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Abstract. Pluripotential Theory is the study of the ”fine proper-
ties” of plurisubharmonic functions on domains in Cn as well as in
complex manifolds. These functions appear naturally in Complex
Analysis of Several Variables in connection with holomorphic func-
tions. Indeed they appear as weights of metrics in the L2-estimates
of Hörmander for the solution to the Cauchy-Riemann equation on
pseudoconvex domains culminating with the solution of the Levi
problem (see [Horm90]).

They appear also in Kähler geometry as potentials for (singu-
lar) Kähler metrics on Kähler manifolds and as local weights for
singular hermitian metrics on holomorphic line bundles. Here local
plurisubharmonicity means (semi)-positivity of the curvature form
of the corresponding singular metric.

Pluripotential theory has found recently many applications
in Kähler geometry (e.g. the Calabi conjecture on Kähler sin-
gular varieties, the existence of singular Kähler-Einstein metrics,
etc...). All these problems boil down to solving degenerate complex
Monge-Ampère equations as it will be explained in the course by
Chinh H. Lu.

The main goal of this first course is to give an elementary in-
troduction to this theory as developed by E. Bedford and B.A.
Taylor in the early eighties. From their definition it follows that
plurisubharmonic functions are subharmonic with respect to infin-
itely many Kähler metrics. Therefore the positive cone of plurisub-
harmonic functions can viewed as an infinite intersection of ”half
spaces”, hence it is of nonlinear nature. It turns out that their
study involves a fully nonlinear second order partial differential
operator called the complex Monge-Ampère operator, a nonlinear
generalization of the Laplace operator from one complex variable.

We will first recall some elementary facts from logarithmic po-
tential theory in the complex plane and the Riemann sphere fo-
cusing on the Dirichlet problem for the Laplace operator. Then
we will introduce the complex Monge-Ampère operator acting on
bounded plurisubharmonic functions on domains in Cn. Finally we
will we apply these results to solve the Dirichlet Problem for degen-
erate complex Monge-Ampre equations in strictly pseudo-convex
domains in Cn using the Peron method.

The material of this course is taken from [GZ17]. A good
knowledge in complex analysis in one variable, measure and distri-
bution theory as well as some introduction to SCV is required.
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CHAPTER 1

Plurisubharmonic functions

Plurisubharmonic functions have been introduced independently in
1942 by Pierre Lelong in France and Kiyoshi Oka in Japan.

Oka used them to define pseudoconvex sets and solved the Levi
problem in dimension two. Lelong established their first properties and
asked influential questions, some of which remained open for decades.
These problems have been eventually solved by Bedford and Taylor in
two landmark papers [BT76, BT82] which laid down the foundations
of the now called pluripotential theory.

Our purpose in this first part is to develop the first steps of Bedford-
Taylor Theory. We haven’t tried to make an exhaustive presentation,
we merely present those results that we use in the sequel of the book,
when adapting this theory to the setting of compact Kähler manifolds.

The readers already familiar with pluripotential theory in domains
of Cn can skip this first part. We encourage those who wish to learn
more about it to consult the excellent surveys that are available, no-
tably [Sad81, Bed93, Ceg88, Dem91, Kis00, Klim, Blo02, Kol05].

Plurisubharmonic functions are in many ways analogous to convex
functions. They relate to subharmonic functions of one complex vari-
able as convex functions of several variables do to convex functions of
one real variable. On the other hand plurisubharmonic functions can
have singularities (they are not necessarily continuous, nor even locally
bounded). This makes questions of local regularity much trickier than
for convex functions.

One needs infinitely many (sub mean-value) inequalities to define
plurisubharmonic functions, this is best expressed in the sense of cur-
rents (differential forms with coefficients distributions): a function φ is
plurisubharmonic if and only if the current ddcφ is positive.

In this chapter we establish basic properties of plurisubharmonic
functions. We first recall that harmonic functions are characterized
by mean-value equalities, briefly review the definition and properties
of subharmonic functions in the plane, and then move on to study
plurisubharmonic functions (defined as upper semi-continuous func-
tions whose restriction to any complex line is subharmonic).

We give several examples and establish important compactness and
integrability properties of families of plurisubharmonic functions.
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6 1. PLURISUBHARMONIC FUNCTIONS

1. Harmonic functions

1.1. Definitions and basic properties. Let Ω ⊂ R2 ≃ C be a
domain. Recall that a function h : Ω → R is harmonic if h is C2-smooth
and satisfies the Laplace equation

∆h = 0

in Ω, where

∆ =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z̄
,

is the Laplace operator in C = R2.
It follows from the Cauchy-Riemann equations that if f : Ω −→ C

is a holomorphic function then its real part h = ℜef is harmonic. The
Cauchy formula shows that f has the mean-value property: for any
closed disc D̄(a, r) ⊂ Ω,

(1.1) f(a) =

∫ 2π

0

f(a+ reiθ)
dθ

2π
.

Conversely any harmonic function is locally the real part of a holo-
morphic function, hence harmonic functions satisfy the mean-value
property. The latter actually characterizes harmonic functions:

Proposition 1.1. Let h : Ω −→ R be a continuous function in Ω.
The following properties are equivalent:

(i) the function h is harmonic in Ω;
(ii) for any a ∈ Ω and any disc D(a, r) ⊂ Ω there is a holomorphic

function f in the disc D(a, r) such that h ≡ ℜef in D(a, r);
(iii) the function h satisfies the mean-value property (1.1) at each

point a ∈ Ω and for any r > 0 such that D̄(a, r) ⊂ Ω;
(iv) the function h satisfies the mean-value property (1.1) at each

point a ∈ Ω, for r > 0 small enough.

In particular harmonic functions are real analytic hence C∞-smooth.

Proof. We first show the implication (i) =⇒ (ii). We need to
prove that for a fixed disc D = D(a, r) ⋐ Ω there exists a smooth
function g in D such that h+ ig is holomorphic in D. This boils down
to solving the equation

dg = −∂h
∂y
dx+

∂h

∂x
dy =: α

in D. The 1-form α is closed in Ω since h is harmonic,

dα = ∆h dx ∧ dy ≡ 0.

The existence of g therefore follows from Poincaré’s lemma.
The implication (ii) =⇒ (iii) follows from the Cauchy formula as we

have already observed, while the implication (iii) =⇒ (iv) is obvious.
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It remains to show (iv) =⇒ (i). We first prove that h is actually
smooth in Ω. Let ρ : C −→ R+ be a radial function with compact
support in the unit disc D such that

∫
C ρ(z) dλ(z) = 2π

∫ 1

0
ρ(r)rdr = 1.

We consider, for ε > 0,

ρε(z) := ε−2ρ(z/ε) so that

∫
C
ρε(z)dλ(z) = 1.

Set hε := h⋆ρε for ε > 0 small enough. These functions are smooth
and we claim that hε = h in Ωε = {z ∈ Ω | dist(z, ∂Ω) > ε} for ε > 0
small enough. Indeed integrating in polar coordinates and using the
mean value property for h we get

hε(a) =

∫ 1

0

rρ(r)dr

∫ 2π

0

h(a+ εreiθ)dθ = 2πh(a)

∫ 1

0

rρ(r)dr = h(a).

Therefore h = hε is smooth in Ωε.
Fix now a ∈ Ω and use Taylor expansion of h in a neighborhood of

a: for |z − a| = r << 1

h(z) = h(a) + ℜP (z − a) +
r2

2
∆h(a) + o(r2),

where P is a quadratic polynomial in z such that P (0) = 0. Thus

1

2π

∫ 2π

0

h(a+ reiθ)dθ = h(a) +
r2

2
∆h(a) + o(r2),

hence

∆h(a) = lim
r→0+

2

r2

(∫ 2π

0

h(a+ reiθ)
dθ

2π
− h(a)

)
= 0,

by the mean value property. Thus h is harmonic in Ω. □

Let D(Ω) denote the space of smooth functions with compact sup-
port in Ω and let D′(Ω) denote the space of distributions (continuous
linear forms on D(Ω)). Recall that a function f ∈ L1

loc(Ω) defines a
distribution Tf ∈ D′(Ω),

Tf : χ ∈ D(Ω) 7→
∫
Ω

χfdλ ∈ R,

where dλ denotes the Lebesgue measure in Ω.

Weyl’s lemma shows that harmonic distributions are induced by
harmonic functions:

Lemma 1.2. Let T ∈ D′(Ω) be a harmonic distribution on Ω. Then
there is a unique harmonic function h in Ω such that T = Th.

Proof. Consider radial mollifiers (ρε)ε>0 as above and set Tε :=
T ⋆ ρε. Then Tε is a smooth function in Ωε which satisfies ∆Tε =
(∆T ) ⋆ ρε = 0 in Ωε, hence it is a harmonic function in Ωε.
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The proof of the previous proposition shows that for ε, η > 0,

Tε = Tε ⋆ ρη = Tη ⋆ ρε = Tη

weakly in Ωε+η. Letting ε → 0 we obtain T = Tη in the weak sense of
distributions in Ωη. Therefore as η → 0+ the functions Tη glue into a
unique harmonic function h in Ω such that T = Th in Ω. □

1.2. Poisson formula and Harnack’s inequalities. The Pois-
son formula is a reproducing formula for harmonic functions:

Proposition 1.3. (Poisson formula). Let h : D̄ −→ R be a con-
tinuous function which is harmonic in D. Then for all z ∈ D

h(z) =
1

2π

∫ 2π

0

h(eiθ)
1− |z|2

|eiθ − z|2
dθ.

Proof. We reduce to the case when h is harmonic in a neighbor-
hood of D̄ by considering z 7−→ h(rz) for 0 < r < 1 and letting r
increase to 1 in the end.

For z = 0 the formula above is the mean value property in the unit
disc. Fix a ∈ D and let fa be the automorphism of D sending 0 to a,

fa(z) :=
z + a

1 + āz
.

The function h ◦ fa is harmonic in a neighborhood of D̄, hence

h(a) = h ◦ fa(0) =
∫
∂D
h ◦ fa(z)dσ

The change of variables ζ = fa(z) yields z = f−a(ζ) and

h(a) =
1

2π

∫ 2π

0

h(eiθ)
1− |a|2

|1− āeiθ|2
dθ,

as desired. □
The following are called Harnack’s inequalities:

Corollary 1.4. Let h : D̄ −→ R+ be a non-negative continuous
function which is harmonic in D. For all 0 < ρ < 1 and z ∈ D with
|z| = ρ, we have

1− ρ

1 + ρ
h(0) ≤ h(z) ≤ 1 + ρ

1− ρ
h(0).

Proof. Fix z ∈ D such that |z| = ρ and observe that

1− ρ

1 + ρ
≤ 1− |z|2

|eiθ − z|2
≤ 1 + ρ

1− ρ
.

Since h ≥ 0 in ∂D we can multiply these inequalities by h(eiθ) and
integrate over the unit circle. Poisson formula and the mean value
property for h thus yield

1− ρ

1 + ρ
h(0) ≤ h(z) ≤ 1 + ρ

1− ρ
h(0).
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□

1.3. The maximum Principle. Harmonic functions satisfy the
following fundamental maximum principle:

Theorem 1.5. Let h : Ω → R be a harmonic function.
1. If h admits a local maximum at some point a ∈ Ω then h is

constant in a neighborhood of a.
2. For any bounded subdomain D ⋐ Ω we have

max
D̄

h = max
∂D

h.

Moreover h(z) < max∂D h for all z ∈ D unless h is constant.

Proof. 1. Assume there is a disc D(a, r) ⊂ Ω s.t. h(z) ≤ h(a) for
all z ∈ D(a, r). Fix 0 < s < r and note that h(a)− h(a+ seiθ) ≥ 0 for
all θ ∈ [0, 2π]. The mean value property yields∫ 2π

0

(
h(a)− h(a+ seiθ)

)
dθ = 0.

Since h is continuous we infer h(a)− h(a+ seiθ) = 0 for all θ ∈ [0, 2π],
hence h is constant as claimed.

2. By compactness there exists a ∈ D̄ such that h(a) = maxD̄ h. If
a ∈ D the previous case shows that h is constant in a neighborhood of
a. Therefore the set A := {z ∈ D;h(z) = h(a) = maxD̄ h} is open, non
empty and closed (by continuity). We infer A = D hence h is constant
in D. □

1.4. The Dirichlet problem in the disc. Let Ω ⊂⊂ C be a
bounded domain and ϕ : ∂Ω → R a continuous function (the boundary
data). The Dirichlet problem for the homogeneous Laplace equation
consists in finding a harmonic function h : Ω → R solution of the
following linear PDE with prescribed boundary values,

DirMA(Ω, ϕ)

{
∆h = 0 in Ω
h|∂Ω = ϕ

By the maximum principle, if a solution exists it is unique. We only
treat here the case when Ω is the unit disc

D := {ζ ∈ C ; |ζ| < 1}.

The solution can be expressed by using the Poisson formula:

Proposition 1.6. Assume ϕ ∈ C0(∂D). The function

z 7→ hϕ(z) :=
1

2π

∫ 2π

0

1− |z|2

|z − eiθ|2
ϕ(eiθ)dθ

is harmonic in D and continuous up to the boundary where it coincides
with ϕ. Thus hϕ is the unique solution to DirMA(∆, ϕ).
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Proof. Observe that for fixed ζ = eiθ ∈ ∂D, the Poisson kernel is
the real part of a holomorphic function in D,

P (ζ, z) :=
1− |z|2

|z − ζ|2
= ℜ

(
ζ + z

z − ζ

)
.

Thus hϕ is harmonic in D as an average of harmonic functions.
We now establish the continuity property. Fix ζ0 = eiθ0 ∈ ∂D

and ε > 0. Since ϕ is continuous at ζ0, we can find δ > 0 such that
|ϕ(ζ)−ϕ(ζ0)| < ε/2 whenever ζ ∈ ∂D and |ζ− ζ0| < δ. Observing that
the Poisson formula for h ≡ 1 implies

1

2π

∫ 2π

0

1− |z|2

|z − eiθ|2
dθ ≡ 1,

we infer

|hϕ(z)− ϕ(ζ0)| ≤ ε/2 +M

∫
|eiθ−ζ0|≥δ

1− |z|2

|z − eiθ|2
dθ,

where 2πM = sup∂D |ϕ|. Note that |z − eiθ| ≥ δ/2 if z is close enough
to ζ0 and |eiθ − ζ0| ≥ δ. The latter integral is therefore bounded from
above by 4(1 − |z|2)/δ2 hence converges to zero as z approaches the
unit circle. □

2. Subharmonic functions

We now recall some basic facts concerning subharmonic functions
in R2 ≃ C. These are characterized by submean-value inequalities.

2.1. Definitions and basic properties. Let Ω ⊂ C be a domain.

Definition 1.7. A function u : Ω −→ [−∞,+∞[ is subharmonic
if it is upper semi-continuous in Ω and for all a ∈ Ω there exists 0 <
ρ(a) < dist(a, ∂Ω) such that for all 0 < r < ρ(a),

(2.1) u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Recall that a function u is upper semi-continuous (u.s.c. for short)
in Ω if and only if for all c ∈ R the sublevel sets {u < c} are open
subsets of Ω. Note that harmonic functions are subharmonic; the class
of subharmonic functions is however much larger.

The notion of subharmonicity is a local concept. By semi-continuity,
a subharmonic function is bounded from above on any compact sub-
set K ⊂ Ω and attains its maximum on K. It can however take the
value −∞ at some points. With our definition the function which is
identically −∞ is subharmonic in Ω.

We will soon show that if u is subharmonic in a domain Ω and
u ̸≡ −∞, then u ∈ L1

loc(Ω) hence the set {u = −∞} has zero Lebesgue
measure in C. It is called the polar set of u.
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Observe that the maximum of two subharmonic functions is sub-
harmonic; so is a convex combination of subharmonic functions. Here
are some further recipes to construct subharmonic functions:

Proposition 1.8. Let Ω ⊂ C be a domain in C.
(1) If u : Ω −→ [−∞,+∞[ is subharmonic in Ω and χ : I → R is

a convex increasing function on an interval I containing u(Ω)
then χ ◦ u is subharmonic in Ω.

(2) Let (uj)j∈N be a decreasing sequence of subharmonic functions
in Ω. Then u := lim uj is subharmonic in Ω.

(3) Let (uj)j∈N be a sequence of subharmonic functions in Ω, which
is locally bounded from above in Ω and (εj) ∈ RN

+ be such that∑
j∈N εj < +∞. Then u :=

∑
j∈N εjuj is subharmonic in Ω.

(4) Let (X, T ) be a measurable space, µ a positive measure on
(X, T ), and E(z, x) : Ω×X −→ R ∪ {−∞} a function s.t.

(i) for µ-a.e. x ∈ X, z 7−→ E(z, x) is subharmonic in Ω,
(ii) For all z0 ∈ Ω, ∃D a neighborhood of z0 in Ω and

g ∈ L1(µ) s.t. E(z, x) ≤ g(x) for all z ∈ D and µ-a.e. x ∈ X.
Then z 7→ U(z) :=

∫
X
E(z, x)dµ(x) is subharmonic in Ω.

Proof. 1. The first property is an immediate consequence of
Jensen’s convexity inequality.

2. It is clear that u = inf{uj; j ∈ N} is usc in Ω. The submean-value
inequality is a conseqence of the monotone convergence theorem.

3. The statement is local hence it is enough to prove that u is
subharmonic in any subdomain D ⋐ Ω. By assumption there exists
C > 0 such that supD uj ≤ C for all j ∈ N. Write

u =
∑
j∈N

εj(uj − C) + C
∑
j∈N

εj.

The first sum is the limit of a decreasing sequence of subharmonic
functions, hence it is subharmonic and so is u.

4. The upper semi-continuity of U is a consequence of Fatou’s
lemma. The submean value property is a consequence of the Tonelli-
Fubini theorem. □

We now give some examples of subharmonic functions.

Examples 1.9.
1. Fix a ∈ C and c > 0. The function z 7→ c log |z − a| is subhar-

monic in C and harmonic in C \ {a}.
2. Let (aj) ∈ CN be a bounded sequence and let εj > 0 be positive

reals such that
∑

j εj < +∞. The function

z 7→ u(z) :=
∑
j

εj log |z − aj|

is a locally integrable subharmonic function in C. If the sequence (aj)
is dense in a domain Ω, it follows from a Baire category argument that
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the polar set (u = −∞) is uncountable but has zero Lebesgue measure.
Any point a ∈ Ω \ {u = −∞} is a point of discontinuity of u: the
function u is finite at a but not locally bounded near a.

We generalize the first example above:

Proposition 1.10. Let f : Ω −→ C be a holomorphic function
with f ̸≡ 0 in Ω. Then log |f | is a subharmonic function in Ω which
is harmonic in the domain Ω \ f−1(0). In particular for any α > 0 the
function |f |α is a subharmonic function in Ω.

Proof. Observe that {u = −∞} = {f = 0}. It is clear that u is
u.s.c. in Ω, since for every c ∈ R {u < c} = {|f | < ec} is open.

If a ∈ Ω and u(a) = −∞, the submean-value inequality (2.1) is
trivially satisfied. If a ∈ Ω and u(a) > −∞ then f(a) ̸= 0. By
continuity, f(z) ̸= 0 for |z − a| < r, where r > 0 is small enough. It
follows that log f has a continuous branch which is holomorphic in the
disc D(a, r). Therefore u = ℜ(log f) is harmonic in D(a, r) hence it
satisfies the submean-value equality.

The last statement follows from the fact that |f |α = χ(log |f |) where
χ(t) := exp(αt) is a convex increasing function in R ∪ {−∞}. □

Proposition 1.11. Let u : Ω −→ R be a convex function. Then u
is a continuous subharmonic function in Ω.

Proof. When u is smooth in Ω we see that ∆u is the trace of the
real hessian of u which is a semi-positive quadratic form by convexity.
Hence ∆u ≥ 0 pointwise in Ω which proves that u is subharmonic in Ω.
For the general case we use regularization by convolution with radial
mollifiers to conclude. □

Remark 1.12. Observe that convex functions are continuous but
this is not the case for subharmonic functions as Examples 1.9 show.
This is an important source of difficulty when studying fine properties
of subharmonic functions.

The converse of the above proposition is thus false: there are subhar-
monic functions that are not convex. On the other hand if u : D× I ⊂
R2 −→ R is a function which only depends on the real part of z i.e.
u(z) = v(x) for any z = x + iy ∈ D × I, then u is subharmonic in
D × I iff v is convex in D, as the reader will check.

The mean value of a subharmonic function has an important mono-
tonicity property:

Proposition 1.13. Let u be a subharmonic function, a ∈ Ω and
set δ(a) := dist(a, ∂Ω). The mean-value

r 7−→M(a, r) :=
1

2π

∫ 2π

0

u(a+ reiθ)dθ,

is increasing and continuous in [0, δ(a)[ ; it converges to u(a) as r → 0.
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Proof. Fix 0 < r < δ(a) and let h be a continuous function in the
unit circle ∂D such that u(a + reiθ) ≤ h(eiθ) for all eiθ ∈ ∂D. Let H
be the unique harmonic function in D such that H = h on ∂D. The
classical maximum principle insures u(a+ rζ) ≤ H(ζ) for ζ ∈ D.

If 0 < s < r, it follows from the mean-value property for harmonic
functions that∫ 2π

0

u(a+ seiθ)dθ ≤
∫ 2π

0

H(seiθ)dθ =

∫ 2π

0

H(reiθ)dθ.

Therefore
∫ 2π

0
u(a+seiθ)dθ ≤

∫ 2π

0
h(reiθ)dθ for any continuous function

h such that u(a+ rζ) ≤ h(ζ) on ∂D.
Since u is upper semi-continuous, there exists a decreasing sequence

hj of continuous functions in the circle ∂D that converges to the func-
tion ζ 7−→ u(a + rζ) in the circle (see Exercise 1.1). The monotone
convergence theorem yields∫ 2π

0

u(a+ seiθ)dθ ≤
∫ 2π

0

u(a+ reiθ)dθ.

□
Corollary 1.14. If u is subharmonic in Ω, a ∈ Ω and 0 < r <

δ(a), then

u(a) ≤ 1

πr2

∫
D(a,r)

u(z)dV (z),

where dV is the Lebesgue measure on R2. For any a ∈ Ω,

u(a) = lim
r→0+

1

πr2

∫
D(a,r)

u(z)dV (z).

In particular if u and v are subharmonic functions in Ω such that
u ≤ v almost everywhere in Ω then u ≤ v everywhere in Ω.

2.2. The maximum principle. The maximum principle is one
of the most powerful tools in Potential Theory:

Theorem 1.15. Assume u is subharmonic in Ω.
1. If u admits a local maximum at some point a ∈ Ω then u is

constant in a neighborhood of a,
2. For any bounded subdomain D ⋐ Ω we have

max
D̄

u = max
∂D

u.

Moreover u(z) < max∂D u for all z ∈ D unless u is constant on D.

Proof. The proof follows the same lines as in the case of har-
monic functions with some modifications due to the fact that u is not
necessarily continuous.

1. By hypothesis there is a disc D(a, r) ⋐ Ω such that u(z) ≤ u(a)
for any z ∈ D(a, r). Fix 0 < s ≤ r and observe that

u(a)− u(a+ seiθ) ≥ 0 for all θ ∈ [0, 2π].
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Integrating in polar coordinates gives∫
D(a,r)

(u(a)− u(z))dV (z) ≥ 0,

while the submean-value property shows that the above integral is neg-
ative. Therefore ∫

D(a,r)
(u(z)− u(a))dV (z) = 0.

We infer that u(z)− u(a) = 0 almost everywhere in D(a, r), hence
everywhere in D(a, r) since u is subharmonic. This proves that u is
constant in a neighborhood of a.

2. By compactness and upper semi-continuity we can find a ∈ D̄
such that u(a) = maxD̄ u. If a ∈ D then by the previous case u is
constant in a neighborhood of a, therefore the set

A := {z ∈ D;u(z) = u(a) = max
D̄

u} = {z ∈ D;u(z) ≥ max
D̄

u}

is open, non empty and closed by upper semi-continuity, hence u is
constant in D. □

Corollary 1.16. Let Ω ⋐ C a bounded domain and u a subhar-
monic function in Ω. Assume that lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂Ω.
Then u ≤ 0 in Ω.

Proof. Fix ε > 0. By compactness and upper semi-continuity of
u there exists a compact subset K ⊂ Ω such that u ≤ ε in Ω\K. Take
a subdomain D ⋐ Ω such that K ⊂ D and apply Theorem 1.15 to
conclude that u ≤ ε in D. Therefore u ≤ ε in Ω and the conclusion
follows since ε > 0 is arbitrary. □

The following consequence is known as the comparison principle:

Corollary 1.17. Let Ω ⋐ C be a bounded domain and u, v sub-
harmonic functions in L1

loc(Ω) such that the following holds:
(i) For all ζ ∈ ∂Ω, lim infz→ζ(u(z)− v(z)) ≥ 0.
(ii) ∆u ≤ ∆v in the weak sense of Radon measures in Ω.

Then u ≥ v in Ω.

Proof. Set w := v − u and observe that w is well defined at all
points in Ω where the two functions do not take the value −∞ at
the same time, hence almost everywhere in Ω and w ∈ L1

loc(Ω) (see
Proposition 1.37). From the condition (ii) it follows that ∆w ≥ 0 in
the sense of distributions in Ω.

We infer that w is equal almost everywhere to a subharmonic func-
tion W in Ω (see Proposition 1.19 ). Therefore v = u + W almost
everywhere in Ω, hence everywhere in Ω.

We claim that lim supz→ζ W (z) ≤ 0. Indeed let (zj) ∈ ΩN be a
sequence converging to ζ ∈ ∂Ω. Since lim supzj→ζ(v(zj) − u(zj)) ≤ 0,
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it follows that for j > 1 large enough v(zj) − u(zj) < +∞, hence
W (zj) = v(zj) − u(zj) and lim supzj→ζ W (zj) ≤ 0. This proves our
claim. It follows from Corollary 1.16 that W ≤ 0 in Ω as desired. □

2.3. The Riesz representation formula. In this section we lay
down the foundations of Logarithmic potential theory. We associate
a canonical (Riesz) measure to any subharmonic function and show
how to reconstruct the function from its boundary values and its Riesz
measure.

Definition 1.18. We let SH(Ω) denote the set of all subharmonic
functions in the domain Ω which are not identically −∞.

The set SH(Ω) is a convex positive cone contained in L1
loc(Ω). The

proof of this fact will be given in Proposition 1.37, in the more general
context of plurisubharmonic functions.

Proposition 1.19. If u ∈ SH(Ω) then the distribution ∆u ≥ 0 is
a non-negative distribution: for any positive test function φ ∈ D+(Ω),

⟨∆u, φ⟩ =
∫
Ω

u∆φdV ≥ 0.

Conversely if T ∈ D′(Ω) is a distribution such that ∆T ≥ 0 then
there is a unique function u ∈ SH(Ω) such that Tu = T .

Proof. Fix u ∈ SH(Ω). Assume first that u is smooth in Ω and
fix a ∈ Ω. It follows from Taylor’s formula that

∆u(a) = lim
r→0+

2

r2

(
1

2π

∫ 2π

0

u(a+ reiθ)dθ − u(a)

)
.

Since u is subharmonic the right hand side is non negative hence
∆u(a) ≥ 0 pointwise in Ω.

We now get rid of the regularity assumption. It follows from Propo-
sition 1.37 that u ∈ L1

loc(Ω), hence we can regularize u by convolution
setting uε = u ⋆ ρε for ε > 0, using radial mollifiers.

The functions uε are subharmonic as convex combination of sub-
harmonic functions. Since uε is moreover smooth we infer ∆uε ≥ 0,
hence ∆u ≥ 0 since uε → u in L1

loc.
We note for later use that ε 7→ uε is non-decreasing: this follows

from the mean value inequalities and the fact that we use radial and
non-negative mollifiers. In particular uε decreases to u as ε decreases
to zero (cf Proposition 1.13 and Corollary 1.14).

Let now T be a distribution in Ω and (ρε)ε>0 be mollifiers as above.
Then vε := T ⋆ ρε is a smooth function such that ∆vε = (∆T ) ⋆ ρε ≥ 0
in Ωε, thus vε is subharmonic in Ωε.

We claim that ε 7−→ vε is non decreasing. Indeed for ε > 0 small
enough, the map η 7−→ (vε ⋆ ρη) is non decreasing since vε is subhar-
monic in Ωε. By definition of convolution, we have vε ⋆ ρη = vη ⋆ ρε in
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Ωε+η for ε, η > 0 small enough. Therefore for any fixed η > 0 small
enough, the map ε 7−→ vε ⋆ ρη is also non decreasing for small ε. Since
vε ⋆ ρη → vε as η → 0+ the claim follows.

Now since vε is non decreasing in ε > 0 it converges to a subhar-
monic function u as ε decreases to zero. The function u can not be
identically −∞ since Tu = T as distributions (this follows from the
monotone convergence theorem). The uniqueness follows again from
Corollary 1.14: two subharmonic functions which coincide almost ev-
erywhere are actually equal. □

Recall that a positive distribution always extends to a positive Borel
measure (see Exercise 1.11). Therefore if u ∈ SH(Ω) then the positive
distribution (1/2π)∆u can be extended as a positive Borel measure µu

on Ω which we call the Riesz measure of u.

Definition 1.20. The Riesz measure of u ∈ SH(Ω) is

µu =
1

2π
∆u.

Using the complex coordinate z = x+ iy, the real differential oper-
ator acting on smooth functions f : Ω −→ C by

df =
∂f

∂x
dx+

∂f

∂y
dy

splits into d = ∂ + ∂, where the complex differential operators ∂ and ∂
are defined by

∂f =
∂f

∂z
dz and ∂f =

∂f

∂z
dz.

We extend these differential operators to distributions: if f is a
distribution then df is defined as above, but it has to be understood in
the sense of currents of degree 1 on Ω: it is a differential form of degree
1 with distribution coefficients.

Observe that the volume form in C can be writen as

dx ∧ dy =
i

2
dz ∧ dz.

We define the real operator dc by

dc :=
1

2iπ
(∂ − ∂)

so that for u ∈ SH(Ω), we obtain

ddcu =
1

2π
∆u dx ∧ dy = µu dx ∧ dy,

where µu is the Riesz measure of u and the notation µu dx ∧ dy is
understood in the sense of currents of degree 2: it is a differential form
of degree 2 with distribution coefficients.
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Example 1.21. Fix a ∈ Ω. The function z 7→ ℓa(z) := log |z − a|
is subharmonic and satisfies

(2.2) ddcℓa =
1

2π
∆ℓa = δa,

in the sense of distribution, where δa denotes the Dirac mass at the
point a. In particular ℓ0 is a fundamental solution of the linear differ-
ential operator ddc = (2π)−1∆ in C.

The following result connects logarithmic potential theory to the
theory of holomorphic functions in one complex variable:

Proposition 1.22. Let f : Ω −→ C be a holomorphic function
such that f ̸≡ 0, then log |f | ∈ SH(Ω). It satisfies

ddc log |f | =
∑
a∈Zf

mf (a)δa,

where Zf := f−1(0) is the zero set of f in Ω and mf (a) is the order of
vanishing of f at the point a.

Observe that since f ̸≡ 0, the zero set Zf is discrete in Ω, hence
the sum is locally finite.

Proof. On any subdomain D ⋐ Ω the set A := Zf ∩ D is finite
and there exists a non-vanishing holomorphic function g such that

f(z) = Πa∈A(z − a)mf (a)g(z)

for z ∈ D. Since g is zero free, log |g| is harmonic hence

ddc log |f | =
∑
a∈A

mf (a)dd
c log |z − a| =

∑
a∈A

mf (a)δa

in the sense of distributions. □

Let µ be a Borel measure with compact support on C, then

z 7→ Uµ(z) :=

∫
C
log |z − ζ|dµ(ζ) = µ ⋆ ℓ0(z)

is subharmonic in C. Moreover, if z ∈ C \ Supp(µ) then

Uµ(z) ≥ log dist(z, Supp(µ)) > −∞,

and

Uµ(z) ≤ µ(C) log+ |z|+ C(µ), z ∈ C.
It follows that Uµ ∈ SH(C).

Definition 1.23. The function Uµ : z 7→
∫
C log |z − ζ|dµ(ζ) is

called the logarithmic potential of the measure µ.
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Observe that

1

2π
∆Uµ =

(
1

2π
∆ℓ0

)
⋆ µ = µ,

in the sense of distributions on C. This implies that Uµ is subharmonic
in C and harmonic (hence real analytic) in C \ Supp(µ).

We can now derive the Riesz representation formula:

Proposition 1.24. Fix u ∈ SH(Ω) and D ⋐ Ω a subdomain.
Then

u(z) =

∫
D

log |z − ζ|dµu(ζ) + hD(z), z ∈ D,

where µu := 1
2π
∆u and hD is a harmonic function in D.

Proof. Apply the last construction to the measure µD := 1D · µu

which is a Borel measure with compact support on C: the function

v(z) :=

∫
D

log |z − ζ|dµu(ζ) = µD ⋆ ℓ0(z)

is subharmonic in C and satisfies

∆v = µD ⋆∆(ℓ0) = 1D(∆u)

in the sense of Borel measures in C. Therefore h := u − v is a locally
integrable function which satisfies ∆h = 0 in the weak sense of distri-
butions in D. It follows from Weyl’s lemma that h coincides almost
everywhere in D with a harmonic function denoted by hD. This implies
that u = v + hD almost everywhere in D hence everywhere in D. □

This result shows that a subharmonic function u coincides locally
(up to a harmonic function which is smooth) with the logarithmic po-
tential of its Riesz measure µu. In particular the information on the sin-
gularities of u (discontinuities, polar points, etc) are contained within
its potential Uµ.

The study of fine properties of subharmonic functions is therefore
reduced to that of logarithmic potentials of compactly supported Borel
measures on C, hence the name Logarithmic Potential Theory.

2.4. Poisson-Jensen formula. The Poisson-Jensen formula is a
generalization of the Poisson formula for harmonic functions in the
unit disc. It is a precise version of the Riesz representation formula
that takes into account the boundary values of the function:

Proposition 1.25. Assume u ∈ SH(Ω) where Ω is a domain con-
taining the closed unit disc D. Then for all z ∈ D,

u(z) =

∫ 2π

0

u(eiθ)
1− |z|2

|z − eiθ|2
dθ

2π
+

∫
|ζ|<1

log
|z − ζ|
|1− zζ̄|

dµ(ζ),

where µ = 1
2π
∆u is the Riesz measure of u.
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When u is harmonic in D we recover the Poisson formula (Theo-
rem 1.6). The first term is called the Poisson transform of u in D.
This is the least harmonic majorant of u in D. The second term is a
non-positive subharmonic function encoding the singularities of u; it is
called the Green potential of the measure µ.

Proof. Fix w ∈ D and set for z ∈ D,

GD(z, w) = Gw(z) := log
|z − w|
|1− zw̄|

Observe that Gw is subharmonic in D,

ddcGw = δw,

in the weak sense of distributions in D and Gw ≡ 0 in D.
It follows from the comparison principle (Corollary 1.17) that Gw

is the unique function having these properties. It is called the Green
function of the unit disc with logarithmic pole at the point w.

For w ∈ C fixed, we set

Hw(z) :=

∫
∂D

log |ξ − w|PD(z, ξ)dσ(ξ),

where dσ is the normalized Lebesgue measure on ∂D and

PD(z, ξ) :=
1− |z|2

|ξ − z|2
,

is the Poisson kernel for the unit disc. We claim that

Hw(z) = log |z − w| −Gw(z), if w ∈ D,(2.3)

Hw(z) = log |z − w|, if w ∈ C \ D.(2.4)

Indeed if w ∈ D then by Proposition 1.6, the function Hw is harmonic
in D and continuous up to the boundary where it coincides with the
function z 7−→ log |z−w|. Therefore the function g(z) := log |z−w| −
Hw(z) is harmonic in D \ {w}, subharmonic in D with a logarithmic
singularity at w and is 0 on ∂D. The maximum principle thus yields

(2.5) Gw(z) = log |z − w| −Hw(z),

for any z ∈ D, which proves (2.3).
If w ∈ C \ D̄, the function z 7−→ log |z − w| is harmonic in D and

continuous in D̄. Therefore (2.4) follows from the Poisson formula.
By the Riesz representation formula, if D′ is a disc containing D̄ so

that u is subharmonic on D̄′, we have u = Uµ+h in D′, where µ := µD′

and h is a harmonic function in D′. Fubini’s theorem and (2.3), (2.4)
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yield∫
∂D

u(ξ)PD(z, ξ)dσ(ξ) =

∫
∂D

(∫
D′
log |ξ − ζ|dµ(ζ) + h(ξ)

)
PD(z, ξ)dσ(ξ)

=

∫
D′

(∫
∂D

log |ξ − ζ|PD(z, ξ)dσ(ξ)

)
dµ(ζ) + h(z)

=

∫
D′
log |z − ζ|dµ(ζ)−

∫
D
Gζ(z))dµ(ζ) + h(z)

= u(z)−
∫
D
Gζ(z))dµ(ζ),

which is the required formula. □

Remark 1.26. The Poisson-Jensen formula suggests to consider
the following general Dirichlet problem: given a finite Borel measure
on the disc D and a continuous function ϕ in ∂D, find u ∈ SH(D)
which extends to the boundary such that

DirMA(D, ϕ, µ)
{

∆u = µ in D
u|∂D = ϕ

We shall come back to this problem in Chapter 5.

2.5. The Green function and the Dirichlet problem. As we
already observed, for any w ∈ C, the function ℓw(z) := log |z − w| is a
fundamental solution for the Laplace operator i.e.

ddcℓ = δw,

in the weak sense of distributions on C.
For the unit disc D we have foundamental solution GD(·, w) for the

Laplace operator in D such that GD(·, w) ≡ 0 on ∂∆. This means that
g := GD(·, w) is the unique solution to the following Dirichlet problem:

DirMA(D, 0, δw)
{

∆u = δw in D
u|∂D = 0

Definition 1.27. Let Ω ⊂ C be a fixed domain and w ∈ C be a
fixed point. We say that Ω admits a Green function with logarithmic
pole at w if there xists a fundamental solution to the Laplace operator
on the domain Ω with boundary values 0 (on ∂Ω) i.e. the Dirichlet
problem DirMA(Ω, 0, δw) with D replaced by Ω has a solution.

Such a function if it exists is unique by the maximum principle. We
denote it by GΩ(·, w) : the Green function of Ω with logarithmic pole
at w.

The existence of a Green function is closely related to the regularity
of the domain and the solvability of the Dirichlet problem for the ho-
mogenous equation ∆u = 0 in Ω with an arbitary continuous boundary
data (see [Ra]).
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Theorem 1.28. Assume that Ω ⋐ C is a given domain. Then the
following properties are equivalent:

(i) for any fixed point w ∈ Ω, the domain Ω admits a Green function
with logarithmic pole at w;

(ii) for any point ζ ∈ ∂Ω there exists a function bζ subharmonic in
Ω such that bζ < 0 in Ω and limz→ζ bζ(z) = 0 (bζ is called a barrier for
Ω at the point ζ);

(iii) for any continuous function h ∈ C0(∂Ω, the Dirichlet problem

DirMA(Ω, h, 0)

{
∆u = 0 in D
u|∂Ω = h

has a (unique) solution UΩ(h).

A domain satisfying one the previous properties is said to be regular
for the Dirichlet problem. As a consequence we connect this problem
to the Riemann mapping theorem.

Corollary 1.29. Let Ω ⋐ C be a simply connected domain. Then
Ω admits a Green function Gw with logarithmic pole at any fixed point
w ∈ Ω.

