CP92].

The balayage procedure used in the proof of Theorem 5.16 is quite
classical in Potential Theory. It can be be generalized as follows.

COROLLARY 5.21. Let B @ Q be a ball and 0 < f € L'(B). Fix
u € PSH(Q) N LY.(Q) such that (dd°u)™ > fB" in B. There exists a
unique . € PSH(Q)NL2.(Q) such that u = w in Q\ B, u < 4 in B and
(ddea)” = fp" in B. If f € C°(B) and u € C°(dB), then 4 € C°(B).

loc

PROOF. Let (¢;) a decreasing sequence of continuous function con-

verging to v in B. Applying Theorem 5.17 we find U; € PSH(B) N
L*>(B) such that U; = ¢; in B and (dd°U;)" = f3" in B.

The comparaison principle insures that u < U; < Uj4; in B. There-
fore (U;) converges to a plurisubharmonic function U in B such that

u< U < U, and (dd°U)" = f™ in B. Moreover
U*(¢) :=limsup U(z) < limsup U;(2) = ¢;(()

B3z—( B>z—(

for any ¢ € 0B, hence U*(¢) < u(() in 0B.
The function @ defined by & = v in Q\ B and & = U in B is therefore
plurisubharmonic in 2 and has all the required properties. O

4.3. Stability estimates. We address here the following issue: if
f1 and fy (resp. ¢1 and @) are close (in an appropriate sense), does it
imply that so are U(f1,¢2) and U(fa, p2) 7
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PROPOSITION 5.22. Fiz 1,0y € C°(00Q) and fi, f» € C°(Q). The
solutions Uy = U(Q, @1, f1) , Uy = U(Q, @2, f2) satisfy

(4.2) 1Uy = Us|l ooy < R 1 — f2||1L/£(§) + lor — 2l =00
where R := diam(QY). In particular if ¢ € C°(02) and f € C°(Q), then
(4.3) 1,0, Al < Bl @ + l0ll=on-

PROOF. For z5 €  and R > 0 such that B(zp, R) C € we set
vi(2) = | = ll 2 (I = 20l = B?) + U(2)

L (Q)
and

v2(2) = Ur(2) + llo1 — 2/l L= (a0)-
Observe that vy, v, € PSH(Q)NC(Q), v1 < vy in 90 and (ddv; )™ >
(dd°vy)™ in 2. Tt follows therefore from the comparison principle that

v; < vy on 2. We infer
Us = Us < R\l f = foll}2 g + 1 = @2l iony
The inequality (4.2) follows by reversing the roles of U; and Us,. O

These stability estimates show that the operator
Uq: C%(00Q) x LL(Q) — PSH(Q)NL>()
(b, f) — U, f)

is continuous for the corresponding topologies. Here L5°(€2) denotes
the set of all non-negative measurable and bounded densities in (2.
The reader will check in Exercise 5.13 that this stability property does
not hold for arbitrary measures.

REMARK 5.23. Finer stability estimates have been established by
Cegrell and Persson [CP92] when f € L*(Q) and by Kolodziej [Kol02]
when f € LP(Q), p > 1 (see also [GKZO08]).

4.4. More general right hand side. We now allow the right
hand side to depend on the unknown function, following Cegrell in
[Ceg84|. We consider the Dirichlet problem.

u€ PSH(Q)NL>®(N)
(4.4) (dd°u)™ = e" f 5™ in Q2
lim, e u(z) = ¢(() in 02
where p € C(02) and 0 < f € L>®(Q).
The class W(, ¢, f) of subsolutions to this Dirichlet problem is

the set of all functions w € PSH(Q2) N L>*(Q2) such that w* < ¢ in 02
and (dd“w)™ > e* f3™ in Q. The corresponding upper envelope is

(45)  W(Q, ¢, f)=W(z) :=sup{w(z);w € W( ¢, f)}.