Moreover there exists a holomorphic isomorphism ϕ of Ω onto the
unit disc D such that ϕ(w) = 0 and

|ϕ(z)| := eGΩ(z,w), z ∈ Ω.

Proof. We first show that the domain Ω is regular for the Dirichlet
problem. Indeed fix ζ ∈ ∂Ω. Then by translation and dilation, we can
assume that ζ = 0 ∈ ∂Ω and Ω ⊂ D. Then since Ω is a simply
connected domain in C \ {0}, there exists a holmorphic branch log of
the logarithm on Ω. Hence the function defined on Ω by

b(z) := ℜ(1/ log z)

is a barrier function for Ω at the boundary point ζ = 0.
By the previous theorem, Ω admits a Green function. Let h(z) :=

GΩ(z)−log |z−w| for z ∈ Ω. Then the function h is harmonic in Ω\{w}
and locally bounded near w in Ω \ {w}. Therefore it extends into a
harmonic function on Ω. Let h∗ be the harmonic conjugate function
of h in Ω such that h∗(w) = C to be choosen. Then the function
ϕ(z) := (z − w)eh+ih∗

is holomorphic in Ω such that |ϕ(z)| = eGΩ(z,w)

and limzto∂Ω = 1 Therefore ϕ is a proper holomorphic function from Ω
onto D. It is enough to prove that ϕ is injective on Ω. Assume there
are two point a, b ∈ Ω such that ϕ(a) = ϕ(b).

Consider the function u(z) := GD(ϕ(z), ϕ(b))−GΩ(z, b). Then u is
subharmonic in Ω\{w0} and bounded from above near w0. Therfore it
exetnds into a subharmonic function in Ω, denoted by u. Since u tends
to 0 at the boundary of Ω, it follows from the maximum principle that
u ≤ 0 in Ω. Since u(a) = 0 we conclude that u ≡ 0 in Ω. Therefore
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since ϕ(a) = ϕ(b), we have proved that for any z ∈ Ω,

GD(ϕ(z), ϕ(a)) = GD(ϕ(z), ϕ(b)) = GΩ(z, b)

Since ϕ(a) = ϕ(b) this implies that

GΩ(a, b) = lim
z→a

GΩ(z, b) = lim
z→a

GD(ϕ(z), ϕ(a)) = ∞.

This proves that a = b. □

3. Plurisubharmonic functions

We now introduce the fundamental objects that we are going to
study in the sequel. The notion of plurisubharmonic function is the
pluricomplex counterpart of the notion of subharmonic function.

3.1. Basic properties. We fix Ω a domain of Cn.

Definition 1.30. A function u : Ω −→ [−∞ +∞[ is plurisubhar-
monic if it is upper semi-continuous and for all complex lines Λ ⊂ Cn,
the restriction u|Ω ∩ Λ is subharmonic in Ω ∩ Λ.

The latter property can be reformulated as follows: for all a ∈ Ω,
ξ ∈ Cn with |ξ| = 1 and r > 0 such that B̄(a, r) ⊂ Ω,

(3.1) u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθξ)dθ.

All basic results that we have established for subharmonic functions
are also valid for plurisubharmonic functions. We state them and leave
the proofs to the reader:

Proposition 1.31.

(1) If u : Ω −→ [−∞,+∞[ is plurisubharmonic in Ω and χ is a
real convex increasing function on an interval containing the
image u(Ω) of u then χ ◦ u is plurisubharmonic in Ω.

(2) Let (uj)j∈N be a decreasing sequence of plurisubharmonic func-
tions in Ω. Then u := limj→+∞ uj is plurisubharmonic in Ω.

(3) Let (X, T ) be a measurable space, µ a positive measure on
(X, T ) and E(z, x) : Ω×X −→ R ∪ {−∞} be such that

(i) for µ-a.e. x ∈ X, z 7−→ E(z, x) is plurisubharmonic,
(ii) ∀z0 ∈ Ω there exists r > 0 and g ∈ L1(µ) such that for

all z ∈ B(z0, r) and µ-a.e. x ∈ X, E(z, x) ≤ g(x).
Then z 7→ V (z) :=

∫
X
E(z, t)dµ(x) is plurisubharmonic.

Recall that a function f : z = (z1, . . . , zn) ∈ Ω 7→ f(z) ∈ C is
holomorphic if it satisfies the Cauchy-Riemann equations ∂f/∂zj = 0
for all 1 ≤ j ≤ n.

Proposition 1.32. Let Ω ⊂ Cn be a domain in Cn and f a holo-
morphic function such that f ̸≡ 0 in Ω. Then log |f | is plurisubhar-
monic in Ω and pluriharmonic in Ω\{f = 0}. Moreover for any α > 0,
|f |α is plurisubharmonic in Ω.
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A function is pluriharmonic if it satifies the linear equations

∂2f

∂zj∂zk
= 0

for all 1 ≤ j, k ≤ n. One shows (like in complex dimension 1) that a
function is pluriharmonic if and only if it is locally the real part of a
holomorphic function.

We add one more recipe known as the gluing construction:

Proposition 1.33. Let u be a plurisubharmonic function in a do-
main Ω. Let v be a plurisubharmonic function in a relatively compact
subdomain Ω′ ⊂ Ω. If u ≥ v on ∂Ω′, then the function

z 7−→ w(z) =

{
max[u(z), v(z)] if z ∈ Ω′

u(z) if z ∈ Ω \ Ω′

is plurisubharmonic in Ω.

Proof. The upper semi-continuity property is clear. Replacing v
by v−ε, one gets that u strictly dominates v−ε in a neighborhood of ∂Ω′

and the corresponding function wε is then clearly plurisubharmonic.
Now w is the increasing limit of wε as ε decreases to zero, so it satisfies
the appropriate submean-value inequalities. □

3.2. Submean-value inequalities. The following result follows
from its analogue in one complex variable.

Proposition 1.34. Let u : Ω −→ [−∞+∞[ be a plurisubharmonic
function. Fix a ∈ Ω and set δ(a) := dist(a, ∂Ω). Then

(i) the spherical submean value inequality holds: for 0 < r < δ(a),

(3.2) u(a) ≤
∫
|ξ|=1

u(a+ rξ) dσ(ξ),

where dσ is the normalized area measure on the unit sphere S2n−1 ⊂ Cn;
(ii) the spatial submean value inequality holds: for 0 < r < δ(a)

and any increasing right continuous function γ on [0, r] with γ(0) = 0,

(3.3) u(a) ≤ 1

γ(r)

∫ r

0

dγ(s)

∫
|ξ|=1

u(a+ sξ) dσ(ξ);

(iii) the toric submean value inequality holds: for 0 < r < δ(a)/
√
n,

(3.4) u(a) ≤
∫
Tn

u(a+ rζ) dτn(ζ),

where dτn is the normalized Lebesgue measure on the torus Tn.

All these integrals make sense in [−∞,+∞[. We will soon see that
they are usually finite (cf Proposition 1.37).
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Proof. The first inequality follows from (3.1) by integration over
the unit sphere in Cn and the second inequality follows from the first
one by integration over [0, r] against the measure dγ. The third in-
equality follows from (3.1) by integration on the torus. □

Remark 1.35. Let u be a plurisubharmonic in Ω. Using polar co-
ordinates we can write∫

|ζ|<1

u(a+ rζ)dλ(ζ) =

∫ r

0

t2n−1dt

∫
|ξ|=1

u(a+ tξ)dσ(ξ).

It follows from (3.3) that

(3.5) u(a) ≤ 1

κ2n

∫
|ζ|<1

u(a+ rζ) dV (ζ),

where κ2n denotes the volume of the unit ball in Cn.
The function u considered as a function on 2n real variables is thus

subharmonic in Ω considered as a domain in R2n.

Definition 1.36. We denote by PSH(Ω) the convex cone of plurisub-
harmonic functions u in Ω such that u|Ω ̸≡ −∞.

The submean-value inequalities imply the following important in-
tegrability result:

Proposition 1.37.

PSH(Ω) ⊂ L1
loc(Ω).

Moreover the restriction of u ∈ PSH(Ω) to any euclidean sphere
(resp. any torus Tn) contained in Ω is integrable with respect to the
area measure of the sphere (resp. the torus).

In particular the polar set P (u) := {u = −∞} has volume zero in
Ω and its intersection with any euclidean sphere (resp. any torus Tn)
has measure zero with respect to the corresponding area measure.

Definition 1.38. A set is called (locally) pluripolar if it is (locally)
included in the polar set {u = −∞} of a function u ∈ PSH(Ω).

It follows from previous proposition that pluripolar sets are some-
how small. We will provide more precise information on their size in
the next chapters.

Proof. Fix u ∈ PSH(Ω) et let G denote the set of points a ∈ Ω
such that u is integrable in a neighborhood of a. We are going to show
that G is a non empty open and closed subset of Ω. It will follow that
G = Ω (by connectedness) and u ∈ L1

loc(Ω).
Note that G is open by definition. If a ∈ Ω and u(a) > −∞, the

volume submean-value inequalities yield, for all 0 < r < dist(a, ∂Ω),

−∞ < κ2nr
2nu(a) ≤

∫
B(a,r)

u(z) dV (z).
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Since u is bounded from above on B(a, r) ⋐ Ω, it follows that u is
integrable on B(a, r). In particular if u(a) > −∞ then a ∈ G, hence
G ̸= ∅, since u ̸≡ −∞.

We finally prove that G is closed. Let b ∈ Ω be a point in the
closure of G and r > 0 so that B(b, r) ⋐ Ω. By definition there exists
a ∈ G ∩ B(b, r). Since u is locally integrable in a neighborhood of a
there exists a point a′ close to a in B(b, r) such that u(a′) > −∞. Since
b ∈ B(a′, r) ⋐ Ω and u is integrable on B(a′, r), it follows that b ∈ G.

The other properties are proved similarly, replacing volume sub-
mean inequalities by spherical (resp. toric) ones (Proposition 1.34). □

Proposition 1.39. Fix u ∈ PSH(Ω), a ∈ Ω and set δΩ(a) :=
dist(a, ∂Ω). Fix γ a non decreasing right continuous function such that
γ(0) = 0. Then

r 7−→Mγ(a, r) :=
1

γ(r)

∫ r

0

dγ(s)

∫
|ξ|=1

u(a+ sξ) dσ(ξ),

is a non-decreasing continuous function in [0, δΩ(a)[ which converges
to u(a) as r → 0.

Proof. This property has already been established when n = 1.
Fix 0 < r < δΩ(a) and observe that for all eiθ ∈ T,∫

|ξ|=1

u(a+ sξ)dσ(ξ) =

∫
|ξ|=1

u(a+ seiθ · ξ)dσ(ξ),

since the area measure on the sphere is invariant under the action of
the circle T. Integrating on the circle and using the one-dimensional
case yields the required property. □

Corollary 1.40. For u ∈ PSH(Ω), a ∈ Ω and 0 < r < δΩ(a),

u(a) ≤ 1

κ2n

∫
|ζ|≤1

u(a+ rζ)dλ(ζ) ≤
∫
|ξ|=1

u(a+ rξ) dσ(ξ).

Corollary 1.41. If two plurisubharmonic functions coincide al-
most everywhere, then they are equal.

Proof. Assume u, v ∈ PSH(Ω) are equal a.e. Then for all a ∈ Ω,

u(a) = lim
r→0

1

κ2n

∫
|ζ|≤1

u(a+ rζ)dλ(ζ)

= lim
r→0

1

κ2n

∫
|ζ|≤1

v(a+ rζ)dλ(ζ) = v(a).

□

We endow the space PSH(Ω) with the L1
loc-topology. The following

property will be used on several occasions in the sequel:
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Proposition 1.42. The evaluation functional

(u, z) ∈ PSH(Ω)× Ω 7−→ u(z) ∈ R ∪ {−∞}

is upper semi-continuous.
In particular if U ⊂ PSH(Ω) is a compact family of plurisubhar-

monic functions, its upper envelope

U := sup{u;u ∈ U}

is upper semi-continuous hence plurisubharmonic in Ω.

Proof. Fix (u, z0) ∈ PSH(Ω) × Ω. Let (uj) be a sequence in
PSH(Ω) converging to u and let r > 0 and δ > 0 be small enough.

We observe first that (uj) is locally uniformly bounded from above.
Indeed, if B(a, 2r) ⊂ Ω, the submean value inequalities yield,

uj(z) ≤
1

κ2nr2n

∫
B(z,r)

uj(w)dV (w) ≤ 1

κ2nr2n

∫
B(a,2r)

|uj(w)|dV (w)

for |z − a| < r. Thus

sup
B(z0,r)

uj ≤
1

κ2nr2n

∫
B(a,2r)

|uj(w)|dV (w) ≤ C,

since U is compact hence bounded.
We can thus assume without loss of generality that uj ≤ 0. The

submean-value inequalities again yield, for |z − z0| < δ,

uj(z) ≤
1

κ2n(r + δ)2n

∫
B(z,r+δ)

ujdλ ≤ 1

κ2n(r + δ)2n

∫
B(z0,r)

ujdλ

Taking the limit in both j and z, we obtain

lim sup
(j,z)→(+∞,z0)

uj(z) ≤
1

κ2n(r + δ)2n

∫
B(z0,r)

udλ.

Let δ → 0+ and then r → 0+ to obtain

lim sup
(j,z)→(+∞,z0)

uj(z) ≤ u(z0),

which proves the desired semi-continuity at point (u, z0).
It follows that the envelope U is upper semi-continuous. Since it

clearly satisfies the mean value inequalities on each complex line, we
infer that U is plurisubharmonic . □

The upper envelope of a family of plurisubharmonic functions which
is merely relatively compact is not necessarily upper semi-continuous.
It turns out that its upper semi-continuous regularization is plurisub-
harmonic :
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Proposition 1.43. Let (ui)i∈I be a family of plurisubharmonic
functions in a domain Ω, which is locally uniformly bounded from above
in Ω and let u := supi∈I ui be its upper envelope. The usc regularization

z 7→ u∗(z) := lim sup
Ω∋z′→z

u(z′) ∈ R ∪ {−∞}

is plurisubharmonic in Ω and {u < u∗} has Lebesgue measure zero.

Proof. It follows from Choquet’s lemma (see Chapter 4) that
there exists an increasing sequence vj = uij of plurisubharmonic func-
tions such that

u∗ = (lim vj)
∗ .

Set v = lim ↗ vj. This function satisfies various mean-value in-
equalities but it is not necessarily upper semi-continuous. Let χε be
standard radial mollifiers. Observe that, for ε > 0 fixed, vj ∗ χε is an
increasing sequence of plurisubharmonic functions, thus its continuous
limit v ∗ χε is plurisubharmonic and ε 7→ v ∗ χε is increasing.

We let w denote the limit of v ∗χε as ε decreases to zero. The func-
tion w is plurisubharmonic as a decreasing limit of plurisubharmonic
functions. It satisfies, for all ε > 0, w ≤ u ∗ χε since vj ∗ χε ≤ u ∗ χε.

On the other hand for all ε > 0, u ≤ v∗ ≤ v ∗ χε hence

u ≤ u∗ = v∗ ≤ w ≤ u ∗ χε.

Since u∗χε converges to u in L1
loc, we conclude that u

∗ = w is plurisub-
harmonic. Note that the set {u < u∗} has Lebesgue measure zero. □

Example 1.44. If f : Ω −→ C is a holomorphic function such
that f ̸≡ 0 and c > 0 then c log |f | ∈ PSH(Ω). Conversely one can
show, when Ω is pseudoconvex, that the cone PSH(Ω) is the closure
(in L1

loc(Ω)) of the set of functions

{c log |f |; f ∈ O(Ω), f ̸≡ 0, c > 0}.
This can be shown by using Hörmander’s L2-estimates [Horm90].

3.3. Differential characterization. We show in this section that
plurisubharmonicity can be characterized by differerential inequalities.

3.3.1. Plurisubharmonic smoothing. We first explain how any u ∈
PSH(Ω) can be approximated by a decreasing family of smooth plurisub-
harmonic functions (on any subdomain D ⋐ Ω).

Let ρ(z) ≥ 0 be a smooth radial function on Cn with compact
support in the unit ball B ⊂ Cn such that

∫
Cn ρ(z)dλ(z) = 1. We set

ρε(ζ) := ε−2nρ(ζ/ε),

for ε > 0. The functions ρε are smooth with compact support in B(0, ε)
and

∫
Cn ρεdλ = 1, they approximate the Dirac mass at the origin.

Let u : Ω −→ R ∪ {−∞} be a L1
loc-function. We set

Ωε := {z ∈ Ω; dist(z, ∂Ω) > ε}
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and consider, for z ∈ Ωε,

uε(z) :=

∫
Ω

u(ζ)ρε(z − ζ)dλ(ζ).

These functions are smooth and converge to u in L1
loc.

Proposition 1.45. If u ∈ PSH(Ω) then the smooth functions uε
are plurisubharmonic and decrease to u as ε decreases to 0+.

Proof. The functions uε are plurisubharmonic as (convex) average
of plurisubharmonic functions. By definition if z ∈ Ωε, we have

uε(z) =

∫
|ζ|<1

u(z + εζ)ρ(ζ)dλ(ζ), z ∈ Ωε.

Integrating in polar coordinates we get

uε(z) =

∫ 1

0

r2n−1ρ(r)dr

∫
|ξ|=1

u(z + εrξ)dσ(ξ).

The monotonicity property now follows from Proposition 1.39. □
We let the reader check that a function u of class C2 is plurisub-

harmonic in Ω iff for all a ∈ Ω and ξ ∈ Cn,

(3.6) Lu(a; ξ) :=
n∑

i=1

n∑
j=1

∂2u

∂zi∂zj
(a)ξiξj ≥ 0.

In other words the hermitian form Lu(a, .) (the Levi form of u at the
point a) should be semi-positive in Cn.

For non smooth plurisubharmonic functions this positivity condi-
tion has to be understood in the sense of distributions:

Proposition 1.46. If u ∈ PSH(Ω) then for any ξ ∈ Cn,∑
1≤j,k≤n

ξj ξ̄k
∂2u

∂zj∂z̄k
≥ 0

is a positive distribution in Ω.
Conversely if U ∈ D′(Ω) is a distribution such that for all ξ ∈ Cn,

the distribution
∑
ξj ξ̄k

∂2U
∂zj∂z̄k

is positive, then there exists a unique u ∈
PSH(Ω) such that U ≡ Tu.

Each distribution ∂2u
∂zi∂z̄j

extends to a complex Borel measure µj,k̄ on

Ω so that the matrix (µj,k̄) is hermitian semi-positive.

Proof. The proof follows that of Proposition 1.19. Fix ξ ∈ Cn

and consider the linear operator with constant coefficients

∆ξ :=
∑

1≤j,k≤n

ξj ξ̄k
∂2

∂zj∂z̄k
.
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Assume first that u is smooth in Ω and fix a ∈ Ω. The one variable
function uξ : ζ 7−→ u(a+ ζ · ξ) is defined on a small disc around 0. For
ζ ∈ C small enough observe that

∂2uξ
∂ζ∂ζ̄

(ζ) = ∆ξu(a+ ζ · ξ).

This yields the first claim of the proposition in this smooth setting.
We proceed by regularization to treat the general case. Since ∆ξ is

linear with constant coefficients, it commutes with convolution,

∆ξuε = (∆ξu)ε

and we can pass to the limit to conclude.
For the converse we proceed as in the proof Proposition 1.19 to

show that the distributions ∂2u
∂zj∂z̄j

are non-negative in Ω. Thus they

extend into non-negative Borel measures in Ω. The mixed complex
derivatives are controlled by using polarization identities for hermitian
forms. □

3.3.2. Invariance properties. Plurisubharmonicity is invariant un-
der holomorphic changes of coordinates, hence it makes sense on com-
plex manifolds. More generally we have the following:

Proposition 1.47. Fix Ω ⊂ Cn and Ω′ ⊂ Cm. If u ∈ PSH(Ω)
and f : Ω′ −→ Ω is a holomorphic map, then u ◦ f ∈ PSH(Ω′).

Proof. Using convolutions we reduce to the case when u is smooth.
Fix z0 ∈ Ω′ and set w0 = f(z0), by the chain rule we get

∂2u ◦ f
∂zi∂z̄j

(z0) =
∑

1≤k,l≤n

∂fk
∂zi

∂fl
∂zj

(z0)
∂2u

∂wk∂w̄l

(w0),

for i, j = 1, · · · ,m. Thus for all ξ ∈ Cn,∑
i,j

ξj ξ̄j
∂2u ◦ f
∂zi∂z̄j

(z0) =
∑
k,l

ηkη̄l
∂2u

∂wk∂w̄l

(w0),

where ηk :=
∑m

i=1 ξi
∂fk
∂zi

(z0) for k = 1, · · · , n.
This means in terms of the Levi forms that Lu◦f (z0; ξ) = Lu(w0; η),

where η := ∂f(z0) · ξ and w0 := f(z0). The result follows. □
We have observed that plurisubharmonic functions are subharmonic

functions when considered as functions of 2n real variables, identifying
Cn ≃ R2n. Conversely one can characterize plurisubharmonic functions
as those subharmonic functions in R2n ≃ Cn which are invariant under
complex linear transformations of Cn:

Proposition 1.48. Let Ω ⊂ Cn ≃ R2n be a domain and u : Ω →
[−∞,+∞[ an upper semi-continuous function in Ω. Then u is plurisub-
harmonic in Ω iff for any complex affine transformation S : Cn → Cn,
u ◦ S is subharmonic in the domain S−1(Ω) ⊂ R2n.
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Proof. One implication follows from Proposition 1.47: if u is
plurisubharmonic, then u ◦ S is subharmonic for any complex affine
trasnformation S : Cn → Cn.

We now prove the converse. Let r > 0 be small enough and z ∈ Ωr.
By assumption for all 0 < ε < 1, the function ξ 7→ u(z1+ rξ1, z

′+ rεξ′)
is subharmonic in ξ in a neighborhood of the unit sphere {|ξ| = 1} in
R2n. The spherical submean value inequality yields

u(z) ≤
∫
|ξ|=1

u(z1 + rξ1, z
′ + rεξ′)dσ(ξ),

where dσ denotes the normalized Lebesgue measure on the unit sphere.
Since u is upper semi-continuous and locally bounded from above, by
Fatou’s lemma, we obtain as ε→ 0

u(z) ≤
∫
|ξ|=1

u(z1 + rξ1, z
′)dσ(ξ).

This means that the function of one complex variable ζ −→ u(ζ, z′) is
subharmonic in its domain. The subharmonicity on other lines follows
from the invariance under complex transformations. □

4. Hartogs lemma and the Montel property

4.1. Hartogs lemma.

Theorem 1.49. Let (uj) be a sequence of functions in PSH(Ω)
which is locally uniformly bounded from above in Ω.

1. If (uj) does not converge to −∞ locally uniformly on Ω, then it
admits a subsequence which converges to some u ∈ PSH(Ω) in L1

loc(Ω).

2. If uj → U in D′(Ω) then the distribution U is defined by a unique
function u ∈ PSH(Ω). Moreover

• uj → u in L1
loc(Ω)

• lim supuj(z) ≤ u(z) for all z ∈ Ω, with equality a.e. in Ω.
• for any compact set K and any continuous function h on K,

lim supmax
K

(uj − h) ≤ max
K

(u− h).

The last item is usually called Hartogs lemma. When the compact
set K is ”regular”, we actually have an equality,

limmax
K

(uj − h) = max
K

(u− h).

We are not going to study this notion any further here. The reader will
check in Exercise 1.20 that if a compact set is the closure of an open
set with smooth boundary, then it is regular.

Proof. The statement is local so we can assume that Ω ⋐ Cn and
uj ≤ 0 in Ω for all j ∈ N (substracting a constant if necessary).
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Since (uj) does not converge uniformly towards −∞, we can find a
compact set E and C > 0 such that

lim sup
j→+∞

max
E

uj ≥ −C > −∞.

Thus there exists an increasing sequence (jk) of integers and a sequence
of points (xk) in E such that the sequence ujk(xk) is bounded from
below by −2C. Extracting again we can assume that xk → a ∈ E. Set
for simplicity vk := ujk for k ∈ N.

We know that vk ∈ L1
loc(Ω) and we claim that if B ⋐ Ω is a ball

around a, the sequence
∫
B
vkdλ is bounded. Indeed for k large enough

there is a ball Bk centered at xk such that B ⊂ Bk ⋐ Ω hence∫
B

vkdλ ≥
∫
Bk

vkdλ ≥ λ(Bk)vk(xk) ≥ −2Cλ(Ω).

By the same reasoning as in the proof of Proposition 1.37, we deduce
from this that the set X of points x ∈ Ω which have a neighborhood
W ⊂ Ω such that the sequence

∫
W
vkdλ is bounded below is closed.

Since it is open (by definition) and not empty (by assumption), we
infer from connectedness that X = Ω.

The sequence (vk) is therefore bounded in L1
loc(Ω), i.e. the sequence

of non-negative measures µk := (−vk)λ is bounded in the weak topol-
ogy of Radon measures on Ω. Thus it admits a subsequence which
converges weakly (in the sense of Radon measures), hence the first
assertion is now a consequence of the second one.

We now prove the second statement. Assume that uj ⇀ U in the
weak sense of distributions on Ω. It follows from Proposition 1.46 that
U = Tu is defined by a plurisubharmonic function u.

We want to show that uj → u in L1
loc(Ω). Fix (ρε) mollifiers as

earlier. We observe that the sequence (uj ⋆ ρε)j∈N is equicontinuous in
Ωε since (uj) is bounded in L1

loc(Ω): indeed fix a ∈ Ωε, 0 < η < ε/2,
then for x, y ∈ B(a, η),

|uj ⋆ ρε(x)− uj ⋆ ρε(y)| ≤ sup
|t|≤ε

|ρ(x− t)− ρ(y − t)| · ∥uj∥L1(B(a,ε).

Fix K ⊂ Ω a compact set and χ a continuous test function in Ω
such that χ ≡ 1 on K and 0 ≤ χ ≤ 1 on Ω. Then∫

K

|uj − u|dλ ≤
∫
(uj ⋆ ρε − uj)χdλ+

∫
χ|uj ⋆ ρε − u ⋆ ρε|dλ

+

∫
(u ⋆ ρε − u)χdλ.

We use here the key fact that uj ⋆ ρε − uj ≥ 0.
By weak convergence the fist term converges to

∫
(u ⋆ ρε − u)χdλ

and by equicontinuity, uj ⋆ ρε −→ u ⋆ ρε uniformly on K as j → +∞.
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Hence

lim sup
j→+∞

∫
K

|uj − u|dλ ≤ 2

∫
(u ⋆ ρε − u)χdλ.

The monotone convergence theorem insures that the right hand side
converges to 0 as ε↘ 0.

Since uj ⋆ ρε −→ u ⋆ ρε locally uniformly in Ωε and uj ≤ uj ⋆ ρε, it
follows that lim supuj ≤ u ⋆ ρε in Ω, hence lim sup uj ≤ u in Ω.

Fatou’s lemma insures that for any fixed compact set K ⊂ Ω,∫
K

udλ = lim
j

∫
K

ujdλ ≤
∫
K

(lim sup
j

uj)dλ ≤
∫
K

udλ

As u − lim supuj ≥ 0 in Ω and
∫
K
(u − lim supuj)dλ = 0, we infer

u− lim supj uj = 0 almost everywhere in K.

To prove the last property, we observe that

max
K

(uj − h) ≤ max
K

(uj ⋆ ρε − h) → max
K

(u ⋆ ρε − h),

where the last convergence follows from the equicontinuity of the family
(uj ⋆ ρε − h) for fixed ε > 0. □

The following consequence is a kind of ”Montel property” of the
convex set PSH(Ω):

Corollary 1.50. The space PSH(Ω) is a closed subset of L1
loc(Ω)

for the L1
loc-topology which has the Montel property: every bounded sub-

set in PSH(Ω) is relatively compact.

4.2. Comparing topologies. Plurisubharmonic functions have
rather good integrability properties: they belong to the spaces Lp

loc

for all 1 ≤ p < +∞ and their gradient are in Lq
loc for all 1 ≤ q < 2:

Theorem 1.51. Let (uj) be a sequence of functions in PSH(Ω)
converging in L1

loc to u ∈ PSH(Ω). Then

(1) the sequence is locally uniformly bounded from above;
(2) uj → u in Lp

loc for all p ≥ 1;
(3) the gradients Duj converge in Lq

loc to Du for all q < 2.

Together with Theorem 1.49, this result shows that

PSH(Ω) ⊂ Lp
loc(Ω) ⊂ D′(Ω)

and the weak topology of distributions on Ω and the Lp
loc-topology

coincide on the space PSH(Ω) for all p ≥ 1.

Proof. Step 1. We first show that (uj) is locally uniformly bounded
in Lp

loc, for all p ≥ 1. Assume first that n = 1, D̄ ⊂ Ω and u(0) > −∞.
We can assume without loss of generality that u ≤ 0. The Poisson-
Jensen formula yields

(4.1) u(z) =

∫
∂D
u(ζ)

1− |z|2

|z − ζ|2
dσ(ζ) +

∫
|ζ|<1

log
|z − ζ|
|1− zζ̄|

dµ(ζ),
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where dσ(ζ) := |dζ|
2π

is the normalized length measure on ∂D and µ :=
∆u
2π

is the Riesz measure of u in D. In particular

u(0) =

∫ 2π

0

u(eiθ)
dθ

2π
+

∫
|ζ|<1

log |ζ|dµ(ζ).

Set

h(z) =

∫
∂D
u(ζ)

1− |z|2

|z − ζ|2
dσ(ζ).

This is a negative harmonic function in the unit disc. It follows from
Harnack inequalities that 3h(0) ≤ h(z) ≤ 3−1h(0) for |z| < 1/2. Thus
for p ≥ 1, (∫

|z|<1/2

|h(z)|pdλ(z)
)1/p

≤ 3(π/4)1/p|h(0)|.

We claim that there is Cp > 0 such that for all a ∈ D,

(4.2)

(∫
|z|<1/2

(
− log

|z − a|
|1− zā|

)p

dλ(z)

)1/p

≤ −Cp log |a|.

Indeed set ha(z) := − log |z−a|
|1−zā| . This is a positive harmonic function

in D \ {a} with a logarithmic singularity at a. Moreover

0 ≤ ha(z) ≤ log
2

|z − a|
,

for |z| < 1, hence for |a| < 1,∫
|z|<1/2

|ha(z)|pdλ(z) ≤ Γ(p+ 1).

The inequality (4.2) is thus valid when |a| ≤ 3/4 with Cp such that

Cp ≥ Γ(p+ 1)1/p/(log(4/3))p.

Assume now |a| > 3/4. Then ha is a positive harmonic function
near D(3/4). It follows again from Harnack inequalities that

0 ≤ ha(z) ≤ 5ha(0) = 5 log(1/|a|),

for |z| ≤ 1/2. Therefore∫
|z|<1/2

|ha(z)|pdλ(z) ≤ 5p (log(1/|a|))p .

This proves our claim with Cp := max{Γ(p + 1)1/p/(log(4/3)), 5}. It
follows now from Minkowski’s inequality that(∫

|z|<1/2

|u|pdλ(z)
)1/p

≤ Cp(|h(0)|+
∫
|ζ|<1

log(1/|ζ|)dµ(ζ) = Cp|u(0)|.
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In higher dimension we use this inequality n-times: if u is plurisub-
harmonic, u ≤ 0 near a+ D̄n

R ⊂ Ω, and u(a) > −∞ then

(4.3)

∫
Dn
1/2

|u(a+Rz)|pdλ(z) ≤ Cnp
p |u(a)|p.

Using the same reasonning as in the proof of Proposition 1.37 we
deduce from (4.3) that the set of points where |u|p is locally integrable
is a non empty open and closed set in Ω, hence u ∈ Lp

loc(Ω).
Recall now that uj → u in L1

loc, thus (uj) does not converge uni-
formly to −∞ on any compact set K ⋐ Ω and it is locally bounded
from above in Ω. Arguing as in the proof of Proposition 1.37 we infer
from (4.3) that the set of point where the sequence |uj|p is locally uni-
formly integrable is a non empty open and closed set in Ω, hence (uj)
is locally bounded in Lp

loc(Ω).

Step 2. We now show that uj → u in Lp
loc(Ω). Fix a compact set

K ⋐ Ω and assume that uj ≤ 0 in K for all j ∈ N.
Assume first that the sequence is locally uniformly bounded. There

exists M > 0 such that for any j ∈ N, −M ≤ uj ≤ 0 on K. We fix a
subsequence (vj) of (uj) such that vj → u almost everywhere. Lebesgue
convergence theorem insures that vj → u in Lp(K). This implies that
u is the unique limit point of the sequence (uj) in L

p
loc(Ω).

To treat the general case we set for m ≥ 1 and j ∈ N

umj := sup{uj,−m}, um := sup{u,−m}.

Minkowski’s inequality yields

∥uj − u∥Lp(K) ≤ ∥uj − umj ∥Lp(K) + ∥umj − um∥Lp(K) + ∥um − u∥Lp(K).

By the monotone convergence theorem, the last term converges to 0
as m → +∞. By the previous case, for a fixed m the second term
converges to 0 as j → +∞. To conclude it is thus enough to show
that the first term converges to 0 uniformly in j as m→ +∞. Markov
inequality yields, for m ≥ 1 and j ∈ N,∫

K

|uj − umj |pdλ = 2

∫
K∩{uj≤−m}

|uj|pdλ

≤ 2

m

∫
K

|uj|p+1dλ,

which allows to conclude since (uj) is bounded in Lp+1(K).

Step 3. We now establish local uniform bounds on the gradient of u
in Lp(Ω) for 1 ≤ p < 2. Assume first that n = 1. It suffices to consider
the case when 2D ⋐ Ω and u(0) > −∞ and get a uniform estimate on
D1/2.
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The Poisson-Jensen formula (4.1) shows that for z ∈ D,

2∂zu(z) = 2∂zh(z) +

∫
D

1− |ζ|2

(z − ζ)(1− zζ̄)
dµ(ζ).

Since h is harmonic, the representation formula yields

∂zh(z) =

∫
∂D
u(ζ)∂zP (z, ζ)dσ(ζ)

when z ∈ D. Since

∂zP (z, ζ) =
−z̄

|z − ζ|2
− (|1− |z|2)(ζ̄ − z̄)

|z − ζ|4
,

it follows that for |z| ≤ 1/2,

|∂zh(z)| ≤ 6

∫
∂D

|u(ζ)|dσ(ζ) ≤ 6∥u∥L1(D).

We have used here (1.40) and the fact that u ≤ 0.
We need a uniform estimate for the second term which we denote

by g(z). From the expression of g we get

|g(z)| ≤ 2

∫
D

dµ(ζ)

|z − ζ|
.

Using Minkowski’s inequality we deduce that

∥g∥Lp({|z|<1/2}) ≤ 2

∫
D

(∫
{|z|<1/2}

dλ(z)

|z − ζ|p

)1/p

dµ(ζ)

≤ 2π
22−p

2− p

∫
D
dµ.

Since 2D ⋐ Ω we apply Stokes’ formula to get∫
D
dµ =

∫
D
ddcu ≤ 1

3

∫
D
(4− |z|2)ddcu ≤ 1

3

∫
2D
(−u)dλ(z).

Adding all these inequalities, we get a uniform bound on the gra-
dient of u in the disc |z| ≤ 1/2,

∥∂zu∥Lp( 1
2
D) ≤ cp∥u∥L1(2D),

where cp is a uniform constant depending only on p.
Using these inequalities n times we get a local uniform bound for

the gradient of any function u ∈ PSH(Ω). In particular for any p < 2,
we have PSH(Ω) ⊂ W 1,p

loc (Ω) and the inclusion operator takes bounded
sets onto bounded sets.

Step 4. We finally prove that this inclusion is continuous. Let
(uj) ∈ PSH(Ω)N be a sequence converging to u in L1

loc. Since plurisub-
harmonic functions are subharmonic in R2n, it follows from Exercise
1.21 that Duj → Du in L1

loc, hence almost everywhere (up to extract-
ing and relabelling). The local uniform bounds for ||Duj||Lq , q < 2,
allow to conclude as above that Duj → Du in Lq

loc for all q < 2. □
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5. Exercises

Exercise 1.1.
1) Show that a (real valued) function u (on a metric space) is upper

semi-continuous iff lim supz→a u(z) = u(a) at all points a.

2) Let u : X → R ∪ {−∞} be an upper semi-continuous function
on a metric space (X, d) which is bounded . Show that

x 7→ uk(x) := sup{u(y)− kd(x, y); y ∈ X}
are Lipschitz functions which decrease to u as k increases to +∞,

3) Same question if u is merely bounded from above (replace u by
(sup{u,−j})j∈N and use previous question).

Exercise 1.2. Let u1, . . . , us be subharmonic functions in a domain
Ω ⊂ C. Show that

v := log [eu1 + · · ·+ eus ]

defines a subharmonic function in Ω.
Deduce from this by a rescaling argument that max(u1, . . . , us) is

subharmonic as well.

Exercise 1.3. Let I be an open subset of R. Show that f : I → R
is convex if and only if

lim sup
h→0

[
f(x+ h) + f(x− h)− 2f(x)

h2

]
≥ 0.

Exercise 1.4. Let I be an open subset of R and f : I → R+
∗ a

positive function. Show that log f : I → R is convex if and only if for
all c ∈ R, t ∈ I 7→ ectf(t) ∈ R is convex.

Exercise 1.5. Let fj : R → R be a sequence of convex functions
which converge pointwise towards a function f : R → R. Show that f
is convex and that (fj) uniformly converges towards f on each compact
subset of R.

Exercise 1.6.
1. Compute the Laplacian in polar coordinates in C.
2. Let u(z) = χ(|z|), χ a smooth function in [0, R[. Show that

∆u(z) = χ′′(r) +
1

r
χ′(r).

3. Describe all harmonic radial functions in C.
4. Show that u is subharmonic in a disc D(0, R) iff χ is a convex

increasing function of t = log r in the interval ]−∞, logR[.

Exercise 1.7. Let h : R2 → R be a harmonic function. Assume
there exists C, d > 0 such that

|h(x)| ≤ C[1 + ||x||]d, for all x ∈ R2.

Show that h is a polynomial of degree at most d.
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Exercise 1.8. Let ϕ : ∂∆ → R be a continuous function and let
uϕ denote the Poisson envelope of ϕ in the unit disc ∆ ⊂ C.

i) Show that uϕ is Hölder continuous on ∆ if and only if ϕ is Hölder
continuous. Is the Hölder exponent preserved ?

ii) By considering ϕ(eiθ) = | sin θ|, show that ϕ Lipschitz on ∂∆
does not necessarily imply that uϕ is Lipschitz on ∆.

Exercise 1.9. Let µ be a probability measure in C.
1) Show that

φµ(z) :=

∫
w∈C

log |z − w|dµ(w)

defines a subharmonic function with logarithmic growth in C.
2) Show that if φ is a subharmonic function with logarithmic growth

in C, then there exists c ∈ R such that φ = φµ + c, where µ = ∆φ/2π.

3) Approximating µ by Dirac masses, show that every subharmonic
function with logarithmic growth in C can be approximated in L1 by
functions of the type j−1 log |Pj|, where Pj is a polynomial of degree j.

Exercise 1.10. Let (aj) ∈ CN be a bounded sequence which is dense
in the unit disc and let εj > 0 be positive reals such that

∑
j εj < +∞.

Show that the function

z 7→ u(z) :=
∑
j

εj log |z − aj|

belongs to SH(C) and has an uncoutable polar set (u = −∞).
Check that u is discontinuous almost everywhere in the unit disc.

Exercise 1.11. Let T ∈ D′(Ω) be a non-negative distribution, i.e.

⟨T, χ⟩ ≥ 0

for all non-negative test functions 0 ≤ χ ∈ D(Ω). Show that T is of
order zero, i.e. it can be extended as a continuous (non-negative) linear
form on the space of continuous functions with compact support in Ω
(in other words T extends as a Radon measure).

Exercise 1.12. Let φ be a subharmonic function in R2n ≃ Cn,
i.e. an upper semi-continuous function which is locally integrable and
satisfies

∆φ :=
1

4

n∑
i=1

∂2φ

∂zi∂zi
≥ 0

in the sense of distributions. Show that φ is pluri-subharmonic if and
only if for all A ∈ GL(n,C),

φA : z ∈ Cn 7→ φ(A · z) ∈ R

is subharmonic.
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Exercise 1.13. Show that a convex function f : R → R which is
bounded from above is constant. Use this to prove that a plurisubhar-
monic function φ : Cn → R which is bounded from above is constant.

Exercise 1.14. Let Ω ⊂ Cn be a domain. Show that φ : Ω → R is
pluriharmonic if and only if it is locally the real part of a holomorphic
function.

Exercise 1.15.
1) Let φ : Cn → R be a plurisubharmonic function. Show that

φ|Rn ∈ L1
loc(Rn).

2) Let φj be a sequence of plurisubharmonic functions in Cn such
that φj → φ in L1

loc(Cn). Show that

φj |Rn −→ φ|Rn in L1
loc(Rn).

Exercise 1.16. What is the limit of φj(z) = j log ||z|| in Cn ? Is
it in contradiction with the compacity criteria we have established ?

Exercise 1.17. Let Ω ⊂ Cn be a domain and F = {u = −∞}
a closed complete pluripolar set (the −∞ locus of a plurisubharmonic
function u). Let φ be a plurisubharmonic function in Ω \ F which is
locally bounded near F . Show that φ uniquely extends through F as a
plurisubharmonic function.

Exercise 1.18. Let Ω ⊂ Cn be a domain and A ⊂ Cn an ana-
lytic subset of complex codimension ≥ 2. Let φ be a plurisubharmonic
function in Ω\A. Show that φ uniquely extends through A as a plurisub-
harmonic function (see [Cirka] for some help).

Exercise 1.19. Let f : Ω → Ω′ be a proper surjective holomorphic
map between two domains Ω ⊂ Cn, Ω′ ⊂ Ck. Let u be a plurisubhar-
monic function in Ω and set, for z′ ∈ Ω′,

v(z′) := max{u(z) , f(z) = z′}.

Show that v is plurisubharmonic in Ω′.

Exercise 1.20. Let u be a plurisubharmonic function in Cn.

1) Show that for any ball B, supB u = supB u.

2) Generalize 1) to bounded open sets Ω with smooth boundary.

3) Deduce that K = Ω is a regular set: if uj is a sequence of
plurisubharmonic functions which converge to u in L1

loc, then

sup
K
uj → sup

K
u.

4) Using the Riemann mapping theorem, show that a connected
compact set K ⊂ C is regular.
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Exercise 1.21. Let (uj) ∈ SH(Rk)N be a sequence of subharmonic
functions converging to u in L1

loc. Using the linearity of the Laplace
operator, show that

Duj → Du in Lq
loc for all q < k/(k − 1).

Exercise 1.22. Let Ω ⊂ Cn be a domain. For K ⊂ Ω we let

K̂ := {z ∈ Ω |u(z) ≤ sup
K
u, ∀u ∈ PSH(Ω)}

denote the plurisubharmonic hull of K. Say that Ω is pseudoconvex if
K̂ is relatively compact in Ω whenever K is.

1) Describe K̂ when n = 1 and show that any Ω is pseudoconvex.

2) Show that Ω := {z ∈ Cn | 1 < ||z|| < 2} is not pseudoconvex.

3) Show that Ω is pseudoconvex iff

z ∈ Ω 7→ − log dist(z, ∂Ω) ∈ R
is plurisubharmonic .





CHAPTER 2

Positive currents

1. Currents in the sense of de Rham

We let in this section Ω denote an open subset of RN .

1.1. Forms with distributions coefficients. A differential form
α of degree p on Ω with locally integrable coefficients

α =
∑
|I|=p

αIdxI ,

acts as a linear form on the space of continuous test forms of comple-
mentary degree q = N − p: if ψ = χdxK is a continuous test form of
degree q with compact support then

< α,ψ >=
∑
|I|=p

εI,K

∫
Ω

χαI dV,

where εI,K is such that dxI ∧ dxK = εI,K dV , with εI,K = 0 unless
K = Ic complements I in [1, N ] in which case εI,K = ±1.

Definition 2.1. A current S of degree p is a continuous linear form
on the space DN−p(Ω) of test forms (i.e. smooth differential forms with
compact support) of degree N − p on Ω.

We let D′
N−p(Ω) denote the space of currents of degree p. The action

of S on a test form Ψ ∈ DN−p(Ω) is denoted by < S,Ψ >.

If α is a smooth fom of degree q the wedge product of α and S is
defined as follows:

Definition 2.2. For a test form Ψ of degree N − p− q, we set

< S ∧ α,Ψ >:=< S, α ∧Ψ > .

We define similarly α ∧ S := (−1)pqS ∧ α.

Observe that the current S ∧ α ∧Ψ is a current of maximal degree
with compact support, it can be identified with a distribution with
compact support. One can similarly interpret a current of degree p as
a differential form of degree p with distribution coefficients.

41



42 2. POSITIVE CURRENTS

1.2. Closed currents. When S is a smooth form of degree p in
Ω and Ψ is a test form of degree N − p− 1,

d(S ∧Ψ) = dS ∧Ψ+ (−1)pS ∧ dΨ.
Since S ∧ Ψ is a differential form with compact support, it follows

from Stokes formula that
∫
Ω
d(S ∧Ψ) = 0 hence∫

Ω

dS ∧Ψ = (−1)p+1

∫
Ω

S ∧ dΨ

This suggests the following definition:

Definition 2.3. If S is a current of degree p then dS is the current
of degree (p+ 1) defined by

< dS, ψ >= (−1)p+1 < S, dψ >,

where ψ is any test form of degree N − p− 1.

This definition allows one to extend differential calculus on forms
to currents. It follows from the definition that a current of degree p is
a differential p-form T =

∑
|I|=p TIdxI , with distribution coefficients.

We set

dT =
∑
|I|=p

∑
1≤j≤N

∂TI
∂xj

dxj ∧ dxI

where ∂TI

∂xj
is the partial derivative of the distribution TI acting on test

functions according to Stokes formula by

<
∂TI
∂xj

, ψ >= − < TI ,
∂ψ

∂xj
> .

The reader can check that this is consistent with the above defini-
tion of dT .

Most properties valid in the differential calculus on forms extend to
currents. In particular if T is a current of degree p and α is a differential
form of degree m, then

d(T ∧ α) = dT ∧ α+ (−1)pT ∧ dα,
as the reader will check in Exercise 2.1.

The following version of Stokes’ formula for currents will be used
on several occasions:

Lemma 2.4. Let S be a current of degree N−1 with compact support
in Ω. Then ∫

Ω

dS = 0.

Proof. Let χ be a smooth cut off function in Ω such that χ ≡ 1
in a neighborhood of K, a compact subset of Ω containing the support
of S. Then ∫

Ω

dS =

∫
Ω

χdS =< S, dχ >= 0,
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since dχ = 0 in a neighborhood of the support of S. □
1.3. Bidegree. Assume now Ω ⊂ Cn is a domain in the complex

hermitian space Cn. The complex structure induces a splitting of dif-
ferential forms into types. The space of test forms of bidegree (q, q)
will be denoted by Dq,q(Ω), where 0 ≤ q ≤ n.

Definition 2.5. A current T of bidegree (p, p) is a differential form
of bidegree (p, p) with coefficients distributions, i.e.

T = ip
2
∑

|I|=|J |=p

TI,JdzI ∧ dz̄J ,

where TI,J ∈ D′(Ω).

A current of bidegree (p, p) acts on the space Dq,q(Ω), q := n − p,
of test forms of bidegree (q, q) as follows: if

Ψ = iq
2
∑

|K|=|L|=q

ψK,LdzK ∧ dz̄L,

where ψK,L ∈ D(Ω), then

< T,Ψ >=
∑

|I|=p,|J |=q

< TI,I′ , ψJ,J ′ >,

since ip
2
dzI ∧ dz̄J ∧ iq

2
dzK ∧ dz̄L = εI,JεK,Lidz1 ∧ dz1 ∧ · · · ∧ idzn ∧ dzn.

One defines similarly currents of bidegree (p, q).

Remark 2.6. We shall also say that a current of bidegree (p, p) is a
current of bidimension (n− p, n− p), since it acts on forms of bidegree
(n− p, n− p).

Recall the decomposition d = ∂+∂. We have defined the differential
dS of a current, we can similarly define the derivatives ∂S and ∂S
as follows. If S is a smooth differential form of bidegree (p, p) and
Ψ ∈ D(n−p−1,n−p)(Ω), observe that

∂S ∧Ψ = dS ∧Ψ = d(S ∧Ψ)− S ∧ dΨ = d(S ∧Ψ)− S ∧ ∂Ψ.
hence

∫
Ω
∂S ∧Ψ = −

∫
Ω
S ∧ ∂Ψ. This suggests the following:

Definition 2.7. Let S be a current of bidegree (p, p). The current
∂S is a current of bidegree (p+ 1, p) defined by

< ∂S,Ψ >= − < S, ∂Ψ >

for all Ψ ∈ D(n−p−1,n−p)(Ω). We define ∂̄S similarly.

We set dc := (i/2π)(∂ − ∂). Observe that d and dc are real differ-
ential operators of order one and

ddc =
i

π
∂∂

is a real differential operator of order 2. These operators act naturally
on differential forms, their actions are extended to currents by duality.
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Lemma 2.8. Let S be a current of bidegree (p, p), 0 ≤ p ≤ n − 1,
and Ψ a smooth form of bidegree (q, q), 0 ≤ q ≤ n − p − 1. If α is a
smooth form of bidegree (n− p− q − 1, n− p− q − 1) then

dS ∧ dcΨ ∧ α = dΨ ∧ dcS ∧ α
and

S ∧ ddcΨ ∧ α− ddcS ∧Ψ ∧ α = d(S ∧ dcΨ−Ψ ∧ dcS) ∧ α.
If Ψ is a smooth test form of bidegree (n− p− 1, n− p− 1) then

< ddcS,Ψ >=< S ∧ ddcΨ, 1 > .

Proof. Observe that

dΨ ∧ dcS =
(
∂Ψ+ ∂Ψ

)
∧ i

2π

(
∂S − ∂S

)
=

i

2π

(
∂Ψ ∧ ∂S + ∂S ∧ ∂Ψ+ ∂Ψ ∧ ∂S − ∂Ψ ∧ ∂S

)
.

Similarly

dS ∧ dcΨ =
i

2π

(
∂S ∧ ∂Ψ+ ∂Ψ ∧ ∂S + ∂S ∧ ∂Ψ− ∂S ∧ ∂Ψ

)
,

in the weak sense of currents on Ω.
The currents dΨ ∧ dcS and dS ∧ dcΨ = −dcΨ ∧ dS have the same

(p+ q + 1, p+ q + 1)−part hence

dΨ ∧ dcS ∧ α = dS ∧ dcΨ ∧ α,
since ∂S ∧ ∂Ψ ∧ α = 0 = ∂Ψ ∧ ∂S ∧ α. On the other hand,

d(Ψ ∧ dcS − S ∧ dcψ) = dΨ ∧ dcS +Ψ ∧ ddcS − dS ∧ dcΨ− S ∧ ddcΨ.
The last formula is obtained taking α = 1 and applying Lemma 2.4. □

2. Positive currents

2.1. Positive forms. Let V be a complex vector space of complex
dimension n ≥ 1. Consider a basis (ej)1≤j≤n of V and denote by
(e∗j)1≤j≤n the dual basis of V ∗. Then any v ∈ V can be written

v =
∑

1≤j≤n

e∗j(v)ej.

Since we are mainly interested in the case where V = TxX is the
complex tangent space to a complex manifold X of dimension n, we
use complex differential notations. A vector v ∈ V acts as a derivation
on germs of smooth functions in a neighborhood of the origin in V by

v · f(0) := Dvf(0).

If z = (z1, · · · , zn) are complex coordinates identifying V with Cn, then
ej =

∂
∂zj

is the partial derivative with respect to zj and e
∗
j = dzj.

The exterior algebra of V is

ΛV ∗
C := ⊕Λp,qV ∗, Λp,qV ∗ := ΛpV ∗ ⊗ ΛqV ∗,
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where ΛpV ∗ is the complex vector space of alternated C−linear p−forms.
A complex basis of the space ΛpV ∗ is given by the dzk1∧. . .∧dzkp where
K = (k1, . . . , kp) vary in the set of ordered multi-indices of length

|K| = p. Thus dimCΛ
pV ∗ =

(
n
p

)
.

The complex vector space V has a canonical orientation given by
the (n, n)−form

βn(z) :=
i

2
dz1 ∧ dz1 ∧ . . . ∧

i

2
dzn ∧ dzn = dx1 ∧ dy1 . . . ∧ dxn ∧ dyn,

where zj = xj + iyj, j = 1, . . . , n. If (w1, . . . , wn) is another (complex)

coordinate system on V , then dw1∧ . . .∧dwn = det(
∂wj

∂zk
)dz1∧ . . .∧dzn

so that

βn(w) = |det(∂wj/∂zk)|2βn(z).
In particular any complex manifold inherits a canonical orientation
induced by its complex structure.

Definition 2.9.
1) A (n, n)-form ν ∈ Λn,nV ∗ is positive if in some local coordinate

system (z1, . . . , zn) it can be written ν = λ(z)βn(z), with λ(z) ≥ 0.
2) A (p, p)-form f ∈ Λp,pV ∗(0 ≤ p ≤ n) is strongly positive if it

is a linear combination with positive coefficients of a finite number of
decomposable (p, p)−forms, i.e. forms of the type

iα1 ∧ α1 ∧ . . . iαp ∧ αp,

where α1, · · · , αp are (1, 0)−forms on V .
3) A (p, p)−form u ∈ Λp,pV ∗(1 ≤ p ≤ n− 1) is (weakly) positive if

for all (1, 0)−forms αj ∈ Λ1,0V ∗, (1 ≤ j ≤ q := n−p), the (n, n)−form
u ∧ iα1 ∧ α1 ∧ . . . iαq ∧ αq is positive.

Examples 2.10.
1) For all (1, 0)−forms γ1, . . . , γp ∈ Λ1,0V ∗, the (p, p)-form

iγ1 ∧ γ1 ∧ . . . iγp ∧ γp = ip
2

γ ∧ γ,

is positive, where γ := γ1 ∧ . . . ∧ γp.
2) For all α ∈ Λp,0V ∗, the (p, p)−form ip

2
α ∧ α is positive, hence

any strongly positive (p, p)−form is (weakly) positive. If α ∈ Λp,0V ∗

and β ∈ Λq,0V ∗, then

ip
2

α ∧ α ∧ iq2β ∧ β = i(p+q)2α ∧ β ∧ α ∧ β.

In particular if p+ q = n, then α ∧ β = λdz1 ∧ . . . ∧ dzn, λ ∈ C, hence

in
2

α ∧ β ∧ α ∧ β = |λ|2βn(z) ≥ 0.

The following lemma will be useful in the sequel.



46 2. POSITIVE CURRENTS

Lemma 2.11. Let (z1, . . . , zn) be a coordinate system in V. The com-
plex vector space Λp,pV ∗ is generated by the strongly positive forms

(2.1) γ := iγ1 ∧ γ1 ∧ . . . iγp ∧ γp,
where the (1, 0)−forms γl are of the type dzj ± dzk or dzj ± idzk.

Proof. The proof relies on the following polarization identities for
the forms dzj ∧ dz̄k
4dzj ∧ dzk = (dzj + dzk) ∧ (dzj + dzk)− (dzj − dzk) ∧ (dzj − dzk)

+ i(dzj + idzk) ∧ (dzj + idzk)− i(dzj − idzk) ∧ (dzj − idzk).

Since

dzJ ∧ dzK = dzj1 ∧ . . . ∧ dzjp ∧ dzk1 ∧ . . . ∧ dzkp = ±
∧

1≤s≤p

dzjs ∧ dzks ,

it follows that the (p, p)−forms γs of type (2.1) generate the space
Λp,pV ∗ over C. □

Corollary 2.12.
1. All positive forms u ∈ Λp,pV ∗ are real i.e. ū = u and if u =

ip
2∑

|I|=|J |=p uI,JdzI ∧ dz̄J then the coefficients satisfy the hermitian
symmetry relation ūI,J = uJ,I for all I, J .

2. A form u ∈ Λp,pV ∗ is positive if and only if its restriction to
any complex subspace W ⊂ V of dimension p is a positive form of top
degree on W .

Proof. Let (θs) be the basis of Λ
p,pV ∗ dual to the basis of strongly

positive forms (γs) of Λ
n−p,n−pV ∗ given by Lemma 2.11. Observe that

strongly positive forms are real. If α ∈ Λp,pV ∗ is positive, we decompose
it as α =

∑
s csθs with cs = α ∧ γs ≥ 0 for any s. Thus α = α.

Suppose that α = ip
2∑

|I|=p,|J |=p αI,JdzI ∧ dzJ , then

α = (−1)p
2

ip
2

∑
|I|=p,|J |=p

αI,JdzI ∧ dzJ .

Since dzI ∧ dzJ = (−1)p
2
dzJ ∧ dzI , it follows that αI,J = αJ,I , ∀I, J.

If W ⊂ V is a complex subspace of dimension p, there exists a
system of complex coordinates (z1, . . . , zn) such that

W = {zp+1 = . . . = zn = 0}.
Thus α|W = cW

i
2
dz1 ∧ dz1 ∧ . . . i

2
dzp ∧ dzp, where cW is given by

α ∧ i

2
dzp+1 ∧ dzp+1 ∧ . . .

i

2
dzn ∧ dzn = cWβn(z).

Therefore if α is positive then α|W ≥ 0 for any complex subspace
W ⊂ V of dimension p. The converse is true since the (n − p, n − p)-
forms ∧j>pidzj ∧ dzj generate the cone of strongly positive (p, p)-forms
when W varies among all complex subspaces W of dimension p. □
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Corollary 2.13. A (1, 1)-form ω = i
∑

j,k ωjkdzj ∧ dz̄k is positive

if and only if the matrix (ωjk) is a hermitian semi-positive matrix i.e.∑
j,k

ωjkξj ξ̄k ≥ 0 for all ξ ∈ Cn.

Proof. Indeed, if W = C · ξ is a complex line generated by the
vector ξ ̸= 0, then ω|W = (

∑
j,k ωj,kξjξk)idt ∧ dt. □

Remark 2.14. There is a canonical correspondence between her-
mitian forms and real (1, 1)-forms on V. Indeed in a system of complex
coordinates (z1, . . . , zn), a hermitian form can be written as

h =
∑

1≤j,k≤n

hj,kdzj ⊗ dzk.

The associated (1, 1)−form

ωh :=
i

2

∑
1≤j,k≤n

hj,kdzj ∧ dzk

is a real (1, 1)-form on V . This correspondence does not depend on the
system of complex coordinates since for all ξ, η ∈ V,

ωh(ξ, η) =
i

2

∑
1≤j,k≤n

hj,k(ξjηk − ηjξk) = −ℑh(ξ, η),

and hk,j = hj,k. Moreover

ωh(iξ, η) = −ℑh(iξ, η) = ℜh(ξ, η),
for all (ξ, η) ∈ V, which proves that h is entirely determined by ωh.

Observe finally that h is a positive hermitian form on V if and only
if the (1, 1)−form ωh is positive.

The notions of positivity (strong and weak) usually differ, but they
do coincide in bidegree (1, 1):

Proposition 2.15. A (1, 1)-form is strongly positive if and only if
it is weakly positive. In particular if α ∈ Λp,pV ∗ is a weakly positive
form on V then for all positive (1, 1)−forms ω1, . . . ωq with p+ q ≤ n,
the (p+ q, p+ q)-form α ∧ ω1 ∧ . . . ∧ ωq is weakly positive.

Proof. Let ω ∈ Λ1,1V ∗ be a positive (1, 1)-form on V . Diagonal-
izing the hermitian form h associated to ω, we see that

ω =
∑

1≤j≤r

iγj ∧ γj,

where γj ∈ V ∗ for 1 ≤ j ≤ r. Thus ω is strongly positive. □
We finally define the positivity of differential forms as follows:

Definition 2.16. A smooth differential (q, q)-form ϕ ∈ Dq,q(Ω) in
an open set Ω ⊂ Cn is positive (resp. strongly positive) if for all x ∈ Ω,
the (q, q)-form ϕ(x) ∈ Λq,qCn is positive (resp. strongly positive).
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2.2. Positive currents. The duality between positive and strongly
positive forms enables us to define the corresponding positivity notions
for currents:

Definition 2.17. A current T of bidimension (q, q) is (weakly)
positive if ⟨T, ϕ⟩ ≥ 0 for all strongly positive differential test forms ϕ
of bidegree (q, q).

It follows from the definitions that T is positive iff for all α1, · · · , αq ∈
D1,0(Ω), T ∧ iα1 ∧ ᾱ1 ∧ · · · iαq ∧ ᾱq ≥ 0 as a distribution on Ω.

Here is an important consequence of this definition.

Proposition 2.18. Let T ∈ D′
p,p(X) be a positive current and set

q := n− p. Then T can be extended as a real current of order 0 i.e.

T = ip
2
∑

|I|=|J |=q

TI,JdzI ∧ dzJ ,

where the coefficients TI,J are complex measures in Ω satisfying the
hermitian symmetry TI,J = TJ,I for any multi-indices |I| = |J | = q.

Moreover for any I, TI,I ≥ 0 is a positive Borel measure in Ω and
the (local) total variation measure

∥T∥ :=
∑

|I|=|J |=q

|TI,J |

of the current T is bounded from above by the trace measure,

(2.2) ∥T∥ ≤ cp,n
∑
|K|=q

TK,K ,

where cp,n > 0 are universal constants.

Proof. Since positive forms are real, it follows by duality that
every positive current is real, as the current T is defined by the formula

T (ϕ) := T (ϕ) for ϕ ∈ Dn−p,n−p(X).
It follows from Lemma 2.11 that any form φ ∈ Dn−p,n−p(U) can

be written as ϕ =
∑

s csγs where (γs) is a basis of strongly positive
(n− p, n− p)−forms

If ϕ is real the functions cs are real C∞-smooth with compact sup-
port in Ω. Writing cs as a difference of non-negative C∞-smooth func-
tions with compact support, the real form ϕ can be written as the
difference of strongly positive forms, hence T (ϕ) is a difference of two
positive reals. We infer TI,J = TJ,I for all multi- indices |I| = |J | = q.

Observe now that

TI,Iβn = T ∧ iq
2

2q
dzI′ ∧ dzI′ ≥ 0,

while the proof of Lemma 2.11 yields

TI,J2
qβn = T ∧ iq2dzI′ ∧ dzJ ′ =

∑
ν∈{0,1,2,3}

ενT ∧ γν ,
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where εν = ±1,±i and

γν =
∧

1≤s≤q

iℓν,s ∧ ℓν,s,

where ℓν,s are C−linear forms on Cn. Since T ∧γa is a positive measure
on Ω, the distributions TI,J are complex measures in Ω such that

2q|TI,J |βn ≤
∑
ν

T ∧ γν .

The only terms that matter here are those for which

γν =
∧

1≤s≤q

iℓν,s ∧ ℓν,s ̸= 0.

We can thus assume that the C−linear forms ℓν,1, . . . , ℓν,s are linearly
independent. Fix such ν and set ℓs = ℓν,s. There exists a unitary
transformation A : Cn

z −→ Cn
w such that the direct image A⋆ sends the

subspace of (Cn)∗ generated by the C-linear 1-forms (ℓs)1≤s≤q onto the
subspace generated by the 1-forms (dws)1≤s≤q. Therefore

A⋆(
∧

1≤s≤q

ℓs ∧ ℓs) =
∧

1≤s≤q

A⋆(ℓs) = |det(∂ℓ̃s/∂wk)|2
∧

1≤k≤q

dwk ∧ dw̄k.

Hence

A⋆(T ∧ γν) = aνA⋆(T ) ∧
∧

1≤k≤q

i

2
dwk ∧ dw̄k = aνA⋆(T )

iq

2q
dwK ∧ dwK ,

where K := (1, 2, . . . , q) and for all ν, aν ≥ 0 is a constant which does
not depend on T. Thus

A⋆(T ∧ γν) ≤ aνA⋆(T ) ∧ βn(w).

and

T ∧ γν ≤ aνT ∧ (A−1)⋆(βn) = aνT ∧ βq,
since β is invariant by unitary transformations on Cn. Observe that

βq =
∑
|K|=q

(
i

2

)q ∧
1≤s≤q

dzks ∧ dz̄ks =
∑
|K|=q

iq
2

2q
dzK ∧ dz̄K ,

hence T ∧βq =
∑

|L| TL,L and T ∧γν ≤ aν
∑

|L|=q TL,L for all ν. It follows
that there exists a uniform constant cp,q > 0 such that

|TI,J | ≤ cp,q
∑
|L|=q

TL,L.

□
Corollary 2.19. Let T be a positive current of bidegree (p, p) and

v a continuous strongly positive (m,m)-form, p+m ≤ n. The current
T ∧ v is positive.
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In particular for all continuous positive (1, 1)-forms α1, . . . , αm,

T ∧ α1 ∧ · · · ∧ αm ≥ 0

is a positive current.

2.3. Examples.
2.3.1. Currents of bidegree (1, 1). Let X be a (connected) complex

manifold of dimension n. We let PSH(X) denote the convex cone of
plurisubharmonic functions in X which are not identically −∞.

Proposition 2.20. If u ∈ PSH(X) then the current Tu := ddcu
is a closed positive current of bidegree (1, 1) on X.

Proof. The property is local so we can assume X = Ω is an open
subset of Cn. Assume first that u ∈ PSH(Ω) ∩ C2(Ω). Then

ddcu =
i

π

∑
1≤j,k≤n

∂2u

∂zj∂zk
dzj ∧ ∂zk

is a strongly positive (1, 1)-form since for each z ∈ Ω, ξ ∈ Cn

∑
1≤j,k≤n

∂2u(z)

∂zj∂zk
ξjξk ≥ 0.

To treat the general case we regularize u by using radial mollifiers
and set uε := u ⋆ ρε. This is a smooth plurisubharmonic function in
the open set Ωε := {z ∈ Ω; dist(z; ∂Ω) > ε}. Since uε → u in L1

loc(Ω),
it follows that ddcuε converges to ddcu in the weak sense of currents,
hence ddcu is a positive current in Ω. □

Conversely one can show that a closed positive current T of bidegree
(1, 1) can be locally written T = ddcu, where u is a (local) plurisub-
harmonic function (see Exercise 2.4). Such a function is called a local
potential of T . Observe that two local potentials differ by a plurihar-
monic function h, i.e. a smooth function such that ddch = 0 in Ω.

2.3.2. Current of integration over a complex analytic set.
Complex submanifolds. Let Z ⊂ X be a complex submanifold of X

of dimension m ≥ 1. Its complex structure induces a natural orienta-
tion on Z, we can thus integrate a smooth test form ψ of top degree
2m on Z. Using a partition of unity we may assume that the support
of Ψ lies in a coordinate chart (D, z). Thus ψ(z) = f(z)βm(z) in D,
where f is a test function in D and by definition∫

D

ψ =

∫
D

f(z1, . . . , zm)
i

2
dz1 ∧ dz1 ∧ . . . ∧

i

2
dzm ∧ dzm.

This formula does not depend on the local coordinates, as follows from
the change of variables formula.
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Definition 2.21. We let [Z] denote the current of integration over
Z. It is a positive current of bidimension (m,m) defined by

< [Z], φ >:=

∫
Z

j∗(φ)

for φ ∈ Dm,m(X), where j : Z → X denotes the embedding of Z in X.

If Φ is a strongly positive test form of bidegree (m,m) then j∗(Φ)
is a positive volume form on Z, hence

∫
Z
j∗(Φ) ≥ 0, which shows that

[Z] is a positive current of bidimension (m,m) on X.
If Z if a closed complex submanifold of X (no boundary), Stokes

formula shows that for all Ψ ∈ D2m−1(X),

< d[Z],Ψ >= − < [Z], dψ >= −
∫
Z

j∗(dψ) = −
∫
Z

dj∗(ψ) = 0,

thus [Z] is a closed positive current on X.

Analytic subsets. Let Z be a (closed) complex analytic subset of X
of pure dimension m, 1 ≤ m ≤ n. We refer the reader to [Cirka] for
basics on analytic sets. One can consider the positive current [Z] of
integration over the complex manifold Zreg of regular points of Z i.e.
for any test form Φ of bidegree (n−m,n−m) we set

⟨[Z],Φ⟩ :=
∫
Zreg

j∗Φ,

where j : Z → X is the canonical embedding.
It is not obvious that this integral converges since j∗Φ is not com-

pactly supported in Zreg. This has been proved by Lelong who showed
the following remarkable result:

Theorem 2.22. The current [Z] is a closed positive current of bide-
gree (m,m) on X.

We refer the reader to [Cirka, Theorem 14.1] for a proof. In par-
ticular if f is a holomorphic function in X which is not identically 0,
then its zero locus Z(f) defines a positive closed current on X which
satifies the Poincaré-Lelong equation

ddc log |f | = [Z(f)]

in the sense of currents.

2.4. The trace measure of a positive current. Let X be a
hermitian manifold; for all x ∈ X the complex tangent space TxX is
endowed with a positive definite hermitian scalar product h(x) which
depends smoothly on x. We let ω denote its fundamental (1, 1)-form.

Definition 2.23. Let T ∈ D′
p,p be a positive current of bidegree

(p, p), 1 ≤ p ≤ n. The trace measure of T is

σT :=
1

(n− p)!
T ∧ ωn−p.
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In a local coordinates (U, z1, . . . , zn) we can write

h :=
∑
j,k

hj,kdzj ⊗ dzk,

where (hj,k) is a positive definite hermitian matrix with smooth entries
in U . For x ∈ U, the complex cotangent space T ∗

xX can also be endowed
with a natural hermitian scalar product: applying Hilbert-Schmidt or-
thonormalization process to the the basis (dz1(x), . . . , dzn(x)), we con-
struct an orthonormal basis (ζ1(x), . . . , ζn(x)) of T

∗
xX.

Thus (ζ1, . . . , ζn) is a system of smooth differential (1, 0)-forms in
U such that (ζ1(x), . . . , ζn(x)) is an orthonormal basis of T ∗

xX. We
say that (ζ1, . . . , ζn) is a local orthonormal frame (with respect to the
hermitian product h) of the cotangent bundle T ∗(X) over U . Writing

h =
∑

1≤j≤n

ζj ⊗ ζj,

we get

ω =
i

2

∑
1≤j≤n

ζj ∧ ζj

and
ωq

q!
=
iq

2

2q

∑
|K|=q

ζK ∧ ζK .

Fix T ∈ D′+
p,p and set q := n− p. We can decompose T as

T =
∑

|I|=|J |=q

iq
2

TI,JζI ∧ ζJ ,

where TI,J ∈ D(U) and ζI := ζi1∧ . . .∧ζiq . A simple computation yields

σT =

∑
|I|=q

TI,I

 ∧
1≤j≤n

i

2
ζj ∧ ζj,

i.e. σT =
∑

|I|=q TI,I , identifying currents of top degree and distribu-
tions. We let the reader check that ifX is a domain in Cn equipped with
the standard euclidean metric

∑
1≤j≤n dzj ⊗ dzj and if T ∈ D′

p,p(X),
then

σT =
∑
|I|=q

TI,I .

Proposition 2.18 can now be reformulated as follows:

Corollary 2.24. Let T ∈ D′
p,p(X) be a positive current. If we

decompose T locally, T =
∑

|I|=|J |=p i
p2TI,JdzI ∧dzJ , the total variation

∥T∥ =
∑

|I|=|J |=p |TI,J | of T is dominated by the trace measure σT ,

σT ≤ ∥T∥ ≤ cn,pσT ,

where cn,p is an absolute constant independent of T .
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In particular the topology of weak convergence in the sense of dis-
tributions coincides, for positive currents, with the weak convergence in
the sense of Radon measures.

Example 2.25. Let u ∈ PSH(Ω), where Ω ⊂ Cn is a domain. The
trace measure of the closed positive current T := ddcu coincides with
the Riesz measure of u, i.e.

σT := ddcu ∧ βn−1 =
1

2π
∆u

This formula can be generalized to any plurisubharmonic function on
a complex hermitian manifold (X,ω), replacing β by ω and ∆ by ∆ω

the Laplace operator associated to the hermitian metric ω.

3. Lelong numbers

3.1. Lelong numbers of a plurisubharmonic function. We
consider several natural quantities measuring the local size of a plurisub-
harmonic function u.

The spherical mean-values of u are defined by

Su(z, r) :=
1

σ2n−1

∫
|ξ|=1

u(z + rξ)dσ(ξ),

where dσ is the area measure on the unit sphere in Cn, σ2n−1 is its area.
The mean-value of u on a ball B̄(z, r) ⊂ Ω is defined by

Vu(z, r) :=
1

κ2nr2n

∫
B̄(z,r)

udλ =
1

κ2n

∫
|w|≤1

u(z + rw)dλ(w)

where dλ is the lebesgue measure on Cn and κ2n = 2nσ2n−1 is the
volume of the unit ball in Cn.

The maximum value of u on a ball B̄(z, r) ⊂ Ω is

Mu(z, r) := max
|w|=1

u(z + rw).

Observe that

(3.1) Vu(z, r) =
1

κ2nr2n

∫ r

0

t2n−1Su(z, t)dt.

Lemma 2.26. Consider Ω̃ := {(z, τ) ∈ Ω × C; |τ | < δΩ(z)}. The
function

(z, τ) 7→ S̃u(z, τ) =
1

σ2n−1

∫
|ξ|=1

u(z + τξ)dσ(ξ)

is plurisubharmonic in Ω̃. It only depends on |τ | and satisfies

S̃u(z, τ) = Su(z, |τ |) for all (z, τ) ∈ Ω̃.
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In particular for all z ∈ Ω, r → Su(z, r) is a convex non-decreasing
function of t = log r in the interval ]−∞, log δΩ(z)[, hence the following
limit exists in [0,+∞[,

ν(u, z) := lim
r→0

Su(z, r)

log r
= lim

r→0+
r∂−r Su(z, r).

Proof. For all ξ ∈ Cn with |ξ| = 1 the function

(z, τ) 7−→ u(z + τξ)

is plurisubharmonic in Ω̃ hence so is the function S̃u as an average of
plurisubharmonic functions.

Since the area measure on the sphere is invariant under the action
of the circle T, it follows that for (z, τ) ∈ Ω̃,

S̃u(z, τ) = Su(z, |τ |).

Therefore τ 7−→ S̃u(z, τ) is subharmonic in the disc {|τ | < δΩ(z)} and
only depends on |τ |. We infer that for a fixed z ∈ Ω, the function
r 7−→ Su(z, r) is convex and non decreasing in log r by Proposition
1.13. Moreover by invariance we also have

Su(z, r) =
1

σ2n−1

∫
|ξ|=1

(∫ 2π

0

u(z + reiθξ)dθ/2π

)
dσ(ξ).

The slopes of the increasing convex function log r 7−→ Su(z, r) are
therefore increasing and positive. It follows that for any fixed 0 < r0 <
δΩ(z), the following limit exists in [0,+∞[

lim
r→0

Su(z, r)− Su(z, r0)

log r − log r0
= lim

r→0

Su(z, r)

log r
= lim

r→0+
r∂−r Su(z, r).

□

Definition 2.27. The number ν(u, z) is called the Lelong number
of the plurisubharmonic function u at the point z.

We will also use the notation νu(z).

Lemma 2.28. Fix z ∈ Ω. The functions r 7→ Su(z, r), r 7→ Vu(z, r)
and r 7→Mu(z, r) are convex increasing in the variable t = log r.

Moreover if 0 < r < R < δΩ(z) and u ≤ 0 in B(z, R), then

(3.2) u(z) ≤ Vu(z, r) ≤ Su(z, r) ≤Mu(z, r) ≤ (1−r/R)2nVu(z, R−r).

In particular if a plurisubharmonic function is bounded from above
in Cn then it is constant.

The last property is known as Liouville’s Theorem for plurisubhar-
monic functions.
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Proof. Let f(z, r) denote any of the above functions and observe
that (z, τ) 7−→ f(z, |τ |) is plurisubharmonic in the variables (z, τ) in
Ω̃ and only depends on |τ |. Thus r 7−→ f(z, r) is a convex increasing
function in the variable t = log r for any fixed z ∈ Ω.

The first inequality in (3.2) follows from submean-value property,
the second one is a consequence of (3.1) and the third one is obvious.

It thus remains to prove the last inequality in (3.2). We can assume
that z = 0, R > 0 is such that B̄(0, R) ⊂ Ω and u ≤ 0 in B̄(0, R).
Fix z ∈ Cn with |z| ≤ r and observe that B(0, R − r) ⊂ B(z, R). The
submean-value inequality yields

u(z) ≤ 1

κ2nR2n

∫
B(z,R)

u(ζ)dλ(ζ) ≤ 1

κ2nR2n

∫
B(0,R−r)

u(ζ)dλ(ζ),

since u ≤ 0 in B(z, R). We infer

Mu(0, r) ≤
(R− r)2n

R2n
Vu(0, R− r).

Assume that u is plurisubharmonic and bounded from above in Cn.
We can assume without loss of generality that u(0) > −∞. Then the
function log r 7−→Mu(0, r) is convex non decreasing and bounded from
above in R, hence it is constant and equal to its limit when r → 0+

which is equal to u(0). This implies that u achieves its local maximum
at the origin on any ball B(0, r). The maximum principle now shows
that u is constant. □

Corollary 2.29. For all z ∈ Ω,

(3.3) ν(u, z) = lim
r→0

Vu(z, r)

log r
= lim

r→0

Mu(z, r)

log r
.

Proof. By (3.2) we have

νu(z) = lim
r→0

Su(z, r)

log r
≤ lim

r→0

Vu(z, r)

log r
.

Fix 0 < s < 1 and observe that if r = sR, then (3.2) yields

Mu(z, r) ≤ (1− s)2nVu((1/s− 1)r).

Since log((1/s− 1)r)/ log r → 1 as r → 0+ and Su ≤Mu, it follows
that

(1− s)2n lim
r→0

Vu(z, r)

log r
≤ lim

r→0

Mu(z, r)

log r
≤ νu(z),

which proves our statement by letting s→ 0+. □

The previous result shows that if u ∈ PSH(Ω) and a ∈ Ω then

u(z) ≤ max
|z−a|=r0

u(z) + ν(u, a)(log |z − a| − log r0)
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for all r < r0 < δΩ(a) with |z − a| = r This shows that u has at worst
logarithmic singularities.

Examples 2.30.
1. Let u ∈ PSH(Ω) and z ∈ Ω. If u(z) > −∞ then

−∞ < u(z) ≤ Su(z, r)

for all r < δΩ(z) hence ν(u, z) = 0.
2. Assume u(z) = α log |z|+O(1) near the origin in Cn with α > 0.

Then ν(u, 0) = α.

Remark 2.31. The reader will check in Exercise 2.7 that the func-
tional u ∈ PSH(Ω) 7−→ ν(u, z) ∈ R+ is additive and positively homo-
geneous.