THEOREM 5.24. Fix ¢ € C(0Q) and 0 < f € L>(Q). Then
W(Q,p, f) is the unique solution to the Dirichlet problem (4.4).
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PROOF. We can always assume that ¢ < 0 in 0X2. Let p be a
defining function for Q defining Q and ug := U(f, ¢,0). The function
vy := Ap + up is a subsolution to the Dirichlet problem (4.4) if we
choose A > 1 so large that A™(dd°p)™ > f5™ in Q. Thus W(L, ¢, f) is
non empty.

We prove that the envelope W (€, p, f) is the solution by using
Theorem 5.17 and applying the Schauder fixed point theorem. Set

C:={we PSH(Q)NL*(Q); v < w < ug}.

Observe that C is compact and convex in L'(2). It follows from
Theorem 5.17 that for each w € C there exists a unique function v =
S(w) € PSH(Q) N L*(R) such that v = ¢ in 9Q and

(ddv)" = e” f8™ in Q.

Observe that (dd“v)" < f5™ < (dd°vo)", as w < 0. Since v = vy = g
in 0f), the comparison principle yields vy < v < ug, hence S(w) € C.

We claim that the operator S : C — C is continuous for the L!-
topology. Indeed assume (w;) € CN converges to w € C in L'(Q2) and
set v; := S(w;). Extracting and relabelling, we can assume that v; — v
in C and w; — w almost everywhere.

The sequence (v;) converges to v in capacity. Indeed fix 6 > 0.
Since (dd°v;)™ = "7 f3" and w; < 0, Lemma 5.18 yields for all j € N,

Capg({v —v; > 20}) < 5_"/ (ddv;)"
{v—v; >4}

< TN e [ (0=
Q

The right hand side converges to 0 for v; — v in L'(£2), hence the
claim. We infer (ddv;)" — (dd‘v)™ weakly in 2.

On the other hand (w;) is uniformly bounded in Q and e*s f — " f
in L'(Q), hence (dd°v)" = e ™. Since vy < v < ug in Q it follows
that v = ¢ in 9. The comparison principle now yields v = S(w).

It follows that S(w;) — S(w) in L'(2) hence S : ¢ — C is con-
tinuous. Schauder fixed point theorem insures that S admits a fixed
point w € C, i.e. w is a solution to the Dirichlet problem (4.4).

The uniqueness of solutions to the Dirichlet problem (4.4) is a conse-
quence of the lemma to follow. It guarantees that w = W (L, ¢, f). O

LEMMA 5.25. Assume 0 < f1 < fo and wy,wy € PSH(2) N L®(Q)
are such that (dd“w,)™ < e f18 and (dd°wq)™ > €2 fy in Q.
If we < wy on 02 then wy < wy in 2.

ProoFr. We infer from f; < f, that

/ ewgflﬁn < / ewzfQBn _ / (ddch)n'
{wi<wa} {wi<ws2} {wi<wsa}
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The comparison principle thus yields

/ (ddwy)" < / (ddewy)" < / e fy.
{wi<wa} {wi<wa} {wi<wa}
Therefore f{w1<w2} e fi8" < f{wl<w2} e f16™, hence

/ (6w2 - 6w1)f15n =0 and 1{w1<w2}(6w2 — Gwl) = O,
{w1<w2}

almost everywhere with respect to uy := f15".
Since (dd°w;)" < p; we infer wy < w; almost everywhere for
(dd°w?). The domination principle now yields wy < w; everywhere. [

4.5. Further results. We mention here without proof a few im-
portant results for the sake of completeness.

THEOREM 5.26 (Krylov). Let Q C C™ be a smoothly bounded strictly
pseudoconver domain and fix o € C3Y(0). The unique plurisubhar-
monic solution U = Uq .o of the homogeneous complex Monge-Ampére
equation in Q with boundary values ¢ is CH*-smooth on €.

This result (together with many other regularity results) has been
obtained by Krylov by probabilistic methods, in a series of articles (see
notably [Kry89]). We refer the interested reader to the lecture notes
by Delarue [Del12] for an overwiev of these techniques.