3.2. Invariance properties.
3.2.1. Lelong formula. We now show that the Lelong number of a

plurisubharmonic function u only depends on the current ddcu. Set

β :=
i

2

∑
1≤j≤n

dzj ∧ dz̄j =
i

2
∂∂̄|z|2,

where |z|2 :=
∑n

j=1 |zj|2. For 1 ≤ p ≤ n we set

βp :=
βp

p!

and for z ∈ Ω and 0 < r < δΩ(z),

νu(z, r) :=
1

κ2n−2r2n−2

∫
B(z,r)

ddcu ∧ βn−1 =
µu(B(z, r))

κ2n−2r2n−2
,

where µu = ddcu ∧ βn−1 =
∆u
2π

is the Riesz measure of u and B(z, r) is
the euclidean ball of center z and radius r.

Theorem 2.32. For all z ∈ Ω and 0 < r < δΩ(z),

(3.4) νu(z, r) = r∂−r Su(z, r) = ∂−log rSu(z, r),

where ∂−log r = r∂−r is the left derivative operator with respect to log r.
In particular the function r 7−→ νu(z, r) is non-decreasing and

νu(z) = lim
r→0+

νu(z, r).

This formula shows that the Lelong number depends on the positive
current ddcu rather than on the function u itself.

Proof. We can assume without loss of generality that z = 0 and u
is psh in a neighborhood of the euclidean ball B̄(0, R) for some R > 0.



3. LELONG NUMBERS 57

Let χ be a smooth radial function with compact support in B(0, R).
Integrating by parts and passing to spherical coordinates we get∫

B(0,R)

χ(ζ)dµu(ζ) =
1

2π

∫
B(0,R)

∆χ(ζ)u(ζ)dλ(ζ)

= κ2n−2

∫ R

0

Su(z, r)r
2n−1(χ”(r) + (2n− 1)χ′(r)/r)dr

= κ2n−2

∫ R

0

Su(z, r)d(r
2n−1χ′(r))

= −κ2n−2

∫ R

0

χ′(r)r2n−1∂−r Su(z, r)dr

We let χ(r) tend to the characteristic function of the interval [0, R[.
The function χ′(r) thus converges weakly to the negative of the measure
of integration on the positively oriented boundary of [0, R], denoted by
[0]− [R], which is the difference of two Dirac masses at the end points
of the interval. We infer

µu(B(0, R)) = κ2n−2R
2n−1∂−

r Su(z,R) = κ2n−2R
2n−2∂−

log rSu(z,R).

Therefore νu(z) = limr→0+ νu(z, r). □

Example 2.33. In dimension n = 1 the Lelong number νu(z) is the
point mass of the Riesz measure at z, i.e. νu(z) = µu({z}).

We deduce the so called Poisson-Jensen formula:

Corollary 2.34. Fix z ∈ Ω. For all 0 < r1 ≤ r2 < δΩ(z),

Su(z, r2)− Su(z, r1) =

∫ r2

r1

νu(z, r)
dr

r
=

∫ r2

r1

νu(z, r)d log r.

In particular for all 0 < R < δΩ(z),

u(z) =
1

σ2n−1

∫
|ξ|=1

u(z +Rξ)dσ(ξ)−
∫ R

0

νu(z, r)d log r.

Proof. The first formula follows from the formula (3.4). To obtain
the second formula we can fix r2 = R and let r1 → 0 in the first one. □

Example 2.35. If u = log |f |, f a non-zero holomorphic function,
then ddc log |f | is the current of integration over the analytic set Zf =
(f = 0) and µu is the area measure on the analytic set Zf .

In this case the number νlog |f |(z, r) is the quotient of the area of the
set B(z, r) ∩ Zf in the the analytic set Zf by the volume of the ball of
the same radius r and the same dimension.

Thus ν(u, z) can be thought of as a (2n− 2)-dimensional density of
the measure µu at the point z. It is the vanishing order of f at point z.
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3.2.2. Non-integrability and multiplicity.

Corollary 2.36. Fix u ∈ PSH(Ω) and z0 ∈ Ω. If νu(z0) ≥ 2n
then e−u is not locally integrable in a neighborhood of z0.

Proof. We may assume that z0 = 0. It follows from (3.3) that
there exists r0 > 0 small enough and C > 0 such that

Su(0, r) ≤ νu(0) log r + C,

for 0 < r ⩽ r0. Using Jensen’s convexity inequality we infer∫
|ξ|=1

e−u(rξ)dσ(ξ)/σ2n−1 ≥ exp(−Su(0, r))

≥ e−Cr−νu(0).

Therefore ∫
|ζ|<ρ

e−u(ζ)dλ(ζ) ≥ σ2n−1e
−C

∫ ρ

0

r2n−1−νu(0)dr,

hence e−u is not integrable near 0 if νu(0) ≥ 2n. □
Lelong numbers are invariant under local change of coordinates:

Theorem 2.37. Fix u ∈ PSH(Ω), z ∈ Ω and ζ ∈ Cn \ {0}. Then

(3.5) νu(z) ≤ lim
r→0+

1

log r

∫ 2π

0

u(z + eiθζ)dθ/2π,

with equality for almost every ζ ∈ Cn.
If f : Ω′ −→ Ω is a holomorphic map, then for z ∈ Ω′,

νu(f(z)) ≤ νu◦f (z),

with equality if f is a local biholomorphism at z.

Proof. We may assume that z = 0. Fix δ > 0 small enough and
assume that u(ζ) < 0 when |ζ| ≤ δ. Consider, for r < δ and |ζ| < δ/r,

ϕ(ζ, r) :=

∫ 2π

0

u(reiθζ)
dθ

2π
.

For each r > 0, the function ϕ(·, r) is a continuous negative plurisub-
harmonic function in the ball |ζ| < δ/r. For fixed ζ, the function ϕ(ζ, ·)
is convex non decreasing in log r. This shows the existence of

ψ(ζ) := lim
r→0+

ϕ(ζ, r)− ϕ(ζ, δ)

log δ − log r
= lim

r→0+

ϕ(ζ, r)

− log r
,

Note that ψ(ζ) is equal to the mass at the origin of the Laplacian
of the one variable function uζ : τ 7−→ u(τζ) unless this function is
identically −∞ in the intersection of the line Lζ := {τζ; τ ∈ C} with
the ball |ζ| < δ/r.

Since u ̸≡ −∞ in a neighborhood of the origin we infer that ψ∗ is
negative plurisubharmonic in Cn, hence it is constant by Lemma 2.28.
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We conclude that ψ(ζ) = ψ∗(ζ) = ψ∗(0) for almost all ζ ∈ Cn with
|ζ| = 1, since ψ is constant on each complex ligne through the origin.

Observe that

Su(0, r)

log r
= − 1

σ2n−1

∫
|ζ|=1

ϕ(ζ, r)

log r
dσ(ζ)

and apply Lebesgue convergence theorem to deduce (3.5),

νu(0) = −ψ∗(0)/σ2n−1 =

∫
|ζ|=1

−ψ(ζ)dσ(ζ)/σ2n−1 ≤ −ψ(ζ).

We infer that νu◦f = νu ◦ f for any complex affine bijection f .
To prove the same result for an arbitrary holomorphic bijection, it is
enough to assume that f(0) = 0 and f ′(0) = Id is the identity in Cn.
It follows from formula (3.3) that

νu(0) = lim
r→0

1

κ2nr2n log r

∫
|ζ|<r

u(ζ)dλ(ζ)

Since u < 0, we obtain by the change of variables ζ 7−→ f(ζ)

νu(0) = lim
r→0+

1

κ2nr2n log r

∫
|f(ζ)|<r

u ◦ f(ζ)|Jf (ζ)|dλ(ζ)

≤ sup
|f(ζ)|<r

|Jf (ζ)| lim
r→0+

1

κ2nr2n log r

∫
|f(ζ)|<r

u ◦ f(ζ)dλ(ζ)

= νu◦f (0).

Thus νu(0) ≤ νu◦f (0). If f is a biholomorphism in a neighborhood
of 0 then νu(0) = νu◦f◦f−1(0) ≥ νu◦f (0), whence the equailty. □

Remark 2.38. In the proof above the function ψ is constant on
any complex line through the origin in Cn. Thus (3.5) is an equality
for almost every ζ in the unit sphere |ζ| = 1. This shows that the
Lelong number of u is invariant by restriction to almost all complex
directions in Cn. In particular

(3.6) νu(0) = min
{
νuζ

(0); ζ ∈ Cn \ {0}
}
,

where uζ(τ) := u(τζ) is the restriction of u to the complex line Cζ
(νuζ

(0) = +∞ if uζ ≡ −∞).

Example 2.39. Let f = (f1, . . . , fN) : Ω −→ CN be a holomorphic
mapping such that f ̸≡ 0. Set Z := {z ∈ Ω; f(z) = 0}. Then

φ :=
1

2
log(|f1|2 + · · ·+ |fN |2)

is plurisubharmonic in Ω and νφ(z) = 0 if a /∈ Z. If a ∈ Z, then

νφ(a) = mult(f, a)

is the vanishing multiplicity of f at a i.e. the largest integer m such that
all the fj’s vanish at order m at the point a. We may assume indeed
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by translation that a = 0. For each j (1 ≤ j ≤ N), we have fj(z) =
Pj(z) +O(|z|mj+1), where Pj is a non-zero homogeneous polynomial of
degree mj ≥ m. By definition m = minmj, without loss of generality
m = m1. Thus for ζ ∈ Cn,

φ(τζ) = m log |τ |+ 1

2
log

(
|P1(ζ)|2 +

N∑
j=2

|τmj−mPj(z)|2
)

= m log |τ |+O(1),

when P1(ζ) ̸= 0. Since P1 ̸≡ 0, if follows that the set {P1 = 0} is of
Lebesgue measure 0, hence νφ(0) = m by (3.6).

3.3. Siu’s Theorem. Let u be a plurisubharmonic function in a
domain Ω. We let the reader check in Exercise 2.7 that the function
z 7→ ν(u, z) is upper semi-continuous in Ω. We prove in this section, fol-
lowing [Siu74, Kis78], that z 7→ ν(u, z) is also upper semi-continuous
with respect to the (analytic) Zariski topology, i.e. the level sets

Ec(φ) = {x ∈ Ω ; νu(x) ≥ c}

are analytic subsets whenever c > 0.

3.3.1. Hörmander’s L2-estimates. Recall that a domain Ω ⊂ Cn is
pseudoconvex if the function − log dist(·, ∂Ω) is plurisubharmonic in Ω
[Horm90]. It follows that

ρ(z) := |z|2 − log dist(·, ∂Ω)

is a continuous plurisubharmonic function which is an exhaustion for
the domain Ω, i.e. for all c ∈ R,

{z ∈ Ω; ρ(z) < c} ⋐ Ω.

The converse also holds: if a domain admits a plurisubharmonic
exhaustion function, then it is pseudoconvex. One can moreover show
that the exhaustion function can be chosen smooth and strictly plurisub-
harmonic in Ω.

Theorem 2.40. Let Ω ⊂ Cn be a pseudoconvex domain and φ ∈
PSH(Ω). Let η =

∑n
j=1 ηjdz̄j be a (0, 1)-form on Ω with coefficients

in L2
loc(Ω) such that ∂̄η = 0 in the sense of currents on Ω. Then for

any ε > 0 the equation ∂̄h = η has a solution h in L2
loc(Ω) such that

ε

∫
Ω
|h|2e−φ(z)(1 + |z|2)−εdλ(z) ≤

∫
Ω
|η(z)|2e−φ(z)(1 + |z|2)2−εdλ(z).

We refer the reader to [Dem, Horm90] for a proof of this funda-
mental result. We need the following consequence of Theorem 2.40,
known as the Bombieri-Skoda-Hörmander theorem.

Theorem 2.41. Let Ω ⊂ Cn be a pseudoconvex domain, z0 ∈ Ω
and u ∈ PSH(Ω) such that e−u is locally integrable in a neighborhood
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of z0. For each ε > 0, there exists a holomorphic function f in Ω such
that f(z0) = 1 and

(3.7)

∫
Ω

|f(z)|2(1 + |z|2)−n−εe−u(z)dλ(z) < +∞.

Proof. We may assume that z0 = 0 and choose a ball B(0, r) ⋐ Ω
such that e−u ∈ L1(B(0, r)). Let χ be smooth function with compact
support in B(0, r) such that χ ≡ 1 in a small neighborhood of 0.
We want to correct χ by adding a smooth function h in Ω such that
f := χ + h is holomorphic in Ω, f(z0) = 1 and the estimate (3.7) is
satisfied.

We solve the Cauchy-Riemann equation ∂̄h = −∂̄χ in Ω with the
plurisubharmonic weight function φ(z) := u(z) + 2n log |z|. By The-
orem 2.40 it follows that for any ε > 0 there exists a solution to the
equation ∂̄h = −∂̄χ in Ω and

(3.8) ε

∫
Ω

|h|2e−u(z)

|z|2n(1 + |z|2)−ε
dλ(z) ≤

∫
Ω

|∂̄χ(z)|2e−u(z)

|z|2n(1 + |z|2)ε−2
dλ(z).

The right hand side of (3.8) is finite since ∂̄χ vanishes in a neigh-
borhood of 0 and has compact support in B(0, r) where the function
e−u is integrable.

By construction ∂̄f = ∂̄(h + χ) = 0 in Ω, hence f is holomorphic
and h is smooth in Ω. The fact that the left hand side of (3.8) is finite
and u is bounded from above in B(0, r) implies that h(0) = 0, since h
is continuous. Therefore f(0) = 1 and the proof is complete. □

The following consequence will be useful in the sequel.

Corollary 2.42. The set

NI(u) := {z ∈ Ω; e−u /∈ L1
loc(z)},

is an analytic subset of Ω.

Here L1
loc(z) means locally integrable in a neighborhood of z.

Proof. Fix ε > 0 and let Z be the zero locus of the family of all
holomorphic function f in Ω such that the estimate (3.7) is satisfied.
By Theorem 2.41, Z ⊂ NI(u). The converse is clear. □

Remark 2.43. A closed analytic subset in a pseudoconvex domain
can be globally defined as the zero locus of a finite number of holo-
morphic functions. This is again a consequence of the L2-estimates of
Hörmander (see [Horm90]).

3.3.2. Kiselman’s attenuating principle. We now explain a useful
method for attenuating the singularities of plurisubharmonic functions,
known as Kiselman’s minimum principle.

Let Ω be a pseudoconvex domain in Cn. We set

Ω̃ := {(z, w) ∈ Ω× C; |w| < δΩ(z)}.
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The reader can check that Ω̃ is a pseudoconvex domain in Cn+1. Since
Ω̃ is S1-invariant (rotations in the w-variable), we can choose an S1-
invariant exhaustion plurisubharmonic function ρ(z, w).

Theorem 2.44. Fix u ∈ PSH(Ω) and α > 0. The function

z 7→ uα(z) := inf
0<r<δΩ(z)

{Su(z, r) + ρ(z, r)− α log r}

is plurisubharmonic in Ω. It satisfies uα(z) > −∞ if νu(z) < α and

ν(uα, z) = max{ν(u, z)− α, 0} for all z ∈ Ω.

Note that an infimum of plurisubharmonic functions is usually not
plurisubharmonic: the S1-invariance is here crucial.

Proof. The function

(z, τ) 7→ U(z, τ) := Su(z, e
τ ) + ρ(z, eτ )− αℜτ.

is continuous and plurisubharmonic in the domain Ω̃.
For z ∈ Ω fixed, it only depends on t := ℜτ , hence it is a convex

function in t on ] − ∞, log δΩ(z)[. It follows that uα is upper semi-
continuous in Ω. Fix z ∈ Ω such that u(z) > −∞ and observe that

U(z, t) ≥ u(z) + ρ(z, et)− αt

tends to +∞ when t tends to either −∞ or log δΩ(z). Thus the infimum
is achieved on a compact interval [t0(z), t1(z)] ⊂]−∞, log δΩ(z)[, hence
uα(z) > −∞.

Recall that ∂−t Su(z, r) = r∂−r Su(z, r) converges to νu(z) as t =
log r → −∞. Hence if νu(z) < α, the function t 7−→ Su(z, e

t) − αt is
decreasing near −∞. Thus there is t0 < log δΩ(z) such that Su(z, e

t)−
αt ≥ Su(z, e

t0)−αt0 for t ≤ t0. It follows that Uα(z, τ) is bounded from
below in t = ℜτ on the interval ] −∞, log δΩ(z)[, hence uα(z) > −∞.
Therefore νuα(z) = 0 if νu(z) < α.

To prove that uα is plurisubharmonic we consider for ε > 0,

U ε(z, τ) := U(z, τ) + εeℜτ .

Observe that U ε is continuous and plurisubharmonic in the domain Ω̃
and only depends on (z,ℜτ), hence it is a convex function in t = ℜτ
on the interval ] −∞, log δΩ(z)[. It is even strictly convex in t thanks
to the extra term εet. We set

uε(z) := inf{U ε(z, t); t < log δΩ(z)}

and observe that uε decreases to uα in Ω as ε decreases to 0.
It is thus enough to show that uε is plurisubharmonic in Ω. We first

assume that u is smooth. In this case the function U ε is smooth in Ω̃.
Fix z ∈ Ω and ξ ∈ Cn \ {0} and consider the one variable function

ϕ(σ) := uε(z + σξ) = inf{Φ(σ, t); t < log δ(z + σξ)},
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defined in a disc D(0, δ) for δ > 0 small enough, where

Φ(σ, τ) := U ε(z + σξ, τ),

is a smooth plurisubharmonic function in the domain

{(σ, τ) ∈ D(0, δ)× C;ℜτ < log δ(z + σξ).

For σ ∈ D(0, δ) fixed, it is strictly convex in t = ℜτ and tends to +∞
when t → −∞ or log δ(z + σξ). Therefore the infimum is achieved at
a unique point

t(σ) ∈]−∞, log δ(z + σξ)[,

characterized by the condition

v =
∂Φ

∂t
(σ, t(σ)) = 0.

Since ∂2tΦ(σ, t(σ)) > 0, we can apply the implicit function theorem
to conclude that the function σ → t(σ) is a smooth function in D(0, δ),
hence ϕ(σ) = Φ(σ, t(σ)) is a smooth function in D(0, δ). Therefore we
can compute its Laplacian with respect to the variable σ as follows

∂2ϕ

∂σ∂σ̄
(σ) =

∂

∂σ

(
∂Φ

∂σ̄
(σ, t(σ)) + ∂tΦ(σ, t(σ))

∂t

∂σ̄
(σ)

)
=

∂2Φ

∂σ∂σ̄
(σ, t(σ)) +

∂2Φ

∂t∂σ
(σ, t(σ))

∂t

∂σ̄
(σ)

=
∂2Φ

∂σ∂σ̄
(σ, t(σ)) ≥ 0

We use here twice the fact that σ 7→ Φ(σ, τ) is subharmonic for τ fixed
and ∂tΦ(σ, t(σ)) = 0. The conclusion follows when u is smooth.

In the general case we choose smooth plurisubharmonic functions
uε decreasing to u, where uε is smooth in Ωa(ε) with a(ε) increasing to
+∞ and Ωa(ε) increases to Ω as ε decreases to 0.

Fix a domain Ω′ ⋐ Ω. When z ∈ Ω′, the infimum in the definition
of (uε)α(z) is achieved in Ωa(ε) when ε is small enough, so (uε)α(z) is
plurisubharmonic in Ω′. Since (uε)α decreases to uα, it follows that uα
is plurisubharmonic in Ω′, hence in Ω. □

3.3.3. Analyticity of superlevel sets of Lelong numbers. Let u be
a plurisubharmonic function in a pseudoconvex domain Ω ⊂ Cn and
consider, for c > 0, the superlevel set of Lelong numbers

Λ(u, c) := {z ∈ Ω; νu(u, z) ≥ c}.

We also consider the non integrability set of u

NI(u) := {z ∈ Ω; e−u /∈ L1
loc({z})},

and the polar set of u

P (u) := {z ∈ Ω;u(z) = −∞}.
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It follows from Theorem 2.41 and Corollary 2.36 that

Λ(u, 2n) ⊂ NI(u) ⊂ P (u).

The following result has been established by Siu in [Siu74]:

Theorem 2.45. For all c > 0 the sets Λ(u, c) are closed analytic
subsets of Ω.

Proof. Using the functions uα constructed in Theorem 2.44 we
obtain

Λ(u, c+ 2n) = Λ(uc, 2n) ⊂ NI(uc) ⊂ P (uc) ⊂ Λ(u, c).

If α > 2n/c, we infer

Λ(u, c) = Λ(αu, αc− 2n+ 2n) ⊂ NI((αu)αc−2n) ⊂ Λ(u, c− 2n/α).

Therefore

Λ(u, c) =
∩

α>2n/c

NI((αu)αc−2n),

which is an analytic set by Corollary 2.36. □

4. Skoda’s integrability theorem

4.1. Projective mass. We establish here a formula due to Lelong
which expresses the mass of the Riesz measure associated to a plurisub-
harmonic function u in terms of the projective mass of the current ddcu.
Recall that

νu(z, r) :=
µu(B(z, r))

κ2pr2p
,

where µu = ddcu ∧ βn−1 is the trace measure of the current ddcu and
B(z, r) is the euclidean open ball of center z and radius r.

Lemma 2.46. If 0 < r < R < dist(a, ∂Ω) then

νu(a,R) = νu(a, r) +

∫
r≤|z−a|<R

ddcu ∧ (ddc log |z − a|)n−1.

In particular

νu(a,R) = νu(a) +

∫
0<|z−a|<R

ddcu ∧ (ddc log |z − a|)n−1.

The Lelong number νu(a) coincides with the projective point mass
of the current ddcu at a, i.e.

(4.1) νu(a) =

∫
{a}

ddcu ∧ (ddc log |z − a|)n−1,

hence

(4.2) νu(a,R) =

∫
|z−a|<R

ddcu ∧ (ddc log |z − a|)n−1.
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Proof. For a ∈ Cn we consider

αa(z) := ddc log |z − a| = i

2π
∂∂̄ log |z − a|2.

This is a smooth differential (1, 1)-form in Cn \ {a} with a logarithmic
singularity at the point a. An easy computation shows that in Cn \{a}

αa(z) = |z − a|−2(1/π)β − |z − a|−4 i

2π
∂|z − a|2 ∧ ∂̄|z − a|2,

thus for 1 ≤ p ≤ n and z ∈ Cn \ {a} we obtain

αa(z)
p = |z − a|−2pπ−pβp − p|z − a|−2p−2 i

2π
∂|z − a|2 ∧ ∂̄|z − a|2 ∧ βp−1.

Observe that αa(z)
p = |z − a|−2pπ−pβp when |z − a| = r. Thus for

0 < r < R < δΩ(a),

νu(a,R)− νu(a, r) =

∫
r≤|z−a|<R

ddcu ∧ αn−1
a .

This follows from Stokes formula when u is smooth and by approxima-
tion in the general case. Letting r → 0+, we obtain

(4.3) νu(a,R) = νu(a) +

∫
0<|z−a|<R

ddcu ∧ (ddc log |z − a|)n−1.

We consider for s > 0,

ℓa,s(z) := sup{log |z − a|, log s}.

Oberve that if 0 < s < R, ℓa,s(z) = log |z− a| in a neighborhood of the
sphere {|z − a| = R}. It follows therefore from Stokes theorem that∫

|z−a|<R

ddcu ∧ (ddcℓa,s)
n−1,

is independent of s: this is the projective mass of the current ddcu in
the ball B(a,R), i.e.∫

|z−a|<R

ddcu ∧ αn−1
a =

∫
|z−a|<R

ddcu ∧ (ddcℓa,s)
n−1.

This definition will be justified in the next chapter when studing the
Monge-Ampère operator. The formulas (4.1) and (4.2) are then conse-
quences of the formula (4.3). □

4.2. The Jensen-Lelong formula. We establish in this section
the Jensen-Lelong formula, a representation formula for plurisubhar-
monic functions in terms of their boundary values and associated pro-
jective current.
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Lemma 2.47. The Poincaré form

η(z) := dc log |z| ∧ (ddc log |z|)n−1

is a smooth differential form of degree 2n−1 in Cn\{0}. Its coefficients
are locally integrable in Cn and η satisfies

dη = δ0,

in the sense of currents on Cn.
Moreover on any sphere S(0, R) := {ξ ∈ Cn; |ξ| = R} the restriction

η|S(0,R) coincides with the normalized (2n− 1)-volume form on S(0, R).

Here δ0 denotes the Dirac mass at the origin.

Proof. It is clear that η is smooth in Cn \ {0}. A straightfoward
computation yields

η(z) = 2−n|z|−2ndc|z|2 ∧ (ddc|z|2)n−1,

which is smooth off the origin and locally integrable in a neighborhood
of the origin. It follows from Stokes theorem that∫

|z|=R

η = 2−nR−2n

∫
|z|<R

(ddc|z|2)n = 1,

for we have normalized dc so that ddc|z|2 = 2
π
β hence

(ddc|z|2)n = n!
2n

πn
βn,

where βn is the euclidean volume form.
Observe that a defining function on the euclidean sphere S(0, R)

of radius R is ρR(z) := |z|2 − R2 and the orientation induced by the
embedding of S(0, R) into Cn is defined by dρR = d|z|2. Thus a (2n−1)-
form η on the sphere S(0, R) is positive if and only if dρR ∧ η(z) is a
positive form on Cn for each z ∈ S(0, R).

Since dρR∧η = (ddc|z|2)n is indeed a positive form on Cn, it follows
that the restriction of η to the sphere S(0, R) is a positive form on the
sphere. Observe that η is invariant under unitary transformation of Cn

and its total mass on any sphere is 1. Therefore the restriction of η
to any sphere S(0, R) coincides with the normalized area form on the
S(0, R). On the other hand for all z ∈ Cn \ {0},

dη(z) = 2−n
(
|z|−2n(ddc|z|2)n − |z|−2n−2d|z|2 ∧ dc|z|2 ∧ (ddc|z|2)n−1

)
= 0.

The current dη is thus supported at the origin. Let χ be a smooth
test function in a neighborhood of 0 with support in some ball |z| < R.
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Since η is locally integrable, Stokes theorem yields

⟨dη, χ⟩ = −
∫
|z|<R

dχ ∧ η = − lim
ε→0+

∫
ε<|z|<R

dχ ∧ η

= lim
ε→0+

∫
|z|=ε

χη

= χ(0) + lim
ε→0+

∫
|z|=ε

(χ(z)− χ(0))η

= χ(0).

Therefore dη = δ0 in the sense of currents in Cn. □
We can now prove the Jensen-Lelong formula.

Theorem 2.48. Fix u ∈ PSH(Ω), a ∈ Ω, 0 < R < δΩ(a). Then

u(a) =

∫
|z−a|=R

u(z) dc log |z − a| ∧ (ddc log |z − a|)n−1(4.4)

+

∫
|z−a|<R

log(|z − a|/R) ddcu ∧ (ddc log |z − a|)n−1

Proof. The previous lemma yields∫
|ξ|=1

u(a+Rξ)dσ(ξ)/σ2n−1 =

∫
|ζ|=R

u(a+ ζ)η(ζ).

It follows from the Poisson-Jensen formula that

1

σ2n−1

∫
|ξ|=1

u(a+Rξ)dσ(ξ)− 1

σ2n−1

∫
|ξ|=1

u(a+ rξ)dσ(ξ)

=

∫ R

r

νu(a, t)d log t.

Observe that the restriction of dc log |z − a| ∧ (ddc log |z − a|)n−1

to the sphere ∂B(a,R) is the normalized Lebesgue measure. Letting
r → 0+ we thus obtain

u(a) =

∫
|z−a|=R

u(z)dc log |z−a|∧ (ddc log |z−a|)n−1−
∫ R

0

νu(a, t)d log t.

Thus the integral
∫ R

r
νu(a, t)d log t is finite if and only if u(a) > −∞.

The Lelong formula yields∫ R

0

νu(a, t)d log t =

∫ R

0

dt

∫
|z−a|<t

ddcu ∧ (ddc log |z − a|)n−1.

Using Fubini-Tonelli theorem we obtain∫ R

0

νu(a, t)d log t =

∫
|z−a|<R

log(|z − a|/R)ddcu ∧ (ddc log |z − a|)n−1.

These identities imply the Jensen-Lelong formula. □
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We now derive a representation formula for plurisubharmonic func-
tion in the unit ball B of Cn, similar to the Poisson-Jensen formula for
the unit disc.

For z ∈ B, we denote by Φz the automorphism of the unit ball B
which sends z ∈ B to the origin and consider

Gz(ζ) := log |Φz(ζ)| , (z, ζ) ∈ B× B.
This is a plurisubharmonic function in B which is smooth (but at

point z) up to the boundary where it vanishes identically and has a
logarithmic pole at the point z. It is called the pluricomplex Green
function of the ball B with a logarithmic pole at the point z.

Observe that Gz = Φ∗
z(ℓ0), where ℓ0(ζ) = log |ζ| satisfies the equa-

tion (ddcℓ0)
n = δ0 in the sense of currents in Cn. Therefore Gz satisfies

(ddcGz)
n = δz

in the sense of currents on B.
From the Jensen-Lelong formula proved above we can now deduce

the following representation formula:

Corollary 2.49 (Poisson-Szegö formula). Let u be plurisubhar-
monic in a neighborhood of the closed unit ball B. For all z ∈ B,

u(z) =

∫
∂B
u(ζ)dcGz(ζ) ∧ (ddcGz(ζ))

n−1 +

∫
B
Gzdd

cu ∧ (ddcGz)
n−1.

Proof. We proceed as in the one dimensional case. Fix a point
z ∈ B and apply the formula (4.4) to the plurisubharmonic function
v := u ◦ Φ−1

z (with a = 0 and R = 1) to get

u(z) = v(0) =

∫
|ξ|=1

v(ξ) dc log |ξ| ∧ (ddc log |ξ|)n−1

+

∫
|ξ|<1

log |ξ| ddcv ∧ (ddc log |ξ|)n−1.

Make the change of variables ζ := Φz(ξ) to conclude. □

4.3. A uniform version of Skoda’s integrability theorem.
We have observed that if a plurisubharmonic function u has a large
Lelong number ν(u, a) > 2n at some point a, then e−u is not locally
integrable near a. Skoda established in [Sko72] a partial converse: if
ν(u, a) < 2 then e−u is locally integrable in a neighborhood of a.

We prove here a uniform version of Skoda’s theorem. If K ⊂ Ω is a
compact set and U ⊂ PSH(Ω) is a compact class of plurisubharmonic
functions, we set

ν(K,U) := sup{ν(u, a); a ∈ K, u ∈ U}.
It follows from the upper semi-continuity property of (u, a) 7→ ν(u, a)
(see Exercise 2.7) that the number ν(K,U) is finite.
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Theorem 2.50. Fix 0 < α < 2/ν(K,U). There exists an open
neighborhood E of K and a uniform constant C = C(K,U , α) > 0
such that for all u ∈ U , ∫

E

e−αudλ2n ≤ C.

Proof. It follows from the submean value inequality that the class
U is locally uniformly bounded from above in Ω. Substracting a uniform
constant, we can thus assume that for a fixed neighborhood D ⋐ Ω of
K we have supD u ≤ 0 for all u ∈ U .

By homogeneity we can assume that ν = ν(K,U) < 2 and we have
then to establish the uniform integrability of e−u. By compactness of
K, we can assume (after translating and rescaling) that D is the closed
unit ball B ⊂ Ω.

The Poisson-Szegö formula applies to all u ∈ U : for z ∈ B,

u(z) =

∫
∂B
u(ζ)dcGz(ζ) ∧ (ddcGz(ζ))

n−1 +

∫
B
Gzdd

cu ∧ (ddcGz)
n−1.

We thus set u = u1 + ũ1, with

u1(z) :=

∫
∂B
u(ζ)dcGz(ζ) ∧ (ddcGz(ζ))

n−1

and

ũ1(z) :=

∫
B
Gzdd

cu ∧ (ddcGz)
n−1.

We are going to estimate each term separately.

The first term is easier to handle. Indeed the Poisson-Szegö kernel
dcGz(ζ) ∧ (ddcGz(ζ))

n−1 is smooth and positive on ∂B × B, hence it
is uniformly bounded from below by a positive constant C1 > 0 on
∂B× {|z| ≤ 1/2}. Since u ≤ 0 on B we infer

u1(z) ≥ C1

∫
∂B
u(ζ)dσ(ξ), for |z| ≤ 1/2.

We now estimate the second term ũ1. Consider the pseudo-ball of
center z ∈ B and radius r ∈]0, 1[ defined by

D(z, r) := {ζ ∈ B ; |Φz(ζ)| < r},

and write for z ∈ B,

ũ1(z) =

∫
D(z,r)

Gzdd
cu ∧ (ddcGz)

n−1 +

∫
B\D(z,r)

Gzdd
cu ∧ (ddcGz)

n−1

= u2(z) + u3(z),

where

u2(z) :=

∫
D(z,r)

Gzdd
cu ∧ (ddcGz)

n−1
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and

u3(z) :=

∫
B\D(z,r)

Gzdd
cu ∧ (ddcGz)

n−1.

We first estimate u3 fom below. Since Gz(ζ) = (1/2) log |Φz(ζ)|2,
an easy computation shows that

ddcu ∧ (ddcGz)
n−1 ≤ ddcu ∧ (ddc|Φz|2)n−1

2n−1|Φz|2n−2
(4.5)

≤ c3
ddcu ∧ (ddc|ζ|2)n−1

|Φz|2n−2
.

Thus for |z| ≤ 1/2 and 0 < r ≤ 1/2

(4.6) u3(z) ≥ −22n−2 log 2

∫
B
∆u.

We now estimate exp(−u2(z)) by applying Jensen’s inequality. We
need to compute the total mass of the measure σz := ddcu∧(ddcGz)

n−1,
on the domain D(z, r) for |z| << 1. This is, for z ∈ B and 0 < r < 1,

ϑu(z, r) :=

∫
D(z,r)

ddcu ∧ (ddcGz)
n−1.

Observe that

ϑu(z, r) =

∫
Br

ddcu ◦ Φz ∧ (ddc log |ζ|)n−1 = νu◦Φz(0, r),

hence for all z ∈ B

ϑu(z) := lim
r→0

ϑu(z, r) = νu◦Φz(0),

since Φz is an automorphism sending the origin to z.
Since supU ϑu(0) < ν < 2, there exists δ > 0 such that for all u ∈ U

ϑu(z, δ) < ν < 2, for |z| ≤ δ.

Set ρ(z) := |z|2 − 1, on B. The function ρ is negative smooth and
strictly plurisubharmonic in the ball B with

ϑρ(z, δ) =

∫
Br

ddc|Φz(ζ)|2 ∧ (ddc log |ζ|)n−1.

Since Φz depends smoothly on z, the right hand side of the previous
equation is a continuous non vanishing function on B hence there exists
η1, η2 > 0 such that

η1 ≤ ϑρ(z, δ) ≤ η2, for |z| ≤ δ.

Replacing u by ũ := u + ερ, on B with ε > 0 small enough, we can
assume that for some η > 0,

η ≤ ϑu(z, δ) < ν < 2, for |z| ≤ δ.
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We now apply Jensen’s inequality and use the last inequality to
obtain, for |z| < δ,

exp(−u2(z)) ≤
1

η

∫
D(z,δ)

exp(−νGz)dd
cu ∧ (ddcGz)

n−1.

Using (4.5) it follows that for |z| < δ,

exp(−u2(z)) ≤
1

η 2n−1

∫
D(z,δ)

ddcu ∧ (ddc|Φz|2)n−1

|Φz|2n−2+ν
.

Since Φz depends smoothly on z and Φz(z) = 0, there exists a
uniform constant c4 > 0 such that for |z| ≤ 1/2,

c−1
4 |z − ζ| ≤ |Φz(ζ)| ≤ c4|z − ζ|.

Taking δ > 0 small enough, there exists uniform constants c5 > 0
and c6 > 0 such that for |z| ≤ δ,

exp(−u2(z)) ≤ c5

∫
B(z,c6δ)

ddcu ∧ (ddc|ζ|2)n−1

|z − ζ|2n−2+ν
.

If λ is a finite Borel measure, we get by Fubini-Tonelli theorem∫
{|z|<δ}

exp(−u2(z))dλ(z) ≤ c5

∫
{|ζ|<c7δ}

dµ(ζ)

∫
{|z|<δ}

dλ(z)

|z − ζ|2n−2+ν

≤ c5

∫
{|ζ|<c7δ}

dµ(ζ)

∫
{|ζ−z|<c8δ}

dλ(z)

|z − ζ|2n−2+ν
,

where µ := ddcu ∧ (ddc|ζ|2)n−1 is the Riesz measure associated to µ.
The second integral in the right hand side is uniformly bounded as

far as ν < 2, it thus remains to bound integrals of the type

I(r) :=

∫
{|ζ|<r}

dµ(ζ).

Let χ be a non-negative test function with compact support in
{|ζ| < 2r} such that χ ≡ 1 in {|ζ| < r}. Then ddcχ ≥ −Addc|ζ|2 for
some positive constant depending only on r. Since u ≤ 0 we infer

I(r) ≤
∫
{|ζ|<2r}

χddcu ∧ (ddc|ζ|2)n−1

=

∫
{|ζ|<2r}

uddcχ ∧ (ddc|ζ|2)n−1

≤ A

∫
{|ζ|<2r}

(−u)(ddc|ζ|2)n.

By compactness of U , the last integral is uniformly bounded. □
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5. Exercises

Exercise 2.1. Let T be a current of degree p and α a differential
form of degree m. Show that

d(T ∧ α) = dT ∧ α+ (−1)pT ∧ dα.

Exercise 2.2. Let T : D(Ω) −→ C be a positive C−linear func-
tional on D(Ω). Show that there exists a positive Borel measure µT on
Ω such that for any smooth test function χ ∈ D(Ω),

< T, χ >=

∫
Ω

χ(x)dµT (x).

Exercise 2.3. Give an example of a (weakly) positive form of bide-
gree (2, 2) in a domain of Cn that is not strongly positive. How large
should n be ?

Exercise 2.4. Let T be a closed positive current of bidegree (1, 1) in
the unit ball of Cn. Show that there exists a plurisubharmonic function
u in B such that T = ddcu.

Exercise 2.5. Let T be a positive current in Cn with compact sup-
port. Show that T ≡ 0 when n ≥ 2.

Exercise 2.6. Let f be a non-zero holomorphic function in a do-
main Ω ⊂ Cn. Show that

ddc log |f | = [Zf ]

is the current of integration along the zero set Zf = (f = 0).

Exercise 2.7. Show that the Lelong number functional

ν : PSH(Ω)× Ω −→ R+

has the following properties:
(i) it is additive and positively homogenous, i.e. for all u, v ∈

PSH(Ω) and z ∈ Ω, α > 0,

ν(αu+ v, z) = αν(u, z) + ν(v, z);

(ii) if u, v ∈ PSH(Ω) then νmax(u,v) = inf{νu, νv};
(iii) (u, z) 7→ ν(u, z) is upper semi-continuous for the product topol-

ogy (L1
loc-topology on PSH(Ω) and euclidean topology on Ω).

Exercise 2.8. Fix α = (α1, · · · , αn) ∈ Rn
+ positive real numbers

and consider

z ∈ Cn 7→ uα(z) := max
1≤j≤n

{αj log |zj|}.

Show that νφα(0) = minαj.
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Exercise 2.9. Let f = (f1, . . . , fk) : Ω −→ Ck be a holomorphic
map from a domain Ω ⊂ Cn into Ck such that f ̸≡ 0 in Ω. Fix
α := (α1, · · · , αn) ∈ Rn

+ positive reals. Show that the function

φ :=
1

2
log(|f1|2α1 + · · ·+ |f1|2αN )

is plurisubharmonic and compute its Lelong numbers.

Exercise 2.10. Let u ∈ PSH(Ω) and χ be a convex increasing
function in some interval containing u(Ω). Compute the Lelong num-
bers of the plurisubharmonic function χ ◦ u. Show that νχ◦u ≡ 0 if
χ′(−∞) = 0.

Exercise 2.11. Let u be plurisubharmonic function in the unit ball
of Cn such that u ≥ 1.

1) Show that u2 is plurisubharmonic and prove that the current
ddcu2 dominates ddcu.

2) Prove that ∇u ∈ L2
loc.

3) Show that u = log |z1| is an unbounded plurisubharmonic func-
tion whose gradient does not belong to L2

loc.





CHAPTER 3

The complex Monge-Ampère operator

The complex Monge-Ampère operator is the operator

φ 7→ (ddcφ)n

which associates, to a given plurisubharmonic function, a non-negative
Radon measure. When φ is C2-smooth, this Monge-Ampère measure
is

(ddcφ)n = cn det

(
∂2φ

∂zi∂zj

)
dV,

where dV denotes the Lebesgue measure and cn > 0 is a normalizing
constant chosen so that the Monge-Ampère measure of the plurisub-
harmonic function φ(z) = 1

2
log[1 + ||z||2] has total mass 1 in Cn.

The above formula still makes sense almost everywhere for plurisub-
harmonic functions φ which belong to the Sobolev space W 2,n

loc . It is
however crucial for applications to consider plurisubharmonic functions
which are far less regular.

In this chapter (and the rest of Part 1) we explain how to define
and study the complex Monge-Ampère operator acting on plurisub-
harmonic functions which are locally bounded following the pioneering
work of Bedford and Taylor [BT82]. We show that it is continuous
along monotone sequences but that it is not continuous for the L1

loc-
convergence.

In the whole chapter Ω denotes a smoothly bounded strictly pseu-
doconvex subset of Cn, usually equipped with a smooth strictly psh
defining function ρ, i.e. Ω = {z ∈ Cn ; ρ(z) < 0}.

The whole theory could be developed in the slightly more general
context of hyperconvex domains but we shall not need this in the book.
The reader may even like to think that Ω is the unit ball (and ρ(z) =
||z||2 − 1), this is sufficient for most applications we have in mind.

1. Currents of Monge-Ampère type

1.1. Definitions. Let T be a closed positive (p, p)-current in a
domain Ω ⊂ Cn, 0 ≤ p ≤ n− 1. It can be decomposed as

T = ip
2

∑
|I|=p,|J |=p

TI,JdzI ∧ dzJ ,

where the coefficients TI,J are complex Borel measures.

75
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A locally bounded Borel function u is locally integrable with respect
to the coefficients of T hence uT is a well defined current of order 0,
setting

< uT,Ψ >=< T, uΨ >,

Ψ a continuous form of bidegree (n− p, n− p) with compact support.

If u is a smooth function the current ddcu ∧ T is a (p + 1, p + 1)-
current in Ω defined by

< ddcu ∧ T,Ψ >:=< T, ddcu ∧Ψ >

for Ψ ∈ Dq,q(Ω), q = n− p− 1. Observe that Θ = dcu ∧Ψ− udcΨ is a
smooth form with compact support such that ddcu∧Ψ−uddcΨ = dΘ.
Since dT = 0 we infer

< T, ddcu ∧Ψ > = < T, uddcΨ > + < T, dΘ >

= < T, uddcΨ >=< ddc(uT ),Ψ > .

This motivates the following:

Definition 3.1. Let T be a closed positive current of bidegree (p, p)
in a domain Ω ⊂ Cn and u ∈ PSH(Ω)∩L∞

loc(Ω). The current ddcu∧T
is a (p+ 1, p+ 1)-current defined by

ddcu ∧ T := ddc(uT ),

i.e.

< ddcu ∧ T,Ψ >=< uT, ddcΨ >,

for all test forms Ψ of bidegree (q, q), q := n− p− 1.

We also need to consider currents of the type du ∧ dcu ∧ T , where
u ∈ PSH(Ω)∩L∞

loc(Ω). Recall that du is locally in Lp
loc(Ω) (with respect

to the Lebesgue measure) for any p < 2. When u is locally bounded
du actually belongs to L2

loc(Ω) as we now explain.
Since u is (locally) bounded from below, we can add a large constant

and assume that u ≥ 0. It follows that u2 is plurisubharmonic hence
ddcu2 ∧ T is a well defined closed positive current if u is smooth, with

ddcu2 = 2uddcu+ 2du ∧ dcu.
This motivates the following:

Definition 3.2. Let u ∈ PSH(Ω) ∩ L∞(Ω). We set

du ∧ dcu ∧ T :=
1

2
ddc(u−m)2 ∧ T − (u−m)ddcu ∧ T,

where m is a lower bound for u in Ω.

This is a well defined closed current in Ω which does not depend on
m (note that du = d(u−m)). These currents (a priori of order 2) are
of order zero, as they are positive:
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Proposition 3.3. Let (uj) be locally bounded plurisubharmonic
functions in Ω which decrease to u ∈ PSH(Ω) ∩ L∞

loc. Then

ddcuj ∧ T → ddcu ∧ T, duj ∧ dcuj ∧ T → du ∧ dcu ∧ T,
in the weak sense of currents on Ω.

In particular ddcu∧T and du∧dcu∧T are closed positive currents,
hence their coefficients extend as complex Borel measures on Ω.

Proof. By definition ddcu ∧ T = ddc(uT ) is a closed current. By
assumption the sequence (uj) converges in L

1
loc(Ω, σT ) hence ujT → uT

in the weak sense of currents in Ω. The operator ddc is continuous for
the weak convergence of currents hence ddcuj ∧ T → ddcu ∧ T in the
sense of currents in Ω.

The second statement follows from the first one and the fact that
ujdd

cuj ∧ T converges to uddcu ∧ T . This latter convergence relies
on several technical results that we establish below: it follows from
Chern-Levine-Nirenberg inequalities (Theorem 3.9) that the currents
ujdd

cuj ∧ T have uniformly bounded masses. We can thus consider a
cluster point σ. The reader will check in Exercise 3.1 that

σ ≤ uddcu ∧ T,
since (uj) is decreasing and ddcuj∧T → ddcu∧T . To prove the reverse
inequality we can use the localization principle (Proposition 3.6) to
insure that uj and u coincide near the boundary of Ω and then use
Proposition 3.7 to show that the currents σ and uddcu ∧ T have the
same total mass.

It remains to prove the positivity property. Since this is a local
property we can reduce to the case where u is plurisubharmonic in a
neighborhood of Ω and 0 ≤ u ≤M on Ω.We can then approximate u by
a decreasing family of smooth plurisubharmonic functions, uε := u⋆ρε,
using standard mollifiers.

We know that ddcuε∧T → ddcu∧T and duε∧dcuε∧T → du∧dcu∧T
in the sense of currents in Ω. Since ddcuε is a positive form of bidegree
(1, 1), we infer that ddcuε ∧ T and duε ∧ dcuε ∧ T are positive currents
in Ω, hence so are their limits. □

Iterating this process we define by induction the intersection of
currents of the above type.

Definition 3.4. If u1, . . . , uk ∈ PSH(X) ∩ L∞
loc(X), and T is a

closed positive current of bidimension (m,m), we define the current
ddcu1 ∧ . . . ∧ ddcuk ∧ T by

ddcu1 ∧ . . . ∧ ddcuk ∧ T := ddc (u1dd
cu2 ∧ . . . ∧ ddcuk ∧ T ) .

We define similarly du1 ∧ dcu1 ∧ . . . ∧ duk ∧ dcuk ∧ T.

It turns out that these definitions are symmetric in the u′js, as we
shall soon show.
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In particular if V ∈ PSH(Ω) and u1, . . . , uk ∈ PSH(Ω) ∩ L∞
loc(Ω),

the current ddcu1 ∧ . . . ∧ ddcuk ∧ ddcV is a well defined closed positive
current on Ω.

Definition 3.5. The complex Monge-Ampère measure of a locally
bounded plurisubharmonic function is

(ddcu)n := ddcu ∧ · · · ∧ ddcu.

It remains to make sure that this is a good definition.

1.2. Localization principle. A technical point that we are going
to use on several occasions is that we can arbitrarily modify a bounded
plurisubharmonic function near the boundary of a pseudoconvex do-
main without changing it on a given compact subset.

Fix Ω = {ρ < 0} ⋐ Cn a bounded strictly pseudoconvex domain,
with ρ smooth and strictly plurisubharmonic in a neighborhood of Ω.

Proposition 3.6. Fix K ⊂ Ω a compact set and M > 0. There
exists C > 0 depending only on K and Ω, a compact subset E ⊂ Ω
such that K ⊂ E◦ and for any u ∈ PSH(Ω) ∩ L∞(Ω) with u < 0 in
Ω, there exists A > 0 and a bounded plurisubharmonic function ũ in a
neighborhood of Ω̄ such that

(i) ũ = u in a neighborhood of K,
(ii) ũ = Aρ in Ω \ E, with A ≤ C ∥u∥L∞(Ω),
(iii) u ≤ ũ ≤ Aρ on Ω.

In particular ∥ũ∥L∞(D) ≤ C ∥u∥L∞(Ω).

Proof. Consider, for c > 0, Dc = {z ∈ Ω; ρ(z) < −c}, and choose
a > 0 such that K ⊂ Da. Set M := ∥u∥L∞(Ω) and A :=M/a so that

u ≥ Aρ on ∂Da.

Pick b > 0 so small so that a < b and Aρ ≥ u on ∂Db. The gluing
lemma for plurisubharmonic functions shows that the function

ũ(z) =

 u(z) for z ∈ Da,
max{u(z), Aρ(z)} for z ∈ Db \Da,

Aρ(z) for z ∈ Ω \Db,

is plurisubharmonic in Ω and satisfies all our requirements with E :=
Db and C := max{maxΩ̄ |ρ|/a, 1}. □

We now establish an integration by parts formula due to U. Cegrell
[Ceg04]:

Proposition 3.7. Let T be a closed positive current of bidimen-
sion (1, 1) in Ω. Let u, v ∈ PSH(Ω) ∩ L∞

loc(Ω) be such that u, v ≤ 0,
limz→∂Ω u(z) = 0 and

∫
Ω
ddcv ∧ T < +∞. Then∫

Ω

vddcu ∧ T ≤
∫
Ω

uddcv ∧ T,
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where the inequality holds in [−∞, 0[. If limz→∂Ω v(z) = 0, then

(1.1)

∫
Ω

vddcu ∧ T =

∫
Ω

uddcv ∧ T,

provided that
∫
Ω
ddcu ∧ T < +∞.

Proof. For ε > 0 set uε := sup{u,−ε} and observe that uε is
plurisubharmonic in Ω and increases to 0 as ε decreases to 0. The
monotone convergence theorem yields∫

Ω

uddcv ∧ T = lim
ε→0

∫
Ω

(u− uε)dd
cv ∧ T.

Set Ωε := {u < −ε}. Then K := Ωε ⊂ Ω is a compact subset such
that uε = u on Ω \K. Let D1 ⋐ Ω be a domain close to Ω such that
K ⊂ D1. Let (ρη)η>0 be standard mollifiers. For η > 0 small enough,
the smooth function (u − uε) ⋆ ρη has compact support contained in
the η−neighborhood Kη ⊂ Ω of K and converges to u− uε on Ω as η
decreases to 0. It follows from Lebesgue’s convergence theorem that∫

D1

(u− uε)dd
cv ∧ T = lim

η→0

∫
D1

(u− uε) ⋆ ρηdd
cv ∧ T.

Since (u−uε) ⋆ ρη is smooth and has a compact support in D1 we infer∫
D1

(u−uε)⋆ρηddcv∧T =

∫
D1

vddc((u−uε)⋆ρη)∧T ≥
∫
D1

vddc(u⋆ρη)∧T.

Assume first that v is continuous in a neighborhood of D̄1 and
observe that we can choose D1 so that the positive Borel measure
(−v)ddcu ∧ T has no mass on ∂D1. Thus

(−v)ddc(u ⋆ ρη) ∧ T → (−v)ddcu ∧ T

weakly in the sense of Radon measures in Ω. Therefore

lim
η→0

∫
D1

v ddc(u ⋆ ρη) ∧ T =

∫
D1

v ddcu ∧ T.

We infer

(1.2)

∫
D1

u ddcv ∧ T ≥
∫
D1

v ddcu ∧ T − ε

∫
D1

ddcv ∧ T.

If v is not lower semi-continuous we take a decreasing sequence
(vj) of negative continuous plurisubharmonic functions in Ω which con-
verges to v in a neighborhood of D1 and apply the last inequality to
each function vj. Choose a domain D2 such that D2 ⋐ D1 ⋐ Ω. By
upper semi-continuity on the compact set L := D2 ⊂ D1, it follows
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from (1.2) that∫
L

uddcv ∧ T ≥ lim sup
j

∫
L

uddcvj ∧ T

≥ lim
j

∫
D1

vjdd
cu ∧ T − ε lim inf

j

∫
D1

ddcvj ∧ T

≥
∫
D1

vddcu ∧ T − ε

∫
D̄1

ddcv ∧ T.

Letting D1 and D2 increase to Ω and taking the limit as ε → 0, we
obtain the required inequality provided that

∫
Ω
ddcv ∧ T < +∞. □

Simple examples show that the total mass of the current ddcu ∧ T
in Ω need not be finite:

Example 3.8. Fix 0 < α < 1 and consider

z ∈ D 7→ u(z) := −(1− |z|2)α ∈ R

This is a smooth and bounded subharmonic function in the unit disc D,
which extends as a Hölder continuous function up to the boundary. The
reader can check (Exercise 3.3) that the total mass of ∆u is infinite,∫

D
ddcu = +∞.

2. The complex Monge-Ampère measure

2.1. Chern-Levine-Nirenberg inequalities. The following in-
equalities are due to Chern-Levine-Nirenberg [CLN69]. They are the
first step towards defining the complex Monge-Ampère operator on
bounded plurisubharmonic functions:

Theorem 3.9. Let T be a closed positive current of bidimension
(k, k) in Ω and u1, . . . , uk ∈ PSH(Ω) ∩ L∞

loc(Ω). Then for all open
subsets Ω1 ⋐ Ω2 ⋐ Ω, there exists a constant C = CΩ1,Ω2 > 0 such that
for any compact subsets K ⊂ Ω1

(2.1)

∫
Ω1

ddcu1 ∧ . . . ∧ ddcuk ∧ T ≤ C∥u1∥E . . . ∥uk∥E∥T∥E,

and

(2.2)

∫
Ω1

du1∧dcu1∧ddcu2∧. . .∧ddcuk∧T ≤ C∥u1∥2E∥u2∥E . . . ∥uk∥E∥T∥E ,

where E := (Ω2 \ Ω1) ∩ Supp(T ).

Here (and in the sequel) we let ∥u∥E denote the L∞-norm of the
function u on the Borel set E.
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Proof. It is enough to prove inequality (2.1) for k = 1 and then
use induction on k. Set u = u1. We can always assume that u ≤ 0 on
Ω2, since the function v := u − supΩ2

u is negative on Ω2 and satisfies
ddcv = ddcu and ∥v∥Ω2\Ω1 ≤ 2∥u∥Ω2\Ω1 .

Let χ ∈ D(Ω2) be a non-negative test function with χ = 1 in Ω1.
Then ∫

Ω1

T ∧ ddcu ≤
∫
Ω2

χT ∧ ddcu.

Since ddcχ = 0 in Ω1 we obtain∫
Ω2

χddcu ∧ T =

∫
Ω2

uddcχ ∧ T =

∫
Ω2\Ω1

uddcχ ∧ T.

Fixing A > 0 such that ddcχ ≤ Aβ on Ω we infer∫
Ω2

χddcu ∧ T ≤ A∥u∥Ω2\Ω1

∫
Ω2\Ω1

T ∧ β.

We now prove the second inequality (2.2). We can assume without
loss of generality that u := u1 ≥ 0 in Ω2. Then u

2 is plurisubharmonic
and

ddcu2 = 2uddcu+ 2du ∧ dcu,
in the sense of currents in Ω2. Thus (2.2) follows from (2.1) applied
with u1 replaced bu u21,∫

Ω1

du1 ∧ dcu1 ∧ ddcu2 ∧ . . . ∧ ddcuk ∧ T ≤ C∥u1∥2E . . . ∥uk∥E∥T∥E.

□
Corollary 3.10. For all subdomains Ω1 ⋐ Ω2 ⋐ Ω, there exists a

constant C = CΩ1,Ω2 > 0 such that if V ∈ PSH(Ω), and u1, . . . , uk ∈
PSH(Ω) ∩ L∞

loc(Ω), then

(2.3)

∫
Ω1

ddcu1∧ . . .∧ddcuk∧ddcV ∧βq ≤ C∥u1∥E . . . ∥uk∥E∥V ∥L1(E),

where E := Ω2 \ Ω1 and q = n− (k + 1).

Proof. It suffices to find an upper bound for the mass of the cur-
rent T = ddcV ∧ βn−1 on Ω1 and apply previous inequalities.

We use the same notations as in the previous proof and assume first
that V < 0 in Ω2. Then∫

Ω1

ddcV ∧ βn−1 ≤
∫
Ω2

χddcV ∧ βn−1 =

∫
Ω2

V ddcχ ∧ βn−1.

Since ddcχ ∧ βn−1 = ∆χβn, it follows that∫
K

ddcV ∧ βn−1 ≤ ∥∆χ∥Ω2\Ω1

∫
Ω2\Ω1

|V |βn.

which proves the required inequality.
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We now treat the the general case. The submean-value inequality
insures that we can find an open set Ω′ such that Ω1 ⋐ Ω′ ⋐ Ω2 and
a constant C > 0 such that maxΩ̄′ V ≤ C

∫
Ω2\Ω1

V+ βn. We can now

apply the last inequality to V − supΩ′ V in Ω′ and obtain the required
estimate. □

2.2. Symmetry of Monge-Ampère operators.

Proposition 3.11. Let T be a closed positive current on Ω of bidi-
mension (m,m). Let (uj) be bounded plurisubharmonic functions in
Ω which decrease to u ∈ PSH(Ω) ∩ L∞

loc. Then for any continuous
plurisubharmonic function h on Ω,

hddcuj ∧ T → hddcu ∧ T
and

ddch ∧ ddcuj ∧ T → ddch ∧ ddcu ∧ T
in the weak sense of Radon measures on Ω.

Proof. We already know that ddcuj ∧ T → ddcu ∧ T in the weak
sense of currents by Proposition 3.3.

The Chern-Levine-Nirenberg inequalities insure that the currents
ddcuj ∧T have locally uniformly bounded masses in Ω, hence the weak
convergence holds in the sense of Radon measures on Ω. Thus

hddcuj ∧ T → hddcu ∧ T
in the weak sense of Radon measures.

Since the operator ddc is continuous for the weak convergence of
currents, it follows that ddch∧ddcuj∧T → ddch∧ddcu∧T in the sense
of currents in Ω.

Now these are positive currents (h is plurisubharmonic ) hence the
convergence actually holds in the sense of Radon measures. □

This shows that these operators are symmetric:

Corollary 3.12. Let T (resp. S) be a positive closed current of
bidimension (2, 2) (resp. (k, k)) and u, v be locally bounded plurisub-
harmonic functions in a domain Ω ⊂ Cn. Then

ddcu ∧ ddcv ∧ T = ddcv ∧ ddcu ∧ T.
More generally the Monge-Ampère type operator

(u1, . . . , uk) ∈ PSH(Ω) ∩ L∞
loc(Ω) 7−→ ddcu1 ∧ . . . ∧ ddcuk ∧ S

is symmetric.

Proof. The formula is clear when both functions are smooth. As-
sume now that u is smooth and take a sequence of smooth psh functions
vj which locally decrease to u. Then

ddcu ∧ ddcvj ∧ T = ddcvj ∧ ddcu ∧ T
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hence the previous convergence result yields the required identity.

We now treat the general case. Since the property is local we can
use the localization principle and assume that u, v are negative in a
ball B ⋐ Ω and equal to 0 on ∂B. Let ρ be a strictly plurisubharmonic
defining function of B. It follows from Proposition 3.7 that∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
uddcρ ∧ ddcv ∧ T.

As ρ is smooth, the first part of the proof yields ddcρ ∧ ddcv ∧ T =
ddcv ∧ ddcρ ∧ T in the sense of currents. Thus∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
uddcv ∧ ddcρ ∧ T.

Using again the formula (1.1) and the fact that ddcρ ∧ ddcu ∧ T =
ddcu ∧ ddcρ ∧ T , we get∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
vddcu ∧ ddcρ ∧ T

=

∫
B
vddcρ ∧ ddcu ∧ T

=

∫
B
ρddcv ∧ ddcu ∧ T.

Observe finally that any smooth test function χ with compact sup-
port in B can be written as the difference of two defining functions for
B. Indeed Addcρ > −ddcχ for A > 1 large enough, thus χ = ρ1 − ρ2,
where ρ1 := χ+ Aρ and ρ2 := Aρ. □

Here is a first example of an explicit non-smooth complex Monge-
Ampère measure:

Example 3.13. Fix r > 0. The function

ur(z) := log+(|z|/r) = max{log |z|; log r} − log r

is a continuous plurisubharmonic function in Cn which is smooth in
Cn \ {|z| = r} where it satisfies (ddcu)n = 0.

The Borel measure (ddcur)
n is invariant under unitary transforma-

tions and has total mass 1 in Cn (see Proposition 3.34). It coincides
with the normalized Lebesgue measure σr on the sphere |z| = r.

2.3. Integrability with respect to Monge-Ampère measures.

Theorem 3.14. Fix V ∈ PSH(Ω) and u1, . . . , un ∈ PSH(Ω) ∩
L∞
loc(Ω). For any subdomain D ⋐ Ω and any compact subset K ⊂ D,

there exists a constant C = C(K,D) > 0 such that∫
K

|V |ddcu1 ∧ . . . ∧ ddcun ≤ C∥u1∥D . . . ∥un∥D∥V ∥L1(D).

In particular the Monge-Ampère measure ddcu1 ∧ . . . ∧ ddcun does
not charge the polar set P = {V = −∞}.
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Proof. Since K is compact, we can cover it by finitely many small
balls. Using the localization principle we can thus assume that there
are euclidean balls such that K ⋐ B1 ⋐ B ⋐ Ω and that uk coincides in
a neighborhood of B \B1 with Akρ. Here ρ denotes a defining function
for the ball B and Ak ≤ C∥uk∥L∞(B) with a uniform constant C.

We first assume that V < 0 on B and set Vj := sup{V, jρ}, for
j ∈ N. The (Vj)’s are bounded plurisubharmonic functions on B with
boundary values 0 which converge to V. It follows from Proposition 3.7
that∫

K

(−Vj) ∧1≤k≤n dd
cuk ≤

∫
B
(−Vj) ∧1≤k≤n dd

cuk

=

∫
B
(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun.

The Chern-Levine-Nirenberg inequalities (2.1) yield∫
K

(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun ≤ Cn Π1≤k≤n∥uk∥B
∫
B
|Vj|dλ,

where Cn > 0 is a uniform constant.
On the other hand the formula (1.1) yields, setting A = A1 · · ·An,∫
B\B1

(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun = A

∫
B\B1

(−ρ)ddcVj ∧ βn−1

= A

∫
B
(−Vj)ddcρ ∧ βn−1

≤ A

∫
B
(−Vj)βn.

Altogether this yields∫
K

(−Vj)ddcu1 ∧ . . . ∧ ddcun ≤ (C + A)

∫
B
(−Vj)βn.

Since (Vj) decreases to V ∈ L1(B), the monotone convergence theorem
implies∫

K

(−V )ddcu1 ∧ . . . ∧ ddcun ≤ (C + A)

∫
B
(−V )βn < +∞.

We can finally replace V by V ′ := V − supB V , note that ddcV =
ddcV ′, and use the submean value inequality to obtain

∥V ′∥L1(B) ≤ C0∥V ∥L1(B2)

where B ⋐ B2 ⋐ Ω. This proves the required estimate. □
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2.4. Compact singularities. The estimates (2.1) and (2.2) only
require a control on the functions near the boundary of Ω. We can thus
improve the last estimate as follows:

Proposition 3.15. Let T be a closed positive current of bidimen-
sion (p, p) and φ ∈ PSH(Ω). Assume there exists a compact set E
and a strictly pseudoconvex domain D such that E ⊂ D ⊂ Ω and a
constant M > 0 such that −M ≤ φ ≤ 0 on Ω \E. Then there exists a
constant C > 0 which does not depend on φ and M such that∫

D

|φ|T ∧ βp ≤ CM

∫
D\E

T ∧ βp.

In particular
ddcφ ∧ T := ddc(φT ),

is a well defined closed positive current in Ω.

Proof. Let ρ be a defining function for D which is stricly plurisub-
harmonic in a neighborhood of D̄. We can assume that β ≤ ddcρ on
D. Set φj := max{φ,−j} and observe that φj is plurisubharmonic,
bounded on D and φj = φ on D \ E for j > M . It follows from
Proposition 3.7 that∫

D

(−φj)T ∧ βp ≤
∫
D

(−φj)dd
cρ ∧ T ∧ βp−1

=

∫
D

(−ρ)ddcφj ∧ T ∧ βp−1

≤ sup
D

(−ρ)
∫
D

ddcφj ∧ T ∧ βp−1.

Since φj = φ on Ω \ D for j ≥ M , Chern-Levine-Nirenberg in-
equalities show that the last integral is bounded from above by C1 ·M .
Letting j → ∞ yields the required estimate. □

Corollary 3.16. The Monge-Ampère measure

ddcφ1 ∧ · · · ∧ ddcφn

is well defined for all plurisubharmonic functions which are locally
bounded near the boundary of Ω.

Such plurisubharmonic functions are called psh functions with com-
pact singularities.

Example 3.17. The function

ℓ(z) := log |z|, z ∈ Cn

is plurisubharmonic in Cn and has an isolated singularity at the origin.
Its Monge-Ampère measure (ddcℓ)n is therefore well defined. The reader
will check in Exercise 3.15 that

(ddcℓ)n = δ0,
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is the Dirac mass at the origin, hence ℓ is a fundamental solution of
the Monge-Ampère operator. This latter notion is however of limited
interest as this operator is non-linear when n ≥ 2 and there are very
many fundamental solutions !

3. Continuity of the complex Monge-Ampère operator

When the (complex) dimension is n = 1 the complex Monge-
Ampère operator is nothing but the Laplace operator ddc. It is then a
linear operator which is well defined on all subharmonic functions and
is continuous for the weak (L1

loc) convergence.
The situation is much more delicate in dimension n ≥ 2. The

complex-Monge-Ampère operator is then non linear and can not be
defined for all plurisubharmonic functions. It is moreover discontinous
for the the L1

loc-convergence. We will nevertheless show that it is con-
tinuous for the monotone convergence.

3.1. Continuity along decreasing sequences. We first show
that the complex Monge-Ampère operators is continuous along decreas-
ing sequences of plurisubharmonic functions.

Theorem 3.18. Let T be a closed positive current of bidegree (p, p)
and let (uj0)j∈N, ..., (u

j
q)j∈N be decreasing sequences of plurisubharmonic

functions which converge to u0, ..., uq ∈ PSH(Ω) ∩ L∞
loc(Ω), p+ q ≤ n.

Then

uj0 dd
cuj1 ∧ . . . ∧ ddcujq ∧ T −→ u0 dd

cu1 ∧ . . . ∧ ddcuq ∧ T
in the weak sense of currents.

Proof. The proof proceeds by induction on q. For q = 0 the
theorem is a consequence of the monotone convergence theorem. Fix
1 ≤ q ≤ n− p and assume that the theorem is true for q − 1 so that

Sj := ∧1≤k≤qdd
cujk ∧ T −→ S := ∧1≤k≤qdd

cuk ∧ T.
It follows from Chern-Levine-Nirenberg inequalities (2.1) that the

sequence (uj0S
j) is relatively compact for the weak topology of currents.

Up to extracting and relabelling, it suffices to show that if the sequence
(uj0S

j) converges weakly to a current Θ then Θ = u0S.
By upper semi-continuity we already know that for all elementary

positive (n− p− q, n− p− q)-form Γ, Θ∧ Γ ≤ u0S ∧ Γ hence u0S −Θ
is a positive current on Ω. It thus remains to prove that∫

Ω

u0S ∧ βn−p−q ≤
∫
Ω

Θ ∧ βn−p−q.

The problem being local, it is enough to prove that the total mass of
the positive current u0S −Θ on each ball B = B(a,R) ⋐ Ω is zero. By
the localization principle we can assume that the functions uj0 coincide
with the function ρ(z) = A(|z − a|2 − R2) in a neighborhood of ∂B,
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where A > 1 is a large constant, and that −1 ≤ uj0 < 0 in an open
neighborhood Ω′′ ⋐ Ω. Integrating by parts (using (1.1)), we infer∫

B
u0 ∧1≤i≤q dd

cui ∧ T ∧ βn−p−q ≤
∫
B
uj0 ∧1≤i≤q dd

cui ∧ T ∧ βn−p−q

=

∫
B
u1 ∧ ddcuj0 ∧2≤i≤q dd

cui ∧ T ∧ βn−p−q

≤
∫
B
uj0 ∧1≤i≤q dd

cuji ∧ T ∧ βn−p−q.

We use here the symmetry of the wedge products (see Corollary 3.12).
Since the positive measures (−uj0)∧1≤i≤qdd

cuji∧T∧βn−p−q converge
weakly to −Θ ∧ βn−p−q, it follows from the lower semi-continuity that

lim inf
j→+∞

∫
B
(−uj0) ∧1≤i≤q dd

cuji ∧ ∧T ∧ βn−p−q ≥
∫
B
−Θ ∧ βn−p−q,

which proves the theorem. □

The reader can use decreasing sequence of smooth approximants to
compute the following complex Monge-Ampère measure:

Example 3.19. Consider

ψ : z ∈ Cn 7→ max{log+ |zj|; 1 ≤ j ≤ n} ∈ R.

The function ψ is Lipschitz continuous and plurisubharmonic in
Cn. Its Monge-Ampère measure (ddcψ)n coincides with the normalized
Lebesgue measure τn on the torus

Tn = {z ∈ Cn; |z1| = · · · = |zn| = 1}.

(See Exercise 3.9).

Corollary 3.20. If u, v are plurisubharmonic and locally bounded,
then

(ddc[u+ v])n =
n∑

j=0

(
n
j

)
(ddcu)j ∧ (ddcv)n−j.

Proof. The formula is clear if u, v are smooth. The general case
follows by approximation by smooth decreasing sequences. □

The following estimates are due to Blocki [Blo93]:

Proposition 3.21. Fix u, v, w ∈ PSH−(Ω) ∩ L∞(Ω) such that
limz→∂Ω(w(z)− v(z)) = 0. Then∫

Ω

(w − v)n+1
+ (ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω

(w − v)+ (ddcv)n,

where M = supΩ u− infΩ u and (w − v)+ := sup{w − v, 0}.
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Proof. We can assume without loss of generality that supΩ u = 0.
Observe that for ε > 0 the function wε := sup{v, w − ε} is a bounded
plurisubharmonic function on Ω such that wε ↗ sup{v, w} as ε ↘ 0
and wε = v near ∂Ω. By the the monotone convergence theorem we
may thus assume that w = v near ∂Ω.

Set h := (w − v)+ on Ω and fix a compact set K ⊂ Ω such that
h = 0 in Ω\K. Consider smooth approximants hε := h⋆ρε of h. These
functions are smooth in a neighborhood Ω′′ of K with compact support
in the ε−neighborhood Kε of K. By definition ddcu ∧ T := ddc(uT )
hence ∫

Ω

hpεdd
cu ∧ T =

∫
Ω′′
uddchpε ∧ T.

On the other hand if p ≥ 1,

ddchpε = php−1
ε ddchε + p(p− 1)hp−2

ε dhε ∧ dchε ≥ php−1
ε ddchε,

thus u ddchpε ≤ puhp−1
ε ddchε and∫

Ω′′
hpεdd

cu ∧ T ≤
∫
Ω′′
puhp−1

ε ddchε ∧ T

≤ pM

∫
Ω′′
hp−1
ε (−ddchε) ∧ T

≤ pM

∫
Ω′′
hp−1
ε ddcvε ∧ T.

The last inequality follows from the observation that

h = max{w − v, 0} = max{w, v} − v,

hence −ddchε ≤ ddcvε.
We can use this argument n+ 1 times and obtain∫

Ω′′
hn+1
ε (ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω′′
hε(dd

cvε)
n.

Since h = sup{w, v} − v, hε = (sup{w, v})ε − vε is the difference of
decreasing sequences of bounded plurisubharmonic functions, we can
use the continuity of the Monge-Ampère operator along decreasing se-
quences and apply Lebesgue’s convergence theorem to obtain∫

Ω′′
hn+1(ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω′′
h(ddcv)n,

which is our claim. □

3.2. Continuity along increasing sequences. In this section
we show that complex Monge-Ampère operators are continuous along
increasing sequences.

To this end we need the following technical result which relies on
the quasicontinuity of plurisubharmonic functions:
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Lemma 3.22. Let P be a family of plurisubharmonic functions which
are locally uniformly bounded. Let T denote the set of currents of the
form T :=

∧
1≤i≤p dd

cui, where u1, . . . , un ∈ P.

If (Tj)j∈N is a sequence of currents in T converging weakly to a
current T ∈ T , then for all locally bounded plurisubharmonic function
f , the currents fTj weakly converge to fT .

The proof of the quasi-continuity will be given in the next chapter
so we postpone the proof of this Lemma as well.

Theorem 3.23. Let (uj0), . . . , (u
j
q) be sequences of locally bounded

plurisubharmonic functions which increase almost everywhere towards
u0, . . . , uq ∈ PSH(Ω) ∩ L∞

loc(Ω). Then

uj0dd
cuj1 ∧ . . . ∧ ddcujq −→ u0dd

cu1 ∧ . . . ∧ ddcuq

in the weak sense of currents.

Proof. We proceed by induction on q. The case q = 0 follows from
the monotone convergence theorem.

Suppose that the theorem is true for q− 1. By continuity of ddc we
infer that the currents Sj := ddcuj1∧ . . .∧ddcujq converge to the current
S := ddcu1 ∧ . . . ∧ ddcuq.

The Chern-Levine-Nirenberg inequalities insure that the currents
(uj0Sj) form a relatively compact sequence. We need to show it has a
unique limit point. Extracting and relabelling, we need to show that if
uj0Sj → Θ weakly then Θ = u0S on Ω.

The problem is local so it suffices to prove the convergence in a ball
B = B(a; r) ⋐ Ω. We can modify the functions in a neighborhood of
∂B so that they all coincide with ρ(z) = A(|z − a|2 − R2) near ∂B,
A > 1 a uniform constant.

Note that uj0Sj ≤ u0Sj since (uj0) is increasing. It follows therefore
from the upper semi-continuity that Θ ≤ u0S. We now show that
Θ = u0S by proving that∫

B
Θ ∧ βn−q ≥

∫
B
u0S ∧ βn−q.

Indeed for j ≥ k ≥ 0, the integration by parts formula yields∫
B
uj0Sj ∧ βn−q ≥

∫
B
uk0 ∧1≤i≤q dd

cuji ∧ βn−q.

The induction hypothesis and Lemma 3.22 yield

lim inf
j

∫
B
uj0Sj ∧ βn−q ≥

∫
B
uk0 ∧1≤i≤q dd

cui ∧ βn−q

=

∫
B
u1dd

cuk0 ∧2≤i≤q dd
cui ∧ βn−q.
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Applying Lemma 3.22 and Stokes’ theorem again, we get

lim
k

∫
B
u1dd

cuk0 ∧2≤i≤q ddcui ∧ βn−q

=

∫
B
u1dd

cu0 ∧2≤i≤q dd
cui ∧ βn−q

=

∫
B
u0 ∧1≤i≤q dd

cui ∧ βn−q,

hence

lim inf
j→+∞

∫
B
uj0Sj ∧ βn−q ≥

∫
B
u0 ∧1≤i≤q dd

cui ∧ βn−q,

and the proof is complete. □

The following corollary will allow us to show in the next chapter
that ”negligible sets are pluripolar”, answering a celebrated question
of P.Lelong.

Corollary 3.24. Let (Vj) be plurisubharmonic functions increas-
ing almost everywhere to V ∈ PSH(Ω). Then the exceptional set

N := {sup
j
Vj < V }

has measure 0 with respect to all Monge-Ampère measures of the type
ddcu1 ∧ . . . ddcun, where u1, . . . , un ∈ PSH(Ω) ∩ L∞(Ω).

We have already seen (see Theorem 1.49) that

sup
j
Vj(x) = lim supVj(x) = V (x)

for almost every x with respect to Lebesgue measure. This corollary
gives much more precise information.

Proof. Set Vs := sup{V, s} and Vj,s = sup{Vj, s} and observe that

N ⊂
∪
s∈Q

Ns, where Ns := {sup
j
Vj,s < Vs}.

By the subadditivity property of Borel measures, we can therefore as-
sume that all the functions (Vj) are locally bounded.

SetW := supj Vj. ThenW is a locally bounded Borel function such
that W ≤ V with equality almost everywhere. Again by subadditivity,
it is enough to prove that∫

K∩N
ddcu1 ∧ . . . ddcun = 0,
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where K ⊂ Ω is a compact subset. Pick χ a non-negative cutoff func-
tion such that χ ≡ 1 near K. The previous convergence theorem yields∫

Ω

χWddcu1 ∧ . . . ddcun = lim
j

∫
Ω

χVjdd
cu1 ∧ . . . ddcun

=

∫
Ω

χV ddcu1 ∧ . . . ddcun,

which proves the required result since W ≤ V . □

3.3. Discontinuity of the Monge-Ampère operator. We have
proved that the complex Monge-Ampère operator is well defined on the
set PSH(Ω)∩L∞

loc and is continuous under monotone convergence. This
operator is however not continuous under the weaker L1

loc convergence
as was first emphasized by Cegrell [Ceg84]. Here is a simple example:

Example 3.25. The functions

uj(z1, z2) :=
1

2j
log
[
|zj1 + zj2|2 + 1

]
are smooth and plurisubharmonic in C2. They form a locally bounded
sequence which converges in L1

loc(C2) towards

u(z1, z2) = logmax[1, |z1|, |z2|].

Observe that (ddcuj)
2 = 0 while (ddcu)2 is the Lebesgue measure on the

real torus {|z1| = |z2| = 1}.

We leave the details as an Exercise 3.10. Another example is given
in Exercise 3.7. This discontinuity is actually rather common as was
observed by Lelong [Lel83] who showed the following:

Proposition 3.26. Every locally bounded plurisubharmonic func-
tion can be approximated in L1

loc by locally bounded plurisubharmonic
functions with vanishing Monge-Ampère measures.

Such plurisubharmonic functions are natural generalizations of har-
monic functions, they are called maximal plurisubharmonic functions.

4. Maximum principles

The comparison principle is one the most effective tools in pluripo-
tential theory. It is a non linear version of the classical maximum
principle.

4.1. The comparison principle. We establish in this section
several types of maximum principles starting with the following local
maximum principle:
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Theorem 3.27. Set T = ddcw1∧· · ·∧ddcwn−p, where 0 ≤ p ≤ n−1
and wi ∈ PSH(Ω) ∩ L∞

loc(Ω). Then for all u, v ∈ PSH(Ω) ∩ L∞
loc(Ω),

1{u>v}(dd
c max{u, v})p ∧ T = 1{u>v}(dd

cu)p ∧ T,
in the sense of Borel measures in Ω.