THEOREM 5.27 (Caffarelli-Kohn-Nirenberg-Spruck). Let 2 C C™ be
a smoothly bounded strictly pseudoconver domain and fixz ¢ € C*(0L).
If the density f is smooth and strictly positive on §, then the unique
solution U = Uq,, 18 smooth up to the boundary.

This result (together with many others) has been obtained by Caf-
farelli, Kohn, Nirenberg and Spruck in [CKNS85]. We refer the inter-
ested reader to the lecture notes by Boucksom [Boul2] for an up-to-
date presentation.

5. Exercises
EXERCISE 5.1. Let p be a probability measure with compact support
in RN,
1. Show that the function
z€RY = U,(2) = Kn(x —y)du(y) € R,
]Rn
is subharmonic and satisfies the Poisson equation AU, = 1 in RY.
2. Let D & @N be a domain and w a subharmonic function in a
netghborhood of D. Show that u can be written, in D,
u = Uv‘u + hD,

where 1 1s the Riesz measure of w and hp is harmonic in D.
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EXERCISE 5.2. Let u € SH(B) N C°(B). Show that for all z € B,

u(z) = / uly) Pla, y)do (y) + / G y)dpualy),

S
where 1, := Au is the the Riesz measure of u.

EXERCISE 5.3. Let ¢ be a continous function on 0B. Show that
P = [ )P int) = <
y|l=1
defines a harmonic function in the ball B, which is continuous on B
and satisfies P,(x) = p(x) for x € S.

EXERCISE 5.4. Let T : C* — C" be a C-linear isomorphism and
q:C; — C7 bea C?-smooth function in a neighborhood of a point z.

Set z=T(¢) and qr(¢) := q(z) = q(T(C)-
1) Check that qr is C*-smooth near (o := T () and

(@) =S 22 _ yreqear)

where T denotes the complex conjugate transpose of T = (%) and
Q(z) = ( 2 (2)) is the complex hessian of q at z.

8zj82k
2) Fix H € H,. Show that there exists a unitary complex matriz U
such that U"HU = D 1is a diagonal matriz with positive entries. Set
T = DY2U. Check that T is hermitian, T*T = H and
tr(T*AT) = tr(HT ' AT) = tr(HA)
for all hermitian matrixz A.
3) Apply 2) with A(z) the complex hessian of q at z = T(C) to get

Aqr(C) = Anq(z).

EXERCISE 5.5. Let p be a non-negative Borel measure in 2 C C"
such that there exists u € PSH () N L*°(Q) with p < (dd°u)™ in Q.
Show that that PSH(QY) C L} (1) and for any compact subsets

loc

K C EC Q with K C E°, there exists C' > 0 such that

/ V]dp < c/ V|,
K E

for allV.e PSH(SY), where X\ is the Lebesque measure on 2.
EXERCISE 5.6. Let u be a plurisubharmonic function in 2 € C".
1) Assume that there exists constants A,0 > 0 such that
u(z + h) +u(z — h) —2u(z) < Al|h|]?,
for all 0 < ||h|| < 6 and for all z € Q such that dist(z,0Q2) > §.

Show that u is Ch'-smooth and its second derivatives, which exist
almost everywhere, satisfy ||D*ul| ) < A.
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2) Show that the Monge-Ampére measure (dd“u)™ is absolutely con-
tinuous with respect to the Lebesque measure dV in §2, with

. \n 0*u
(dd°u)" = ¢, det (3Zj32k) dVv,
for some constant ¢, > 0. Check that this last result actually holds

whenever u belongs to the Sobolev space VVlQOgL

EXERCISE 5.7. Let B denote the unit ball. For a € B, we set
P.(z) — 1 —lal?(z — P, ,
@) =0+ VITTPE=RE) | o d,
1= {za) |a?
where (-,-) denote the Hermitian product in C".

Check that T, is a holomorphic automorphism of the unit ball such
that T,(a) = 0 and that Ty is the identity.