Proof. Set D := {u > v}. If u is continuous then D is an open
subset of Ω and max{u, v} = u in D hence

(ddc max{u, v})p ∧ T = (ddcu)p ∧ T,
so our claim is easy in this case.

We now treat the general case. Let (uj) a sequence of continuous
plurisubharmonic functions decreasing to u. Since the problem is local
we can assume that Ω is a ball and all functions are bounded and
plurisubharmonic on a fixed neighborhood of Ω. We know

1{uj>v}(dd
c max{uj, v})p ∧ T = 1{uj>v}(dd

cuj)
p ∧ T,

Set fj := (uj − v)+ and f = (u− v)+. The previous identity yields

fj(dd
c max{uj, v})p ∧ T = fj(dd

cuj)
p ∧ T,

in the weak sense of measures in Ω.
Observe that fj = max{uj, v} − v, f = max{u, v} − v and the

sequence (max{uj, v}) decreases to max{u, v}. It follows therefore from
Theorem 3.18 that

f(ddc max{u, v})p ∧ T = f(ddcu)p ∧ T
in the sense of Borel measures on Ω.

Fix ε > 0. Since 1/(f + ε) is a bounded Borel function, we infer

f

f + ε
(ddc max{u, v})p ∧ T =

f

f + ε
(ddcu)p ∧ T.

Let ε↘ 0 and observe that f/(f + ε) ↗ 1{u>v} to conclude. □
Corollary 3.28. With the same hypotheses as in the theorem,

(ddcmax{u, v})p ∧ T ≥ 1{u≥v}(dd
cu)p ∧+1{u<v}(dd

cv)p ∧ T
in the sense of Borel measures in Ω.

The following is often called the comparison principle:

Theorem 3.29. Assume u, v ∈ PSH(Ω) ∩ L∞(Ω) are such that
lim infz→∂Ω(u(z)− v(z)) ≥ 0. Then∫

{u<v}
(ddcv)n ≤

∫
{u<v}

(ddcu)n.

Proof. By assumption we can find a compact subset K ⊂ Ω and
an arbitrarily small ε > 0 such that sup{u, v − ε} = u in Ω \K. Fix a
domain Ω′ such that K ⊂ Ω′ ⋐ Ω. Then

(4.1)

∫
Ω′
(ddc sup{u, v − ε})n =

∫
Ω′
(ddcu)n.
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Indeed set w := sup{u, v−ε} and observe that (ddcw)n−(ddcu)n =
ddcS, where S := w(ddcw)n−1 − u(ddcu)n−1 is a current of bidimension
(1, 1). Since w = u in Ω \K, we get S = 0 there, i.e. the support of
the current S is contained in K. Pick a smooth test function χ on Ω′

such that χ ≡ 1 in a neighborhood of K, we conclude that∫
Ω′
ddcS =

∫
Ω′
χddcS =

∫
Ω′
S ∧ ddcχ = 0,

since ddcχ = 0 on the support of the current S. This proves (4.1).
We now apply Theorem 3.27 and (4.1) in Ω′ to get∫

{u<v−ε}
(ddcv)n =

∫
{u<v−ε}

(ddc sup{u, v − ε})n

=

∫
Ω′
(ddc sup{u, v − ε})n −

∫
{u≥v−ε}

ddc sup{u, v − ε})n

≤
∫
Ω′
(ddcu)n −

∫
{u>v−ε}

ddc sup{u, v − ε})n

=

∫
Ω′
(ddcu)n −

∫
{u>v−ε}

(ddcu)n

=

∫
{u≤v−ε}

(ddcu)n ≤
∫
{u<v}

(ddcu)n.

The conclusion follows by letting ε↘ 0. □
We now deduce the following global maximum principle:

Corollary 3.30. Assume u, v ∈ PSH(Ω) ∩ L∞(Ω) are such that
lim infz→∂Ω(u(z)− v(z)) ≥ 0. If (ddcu)n ≤ (ddcv)n then v ≤ u in Ω.

Proof. For ε > 0 we set vε := v + ερ, where ρ(z) := |z|2 − R2 is
choosen so that ρ < 0 on Ω. Then {u < vε} ⊂ {u < v} ⋐ Ω. The
comparison principle yields∫

{u<vε}
(ddcvε)

n ≤
∫
{u<vε}

(ddcu)n.

It follows from Corollary 3.20 that

(ddcvε)
n ≥ (ddcv)n + εn(ddcρ)n ≥ (ddcu)n + εn(ddcρ)n

hence
∫
{u<vε}(dd

cρ)n = 0. We infer that the set {u < vε} has Lebesgue

measure 0. Since {u < v} =
∪

j≥1{u < v1/j}, it follows that the set

{u < v} has Lebesgue measure 0 as well, hence v ≤ u on Ω by the
sub-mean value inequalities. □

We now prove the domination principle.

Corollary 3.31. Fix u, v ∈ PSH(Ω)∩L∞(Ω) such that v ≤ u on
∂Ω. Assume that v ≤ u a.e. in Ω with respect to the measure (ddcu)n.
Then v ≤ u in Ω.
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Proof. For ε > 0 we set vε := v + ερ, where ρ(z) := |z|2 − R2 is
choosen so that ρ < 0 on Ω. Then {u < vε} ⊂ {u < v} ⋐ Ω. The
comparison principle yields∫

{u<vε}
(ddcvε)

n ≤
∫
{u<vε}

(ddcu)n ≤
∫
{u<v}

(ddcu)n = 0.

Since (ddcvε)
n ≥ εn(ddcρ)n, it follows that the set {u < vε} has volume

zero in Ω hence it is empty by the submean-value inequality. Therefore
{u < v} is empty, i.e. v ≤ u in Ω. □

4.2. The Lelong class. We have defined above the complex Monge-
Ampère measure of plurisubharmonic functions that are bounded or
with compact singularities.

One can not expect to define the Monge-Ampère measure of any
unbounded plurisubharmonic function as the following example due to
Kiselman [Kis83] shows:

Example 3.32. Set

φ(z) := (− log |z1|)1/n
(
|z2|2 + · · ·+ |zn|2 − 1

)
.

We let the reader check in Exercise 3.8 that φ is a smooth plurisubhar-
monic function in Bn \ {z1 = 0} such that

(ddcφ)n = cn
1− 1

n
−
∑n

ℓ=2 |zℓ|2

|z1|2| log |z1||
dVLeb

and that this measure has infinite mass in Bn \ {z1 = 0}.

We now introduce an important class of plurisubharmonic functions
in Cn for which such a phenomenon cannot occur.

Definition 3.33. The Lelong class L(Cn) is the class of plurisub-
harmonic functions u in Cn with logarithmic growth, i.e. for which
there exists Cu ∈ R such that for all z ∈ Cn,

u(z) ≤ log+ |z|+ Cu.

The reader will check in Exercise 3.13 that a non constant plurisub-
harmonic function in Cn has at least logarithmic growth. This class of
functions will play an important role later as it induces the model class
of quasi-plurisubharmonic functions on the complex projective space
CPn.

We also consider

L+(Cn) := {u ∈ L(Cn) | ∃C ′
u s.t. − C ′

u + log+ |z| ≤ u(z), ∀z ∈ Cn}.

We let the reader check in Exercise 3.14 that locally bounded func-
tions from the Lelong class have finite total Monge-Ampère mass:
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Proposition 3.34. If u belongs to L(Cn) ∩ L∞
loc(Cn) then∫

Cn

(ddcu)n ≤ 1.

Moreover if u belongs to L+(Cn), then∫
Cn

(ddcu)n = 1.

The proof of these facts relies on the following result of independent
interest:

Lemma 3.35. Let u, v be locally bounded plurisubharmonic functions
in Cn such that u(z) → +∞ as z → ∞. Assume that v(z) ≤ u(z) +
o(u(z)) as z → +∞. Then∫

Cn

(ddcv)n ≤
∫
Cn

(ddcu)n.

Proof. Fix ε > 0. Our assumption insures that for R > 1 large
enough, v(z) ≤ (1 + ε)u(z) if |z| ≥ R. The comparison principle yields∫

BR∩{(1+ε)u<v}
(ddcv)n ≤ (1 + ε)n

∫
BR∩{(1+ε)u<v}

(ddcu)n

≤ (1 + ε)n
∫
Cn

(ddcu)n.

Letting R → +∞ and ε→ 0 we obtain the required inequality. □

For classes of plurisubharmonic functions with prescribed Monge-
Ampère mass, one might hope that it is easier to define the complex
Monge-Ampère measure. This is however a delicate problem. The local
domain of definition of the complex Monge-Ampère operator has been
characterized by Blocki and Cegrell in [Ceg04, Blo04, Blo06].

5. Exercises

Exercise 3.1. Let (fj)j∈N be a decreasing sequence of upper semi-
continuous functions in a domain Ω converging to f . Let (µj)j∈N be a
sequence of positive Borel measures in Ω which converges weakly to a
Borel measure µ. Show that any limit point ν of the sequence of mea-
sures νj := fj · µj satisfies the inequality ν ≤ f · µ in the weak sense of
Radon measures on Ω, i.e.

lim sup
j

fjµj ≤ fµ.

Exercise 3.2. Let (µj)j∈N be a sequence of positive Borel measures
on Ω which converges weakly to a positive Borel measure µ on Ω. Show
that for any compact set K ⊂ Ω and any open subset D ⊂ Ω,

lim sup
j

µj(K) ≤ µ(K) and lim inf
j

µj(D) ≥ µ(D).
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Exercise 3.3. Fix 0 < α < 1 and consider

z ∈ D 7→ u(z) := −(1− |z|2)α ∈ R.

Show that u is a smooth subharmonic function in the unit disc D,
which is Hölder continuous up to the boundary. Check that

∂2u

∂z∂z̄
(z) = α(1− |z|2)α−1 + α(1− α)|z|2(1− |z|2)α−2,

and conclude that
∫
D dd

cu = +∞. Is this in contradiction with Chern-
Levine-Nirenberg inequalities ?

Exercise 3.4. Let u be a locally bounded plurisubharmonic func-
tion in a domain Ω and χ : I −→ R a smooth convex non-decreasing
function with u(Ω) ⊂ I. Check that φ := χ ◦ u is plurisubharmonic in
Ω with

ddcφ = χ′(u) ddcu+ χ′′(u) du ∧ dcu,
and

(ddcφ)n = χ′(u)n (ddcu)n + χ′′(u) · χ′(u)n−1 du ∧ dcu ∧ (ddcu)n−1.

2. Fix 0 < α < 1 and consider

z ∈ B 7→ u(z) := −(1− |z|2)α ∈ R.

Prove that u is is plurisubharmonic in the unit ball B, Hölder con-
tinuous up to the boundary and satisfies

∫
B(dd

cu)n = +∞.

Exercise 3.5. Let Ω,Ω′ be domains in Cn, F : Ω′ −→ Ω a holo-
morphic map and u ∈ PSH(Ω) ∩ L∞(Ω).

1) If u ∈ C2(Ω), show that

(ddcu ◦ F )n(ζ) = |JF (ζ)|2(ddcu)n(F (ζ)),
as differential forms in Ω′, where JF denotes the Jacobian of F .

2) Check that if F is proper, then

F∗(dd
cu ◦ F )n = (ddcu)n

in the sense of currents.

3) Deduce that if F is a biholomorphism, then

(F−1)∗(dd
cu)n = (ddcu ◦ F )n.

Exercise 3.6. Consider, for 1 ≤ j ≤ n.

z ∈ Cn 7→ uj(z) := (Imzj)
+ ∈ R.

1) Check that these are continuous plurisubharmonic functions s.t.

ddcu1 ∧ · · · ∧ ddcun = (4π)−nι∗λn,

in the sense of Borel measures on Cn, where λn is the Lebesgue measure
on Rn and ι : Rn −→ Cn is the embedding induced by R → C.
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2) Using Theorem 3.14 deduce that the restrictions of plurisub-
harmonic functions to Rn are locally integrable with respect to the n-
dimensional Lebesgue measure λn on Ω ∩ Rn.

3) Consider similarly v : z ∈ Cn 7→
∑n

j=1(Imzj)
+ ∈ Rn. Show that

v is a Lipschitz continuous psh function in Cn such that

(ddcv)n = (n!/2π)nι∗λn.

Exercise 3.7. For n ≥ 2 we set

uj(z) = log(|z1 · · · zn|2 + 1/j) and vj(z) =
n∑

ℓ=1

log(|zℓ|2 + 1/j).

Show that these sequences of bounded plurisubharmonic functions
both decrease to φ(z) = 2 log |z1 · · · zn| and that (ddcuj)

n = 0 while
(ddcvj)

n converge to a positive multiple of the Dirac mass at the origin.

Exercise 3.8. Set

φ(z) := (− log |z1|)1/n
(
|z2|2 + · · ·+ |zn|2 − 1

)
.

1) Prove that φ is a smooth psh function in Bn \ {z1 = 0} such that

(ddcφ)n = cn
1− 1

n
−
∑n

ℓ=2 |zℓ|2

|z1|2| log |z1||
dVLeb

and that this measure has infinite mass in Bn \ {z1 = 0}.
2) Observe that φ(z) = u ◦ L(z), where

L = z ∈ (C∗)n 7→ (log |z1|, . . . , log |zn|) ∈ Rn

and u is an appropriate convex function. Express (ddcφ)n in terms of
the real Monge-Ampère measure of u and give an alternative proof of
the fact that (ddcφ)n has infinite mass near {z1 = 0}.

Exercise 3.9. Fix r := (r1, r2, · · · , rn) ∈]0,+∞[n and consider

ψr : z ∈ Cn 7→ max{log+(|zj|/rj); 1 ≤ j ≤ n} ∈ R.

1) Prove that ψr is a Lipschitz continuous plurisubharmonic func-
tion and (ddcψr)

n is supported on the torus

Tn(r) := {z ∈ Cn; |z1| = r1, · · · , |zn| = rn}.

2) Observe that (ddcψr)
n is (S1)n-invariant and conclude that (ddcψr)

n

is the normalized Lebesgue measure on Tn(r).

Exercise 3.10. Set

φ(z) := max
1≤j≤n

log+ |zj| where log+ x := max(log x, 0),

and φj(z) =
1
2j
max(0, log |zj1 + · · ·+ zjn|).

1) Show that φj −→ φ in L1
loc(Cn).
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2) Show that (ddcφj)
n = 0 when n ≥ 2, while (ddcφ)n is the nor-

malized Lebesgue measure on the torus (S1)n ⊂ Cn. Conclude that the
complex Monge-Ampère operator is not continuous for the L1-topology.

Exercise 3.11. Let φ be a plurisubharmonic function in Cn whose
gradient is in L2

loc. Let φj be a sequence of plurisubharmonic functions
decreasing to φ. Show that ∇φj ∈ L2

loc and that φj → φ in the Sobolev

sense W 1,2
loc .

Exercise 3.12. Let u1, . . . , un be continuous non-negative plurisub-
harmonic functions in Cn such that for all i, ui is pluriharmonic in
(ui > 0). Show that

(ddcmax(u1, . . . , un))
n = ddcu1 ∧ · · · ∧ ddcun.

Exercise 3.13. Let u be a plurisubharmonic function in Cn. Show
that if

lim sup
|z|→+∞

u(z)

log |z|
= 0

then u is constant.

Exercise 3.14. Show that if u belongs to the Lelong class L+(Cn),
i.e. if there exists a constant Cu ∈ R such that for all z ∈ Cn,

log+ ||z|| − Cu ≤ u(z) ≤ log+ ||z||+ Cu,

then
∫
Cn(dd

cu)n = 1.

Exercise 3.15. Set u(z) := log |z|, v(z) = max1≤j≤n log |zj|, and

w(z) = max(log |z1|, log |z2 − z21 |, . . . , log |zn − z2n−1|).

Show that

(ddcu)n = (ddcv)n = (ddcw)n = δ0

is the Dirac mass at the origin of Cn. Conclude that the comparison
principle can not hold for these functions.

Exercise 3.16. Set φ(z) = log+ |z| = max(log |z|, 0).
1) Let χ : R → R be a smooth convex function and set ψ(z) =

χ(log |z|). Show that ψ is a psh function with compact singularities.
Prove that (ddcψ)n is absolutely continuous with respect to Lebesgue
measure if ψ has zero Lelong number at the origin.

2) Approximate max(x, 0) by a smooth decreasing family of convex
functions χε, use 1) and let ε decrease to zero to conclude that (ddcφ)n

is the normalized Lebesgue measure on the unit sphere.

3) Use the invariance properties of φ and Exercise 3.14 to give an
alternative proof of this result.
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Exercise 3.17. Let u be a smooth plurisubharmonic function in
some domain Ω ⊂ Cn.

1) Assume that for all p ∈ Ω there exists a holomorphic disc D ⊂ Ω
centered at p such that u|∆ is harmonic. Prove that (ddcu)n ≡ 0.

2) Show conversely that if (ddcu)n ≡ 0 and (ddcu)n−1 ̸≡ 0 then there
exists a holomorphic foliation of Ω by Riemann surfaces La such that
u|La is harmonic for all a (see [BK77] for some help).

Exercise 3.18. Let µ be a probability measure in the unit ball B of
Cn and set

Vµ(z) :=

∫
w∈B

log |z − w|dµ(w).

Check that Vµ is plurisubharmonic. Give conditions on µ to insure
that Vµ is locally bounded, and check that in this case (ddcVµ)

n is ab-
solutely continuous with respect to Lebesgue measure (see [Carl99] for
more information).





CHAPTER 4

The Monge-Ampère capacity

As we saw in Chapter 3, the polar locus (i.e. the −∞ locus) of
a plurisubharmonic function is the null set of several Borel measures.
These small sets cannot be characterized by a single measure, one has
to introduce capacities, a non-linear generalization of the latter.

Capacities play an important role in Complex Analysis as they allow
to characterize small sets. There are various capacities, depending on
the problem of study. We introduce here a generalized capacity in the
sense of Choquet, whose null sets are pluripolar sets (i.e. sets that are
locally contained in the polar locus of a plurisubharmonic function).

We follow the seminal work of Bedford and Taylor [BT82] (with
subsequent simplifications by Cegrell [Ceg88] and Demailly [Dem91]).

1. Choquet capacity theory

The systematic study of general(ized) capacities was performed by
Choquet in a famous work [Cho53]. We present here just a few aspects
of Choquet theory that we use in the sequel.

1.1. Choquet capacities. Let Ω be a Hausdorff locally compact
topological space which we assume is σ-compact. We denote by 2Ω the
set of all subsets of Ω.

Definition 4.1. A set function c : 2Ω −→ R̄+ := [0,+∞] is called
a capacity on Ω if it satisfies the following properties:

(i) c(∅) = 0;

(ii) c is monotone, i.e. A ⊂ B ⊂ Ω =⇒ 0 ≤ c(A) ≤ c(B);
(iii) if (An)n∈N is a non-decreasing sequence of subsets of Ω, then

c(∪nAn) = limn→+∞c(An) = sup
n
c(An);

(iv) if (Kn) is a non-increasing sequence of compact subsets of Ω,

c(∩nKn) = limnc(Kn) = inf
n
c(Kn).

A capacity c is said to be a Choquet capacity if it is subadditive, i.e.
if it satisfies the extra condition

(v) if (An)n∈N is any sequence of subsets of Ω, then

c(∪nAn) ≤
∑
n

c(An),

101
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Capacities are usually first defined for Borel subsets and then ex-
tended to all sets by building the appropriate outer set function (see
Example 4.5). This motivates the following definition, where we let
B(Ω) denote the σ-algebra of Borel subsets of Ω:

Definition 4.2. A set function c : B(Ω) −→ R̄+ is a precapacity
if it satisfies the properties (i), (ii), (iii) for all Borel subsets of Ω.

A precapacity c is subadditive if it satisfies (v). It is outer regular
if for all Borel subsets B ⊂ Ω,

c(B) = inf{c(G);G open & B ⊂ G ⊂ Ω}.
A precapacity c is inner regular if for all Borel sets B ⊂ Ω,

c(B) = sup{c(K);K compact & K ⊂ B}.

Note that a Choquet capacity is a precapacity when restricted to
Borel sets; the converse however does not hold (see Example 4.5 below).
The relation beween these two notions is given by the following result.

Proposition 4.3. Let c : B(Ω) −→ R̄+ be a precapacity on Ω. The
associated outer capacity, defined for any subset E ⊂ Ω by

(1.1) c∗(E) := inf{c(G);G open & E ⊂ G ⊂ Ω}
is a capacity on Ω.

If c is moreover subadditive then c∗ is a Choquet capacity.

Proof. It is clear that c∗ satisfies (i), (ii). We prove the upper
continuity property (iii). By definition there exists a sequence of open
sets (Gj) such that Aj ⊂ Gj and

c∗(Aj) ≤ c(Gj) ≤ c∗(Aj) + 1/j

for all j ≥ 1.
Since (Aj) is a non-decreasing sequence, we can arrange so that

that the corresponding open sets (Gj) are non decreasing (replacing
Gj by ∩k≥jGk). Since c satisfies the condition (iii) for Borel sets and
A ⊂ G := ∪jGj, we conclude that

c∗(A) ≤ c(G) = lim
j
c(Gj) = lim

j
c∗(Aj).

Since the opposite inequality is trivial, we have proved that c∗ satisfies
condition (iii).

We now check that c∗ satisfies condition (iv). If (Kj) is a decreasing
sequence of compact subsets, any open set G containing K := ∩jKj

will contain Kj for any j large enough. Thus c(G) ≥ limj c
∗(Kj) hence

c∗(K) ≥ limj c
∗(Kj). Since the opposite inequality is again trivial, it

follows that c∗ satisfies the lower continuity property (iv).
Assume that c is subadditive and let (Aj) be a sequence of subsets

of Ω. To prove (v) for c∗ we can assume that c∗(Aj) < +∞ for all j.
By definition given ε > 0 there exists an open set Gj ⊃ Aj such that
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c(Gj) ≤ c∗(Aj) + ε2−j−1. Then G := ∪jGj is an open set such that
∪jAj ⊂ G and

c(G) ≤
∑
j

c(Gj) ≤
∑
j

c∗(Aj) + ε,

We infer c∗(∪jAj) ≤
∑

j c
∗(Aj)+ε and (v) follows by letting ε→ 0. □

Example 4.4. A Borel measure is a positive measure defined on all
Borels sets which is locally finite, inner and outer regular. Therefore
any Borel measure µ on Ω is an outer regular precapacity and its asso-
ciated outer measure µ∗ is a Choquet capacity on Ω by Proposition 4.3

Example 4.5. Let M be a family of Borel measures on Ω. The set
function defined on any Borel subsets A ⊂ Ω by the formula

cM(A) := sup{µ(A);µ ∈ M}

is a precapacity on Ω. It is called the upper envelope of M.
Observe that this precapacity need not be additive. Indeed let λ be

a probability measure and A,B be disjoint Borel subsets of positive λ-
measure. Set µ1 := 1Aλ/λ(A) and µ2 := 1Bλ/λ(B). Then the upper
envelope c of {µ1, µ2} satisfies

c(A) = c(B) = 1 and c(A ∪B) = 1.

The precapacity cM need not be outer regular either unless M is a
finite set (see Exercise 4.4). However if M is a compact set for the
weak∗-topology then c∗M is a Choquet capacity (see Exercise 4.5).

The problem we address now is whether a Choquet capacity is inner
and outer regular. We first need a definition.

Definition 4.6. Let c : B(Ω) −→ R̄+ be a precapacity. A subset
E ⊂ Ω is said to be capacitable if c∗(E) = c∗(E), where

c∗(E) := sup{c(K); , K ⊂ Ω is compact}

is the inner capacity of E.

Theorem 4.7. Let c be a Choquet capacity on Ω. Then every Borel
subset B ⊂ Ω satisfies

c(B) = sup{c(K);K compact K ⊂ Ω}.

This result is a special case of Choquet’s capacitability theorem
which we prove in the next section.

Corollary 4.8. Let c : B(Ω) −→ R̄+ be a precapacity on Ω satis-
fying (iv). Then c∗ is inner regular i.e. for every Borel set B ⊂ Ω

c∗(B) = sup{c(K); K compact, K ⊂ B}.



104 4. THE MONGE-AMPÈRE CAPACITY

Proof. Property (iv) implies that c∗(K) = c(K) for any compact
subset K ⊂ Ω. Indeed, given a compact set K there exists a sequence
of compact subsets (Kj)j such that K ⊂ Kj−1 ⊂ K◦

j for all j ≥ 1. We
infer

c∗(K) ≤ c(K◦
j ) ≤ c(Kj)

for all j ≥ 1 hence c∗(K) ≤ limj c(Kj) = c(K) since c satisfies property
(iv), thus c∗(K) = c(K).

It follows from Proposition 4.3 that c∗ is a Choquet capacity on Ω.
Choquet’s theorem therefore yields

c∗(B) = sup{c∗(K);K compact K ⊂ B},
for any Borel subset B ⊂ Ω. Thus c∗(B) = c∗(B). □

1.2. Choquet’s capacitability theorem. We prove here a gen-
eral version of Choquet’s capacitability theorem. In what follows all
topological spaces to be considered are Hausdorff and locally compact.

Definition 4.9.

(1) A Fσ-set is a countable union of closed subsets of X.
(2) A Gδ-set is a countable intersection of open subsets of X.
(3) A Fσδ-subset is a countable intersection of Fσ-subsets of X.
(4) A space X is a Kσ (resp. Kσδ) space if it is homeomorphic to

a Fσ-subset (resp. Fσδ-subset) in some compact space Y .

Here are some elementary properties which we use later on:

Proposition 4.10.

(1) Every closed subset of a Kσδ space X is a Kσδ space.
(2) Every countable cartesian product of Kσδ spaces is a Kσδ space.
(3) Every countable disjoint sum of Kσδ spaces is a Kσδ space.

Proof. 1. Let F be a closed subset of X = ∩j≥1Gj, where (Gj) is
a sequence of Fσ subsets of some compact space Y and Gj = ∪ℓKjℓ is
a countable union of closed subsets Kjℓ of Y . If F̄ denotes the closure
of F in Y , we have

F = X ∩ F̄ =
∩
j≥1

Gj ∩ F̄ , Gj ∩ F̄ =
∪
ℓ≥1

F̄ ∩Kjℓ,

thus F is a Fσδ subset of Y .
2. Write X = Πj∈N∗Xj as a cartesian product of a sequence (Xj)

of Kσδ spaces. Write for every j ∈ N

Xj = ∩ℓ∈N∗Gj
ℓ, Gj

ℓ =
∪

m∈N∗

Kj
ℓ,m,

where Kj
ℓ,m are closed subsets of a some compact space Yj. Then

X =
∩
ℓ∈N∗

Gℓ, with Gℓ := G1
ℓ ×G2

ℓ−1 × · · · ×Gℓ
1 × Πi∈N∗Yℓ+1,
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and

Gℓ =
∪

m1,··· ,mℓ≥1

K1
ℓm1

×K2
ℓ−1m2

× · · · ×Kℓ
1mℓ

× Πi∈N∗Yℓ+1,

where each term in the countable union is a closed subset in the com-
pact space Y := Πℓ∈N∗Yℓ.

3. With the same notations as in 2, define X :=
⨿
Xj and Y :=⨿

Yj. Then Y can be embedded in the compact space Ŷ := Πj(Yj
⨿
{a}),

where {a} is any one point topological space, by sending a point w ∈ Yj
to the point (a, · · · , a, w, a, · · · ) where w is in the jth position. Then
X =

⨿
Xj can be written as

X = ∩ℓ≥1Gℓ, Gℓ :=
∪
m≥2

⨿
j≥1

Kj
ℓm.

Since Kj
ℓm can be embedded into a closed subset of the compact space

Ŷ , it follows that X is a Kσδ space. □
Observe that a Fσδ-subset in X is a Borel subset of X. It is well

known that the continuous image of a Borel subset is not in general a
Borel subset (see Exercise 4.1). This motivates the following definition:

Definition 4.11. A subset A in a topological space X is a K-
analytic subset of X if it is the continuous image of a Kσδ space of some
topological space Y i.e. there exists a continuous map f : E −→ X from
a Kσδ space E into X such that f(E) = A .

Proposition 4.12. Let (Aj) be a sequence of K-analytic subsets of
Ω. Then ∪

Aj and
∩

Aj

are K-analytic subsets of Ω.

Proof. Let fj : Xj −→ Ω be a continuous map from a Kσδ-space
Xj onto Aj = fj(Xj). Let X :=

⨿
Xj and f :=

⨿
fj : X −→ Ω. It

follows from Proposition 4.10 that X is a Kσδ space and f(X) = ∪Aj.
For the intersection we set

Y := {x = (xj) ∈ X;∀j ∈ N∗, fj(xj) = f1(x1)}
and g(x) = f1(x1) = fj(xj) for all j ∈ N∗. Then Y is closed in X hence
it is a Kσδ-space and g(Y ) = ∩jAj, by Proposition 4.10 again. □

Corollary 4.13. Let X be a Hausdorff locally compact space.
Then any Borel subset of X is a K-analytic subset of X.

Proof. Observe that any open or closed subset of X is a countable
union of compact subsets, hence K-analytic. On the other hand, by
Proposition 4.12, the family

T := {E ∈ 2X ;E and Ω \ E are K − analytic}
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is a σ-algebra on X. Since it contains all open subsets of X, it also
contains all Borel subsets of X. □

We need the following structural lemma about K-analytic sets:

Lemma 4.14. Let A be a relatively compact K-analytic subset of a
topological space X. There exists a compact space H, a continuous map
h : H −→ X and a Fσδ subset Y ⊂ H such that h(Y ) = A.

Proof. There exists a compact space Y , a Fσδ subset E ⊂ Y and
a continuous map g : E −→ A such that A = g(E). Let

Z := {(y, g(y)); y ∈ E} ⊂ E × A

be the graph of the map g. Let H := Z̄ be the closure of Z in the
compact space Ē × Ā . Then A is the image of Z under the second
projection h : H −→ Ā i.e. A = h(Z).

As g is continuous, Z is closed in E × Ā, thus Z = H ∩ (E × Ā).
Now E is a Fσδ subset of Ē hence Ē × Ā is a Fσδ subset of Ē × Ā and
Z is a Fσδ subset of H = Z̄. The lemma follows since A = h(Z). □

We are finally ready to prove Choquet’s capacitability theorem:

Theorem 4.15. Let X be a Kσ space and c a capacity on X. Then
every K-analytic subset A ⊂ X satisfies

c(A) = sup{c(K);K compact ⊂ A}.

Proof. Since X is the union of an increasing sequence of compact
sets Kj, it follows from property (iii) of Definition 4.1 that

c(A) = lim
j
c(A ∩Kj).

We may thus assume that A is relatively compact.
It follows from Lemma 4.14 that there exists a Fσδ-subset H in

some compact space and a continuous map h : H −→ Ω such that
h(H) = A.

We let the reader check in Exercice 4.6 that the set function ch :=
h∗c defined on subsets of H by ch(E) = c(h(E)) is a capacity on H. We
are thus reduced to proving the theorem when X is a compact space
and A is a Fσδ-subset of X. We then write

A = ∩i∈NGi, and Gi = ∪j∈NKij,

where Ki,j are closed subsets of X (hence compact), increasing with j.
Fix a real number 0 < α < c(A). Decomposing

A = G1 ∩

(∩
ℓ≥2

Gℓ

)
=
∪
j≥1

(
K1j ∩

∩
ℓ≥2

Gℓ

)
,

and using property (ii) of Definition 4.1 we can find a subset

A1 := K1j1 ∩
∩
ℓ≥2

Gℓ such that c(A1) > α.
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By induction we find a decreasing sequence of subsets A ⊃ A1 ⊃
· · · ⊃ Am such that

Am = K1j1 ∩ · · · ∩Kmjm ∩
∩

ℓ≥m+1

Gℓ, and c(Am) > α.

Set K := ∩Kmjm = ∩Am ⊂ A. This is a compact subset of A. By
property (iv) of Definition 4.1, it follows that

c(K) = lim
m
c(K1j1 ∩ · · · ∩Kmjm) ≥ lim

m
c(Am) ≥ α,

which implies that c∗(A) ≥ c(A) and the proof is complete. □
1.3. The Monge-Ampère capacity. In classical potential the-

ory the capacity is defined as the maximal amount of charge supported
on a compact set K ⊂ Ω ⊂ Rm so that the difference of potentials in
the condenser (K,Ω) is 1. This definition can be formalized by setting

Cap(K) := sup{µ(K);µ ∈ Γ(K)},
where Γ(K) is the set of Borel measures that are supported on K and
whose potential Uµ is bounded between 0 and 1 in Ω. Here Uµ denotes
the Green potential of µ, i.e. the solution of the Dirichlet problem
∆u = µ in Ω \K with boundary values u = −1 on ∂K and 0 on ∂Ω.

There is no simple formula for Uµ in Cn when n ≥ 2, as the cor-
responding complex Monge-Ampère operator is non linear. We will
nevertheless mimic the above definition, using the family of bounded
plurisubharmonic functions with zero boundary values on ∂Ω.

1.3.1. Definition. Let Ω ⋐ Cn be a smoothly bounded pseudocon-
vex domain. The Monge-Ampère capacity is defined as follows:

Definition 4.16. For any Borel subset E ⊂ Ω we set

Cap(E; Ω) := sup

{∫
E

(ddcu)n;u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

We shall also use the notation CapΩ(E) in the sequel.

It follows from Chern-Levine-Nirenberg inequalities that the capac-
ity of relatively compact subsets E ⋐ Ω is finite, Cap(E; Ω) < +∞.

The real number Cap(E; Ω) is the (inner) Monge-Ampère capacity
of the condenser (E,Ω). Since any Borel measure is inner regular,
it follows that the set function Cap(·; Ω) is inner regular. The outer
Monge-Ampère capacity is then:

Definition 4.17. For a any subset E ⊂ Ω, we set

Cap∗(E,Ω) := inf{Cap(G,Ω), G open, E ⊂ G ⊂ Ω}.
We say that E is capacitable if Cap∗(E,Ω) = Cap(E,Ω) < +∞.

We show hereafter, using Choquet’s Theorem, that all Borel sets
are capacitable. We start by establishing some elementary properties
of this capacity:
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Proposition 4.18.
1) If Ω ⊂ B(a,R) ⋐ Cn, then for any Borel subset E ⊂ Ω,

λ2n(E) ≤
(
πR2

2

)n

Cap∗(E; Ω).

2) If E1 ⊂ E2 ⊂ Ω2 ⊂ Ω1, then Cap∗(E1; Ω1) ≤ Cap∗(E2; Ω2).

3) The set function Cap∗(·; Ω) is subadditive, i.e. if (Ej)j∈N is any
sequence of subsets of Ω, then

Cap∗(E; Ω) ≤
∑
j

Cap∗(Ej; Ω).

4) Let Ω′ ⋐ Ω′′ ⊂ Ω ⊂ Cn be open subsets. Then there exists a
constant A = A(Ω,Ω′,Ω′′) > 0 such that for all E ⊂ Ω′,

Cap∗(E; Ω) ≤ Cap(E; Ω′′) ≤ ACap∗(E; Ω).

5) Let f : Ω1 ⊂ Cn −→ Ω2 ⊂ Cn be a proper holomorphic map.
Then for any Borel subset E ⊂ Ω2 we have

Cap(E,Ω2) ≤ Cap(f−1(E),Ω1).

Proof. The function ρ(z) := |z − a|2/R2 − 1 is plurisubharmonic
in Ω and −1 ≤ ρ ≤ 0 in Ω ⊂ B(a,R). By definition we thus get∫

E

(ddcρ)n ≤ Cap(E; Ω),

which proves the first property since ddcρ = (2/πR2)β.
We let the reader check the properties 2,3 and prove property 4.

Fix ρ a plurisubharmonic defining function for Ω and c > 0 such that
Ω′′ ⊂ Ωc := {ρ < −c}, hence Cap(·,Ω′′) ≥ Cap(·,Ωc). It is sufficient
to prove the inequality for Ωc. Choose A > 1 so that ψ := A(ρ + c)
satisfies ψ ≤ −1 on Ω′. Fix u ∈ PSH(Ωc) with −1 ≤ u ≤ 0 and define

ũ(z) :=

{
max(u(z), ψ(z)) if z ∈ Ωc

ψ(z) if z ∈ Ω \ Ωc

so that ũ is plurisubharmonic on Ω and satisfies ũ = u on Ω′.
The function v := (a+ 1)−1(ũ− a), where a := supΩ ũ, is plurisub-

harmonic in Ω and −1 ≤ v ≤ 0. Thus
∫
E
(ddcv)n ≤ Cap(E; Ω). Since

v = (a+ 1)−1(u− a) in Ω′, we infer∫
E

(ddcu)n ≤ (a+ 1)nCap(E; Ω),

hence Cap(E; Ωc) ≤ (a+ 1)nCap(E; Ω).
We finally prove property 5. Fix u ∈ PSH(Ω2)∩L∞

loc(Ω2). It follows
from Exercise 3.5 in Chapter 3 that f∗(dd

cu◦f)n = (ddcu)n in the sense
of Borel measures in Ω1. Thus if E ⊂ Ω2 is a Borel subset,∫

E

(ddcu)n =

∫
f−1(E)

(ddcu ◦ f)n ≤ Cap(f−1(E),Ω1).
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Taking the supremum over all such u yields the required inequality for
the inner capacities. □

1.3.2. Polar sets are null sets. We now show that the polar locus
of a plurisubharmonic function has zero outer capacity.

Proposition 4.19. Let Ω′ ⋐ Ω ⊂ Cn be two open sets and K ⊂
Ω′ a compact set. There exists A = A(K,Ω′) > 0 such that for all
plurisubharmonic functions V ∈ PSH(Ω) and for all s > 0,

(1.2) Cap∗({z ∈ K;V (z) < −s}; Ω) ≤ A

s
∥V ∥L1(Ω′).

In particular the polar locus P := {z ∈ Ω;V (z) = −∞} satisfies

Cap∗(P,Ω) = 0.

Proof. Let u ∈ PSH(Ω) be so that −1 ≤ u ≤ 0. It follows
from the Chern-Levine-Nirenbeg inequalities that there exists A =
A(K,Ω′) > 0 such that∫

K

|V |(ddcu)n ≤ A

∫
Ω′
|V |dλ2n.

We infer∫
{z∈K;V (z)≤−s}

(ddcu)n ≤ 1

s

∫
K

|V |(ddcu)n ≤ A

s

∫
Ω′
|V |dλ2n.

The desired estimate for the inner capacity follows.
Since for any open set D ⋐ Ω, the sublevel sets {z ∈ D;V < −s}

are open sets, it follows that the same inequality holds for the outer
capacity. The last statement follows from subadditivity of the outer
capacity. □

We will later on show that conversely, if Cap∗(P,Ω) = 0, then P is
(locally) contained in the polar set of a plurisubharmonic function.

2. Continuity of the complex Monge-Ampère operator

2.1. Quasi-continuity of plurisubharmonic functions.

Theorem 4.20. Let V be a plurisubharmonic function in Ω. For
all ε > 0, there exists an open set G ⊂ Ω such that Cap(G,Ω) < ε and
V |(Ω \G) is continuous.

Proof. Let D ⋐ Ω be an open subset. It follows from Proposition
4.19 that Cap(G1,Ω) < ε if s > 1 is large enough, where

G1 := {z ∈ D;V (z) < −s}.
Set v = vs := sup{V,−s}. The function v is plurisubharmonic and

bounded in a neighborhood of D, and v = V in Ω \ G1. Let (vj) a
decreasing sequence of smooth plurisubharmonic functions in a neigh-
borhood Ω′ ⋐ Ω of D which converges to v. We can assume that
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vj = v = Aρ in a neighbourhood of ∂Ω′. It follows from Proposi-
tion 3.21 that for all δ > 0,

CapΩ (D ∩ {vj − v > δ}) ≤ (n+ 1)!

δn+1

∫
Ω′
(vj − v)(ddcv)n.

The monotone convergence theorem therefore yields

lim
j

CapΩ (D ∩ {vj − v > δ}) = 0.

Thus for all k ∈ N∗ there exists jk ∈ N large enough so that

CapΩ (D ∩ {vjk − v > 1/k}) ≤ ε2−k.

We can assume that the sequence (jk) is increasing. Set

G2 :=
∪
k≥1

{vjk − v > 1/k} and G := G1 ∪G2.

The sequence (vjk) decreases uniformly to v on the compact set
D \ G2 and CapΩ(G2) ≤ ε, thus the open set G satisfies the required
properties: it has small capacity and V = v is continuous in D \G.

To complete the proof of the theorem we take an exhaustive se-
quence (Dj) of relatively compact domains such that

∪
j Dj = Ω and

apply the first part of the proof to find a sequence (Gj) of open subsets
of Ω such that CapΩ(Gj) ≤ ε2−j and V |(Dj \ Gj) is continuous. We
finally set G :=

∪
j Gj and use the subadditivity of the capacity to

conclude that CapΩ(G) ≤ ε and V |(Ω \G) is continuous. □

The following lemma has been used in Chapter 3:

Lemma 4.21. Let P be a locally uniformly bounded family of plurisub-
harmonic functions in Ω. Let T be the set of currents of the form
T :=

∧
1≤i≤p dd

cui, where u1, . . . , up ∈ P.

Assume that (Tj)j∈N is a sequence of currents in T converging
weakly to T ∈ T . Then for any locally bounded quasi-continuous func-
tion f in Ω, fTj −→ fT in the weak sense of currents in Ω.

The notion of quasi-continuous function is defined as follows:

Definition 4.22. A Borel function f : Ω −→ R is quasi-continuous
if for all ε > 0 and all compact subsets K ⋐ Ω there exists an open
subset G ⊂ Ω such that Cap(G,Ω) ≤ ε and f |(K \G) is continuous.

It follows from Theorem 4.20 that any plurisubharmonic function is
quasi-continuous. So are the differences of plurisubharmonic functions.

Proof. Let Θ be a positive continuous test form of bidegree (n−
p, n− p) in Ω, K ⊂ Ω its compact support and fix ε > 0 small.

It follows from the quasi-continuity of f that there is an open subset
G ⊂ Ω with Cap(G,Ω) ≤ ε such that f |(K \ G) is continuous. Let g
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be a continuous function in Ω with compact support such that g = f
on K \G. Then∫
Ω

f(Tj∧Θ−T ∧Θ) =

∫
Ω

g(Tj∧Θ−T ∧Θ)+

∫
G

(f−g)(Tj∧Θ−T ∧Θ).

Observe that limj→+∞
∫
Ω
g(Tj ∧ Θ − T ∧ Θ) = 0 since Tj weakly

converges towards T . We claim that the second term is O(ε). Indeed,
since |f − g| is bounded by a constant M > 0 on the support of Θ,

|
∫
G

(f − g)(Tj ∧Θ− T ∧Θ)| ≤M

∫
G

(Tj ∧Θ+ T ∧Θ).

Observe that Tj ∧ Θ ≤ C1Tj ∧ βn−p for some C1 > 0, where β =
ddc|z|2. Moreover there exists a uniform constant C2 > 0 such that for
all Borel subsets E ⊂ Ω,∫

E

∧
1≤i≤p

(ddcvi) ∧ βn−p ≤ C2Cap(E,Ω)

as v1, · · · , vp ∈ PSH(Ω) ∩ L∞
loc(Ω) with |vi| ≤ A (see Exercise 4.7).

Therefore ∫
G

Tj ∧Θ+ T ∧Θ ≤ 2C1C2ε,

and the proof is complete. □

2.2. Convergence in capacity. We have shown that the complex
Monge-Ampère operator is continuous along monotone sequences of
plurisubharmonic functions. We introduce here, following [X96], a
more general notion of convergence which contains the above continuity
properties as a particular case.

Definition 4.23. A sequence of Borel functions (fj)j≥0 converges
in capacity to a Borel function f in Ω if for all δ > 0 and all compact
subsets K ⊂ Ω,

lim
j→+∞

Cap∗(K ∩ {|fj − f | ≥ δ},Ω)) = 0.

Convergence in capacity implies convergence in L1
loc (but the con-

verse is not true):

Lemma 4.24. Let (fj)j≥0 be sequence of (locally) uniformly bounded
Borel functions which converges in capacity to a Borel function f in Ω.
Then fj → f in L1

loc(Ω).

Proof. Fix K ⊂ Ω a compact set and δ > 0. Since the sequence
(fj)j∈N and f are uniformly bounded in K (by some M > 0), we get∫

K

|fj − f |dλ ≤ 2Mλ(K ∩ {|fj − f | > δ}) + δλ(K).



112 4. THE MONGE-AMPÈRE CAPACITY

By Proposition 4.18, the Lebesgue measure λ is dominated by capacity,
hence the first term in the right hand side converges to 0. The claim
follows since δ > 0 is arbitrarily small. □

We note that convergence of monotone sequences of plurisubhar-
monic functions implies convergence in capacity.

Proposition 4.25. Let (Vj)j∈N ⊂ PSH(Ω) be a monotone se-
quence of plurisubharmonic functions which converges almost every-
where to V ∈ PSH(Ω). Then (Vj) converges to V in capacity.

We treat here two rather different settings at once. If (vj) is non
increasing, then vj(x) converges towards v(x) at all points x (see Chap-
ter 1). When (vj) is non decreasing, then w = supj vj is usually not
u.s.c. hence equality w(x) = v(x) does not hold everywhere.

Proof. By subadditivity and monotonicity of the capacity, it is
enough to prove that for any euclidean ball B ⋐ Ω, any compactK ⊂ B
and any δ > 0 we have

lim
j→+∞

Cap∗
B(K ∩ {|Vj − V | ≥ δ}) = 0.

We use here the fact Cap∗
Ω(·) ≤ Cap∗

B(·).
We first reduce to the case where the sequence (Vj) is locally uni-

formly bounded. Indeed fix s ∈ N and define

V s
j := sup{Vj,−s}, V s := sup{V,−s}.

Then

{|Vj − V | ≥ δ} ⊂ {|V s
j − V s| ≥ δ} ∪ {V ≤ −s} ∪ {Vj ≤ −s}

Now by (1.2) we have for any s ≥ 1 and j ≥ 1

Cap∗
B(K ∩ {Vj < −s} ≤ A

s
∥Vj∥L1(B),

where A > 0 is a constant which does not depend on j. Therefore

CapB
∗(K ∩ {|Vj − V | ≥ δ}) ≤ Cap∗

B(K ∩ {|V s
j − V s| ≥ δ}) + A′

s
,

hence it suffices to treat the case of sequences of plurisubharmonic
functions that are uniformly bounded.

Assume thus that −M ≤ Vj, V ≤ +M in B, for someM > 0. Using
the localization principle (see Chapter 3), we can assume all the Vj’s
are equal in a neighborhood of ∂B.

Fix ε > 0. The quasi-continuity property of plurisubharmonic func-
tions and the subadditivity of the capacity insure that we can find an
open set G ⊂ Ω such that Cap(G,B) ≤ ε and all Vj’s and V are con-
tinuous in B̄ \G. Since the sequence (Vj) is monotone, it follows from
Dini’s lemma that the convergence is uniform on the compact set B̄\G.
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Assume first that (Vj)j∈N is a non-decreasing sequence. It follows
from Chebyshev inequality and Proposition 3.21 that

1

(n+ 1)!
CapB(K ∩ {V − Vj ≥ δ})

≤ δ−n−1

∫
B
(V − Vj)(dd

cVj)
n

≤ δ−n−1

∫
B\G

(V − Vj)(dd
cVj)

n + δ−n−1

∫
B∩G

(V − Vj)(dd
cVj)

n

≤ δ−n−1∥Vj − V ∥B̄\G
∫
B
(ddcVj)

n + 2Mδ−n−1

∫
G

(ddcVj)
n,

Now
∫
B(dd

cVj)
n is uniformly bounded by Chern-Levine-Nirenberg in-

equalities and
∫
G
(ddcVj)

n ≤ MnCap(G,B) ≤ εMn. The conclusion
follows since limj ∥Vj − V ∥B̄\G = 0.

Assume now that (Vj)j∈N is non-increasing. We proceed as above
to obtain

CapB(K ∩ {Vj − V | ≥ δ},B) ≤ δ−n−1 (n+ 1)!

∫
B
(Vj − V )(ddcV )n.

The conclusion follows from the monotone convergence theorem and
the capacitability of Borel sets (Corollary 4.36). □

2.3. Continuity of the Monge-Ampère operator. Our aim
in this section is to show that the complex Monge-Ampère operator is
continuous for the convergence in capacity.

Theorem 4.26. Let (fj)j∈N be positive and uniformly bounded quasi-
continuous functions which converge in capacity to a quasi-continuous
function f in Ω. Let (u1j)j∈N, ..., (u

p
j)j∈N be uniformly bounded plurisub-

harmonic functions which converge in capacity in Ω to locally bounded
plurisubharmonic functions u1, ..., up respectively. Then

fj
∧

1≤j≤p

ddcuij −→ f
∧

1≤j≤p

ddcui

in the weak sense of currents in Ω.

Proof. The proof proceeds by induction. It follows from Lemma
4.24 that fj (resp. uj) converges in L1

loc(Ω) towards f (resp. u). If
p = 1, we know that ddcu1j → ddcu1 weakly. Using induction on p and
setting

T :=
∧

1≤i≤p

ddcui, Tj :=
∧

1≤i≤p

ddcuij,

it is enough to prove that if Tj → T weakly then fjTj → fT weakly.
The statement is local so we can assume that Ω is the unit ball and
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all the functions are bounded between −1 and 0. Fix Θ a test form of
bidegree (n− p, n− p) and observe that∫
Ω

fjTj∧Θ−
∫
Ω

fT∧Θ =

∫
Ω

(fj−f)Tj+
∫
Ω

f (Tj ∧Θ− T ∧Θ) = Ij+Jj.

It follows from Lemma 4.21 that limj Jj = 0. It thus remains to
prove that limj Ij = 0. Fix δ > 0 small, let K be the support of Θ and
set Ej := K ∩ {|fj − f | ≥ δ}. Then

|Ij| ≤
∫
Ω

|fj − f |Tj ∧Θ ≤
∫
K∩Ej

|fj − f |Tj ∧Θ+ δ

∫
K

Tj ∧Θ.

It follows from previous estimates that

|Ij| ≤ C ′Cap∗(Ej,Ω) + δM(K),

whereM(K) := C supj

∫
K
Tj∧βn−p is finite by Chern-Levine-Nirenberg

inequalities, thus limj Ij = 0. □
Corollary 4.27. Let (hj)j≥0 and (uj)j≥0 be monotone sequences

of uniformly bounded negative plurisubharmonic functions which con-
verge almost everywhere to plurisubharmonic functions h and u respec-
tively. Then for all p ≥ 0,

(−hj)p(ddcuj)n −→ (−h)p(ddcu)n.

Proof. It follows from Proposition 4.25 that the sequences (uj)
and (hj) converge in capacity to u and h respectively.

Observe that if u ∈ PSH−(Ω) then (−u)p is quasicontinuous on
Ω. Thus the sequence (−hj)p converges in capacity to (−h)p. The
conclusion follows therefore from the previous theorem. □

Corollary 4.28. Let P be a family of plurisubharmonic functions
in a domain Ω ⊂ Cn which is locally uniformly bounded from above and
set U := sup{u;u ∈ P}. Then the exceptional set

E := {U < U∗}
is negligible with respect to any measure ddcu1 ∧ · · · ∧ ddcun, where
u1, · · · , un ∈ PSH(Ω) ∩ L∞

loc(Ω). In particular

Cap(E,Ω) = 0.

Proof. By Choquet’s lemma (see Lemma 4.31 below) we reduce
to the case when P is an increasing sequence of plurisubharmonic func-
tions. Fix (vj) be a sequence of locally uniformly bounded plurisub-
harmonic functions which increases almost everywhere to v and set

E := {sup
j
vj < v}.

It follows from Corollary 4.27 that

vjdd
cu1 ∧ · · · ∧ ddcun → vddcu1 ∧ · · · ∧ ddcun
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weakly in Ω. Thus the positive currents (v − vj)dd
cu1 ∧ · · · ∧ ddcun

converge to 0, hence for any compact subset K ⊂ Ω,

lim
j

∫
K

(v − vj)dd
cu1 ∧ · · · ∧ ddcun = 0.

On the other hand if we set w := limj vj in Ω, then w ≤ v and the
monotone convergence theorem yields

lim
j

∫
K

(w − vj)dd
cu1 ∧ · · · ∧ ddcun = 0.

Therefore
∫
K
(w − v)ddcu1 ∧ · · · ∧ ddcun = 0, hence w = v almost

everywhere in K for the measure ddcu1 ∧ · · · ∧ ddcun. □
Theorem 4.29. Let (uj1)j≥0, . . . , (u

j
q)j≥0 be decreasing sequences of

bounded plurisubharmonic functions in Ω which converge respectively
to u1, . . . , uq ∈ PSH(Ω)∩L∞

loc(Ω). Let (Vj) be a decreasing sequence of
plurisubharmonic functions which converges to V ∈ PSH(Ω). Then

Vjdd
cuj1 ∧ . . . ∧ ddcujq −→ V ddcu1 ∧ . . . ∧ ddcuq.

Proof. We already know that ddcuj1∧ . . .∧ddcujq −→ ddcu1∧ . . .∧
ddcuq. It follows from Chern-Levine-Nirenberg inequalities that the

currents Vjdd
cuj1 ∧ . . . ∧ ddcujq have locally uniformly bounded masses.

Assume that Vj ∧1≤i≤q dd
cui

j ∧ βn−p−q → Θ. The reader can check
that Θ ≤ V ddcu1 ∧ . . . ∧ ddcuq (using an argument that we have al-
ready used in previous such proofs) and the problem is to show that∫
B V ∧1≤i≤q dd

cui ∧ βn−p−q ≤
∫
BΘ, for an arbitrary ball B.

We can assume all the V ′
j s are negative and set V k

j := sup{Vj, kρ}
for k ∈ N, where ρ is a defining function for the ball B. Since V ≤
Vj ≤ V k

j on B and V k
j = 0 in ∂B, we get∫

B
V ∧1≤i≤q dd

cui ∧ βn−q ≤
∫
B
V k
j ∧1≤i≤q dd

cui ∧ βn−q

=

∫
B
u1 ∧ ddcV k

j ∧2≤i≤q dd
cui ∧ βn−q

≤
∫
B
u1

j ∧ ddcV k
j ∧2≤i≤q dd

cui ∧ βn−q

≤ . . . ≤
∫
B
V k
j ∧1≤i≤q dd

cuji ∧ βn−q,

for all j, k ∈ N. The monotone convergence theorem yields∫
B
V ∧1≤i≤q dd

cui ∧ βn−q ≤
∫
B
Vj ∧1≤i≤q dd

cui
j ∧ βn−q,

for all j ∈ N. Letting now j → +∞, we obtain∫
B
V ∧1≤i≤q dd

cui ∧ βn−q ≤ lim sup
j→+∞

∫
B
Vj ∧1≤i≤q dd

cui
j ∧ βn−q ≤

∫
B
Θ,

and the proof is complete. □
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3. The relative extremal function

3.1. Definition and Choquet’s lemma.

Definition 4.30. Let E ⊂ Ω be a Borel subset. The relative ex-
tremal function associated to (E,Ω) is

hE(z) = hE,Ω(z) := sup{u(z);u ∈ PSH(Ω), u ≤ 0, u|E ≤ −1}.

Observe that the upper semi-continuous regularization h∗E,Ω is a
plurisubharmonic function in Ω. This function was first defined by
Siciak as a multidimensional analogue of the classical harmonic measure
in one complex variable [Sic69].

We use on several occasions the following elementary topological
lemma due to Choquet:

Lemma 4.31. Let U be a family of upper semi-continuous functions
and let U := sup{u;u ∈ U} be its upper envelope. There exists a
countable sub-family (uj) in U such that U∗ = (supj uj)

∗ in Ω, where

U∗(z) = lim sup
z′→z

U(z′).

Proof. Assume first that U is locally uniformly bounded from
above. Let B(zj, rj) be a countable basis for the topology of Ω. For
each j let zj,k a sequence in the ball B(zj, rj) such that

sup
B(zj ,rj)

U = sup
k
U(zj,k).

For each (j, k) there exists a sequence (uℓj,k)ℓ∈N in U such that

U(zj,k) = sup
ℓ
uℓj,k(zj,k).

Set V := supj,k,ℓ u
ℓ
j,k. Then V ≤ U hence V ∗ ≤ U∗. Now

sup
B(zj ,rj)

V ≥ sup
k
V (zj,k) ≥ sup

k,ℓ
uℓj,k(zj,k) = sup

k
U(zj,k) = sup

B(zj ,rj)

U,

hence supB(zj ,rj)
V = supB(zj ,rj)

U for all j. Since any B(z, ε) is a union

of balls B(zj, rj), we get supB(z,ε) V = supB(z,ε) U hence V ∗(z) = U∗(z).
To treat the general case we define, for u ∈ U , ũ := χ ◦ u, where

χ : t ∈ R 7→ t/(1 + |t|) ∈] − 1,+1[ is an increasing homeomorphism.
Observe that

Ũ = χ ◦ U and Ũ∗ = χ ◦ U∗

hence the conclusion follows from the previous case applied to Ũ . □
The first basic properties of the relative extremal functions are sum-

marized in the following:

Theorem 4.32.
1. If E1 ⊂ E2 ⊂ Ω2 ⊂ Ω1 then −1 ≤ hE2,Ω2 ≤ hE1,Ω1 ≤ 0.

2. If E ⋐ Ω then h∗E,Ω(z) → 0 as z → ∂Ω.
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3. Let (Kj) be a non-increasing sequence of compact subsets in Ω
and K := ∩jKj. Then h

∗
Kj

increases almost everywhere to h∗K.

4. For all E ⊂ Ω,

(3.1) (ddch∗E,Ω)
n = 0 in Ω \ Ē.

Proof. The first property is clear. Let ρ : Ω −→ [−1, 0[ be a
defining function for Ω. If E ⋐ Ω there exists a constant A > 1 such
that Aρ ≤ −1 on Ē. Thus Aρ ≤ hE ≤ h∗E ≤ 0 in Ω and 2) follows.

We now prove 3). Since (Kj) is a non-increasing sequence of com-
pact subsets in Ω, the sequence (h∗Kj

) increases almost everywhere to
a plurisubharmonic function h in Ω which satisfies −1 ≤ h ≤ h∗K in Ω.

Let u be a plurisubharmonic function in Ω such that u ≤ 0 in Ω
and u ≤ −1 in K. Fix ε ∈]0, 1[. The open set

{u < −1 + ε} =

{
u

1− ε
< −1

}
contains the compact set K, hence contains Kj for j large enough. We
infer u ≤ (1 − ε)hKj

in Ω, hence u ≤ h in Ω. Therefore hK ≤ h in Ω,
hence hK ≤ h ≤ h∗K in Ω.

It follows from Corollary 4.28 that the set {hK < h∗K} has Lebesgue
measure 0. Thus h = h∗K almost everywhere in Ω, hence everywhere
by the submean value inequalities: the proof of 3) is complete.

We now prove 4). It follows from Choquet’s lemma that there exists
a sequence (uj) of plurisubharmonic functions such that uj = −1 on
E, uj ≤ 0 in Ω and uj increases almost everywhere to h∗E.

Fix B a small ball in Ω \ E. It follows from Corollary 5.21 that
there exists a unique plurisubharmonic function ûj such that

• uj ≤ ûj ≤ 0 in Ω and uj = ûj in Ω \B;
• j 7→ ûj is increasing and (ddcûj)

n = 0 in B.

We infer that ûj again increases a.e. to h∗E, therefore (ddch∗E)
n = 0

in B. Since B is an arbitrary ball in Ω \ E, this proves 4). □

The technique used in the proof of 4) is the classical balayage. The
key technical tool here is the solution of the Dirichlet problem for the
complex Monge-Ampère operator, a fundamental result of Bedford and
Taylor [BT82] that we prove in Chapter 5.

Remark 4.33. It is also true that h∗Ej
decreases to h∗E if Ej in-

creases to E. The proof is however more involved and will be achieved
in Corollary 4.44.

3.2. Capacity and relative extremal function. We connect
here the capacity of the condenser (E,Ω) to the Monge-Ampère mass
of its extremal function, and use this to show that the Monge-Ampère
capacity is a Choquet capacity.
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Theorem 4.34.
1. For any relatively compact subset E ⋐ Ω and any p ≥ 0,

(3.2) Cap∗(E,Ω) =

∫
Ω

(−h∗E)p(ddch∗E)n =

∫
Ē

(−h∗E)p(ddch∗E)n.

The measure (ddch∗E)
n is carried by {z ∈ ∂E;h∗E,Ω(z) = −1}.

2. Let (Kj) be a decreasing sequence of compact subsets of Ω and
K := ∩jKj, then

limCap(Kj,Ω) = Cap(K,Ω) hence Cap∗(K,Ω) = Cap(K,Ω).

3. Let Ej ⊂ Ω be an increasing sequence and E := ∪jEj. Then

(3.3) Cap∗(E; Ω) = lim
j→+∞

Cap∗(Ej; Ω).

4. Let (Ej) be any sequence of subsets of Ω and E := ∪jEj. Then

Cap∗(E,Ω) ≤
∑
j

Cap∗(Ej,Ω)

Proof. We first prove (3.2) when E = K is a compact set. Observe
that

∫
K
(ddch∗K)

n ≤ Cap(K,Ω). Let u be a plurisubharmonic function
in Ω with −1 < u < 0. We can modify u in a neighborhood of ∂Ω and
assume that it has boundary values 0. It follows from Corollary 4.28
that N := {hK < h∗K} has zero (ddcu)n-measure. As K ⊂ N ∪ {h∗K <
u}, the comparison principle yields∫

K

(ddcu)n ≤
∫
{h∗

K<u}
(ddcu)n ≤

∫
{h∗

K<u}
(ddch∗K)

n,

hence Cap(K,Ω) ≤
∫
Ω
(ddch∗K)

n. Now (3.1) yields∫
Ω

(ddch∗K)
n =

∫
K

(ddch∗K)
n ≤ Cap(K,Ω),

thus

Cap(K; Ω) =

∫
Ω

(ddch∗K,Ω)
n =

∫
K

(ddch∗K,Ω)
n.

The set K ∩ {h∗K,Ω > −1} ⊂ {hK,Ω < h∗K,Ω} is a null set for the
measure (ddch∗k,Ω)

n (again by Corollary 4.28). Therefore

Cap(K; Ω) =

∫
K

(ddch∗K,Ω)
n

=

∫
K

(−h∗K)p(ddch∗K,Ω)
n =

∫
Ω

(−h∗K)p(ddch∗K,Ω)
n,

using (3.1). This proves 1) for compact sets.

We now prove 2). It follows from Theorem 4.32 that the sequence
h∗Kj

increases to h∗K almost everywhere in Ω. By Theorem 4.26 the mea-

sures (−h∗Kj
)p(ddch∗Kj

)n converge to (−h∗K)p(ddch∗K)n weakly. These
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measures all have support in the same compact set K0 ⊂ Ω, hence

lim
j→+∞

∫
Ω

(−h∗Kj
)p(ddch∗Kj

)n =

∫
Ω

(−h∗K)p(ddch∗K)n

and limCap(Kj,Ω) = Cap(K,Ω), using (3.2).
This property insures that Cap∗(K,Ω) = Cap(K,Ω) for any com-

pact set K. Indeed we can find a decreasing sequence of compact sets
(Kj) such that K ⊂ Kj ⊂ K◦

j+1 and K := ∩jKj. Thus

Cap∗(K,Ω) ≤ Cap(K◦
j+1,Ω) ≤ Cap(Kj+1,Ω).

and the previous property yields

Cap∗(K,Ω) = lim
j

Cap(Kj+1,Ω) = Cap(K,Ω).

We now establish (3.2) when E = G ⋐ Ω is an open subset. Fix an
exhaustive sequence (Kj) of compact subsets of G which increases to
G. We let the reader check in Exercise 4.10 that h∗Kj

↓ hG on Ω thus

(−h∗Kj
)p(ddch∗Kj ,Ω

)n → (−h∗G)p(ddchG,Ω)
n.

Since these measures are all compactly supported in Ḡ, we infer∫
Ω

(−h∗G)p(ddchG,Ω)
n = lim

j→+∞

∫
Ω

(−h∗Kj
)p(ddch∗Kj ,Ω

)n

= lim
j→+∞

Cap(Kj,Ω) = Cap(G,Ω).

This proves (3.2) when E ⊂ Ω is an open subset.

We finally prove (3.2) for an arbitrary subset E ⋐ Ω. By definition
there is a sequence of open subsets (Oj)j≥1 ⊂ Ω containing E such that
Cap∗(E,Ω) = limj→+∞ Cap(Oj,Ω). Replacing Oj by ∩1≤k≤jOk ⊂ Oj,
we can assume that (Oj)j≥1 is decreasing.

It follows from Lemma 4.31 that there exists an increasing sequence
(uj)j≥1 of negative plurisubharmonic functions in Ω such that uj = −1
on E and uj ↗ h∗E almost everywhere on Ω. Set

Gj := Oj ∩ {uj < −1 + 1/j}.

These are decreasing open subsets of Ω such that E ⊂ Gj ⊂ Oj and
uj − 1/j ≤ hGj

≤ hE. Thus hGj
↑ h∗E almost everywhere on Ω and

(−hGj
)p(ddchGj ,Ω)

n → (−h∗E)p(ddch∗E,Ω)
n.

Since these measures are supported in a fix compact set, we infer∫
Ω

(−h∗E)p(ddchE,Ω)
n = lim

j→+∞

∫
Ω

(−h∗Gj
)p(ddch∗Gj ,Ω

)n.

On the other hand

Cap∗(E,Ω) ≤ lim
j→+∞

Cap∗(Gj,Ω) ≤ lim
j→+∞

Cap∗(Oj,Ω) = Cap∗(E,Ω).
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The formula (3.2) for open subsets therefore yields∫
Ω

(−h∗E)p(ddchE,Ω)
n = Cap∗(E,Ω).

Recall that the measure (ddch∗E)
n is supported on ∂E. Set

E∗ = {z ∈ ∂E ; h∗E(z) = −1}.
Thus

Cap(E; Ω) =

∫
Ω
(−h∗E)

p(ddch∗E)
n =

∫
E∗

(ddch∗E)
n +

∫
∂E\E∗

(−h∗E)
p(ddch∗E)

n.

Since 0 ≤ −h∗E < 1 on Ē \ E∗, we can let p → +∞ and use the
monotone convergence theorem to obtain∫

Ω

(ddch∗E)
n = Cap(E; Ω) =

∫
E∗
(ddch∗E),

The measure (ddch∗E)
n is therefore supported on E∗.

We now prove 3). Since the sequence (Ej) is non-decreasing, the
plurisubharmonic functions h∗Ej

decrease to a plurisubharmonic func-
tion h in Ω which satisfies h∗E ≤ h ≤ 0 in Ω. Observe that h = −1 in
E \N1, where N1 := ∪j{hEj

) < h∗Ej
}. Set

N := {hE < h∗E} ∪N1 = {hE < h∗E} ∪
∪
j

{hEj
) < h∗Ej

}.

We infer h = −1 in E \ N , hence h ≤ h∗E′ in Ω, where E ′ := E \ N .
Therefore h = h∗E′ and Theorem 4.26 yields

(−h∗Ej
)p(ddch∗Ej

)n −→ (−h∗E′)p(ddch∗E′)n.

By lower semi-continuity and (3.2) we infer

Cap∗(E ′; Ω) =

∫
Ω

(−h∗E′)p(ddch∗E′)n

≤ lim inf
j

∫
Ω

(−h∗Ej
)p(ddch∗Ej

)n = lim
j

Cap∗(Ej; Ω)

≤ Cap∗(E; Ω),

since (Ej) in non-decreasing.
We conclude by checking that Cap∗(E ′; Ω) = Cap∗(E; Ω). Observe

that E ⊂ E ′ ∪N hence by subaddivity

Cap∗(E,Ω) ≤ Cap∗(E ′,Ω) + Cap∗(N,Ω) = Cap(E ′,Ω),

since the set N has zero outer capacity in Ω. This proof of (3.3) is
complete.

We finally prove 4). We can assume that Cap∗(Ej,Ω) < ∞ for all
j. Fix ε > 0. There exists an open set Gj ⊂ Ω such that Ej ⊂ Gj and

Cap(Gj,Ω) ≤ Cap∗(Ej,Ω) + ε2−j−1;
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Thus G := ∪jGj is an open set which contains E and satisfies

Cap∗(E,Ω) ≤ Cap(G,Ω) ≤
∑
j

Cap(Gj,Ω) ≤
∑
j

Cap∗(Ej,Ω) + ε,

which proves the required inequality. □
Definition 4.35. The measure (ddch∗E)

n is called the equilibrium
measure of E.

Corollary 4.36. The set function E 7−→ Cap∗(E; Ω) is a Choquet
capacity on Ω, hence any Borel subset B ⊂ Ω is capacitable,

Cap∗(E,Ω) = sup{Cap(K,Ω);K compact ⊂ Ω}.

Proof. This is a straightforward consequence of Theorem 4.32 and
Theorem 4.15. □

Example 4.37. Let B(a, r) ⊂ Cn be the euclidean open ball centered
at a, of radius r > 0. For 0 < r < R we have

hB̄(a,r),B(a,R)(z) = max

{
log |z| − logR

logR− log r
,−1

}
,

and

Cap(B̄(a, r),B(a,R) =
1

(logR/r)n
.

We let the reader check these facts in Exercise 4.13.

4. Small sets

4.1. Pluripolar sets and extremal functions. Our purpose in
this section is to show that pluripolar sets are exactly the sets of zero
outer capacity.

Definition 4.38. A set E ⊂ Ω is pluripolar in Ω if for all z0 ∈ E
there exists an open neighborhood U of z0 in Ω and a plurisubharmonic
function φ ∈ PSH(U) such that E ∩ U ⊂ {z ∈ U ;φ(z) = −∞}.

The set E is called complete pluripolar (in Ω) if it coincides with
the polar set of a plurisubharmonic function V ∈ PSH(Ω).

Examples 4.39.
1. A proper complex analytic subset of Ω is complete pluripolar.
2. A countable union of pluripolar sets is pluripolar.
3. The image of a pluripolar subset of Ω by a biholomorphic map

f : Ω −→ Ω′ is pluripolar in Ω′ (see Exercice 4.8).
4. The set Rn ⊂ Cn (the real part of Cn) is not pluripolar since the

restriction of any u ∈ PSH(Ω) is locally integrable on Ω ∩ Rn.
5. Any subset of positive n-dimentional Lebesgue measure in a to-

tally real analytic submanifold of dimension n is non-pluripolar [Sad76].
6. There exists a smooth curve in Cn which is non-pluripolar [DF82]

(see [CLP05] for recent developments).
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Lelong asked in [Lel69] wether a (local) pluripolar set E in Cn can
be defined by a global plurisubharmonic function ϕ ∈ PSH(Cn). This
delicate problem has been solved by Josefson using techniques from
Padé approximation [Jos78]. We explain in this section an alternative
proof using the Monge-Ampère capacity, following [BT82].

Theorem 4.40. The following properties are equivalent:
(i) There exists u ∈ PSH(Ω) such that E ⊂ {u = −∞},
(ii) Cap∗(E,Ω) = 0,

(iii) h∗E,Ω ≡ 0 in Ω.

Proof. The implication (i) =⇒ (ii) follows from Proposition 4.19
and σ-subadditivity of the capacity.

We now prove (iii) =⇒ (i). Assume that h∗E,Ω ≡ 0 in Ω. By
Corollary 4.28 the set {hE,Ω < h∗E,Ω} is negligible hence there exists
a ∈ Ω such that hE,Ω(a) = 0. By definition we can find a sequence
(uj)j∈N ⊂ PSH(Ω) such that for all j ∈ N, uj ≤ 0 in Ω, uj ≤ −1 on E
and uj(a) ≥ −2−j. Therefore

z 7→ u(z) :=
+∞∑
j=0

uj

is a negative plurisubharmonic function in Ω, such that u(a) ≥ −1
(hence u ∈ PSH(Ω)) and u | E ≡ −∞, as desired.

To prove (ii) =⇒ (iii) we first assume that E ⋐ Ω is relatively
compact. Assume Cap∗(E,Ω) = 0. It follows from Theorem 4.34.1
that (ddch∗E,Ω)

n = 0 in Ω. Since h∗E,Ω → 0 at ∂Ω (by Theorem 4.34.2),
the comparison principle insures that h∗E,Ω ≡ 0 in Ω.

To treat the general case we fix an increasing sequence Ej ⋐ Ω such
that ∪jEj = E. If Cap(E,Ω) = 0 then Cap(Ej,Ω) = 0, hence h∗Ej ,Ω

≡
0 for all j. Thus there exists uj ∈ PSH−(Ω) such that uj | Ej ≡ −∞.
Fix a ∈ Ω such that uj(a) > −∞ for all j ∈ N and choose for each
j ∈ N a constant εj > 0 such that εjuj(a) ≥ −2−j. Then

u :=
+∞∑
j=1

εjuj, z ∈ Ω,

is a negative plurisubharmonic function on Ω such that u(a) ≥ −1
and u|E = −∞. We infer h∗E,Ω ≡ 0 in Ω: indeed for all ε > 0, εu is a
negative plurisubharmonic function in Ω such that εu | E = −∞ ≤ −1.
Thus εu ≤ hE,Ω ≤ h∗E,Ω in Ω. Letting ε→ 0 we obtain 0 ≤ h∗E,Ω almost
everywhere in Ω, as the set {u = −∞} is negligible since u ̸≡ −∞. □

We are now ready to prove Josefson’s theorem:

Corollary 4.41. Let E ⊂ Cn be a pluripolar set. There exists
V ∈ L(Cn) such that E ⊂ {V = −∞}.
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Proof. Applying Theorem 4.40, we find a sequence of subsets Ej

and bounded strictly pseudoconvex domains (euclidean balls) Ωj such
that Ej ⋐ Ωj ⊂ Cn, E = ∪jEj and Cap(Ej,Ωj) = 0.

Let mj be a labelling of the positive integers so that each inte-
ger appears infinitely many times. Choose an increasing sequence of
positive numbers Rj > 1 such that Ωmj

⋐ Bj := {|z| < Rj} and

log+ |z| − logRj ≤ −2j in Emj
. Observe that

0 ≤ Cap∗(Emj
,Bj) ≤ Cap(Emj

,Ωmj
),

hence Cap∗(Emj
,Bj) = 0.

It thus follows from Theorem 4.40 that h∗EmjBj
≡ 0 in Bj. Applying

Lemma 4.31, we find for each j a plurisubharmonic function uj in Bj

such that uj ≤ 0 in Bj, uj = −1 in Emj
and

∫
Bj
(−uj)dλ ≤ 2−j. Set

Vj(z) := max{uj(z), 2−j(log+ |z| − logRj)}, if z ∈ Bj

and Vj(z) := 2−j(log+ |z| − logRj) if z ∈ Cn \ Bj. The function Vj is
plurisubharmonic in Cn and Vj = −1 in Emj

. Therefore

V :=
∑
j

Vj ∈ PSH(Cn)

Since Vj(z) ≤ −1 for infinitely many integers k = mj, we infer

E ⊂ {V = −∞}.

Our growth estimates yield V (z) ≤ log+ |z| in Cn, hence V belongs
to the Lelong class. □

4.2. Negligible sets. We have shown earlier that the set where
an upper envelope of a family of plurisubharmonic functions is not
plurisubharmonic has zero inner capacity. We now show the following
stronger property:

Theorem 4.42. Let P ⊂ PSH(Ω) be a family which is locally
uniformly bounded from above and set U := sup{u;u ∈ P}. Then
N := {U < U∗} has zero outer capacity, Cap∗(N,Ω) = 0.

Proof. Using Lemma 4.31 we can find (uj)j∈N an increasing se-
quence of plurisubharmonic functions such that and U := supj uj. Re-
call that plurisubharmonic functions are quasi-continuous. Given ε > 0
we can thus find an open set G ⊂ Ω such that Cap(G,Ω) < ε and u
and the uj’s are continuous on F := Ω \G.

Fix K ⊂ Ω a compact set and observe that for all rational numbers
α < β, the sets

Kαβ := K ∩ F ∩ {U ≤ α < β ≤ U∗}.
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are compact, since U is lower semi-continuous in K∩F and U∗ is upper
semi-continuous. Observe also that

K ∩N ⊂ G ∪
∪
α<β

Kαβ.

By subadditivity

Cap∗(K ∩N,Ω) ≤ Cap(G,Ω) +
∑
α<β

Cap∗(Kαβ).

Since U is lower semi-continuous on K there exists m ∈ R such
that U ≥ m in K. Set Um := sup{U,m} and observe that

Kαβ ⊂ Lαβ := K ∩ F ∩ {Um ≤ α < β ≤ U∗
m},

and Lαβ is a compact subset. It follows from Theorem 4.34 that
Cap∗(Lαβ) = Cap(Lαβ) = 0 since the set {Um < U∗

m} has inner ca-
pacity 0 by Corollary 4.28. □

Corollary 4.43. Let (uj) be a sequence of plurisubharmonic func-
tions in Ω which are locally uniformly bounded from above and set
u := lim supj uj. Then N := {u < u∗} has outer capacity zero,

Cap∗(N,Ω) = 0.

Proof. Set vj := (supk≥j uk) for j ∈ N. Then v∗j is plurisubhar-
monic and the set Nj := {vj < v∗j} has outer capacity 0, Cap∗(Nj,Ω) =
0, by the previous result.

Moreover (vj) is a decreasing sequence of plurisubharmonic func-
tions which converges to a plurisubharmonic function v satisfying v ≥
u∗ in Ω. Since u∗ = u = v on Ω \ ∪jNj, it follows that v = u∗ and
N := {u < u∗} ⊂ ∪jNj, hence Cap∗(N,Ω) = 0 by subadditivity of the
capacity Cap∗. □

Corollary 4.44. Let (Ej)j∈N∗ be a non-decreasing sequence of sub-
sets of Ω and E := ∪jEj. Then (h∗Ej ,Ω

) decrease to h∗E,Ω.

Proof. Observe that hj := h∗Ej ,Ω
is a non-increasing sequence of

plurisubharmonic functions which lie between −1 and 0. It converges
to a plurisubharmonic function h, bounded between −1 and 0 and such
that hE,Ω ≤ h ≤ 0. Set

N := ∪j{hEjΩ < h∗EjΩ
}

and observe that h ≤ −1 in E \ N . It follows from Corollary 4.43
and Theorem 4.40 that there exists u ∈ PSH(Ω) such that u < 0 and
N ⊂ P := {u = −∞}.

Thus for all ε > 0, the function h + εu is plurisubharmonic and
negative in Ω and satifies u ≤ −1 in E. Hence h+ εu ≤ hE,Ω and

h ≤ hE,Ω ≤ h∗E,Ω in Ω \ P.
By plurisubharmonicity we infer h ≤ h∗E,Ω in Ω since P has Lebesgue
measure 0, hence h = h∗E,Ω. □
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Remark 4.45. Recall that the Lelong class L(Cn) is the set of
plurisubharmonic functions v in Cn with logarithmic growth, i.e. for
which there exists Cv > 0 such that for all z ∈ Cn,

v(z) ≤ log+ ∥z∥+ Cv.