Tu(z) =

EXERCISE 5.8. Fiz oo > 1 and set
1

o= i og e
1. Check that f, € L'(B)\ L’(B) for all p > 1 and show that there
is now € PSH(B) N L*(B) such that (ddu)™ > fp" in B.
2. Show that there exists a unique radial plurisubharmonic function

U in B which is smooth in B\ {0} and such that U(z) = 0 in OB,
(dd°U)" = f5"™ in B and U(0) = —o0.

EXERCISE 5.9. Give an example of a non-negative Borel measure
w oon Q such that the class B(Q2, ¢, f) is non empty but contains no
element u such that limu(z) = ¢(¢) for all { € I (see [CS92]).

EXERCISE 5.10. Let h : @ — R be an upper semi-continuous
function. The plurisubharmonic envelope of h is defined, for z € €, by
Poh(z) :=sup{u(z);u € PSH(Q);u < h in Q}.

1. Show that Poh is a plurisubharmonic function in ). Observe
that Poh = h is h is plurisubharmonic in €.

2. Show that if h : Q@ — R s continuous then Poh is continuous
i 2 and satisfies

1{Pgh<h} (ddCPQh>n - 0

3. Show that if @ =B and h is locally C*', then Pgh is locally C1*
in B and satisfies the Monge-Ampére equation:

(dd°Pgh)"™ = 1{th:h}(ddch)".
EXERCISE 5.11. Let B C C? the unit ball. Fiz o > 0 and set
o(z,w) := (1 + Rez)® for (z,w) € OB.

Observe that the function ¢ s C°-smooth in OB, except at the point
(—1,0) and near this point we have 1 + Rz = O(Jw|* + (J2)?).
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1) Assume that o :=1+¢€ with 0 < & < 1. Show that ¢ € C**(0B)
ife <1/2 and ¢ € C*>*71(OB) if 1/2 <e < 1.
2) Observe that the function defined by U(z,w) := (1 + Rez)'*,

(z,w) € B, is plurisubharmonic and continuous in B and that it is the
unique solution to the homogeneous Dirichlet problem

u € PSH(B)N C(B)
(dd°u)? =0 in B
U= in OB

3) Check that U € CY(B) N C>(B). When ¢ = 1/2, verify that
0 € C>Y(OB) and U is no better than C/2,

For 1/2 < a < 1 show that Theorem 5.12 is optimal: the solution
is no better than Lipschitz on B when ¢ in no better than CY* on OB.

EXERCISE 5.12. Let f € LP(B), withp > 1, be a radial non-negative
desnity and p =0 in JB.

1) Prove that the solution U of the Dirichlet problem (dd°U)"* = fp"
with U = 0 on 0B is radial.

2) Show that U is given, forr = |z| <1, by

Ur) = - /1% (/Ot p2”1f(p)dp) " dt,

3) Check that U € C’O’Z—%(B) for 1 < p <2 hence U € COYB) for
p > 2 (see [Mon86| for more details).

EXERCISE 5.13. Let ¢; be a sequence of uniformly bounded plurisub-
harmonic functions in the unit ball B of C™ such that p; — ¢ in L' but
(dd°p;)"™ does not converge to (dd°p)™. By modifying p; near 0B, con-
struct a sequence of probability measures p; in B and plurisubharmonic
functions ¢; in B such that

the v;’s are uniformly bounded and continuous in B;

the v;’s are solutions of the Dirichlet problem Dir(B,0, p1;);
the sequence (f1;) weakly converges to a probability measure yu;
(1) does not converge to the solution of Dir(B,0, p).

This shows that the stability property obtained in Proposition 5.22
does not hold in general. We refer the interested reader to [CK94,
CKO06| for more information.

EXERCISE 5.14. Let K be a compact subset of C". Recall that the
polynomial hull of K 1is

K :={z e C"; |P(2)| < sup|P| for all polynomials P}.
K

Fiz Q C C" a bounded pseudoconvexr domain, ¢ € C*(IQ) and set
Fi={(z,w) € 02 x C; |w| < exp(—=(2))} .
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Show that
F={(z,w) €09 x C; |w] < exp(—u(2))},

where u = Uq 40 15 the unique maximal plurisubharmonic function in
Q with ¢ as boundary values.
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