Corollary 4.41 shows that any pluripolar set is contained in the polar
locus of a function from the Lelong class L(Cn). Given a bounded set
E ⋐ Cn, its global extremal function is

VE(z) := sup{v(z); v ∈ L(Cn), v|E ≤ 0}.
This function has been introduced by Siciak [Sic69] (by using poly-

nomials P of arbitrary degree d and functions v = d−1 log |P |) and
further studied by Zahariuta [Za76]. We let the reader establish some
of its basic properties in Exercise 4.14. We develop in Chapter ?? a
theory that contains the Siciak-Zahariuta functions as a particular case.

5. Exercises

Exercise 4.1. Let T ⊂ R be the set of real numbers having a
developement in continued fractions x = (a0, a1, · · · , ak, · · · ) such that
the sequence (a0, a1, . . .) admits a subsequence which is non-decreasing
with respect to the divisibility order.

Show that T is an analytic subset (continuous image of a complete
separable metric space) which is not a Borel subset of R. We refer the
reader to [?] for more details.

Exercise 4.2. Prove that if c is a capacity in Ω and χ : R̄+ → R̄+

is a continuous increasing function, then χ ◦ c is a capacity in Ω.

Exercise 4.3. Prove that if c is a precapacity (resp. a Choquet
capacity) in Ω then the associated outer capacity c∗ defined by

c∗(E) := inf{c(G);G open G ⊃ E}
is also a precapacity (resp. a Choquet capacity) which is outer regular.

Exercise 4.4. Let M be the family of measures

dµε := ε−1ρ(x/ε)dx

for ε > 0, where ρ is a continuous function in R with compact support
in [−1,+1] such that

∫
ρ(x)dx = 1. Prove that its upper envelope c

satisfies c({0}) = 0 while any neighborhood of 0 has capacity 1, i.e.
c∗({0}) = 1. Hence it is not outer regular

Exercise 4.5. Let M be a compact (for the weak∗-topology) family
of Radon measures on Ω. Define the associated precapacity on Borel
sets E ⊂ Ω by the formula

cM(E) := sup{µ(E);µ ∈ M}.
Show that the associated outer capacity c∗M is a Choquet capacity

on Ω which is outer and inner regular.
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Exercise 4.6. Let h : X −→ Y be a continuous map and c a
capacity in Y .

1) Prove hat the set function ch := h∗c defined on subsets of X by
ch(E) = c(h(E)) is a capacity in X.

2) Show that ch is not additive in general even when c is the exterior
measure associated to a Borel measure.

Exercise 4.7. Let v1, . . . , vn be plurisubharmonic functions in a
domain Ω ⊂ Cn such that 0 ≤ vi ≤ Ai. Set µ = ddcv1 ∧ · · · ∧ ddcvn.
Show that

µ(·) ≤ A1 · · ·An Cap(·,Ω).
Exercise 4.8. Let f : Ω −→ Ω′ be a proper holomorphic map from

a domain in Cn into a domain in Cm. Show that if E is a pluripolar
subset of Ω, its image f(E) is a pluripolar subset of Ω′.

Exercise 4.9. Let Ω ⊂ Cn be an open set, v ∈ PSH−(Ω)∩L∞
loc(Ω)

and B ⊂ Ω a Borel subset.
1. Set s := supB |v| and w := sup{v/s,−1}. Show that

(ddcw)n ≥ 1{v/s≥−1}(dd
cv/s)n.

2. Deduce the following inequality

(5.1)

∫
B

(ddcv)n ≤ (sup
B

|v|)n Cap(B; Ω).

Exercise 4.10. Let G ⊂ Ω be an open set. Let Kj ⊂ Kj+1 ⊂ G be
an exhaustive sequence of compact subsets of G, i.e. ∪jKj = G. Show
that the relative extremal functions h∗Kj ,Ω

decrease pointwise to h∗G,Ω.

Exercise 4.11. Prove the following variational characterization of
the complex Monge-Ampère capacity in terms of the complex Monge-
Ampère energy: for all subsets E ⋐ Ω

Cap∗(E,Ω) = inf

{∫
Ω

(−u)(ddcu)n;u ∈ PSH(Ω) ∩ L∞(Ω), u ≤ −1E

}
.

Exercise 4.12. Let K ⊂ [0, 1]2 ⊂ R2 ≃ C be the standard Cantor
set, so that the set obtained in nth step, consists of 22n intervals with
edges of length ℓn. Let B denote the ball of radius 2 centered at the
origin of C. Show that

Cap(K,B) > 0 ⇐⇒
∑
n≥1

4−n log ℓn > −∞.

We refer the reader to [Carl67, Ra] for details and more examples of
that sort in complex dimension 1.

Exercise 4.13. Let B(a, r) ⊂ Cn be the euclidean open ball of
center a and radius r > 0. Show that for 0 < r < R,

hB̄(a,r),B(a,R)(z) = max

{
log |z| − logR

logR− log r
,−1

}
,
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and

Cap(B̄(a, r), B(a,R) =
1

(logR/r)n
.

Exercise 4.14. Let E ⋐ Cn be a bounded subset. Show that
1) E is pluripolar if and only if V ∗

E ≡ +∞ in Cn;

2) if E in non-pluripolar and E ⊂ BR := {z ∈ Cn; |z| < R}, then
V ∗
E ∈ L(Cn) and there exists a constant C > 0 such that

log+(|z|/R) ≤ V ∗
E(z) ≤ log+ |z|+ C, if z ∈ Cn;

3) if E in non-pluripolar, then V ∗
E = 0 in E◦,

(ddcV ∗
E)

n = 0 in Cn \ Ē, and

∫
Cn

(ddcVE)
n = 1.

Exercise 4.15.
1) Let u be a bounded subharmonic function in C. Show that it can

be written as a countable sum of continuous subharmonic functions
(this result does not hold for plurisubharmonic functions, see [Kol01]
for a counterexample).

2) Let µ be a probability measure on C. Use 1) to prove that µ does
not charge polar sets if and only if it can be decomposed as

µ =
∑
j≥1

µj,

where µj = ∆uj is the Laplacian of a continuous subharmonic function.





CHAPTER 5

The Dirichlet problem

Let Ω ⋐ Cn be a bounded strongly pseudoconvex domain in Cn.
Given φ ∈ C0(∂Ω) and 0 ≤ f ∈ C0(Ω̄), we consider the Dirichlet
problem for the complex Monge-Ampère operator:

(0.1)

 u ∈ PSH(Ω) ∩ C0(Ω̄)
(ddcu)n = fβn in Ω
u = φ on ∂Ω

When n = 1 this is the classical Dirichlet problem for the Laplace
operator. In this case one can find an explicit formula for the solution,
when the domain is sufficiently regular, generalizing the Poisson-Jensen
formula in the unit disc proved in Chapter 1.

For more general domains, as well as for the higher dimensional
setting, one uses the method of upper-envelopes due to Perron and
the comparison principle to build the solution and show it is unique.
Namely we consider

(0.2) U(z) = UΩ,φ,f (z) := sup{u(z);u ∈ B(Ω, φ, f)},

where B = B(Ω, φ, f) is the class of subsolutions,

B := {u ∈ PSH ∩ L∞(Ω); (ddcu)n ≥ fβn in Ω and u∗ ≤ φ on ∂Ω}.

Our goal is to show that U is the unique solution to ( 0.1).

When f = 0, Bremermann [Bre59] has shown that the envelope U
is plurisubharmonic and has the right boundary values, by constructing
appropriate barriers (this is where the pseudoconvexity assumption is
used). Later on Walsh [Wa68] proved that U is continuous up to
the boundary. Then Bedford and Taylor showed in [BT76] that the
complex Monge-Ampère measure (ddcU)n is well defined, and U solves
the Dirichlet problem (0.1 ).

We give in this chapter a complete proof of these results using sim-
plifications due to Demailly [Dem91], as well as ideas from optimal
control and viscosity theory developed recently in [?]. These meth-
ods allow a new description of the Perron-Bremermann envelope using
Laplace operators associated to a family of constant Kähler metrics
on Ω, following an observation by Gaveau [Gav77]. This avoids the
general measure-theoretic construction of Goffman and Serrin [GS64]
used in [BT76].

129
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1. The Dirichlet problem for the Laplace operator

We have shown in Chapter 1 that the Poisson transform solves
explicitly the Dirichlet problem for the Laplace equation in R2 (complex
dimension n = 1). We study here the Laplace operator in RN with
N ≥ 3. This will help us later on in getting some information on
plurisubharmonic function in domains of Cn, with N = 2n.

1.1. The maximum principle. We fix here an integerN ≥ 3 and
a domain Ω ⊂ RN . Let x = (x1, .., xN) denote the canonical coordinates
in RN . For x = (x1, · · · , xN) ∈ RN and y = (y1, · · · , yN) ∈ RN we set

x · y :=
N∑
j=1

xjyj.

and |x|2 = x · x =
∑N

j=1 x
2
j . The Laplace operator in RN is defined by

∆ =
N∑
i=1

∂2

∂x2i
.

Harmonic functions in a domain Ω ⊂ RN are those which satisfy
the Laplace equation ∆h = 0 in Ω (in the smooth or weak sense of
distributions). They can also be characterized as continuous functions
which satisfy the spherical mean-value property.

Definition 5.1. A function u : Ω ⊂−→ [−∞,+∞[ is subharmonic
if it is upper semi-continuous, and for any ball B(a, r) ⋐ Ω,

u(a) ≤ 1

σN−1

∫
|ξ|=1

u(+a+ rξ)dσ(ξ),

where dσ is the area measure on the unit sphere S := {x ∈ RN ; |x| = 1}.

It follows from Chapter 1 that plurisubharmonic functions in a do-
main Ω ⊂ Cn are subharmonic as functions of 2n-real variables.

We denote by SH(Ω) the positive cone of subharmonic functions
in the domain Ω which are not identically −∞. It follows from the
submean value inequalities that

SH(Ω) ⊂ L1
loc(Ω).

Proposition 5.2. Let u be a subharmonic function in a bounded
domain Ω ⋐ RN such that lim supx→∂Ω u(x) ≤ 0. Then u ≤ 0 in Ω.
Moreover for all x ∈ Ω,

u(x) < sup
∂Ω

u

unless u is constant in Ω.

The proof of this maximum principle is similar to the one given in
Chapter 1.
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1.2. Green functions. For N ≥ 3, the Newton Kernel

KN(x) :=
−1

(N − 2)σN−1

|x|2−N

is a locally integrable function in RN which satisfies

∆KN = δ0

in the sense of distribution in RN , where δ0 is the Dirac measure at
the origin. In particular, KN is subharmonic in RN and harmonic in
RN \{0}. It is the fundamental solution to the Laplace operator in RN .

Definition 5.3. The Green function for the unit ball B is

G(x, y) = GB(x, y) := KN(x− y)−KN(|y|x− y/|y|),

where (x, y) ∈ B× B.

Observe that G is well defined in B × B and has the same singu-
larities as KN(x − y) since the second term is smooth. It satisfies the
following properties:

(1) For all y ∈ B, x 7−→ G(x, y) is subharmonic in B,
(2) G(x, y) = G(y, x) in B× B,
(3) G < 0 in B× B, and G(x, y) = 0 if (x, y) ∈ ∂B× B,
(4) for all y ∈ B, ∆xG(x, y) = δy.

Definition 5.4. The function x 7−→ G(x, y) is called the Green
function of the ball B with pole at y.

It follows from the maximum principle for the Laplace operator that
G is unique function satisfying these properties.

The explicit formula for the Newtonian Kernel KN yields

G(x, y) =
−1

(N − 2)σN−1

(
∥x− y|2−N − (1− 2x · y + |x|2|y|2)1−N/2

)
.

Recall that if u, v are smooth functions in B, then∫
B
(u∆v − v∆u)dλ =

∫
∂B

(
u
∂v

∂ν
− v

∂u

v∂ν

)
dσ.

Here ∂/∂ν is the derivative along the outward normal vector ν in ∂B
and dσ is the euclidean area measure on ∂B = S. To get a representa-
tion formula for a subharmonic function u we apply this formula with
v := G(x, ·) and x ∈ B fixed. We thus consider the Poisson kernel

P (x, y) := ∂G(x, y)/∂ν(y), (x, y) ∈ B× ∂B.

An easy computation shows that

P (x, y) :=
1

(N − 2)σN−1

1− |x|2

|x− y|N
, (x, y) ∈ B× ∂B.
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Proposition 5.5. Let u ∈ SH(B) ∩ C0(B̄). Then for all x ∈ B,

(1.1) u(x) =

∫
S
u(y)P (x, y)dσ(y) +

∫
B
G(x, y)dµu(y),

where µu := ∆u is the the Riesz measure of u.
In particular if u is harmonic in B and continuous in B̄ then

(1.2) u(x) =

∫
S
u(y)P (x, y)dσ(y).

The proof is left as an Exercise 5.2. We can thus solve the Dirich-
let problem for the homogeneous Laplace equation with continuous
boundary values:

Theorem 5.6. Fix φ ∈ C0(∂B). The Poisson transform of φ,

(1.3) Pφ(x) :=

∫
|y|=1

φ(y)P (x, y)dσ(y), x ∈ B,

is harmonic in B, continuous in B̄ and satisfies Pφ(x) = φ(x) for x ∈ S.

The proof is identical to the one for the unit disc (see Chapter 1).

1.3. A characterization of subharmonic functions. The fol-
lowing characterization of subharmonic functions will be quite useful:

Proposition 5.7. Let u : Ω −→ RN be an upper semi-continuous
function in a domain Ω ⊂ RN . The following conditions are equivalent:

1. the function u is subharmonic in Ω;

2. ∆q(x0) ≥ 0 for all x0 ∈ Ω and all C2-smooth functions q in a
small ball B of center x0 such that u ≤ q in B and u(z0) = q(z0);

3. u ≤ h in B, for all balls B ⋐ Ω and all functions h : B̄ −→ R
continuous in B̄ and harmonic in B such that u ≤ h in ∂B.

A C2-smooth function q in a ball B = B(x0, r) s.t. u ≤ q in B and
u(x0) = q(x0) is called an upper test function for u at the point x0.

Proof. We first prove (1) =⇒ (2). Assume that u is subharmonic
and fix x0 ∈ Ω. If there exists a C2-smooth upper test function q at
x0 such that ∆q(x0) < 0, then for ε > 0 small enough the function
x 7−→ u(x)− q(x)− ε|x− x0|2 is subharmonic in a small ball B(x0, r),
equal to 0 at x0 and negative for 0 < |x− x0| < r small enough. This
contradicts the maximum principle.

We now prove (2) =⇒ (3). Let h be a harmonic function in some
B(a, r) ⋐ Ω, continuous on B̄(a, r), and such that u ≤ h in ∂B(a, r).
Fix ε > 0 and observe that

u(x) ≤ hε(x) := h(x)− ε(|x− a|2 − r2) on ∂B(a, r).

By upper semi-continuity, there exists x0 ∈ B̄(a, r) such that

u(x0)− hε(x0) = max
B̄(a,r)

(u− hε)
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If x0 ∈ B, we can fix B(z0, s) ⊂ B(a, r) so that q := hε−hε(x0)+u(x0)
is a smooth upper test function for u at x0 s.t. ∆q(x0) = −2nε < 0, a
contradiction. Thus x0 ∈ ∂B and u ≤ hε in B(a, r) for all ε > 0. We
infer u ≤ h in B(a, r) by letting ε→ 0.

We finally prove (3) =⇒ (1). Fix a ∈ Ω and r > 0 such that
B̄(a, r) ⊂ Ω. Let (φj) be a sequence of continuous functions decreasing
to u in ∂B. It follows from Theorem 5.6 that there exists a harmonic
function hj in B continuous in B̄ such that hj = φj in ∂B. Property
(3) yields u ≤ hj in B for any j ≥ 1. Thus

u(a) ≤ hj(a) =
1

σN−1

∫
|y|=1

φj(a+ ry)dσ(y).

We infer (j → +∞) that u satisfies the submean value inequalities. □
The implication (1) =⇒ (2) is a soft version of the maximum prin-

ciple. Property (2) can be used to define plurisubharmonicity in the
sense of viscosity as we explain in the sequel.

2. The Perron-Bremermann envelope

2.1. A characterization of plurisubharmonicity. Let H+
n de-

note the set of all semi-positive hermitian n× n matrices. We set

Ḣ+
n := {H ∈ H+

n ; detH = n−n}.
The following observation of Gaveau [Gav77] is quite useful:

Lemma 5.8. Fix Q ∈ H+
n . Then

(det Q)
1
n = inf{tr(H Q) ; H ∈ Ḣ+

n }

Proof. Every matrix H ∈ Ḣ+
n has a square root which we denote

by H1/2 ∈ H+
n . Thus H1/2 · Q · H1/2 ∈ H+

n . Diagonalizing the latter
and using the arithmetico-geometric inequality, we get

(det Q)
1
n (detH)

1
n = (det(H1/2 ·Q ·H1/2))

1
n ≤ 1

n
tr(H1/2 ·Q ·H1/2).

Therefore (detQ)
1
n (detH)

1
n ≤ 1

n
tr(Q.H), hence

(det Q)
1
n ≤ inf{tr(H.Q);H ∈ Ḣ+

n }.
Suppose now that Q ∈ H+

n is positive. There exists P an invertible
hermitian matrix and a diagonal matrix A = (λi) with positive entries
λi > 0 such that Q = P.A.P−1. Set

αi =
(
∏

i λi)
1
n

nλi
.

Observe that H = (αi) ∈ Ḣ+
n and (detA)

1
n = tr(A.H), hence

(det Q)
1
n = (detA)

1
n = tr(H · A) = tr(H · P · A · P−1) = tr(H ′ ·Q),

where H ′ = P ·H · P−1 ∈ Ḣ+
n .
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If Q is merely semi-positive we consider Qε := Q+ εIn, ε > 0, and
apply the previous argument to obtain

(det Qε)
1
n = inf{tr(H.Qε);H ∈ Ḣ+

n } ≥ inf{tr(H.Q); Ḣ+
n }.

We conclude by letting ε→ 0. □

For H ∈ Ḣ+
n , we consider

(2.1) ∆H :=
n∑

j,k=1

hkj̄
∂2

∂zj∂z̄k
,

the Laplace operator associated to the (constant) Kähler metric defined
by H̄−1 in Cn. The previous lemma yields the following interesting
characterization of plurisubharmonicity:

Proposition 5.9. Let u : Ω −→ [−∞,+∞[ be an upper semi-
continuous function. The following properties are equivalent

(i) The function u is plurisubharmonic in Ω;

(ii) ddcq(z0) ≥ 0 for all z0 ∈ Ω and all functions q C2 in a neigh-
borhood B of z0 such that u ≤ q in B and u(z0) = q(z0);

(iii) u is subharmonic and for all H ∈ Ḣ+
n , ∆Hu ≥ 0 in the sense

of distributions.

Proof. We first prove (i) =⇒ (ii). Assume that is u is plurisub-
harmonic and fix z0 ∈ Ω. If there exists a C2-smooth upper test q at
z0 such that ddcq(z0) is not semi-positive, there is a direction ξ ∈ Cn,

ξ ̸= 0 such that
∑

j,k ξj ξ̄k
∂2q

∂zj∂z̄k
(z0) < 0. Then for ε > 0 small enough

τ 7−→ u(z0 + τξ)− q(z0 + τξ)− ε|τ |2

is subharmonic in a neighborhood of the origin where it reaches a local
maximum, contradicting the maximum principle.

We now prove (ii) =⇒ (iii). Let h be a function that is harmonic
in a ball B = B(a, r) ⋐ Ω, continuous on B̄(a, r), and such that u ≤ h
in ∂B(a, r). We claim that u ≤ h in B. Fix ε > 0 and observe that

u(x) ≤ hε(x) := h(x)− ε(|x− a|2 − r2) on ∂B(a, r).

By upper semi-continuity, there exists x0 ∈ B̄(a, r) such that

u(x0)− hε(x0) = max
B̄(a,r)

(u− hε).

If x0 ∈ B, we can choose a small ball B(x0, s) ⊂ B so that

q := hε − hε(x0) + u(x0)

is an upper test for u at x0 which satifies ∆q(x0) = −2nε < 0, a
contradiction. Therefore x0 ∈ ∂B and u ≤ hε in B(a, r) for all ε > 0.
We infer u ≤ h in B(a, r) as ε→ 0.
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This proves that u is subharmonic in Ω by Proposition 5.7, hence
∆u ≥ 0 in Ω in the sense of distributions. To prove that ∆Hu ≥ 0 for
all H ∈ Ḣ+

n , we use the following observations:
(a) Let T : Cn → Cn be a C-linear isomorphism and q : Cn

ζ → Cn
z

be a C2-smooth function in a neighborhood of a point z0. Set z = T (ζ)
and qT (ζ) := q(z) = q(T (ζ)), then qT is C2-smooth function in a
neighborhood of ζ0 := T−1(z0) and

∆qT (ζ) =
n∑

j=1

∂2qT (ζ)

∂ζj∂ζ̄k
= tr(T ∗Q(z)T ),

where T ∗ denotes the complex conjugate transpose of T := (
∂zj
∂ζk

) and

Q(z) := ( ∂2q
∂zj∂z̄k

(z)) is the complex hessian of q at z. If H ∈ Ḣ+
n we can

find a hermitian positive matrix T s.t. T ∗T = H, one then gets

∆qT (ζ) = ∆Hq(z).

We leave the details as an Exercise 5.4.
(b) Fix u : Ω −→ [−∞,+∞[ an upper semi-continuous function and

z0 ∈ Ω. Then q is an upper test function for u at z0 iff q̃ := qT := q ◦T
is an upper test function for uT at the point ζ0 := T−1(z0).

Observation (b) shows that the condition (ii) is invariant under
complex linear change of coordinates. Observation (a) and the proof
preceeding it show that (ii) implies (iii).

We finally show that (iii) =⇒ (i). Assume first that u is smooth.
Condition (iii) means that the complex hessian matrix A of u at z0 ∈ Ω
is a hermitian matrix that satisfies tr(HA) ≥ 0 for all H ∈ Hn. We
infer, by diagonalizing A, that A is a semi-positive hermitian matrix.
Thus u is plurisubharmonic in Ω.

To treat the general case we regularize uε = u ⋆ ρε (see Chapter 1)
and obtain smooth functions satisfying the Condition (iii) since

∆Huε = (∆Hu) ⋆ ρε in Ωε

by linearity. Thus uε is plurisubharmonic in Ωε. Since u is subharmonic
in Ω, it follows that uε decreases to u as ε decreases to 0 hence u is
plurisubharmonic in Ω. □

2.2. Perron envelopes.
2.2.1. The viscosity point of view. We establish here some useful

facts which are also the first steps towards a viscosity approach to
solving complex Monge-Ampère equations (see [GZ17]).

Proposition 5.10. Let u ∈ PSH(Ω)∩L∞
loc(Ω) and 0 ≤ f ∈ C0(Ω).

The following conditions are equivalent :
(1) (ddcu)n ≥ fβn;

(2) ∆Hu ≥ f 1/n for all H ∈ Ḣ+
n .
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This equivalence has been observed by Blocki [Blo96, Theorem
3.10] when u continuous, by using a slightly different argument.

Proof. We first prove (2) =⇒ (1). Suppose that u ∈ C2(Ω). It
follows from Lemma 5.8 that

∆Hu ≥ f 1/n, ∀H ∈ Ḣ+
n

is equivalent to (
det(

∂2u

∂zj∂z̄k
)

)1/n

≥ f 1/n,

which is itself equivalent to (ddcu)n ≥ fβn. All these inequalities hold
pointwise in Ω.

When u is not smooth, we fix H ∈ Ḣ+
n and let (χϵ) be standard

mollifiers. The functions uϵ := u ⋆ χϵ are plurisubharmonic in Ωε and
decrease to u as ε decreases to 0. Since the conditions (2) are linear
we infer ∆Huϵ ≥ (f 1/n)ϵ pointwise in Ωε. We can use the first case
since uϵ is smooth, obtaining (ddcuϵ)

n ≥ ((f 1/n)ϵ)
nβn pointwise in Ωε.

Letting ϵ ↘ and applying the convergence theorem for the complex
Monge-Ampère operator, we obtain (ddcu)n ≥ fβn weakly in Ω.

We now prove that (1) =⇒ (2). Fix x0 ∈ Ω and q a C2-smooth func-
tion in a neighborhood B of x0 such that u ≤ q in this neighborhood
and u(x0) = q(x0). We know from Proposition 5.9 that ddcq(x0) ≥ 0.
We claim that (ddcq(x0))

n ≥ f(x0)β
n. Suppose by contradiction that

(ddcq)nx0
< f(x0)β

n and set

qϵ(x) = q(x) + ϵ

(
∥x− x0∥2 −

r2

2

)
.

If 0 < ϵ < 1 is small then 0 < (ddcqϵ(x0))
n < f(x0)β

n. Since f is lower
semi-continuous at x0, there exists r > 0 such that

(ddcqϵ(x))n ≤ f(x)βn in B(x0, r).

It follows that (ddcqϵ)n ≤ (ddcu)n in B(x0, r) and qϵ ≥ q ≥ u on
∂B(x0, r). The comparison principle implies that qϵ ≥ u on B(x0, r).
But qϵ(x0) = q(x0)− ϵ r

2

2
= u(x0)− ϵ r

2

2
< u(x0), a contradiction.

It follows from Proposition 5.9 that for any x0 ∈ Ω, and every upper
test q for u at x0, we have ∆Hq(x0) ≥ f 1/n(x0) for any H ∈ Ḣ+

n .
If f is positive and smooth, there exists g ∈ C∞(Ω̄) such that

∆Hg = f 1/n. Thus h = u − g is ∆H-subharmonic by Proposition 5.7,
i.e. ∆Hh ≥ 0, hence ∆Hu ≥ f 1/n for any H ∈ Ḣ+

n .
If f is positive and merely continuous, we observe that

f = sup{g; g ∈ C∞(Ω̄), f ≥ g > 0},

hence (ddcu)n ≥ fβn ≥ gβn for any such g. The previous case yields
∆Hu ≥ g1/n. We infer ∆Hu ≥ f 1/n for all H ∈ Ḣ+

n .
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Assume finally f is merely continuous and semipositive. Observe
that uϵ(z) = u(z) + ϵ∥z∥2 satisfies

(ddcuϵ)n ≥ (f + ϵn)βn.

It follows from the previous case that for all H ∈ Ḣ+
n ,

∆Hu
ϵ ≥ (f + ϵn)1/n.

Letting ϵ decrease to 0 yields ∆Hu ≥ f 1/n for all H ∈ Ḣ+
n . □

2.2.2. Perron-Bremermann envelopes. Previous proposition allows
us to reinterpret the Perron-Bremermann envelope by using the Laplace
operators ∆H . Consider

V = {v ∈ PSH ∩ L∞(Ω), v|∂Ω ≤ φ and ∆Hv ≥ f 1/n ∀H ∈ Ḣ+
n }.

Proposition 5.11. The class V is non-empty, stable under maxima
and bounded from above in Ω. The Perron-Bremermann envelope

(2.2) UΩ,φ,f (z) = sup{v(z); v ∈ V}
is plurisubharmonic in Ω.

Proof. Let ρ be a strictly plurisubharmonic defining function for
Ω. Choose A > 0 big enough so that Addcρ ≥ M1/nβ, where M :=
∥f∥L∞(Ω). We use here that Ω is bounded and ρ is strictly plurisub-
harmonic near Ω̄. Fix B > 0 so large that −B ≤ φ ≤ B. Then
v0 := Aρ−B ∈ V since

∆Hv0 ≥ A∆Hρ ≥M1/n ≥ f 1/n,

for all H ∈ Ḣ+
n . Thus V ̸= ∅.

Since φ is bounded from above by B, the maximum principle shows
that all functions in V are bounded from above by B. It follows that
U := UΩ,φ,f is well defined and given by

U(z) = sup{v(z); v ∈ V0}, z ∈ Ω,

where
V0 := {v ∈ V ; v0 ≤ v ≤M}.

We claim that V0 ⊂ L1(Ω) is compact. Indeed let (vj) be a sequence
in V0. This is a bounded sequence of plurisubharmonic functions in
L1(Ω). Thus there exists a subsequence (wj) such that wj → w in
L1(Ω), where w is plurisubharmonic and satisfies w = (lim supj wj)

∗ in

Ω. We infer v0 ≤ w ≤ B and for all H ∈ Ḣ+
n ,

f 1/n ≤ ∆Hwj → ∆Hw,

hence ∆Hw ≥ f 1/n. Therefore w ∈ V0, which proves the claim. It
follows that U is plurisubharmonic in Ω.

We now prove that the class V is stable under maxima, that is if
u, v ∈ V then max{u, v} ∈ V . It suffices to show that for all H ∈ Ḣ+

n

(2.3) ∆H max{u, v} ≥ min(∆Hu,∆Hv)
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Indeed let µ := min{∆Hu,∆Hv} in the sense of Radon measures in
Ω and suppose that µ({z;u(z) = v(z)}) = 0. The local maximum
principle shows that ∆H max{u, v} ≥ µ in the sense of Borel measures
in the Borel set Ω′ = {u ̸= v}. Since µ(Ω \ Ω′) = 0 , we get

∆H max{u, v} ≥ µ := min{∆Hu,∆Hv}.
When µ({z;u(z) = v(z)}) ̸= 0 we replace v by v + ϵ, and observe

that µ({z;u(z) = v(z) + ϵ}) ̸= 0 for at most countably many ϵ’s.
The previous case yields ∆H max{u, v + ϵ} ≥ min{∆Hu,∆Hv} = µ
for those ε’s. Since ∆H max{u, v + ϵ} converges to ∆H max{u, v}, we
obtain (2.3). □

2.3. Continuity of the envelope.

Theorem 5.12. Let 0 ≤ f ∈ C(Ω̄) be a continuous function in Ω̄
and φ ∈ C(∂Ω). The Perron-Bremermann envelope

U = sup{v; v ∈ V(Ω, φ, f)}
is a continuous plurisubharmonic function which belongs to V(Ω, φ, f)
and satisfies U = φ on ∂Ω.

If φ ∈ C1,1(∂Ω) then the modulus of continuity of U satisfies

ωU(δ) ≤ Cδ∥φ∥C1,1(∂Ω) +Bωf1/n(δ),

where B,C only depend on the geometry of the domain Ω. In particular
U is Lipschitz on Ω̄ whenever f 1/n is Lipschitz on Ω̄.

Proof. The proof proceeds in several steps.
Step 1. We first show that U ∈ V . We have already shown in

Proposition 5.11 that U is plurisubharmonic and bounded. It follows
from Choquet’s lemma that there exists a sequence (vj) in V(Ω, φ, f)
such that

U = (supj vj)
∗ in Ω.

By Proposition 5.11 (stability of the family under max), we can further
assume that (vj) in non decreasing. Fix H ∈ Ḣ+

n . Since ∆Hvj ≥ f 1/n

for all j and vj → u in L1(Ω), we infer ∆Hu ≥ f 1/n, hence U ∈ V .
Step 2. Contruction of barriers at boundary points. Let ρ be a

strictly plurisubharmonic defining function for Ω, ddcρ ≥ c0dd
c|z|2, for

some c0 > 0. Fix ε > 0 and let ψ be a C1,1-smooth function in Ω̄ such
that |ψ − φ| ≤ ε on ∂Ω. For K > 1 large enough,

v0 := Kρ+ ψ − 2ε,

is a smooth function near Ω̄ such that v0 ≤ φ on ∂Ω and

ddcv0 = Kddcρ+ ddcψ ≥M1/nβ,

where M = supΩ f . Observe that K depends on the C1,1-bound of ψ.
Fix H ∈ Ḣ+

n . Then
∆Hv0 ≥ f 1/n.
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Therefore v0 belongs to the class V and v0 ≤ U . It follows that

lim inf
z→ζ

U(z) ≥ ψ(ζ)− 2ε,

for all ζ ∈ ∂Ω. Letting ψ converge to φ and then ε→ 0, we obtain

lim inf
z→ζ

U(z) ≥ φ(ζ).

The same argument shows that

w0 := Kρ− ψ − 2ε

is plurisubharmonic and continuous on Ω̄, with −φ − ε ≤ w0 ≤ −φ.
Observe that U ≤ −w0. Indeed if v ∈ V(Ω, φ, f) then v + w0 is a
bounded plurisubharmonic function in Ω that satisfies v∗ + w0 ≤ 0 on
∂Ω. The maximum principle yields v + w0 ≤ 0 hence U ≤ −w0 in Ω.
We infer that lim supz→ζ U(z) ≤ φ(ζ), for all ζ ∈ ∂Ω. Thus

(2.4) lim
z→ζ

U(z) = φ(ζ).

Step 3. U is continuous on Ω̄. It follows from the above estimates
that for ζ ∈ ∂Ω and z ∈ Ω,

(2.5) U(z)− φ(ζ) ≤ −w0(z)− φ(ζ) ≤ −Kρ(z) + ε.

Fix C > 0 such that −ρ(z) ≤ C|z − ζ| for ζ ∈ ∂Ω and z ∈ Ω. If δ > 0
is small enough we infer, for z ∈ Ω, ζ ∈ ∂Ω,

|z − ζ| ≤ δ =⇒ U(z)− φ(ζ) ≤ KCδ + ε.

Fix a ∈ Cn, |a| < δ, and define Ωa := Ω− a. For v ∈ V we set

v1 := max{v, v0}.

It follows from (2.3) that v1 ∈ V and φ − ε ≤ v1 ≤ φ in ∂Ω.
Moreover if ζ ∈ Ωa ∩ ∂Ω,

v1(ζ + a) ≤ U(ζ + a) ≤ φ(ζ) +KCδ + ε,

while v1(z + a) ≤ φ(z + a) +KCδ + ε, if z ∈ Ω ∩ ∂Ωa. Therefore

w(z) =

{
v1(z), if z ∈ Ω \ Ωa

max{v1(z), v1(z + a)− ε−KCδ} if z ∈ Ω ∩ Ωa

is a bounded plurisubharmonic function in Ω such that w ≤ φ in ∂Ω
and, by (2.3), for all H ∈ Ḣ+

n ,

∆Hw(z) ≥ min{f 1/n(z), f 1/n(z + a)}

in Ω ∩ Ωa, while ∆Hw(z) ≥ f 1/n(z) in Ω \ Ω̄a.
Let ωf1/n denote the modulus of continuity of f 1/n in Ω. Since

|a| ≤ δ, it follows that f 1/n(z + a) ≥ f 1/n(z)− ωf1/n(δ) hence

∆Hw(z) ≥ f 1/n(z)− ωf1/n(δ)
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in Ω. The function

w̃(z) := ωf1/n(δ)ρ(z) + w(z), z ∈ Ω,

therefore satisfies w̃ ∈ V and w∗ ≤ φ in ∂Ω, hence w̃ ≤ U in Ω. Thus

v(z + a) ≤ v1(z + a)− ε−KCδ ≤ U(z) +Bωf1/n(δ),

if z ∈ Ω and z + a ∈ Ω, where B = − infΩ ρ. Since v was arbitrary in
V , it follows that

U(z + a)− ε−KCδ −Bωf1/n(δ) ≤ U(z),

if z ∈ Ω and z + a ∈ Ω.
This proves that U is continuous in Ω, hence on Ω̄ by (2.4). There-

fore U ∈ V satisfies the requirements of the first part of the theorem.

Step 4. Modulus of continuity of U . In the construction above the
constants B,C do not depend on ε and δ, while the constantK = K(ψ)
depends only on the C1,1-bound of an ε-approximation ψ of φ in ∂Ω.
When φ is C1,1-smooth we can take ψ = φ and thus get a precise
control on the modulus of continuity of U : for δ > 0 small enough,

ωU(δ) ≤ Cδ||φ||C1,1 +Bωf1/n(δ),

as desired. □

3. The case of the unit ball

We are going to show that the Perron-Bremermann envelope U
solves the Monge-Ampère equation (ddcU)n = fβn in Ω. Following
[BT76] (and simplifications by [Dem91]) we first prove this statement
when Ω = B is the unit ball and f, φ are regular enough.

3.1. C1,1-regularity.

Theorem 5.13. Assume Ω = B is the unit ball, f 1/n ∈ C1,1(B̄)
and φ ∈ C1,1(∂B). Then the Perron-Bremermann envelope U = UB,φ,f
admits second order partial derivates almost everywhere in B which are
locally bounded in B, i.e. U ∈ C1,1

loc (B).

Here and in the sequel we set

C0,α(Ω) = {v ∈ C(Ω); ∥v∥α < +∞}
for 0 < α ≤ 1, where the α-Hölder norm is given by

∥v∥α = ∥v∥α,Ω = sup{|v(z)| : z ∈ Ω}+ sup

{
|v(z)− v(y)|

|z − y|α
: z, y ∈ Ω

}
.

If 0 < α ≤ 1 and k ∈ N∗, then Ck,α(Ω) denotes the class of functions
which admits continuous partial derivatives up to order k, and whose
k-th order partial derivatives are Hölder continuous of order α in Ω.
We shall also consider the spaces Ck,α

loc (Ω) and C
k,α(∂Ω) with obvious

notations.
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Proof. The proof of Theorem 5.13 consists of several steps and
occupies the rest of this section. Recall from Theorem 5.12 that U ∈
C0,1(B̄). We are going to show that for any fixed compact K ⊂ B, there
exists C = C(K) > 0 such that for any z ∈ K and |h| small enough,

(3.1) U(z + h) + U(z − h)− 2U(z) ≤ C|h|2.
This implies that U has second order partial derivatives almost every-
where that are locally bounded.

Step 1: Using automorphisms of the ball B as translations. The
main difficulty with the expression U(z+h)+U(z−h)− 2U(z) is that
it is not defined in B since translations do not preserve the ball. We
use automorphisms of B instead and study the corresponding invariant
symmetric differences of second order. For a ∈ B, we set

Ta(z) =
Pa(z)− a+

√
1− |a|2(z − Pa(z))

1− ⟨z, a⟩
; Pa(z) =

⟨z, a⟩
|a|2

a

where ⟨·, ·⟩ denote the Hermitian product in Cn. The reader will check
in Exercise 5.7 that Ta is a holomorphic automorphism of the unit ball
such that Ta(a) = 0. Note that T0 is the identity. We set

(3.2) h = h(a, z) := a− ⟨z, a⟩z.
Observe that h(−a, z) = −h(a, z). If |a| ≤ 1/2 then

Ta(z) = z − h+O(|a|2),
where O(|a|2) ≤ C|a|2, with C a uniform constant independent of z ∈ B
when |a| ≤ 1/2. Thus T±a is the translation by ∓h up to small second
order terms, when |a| is small enough.

Step 2: Estimating the invariant symmetric differences of U . The
invariant symmetric differences of U in B are

z ∈ B 7−→ U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) ∈ R.
We also consider the plurisubharmonic function

z 7→ Va(z) :=
1

2
(U ◦ Ta(z) + U ◦ T−a(z)),

and try to compare it to U in B. We claim that

Va(z) ≤ U(z) + C|a|2,
for some constant C > 0 and for all z, a ∈ B with |a| ≤ 1/2. We
verify this by showing that Va belongs to the Perron-Bremermann class
V(B, φ, f), i.e. Va is a subsolution to the Dirichlet problem.

2.1 Boundary values of Va. Observe that if g ∈ C0,1(B̄), then
(3.3) |g◦Ta(z)−g(z−h)| ≤ ∥g∥C0,1(B̄) ·|Ta(z)−z+h| ≤ c1|a|2∥g∥C0,1(B̄),

where c1 > 0 is a geometric constant. Using Taylor’s expansion we get

g ◦ Ta(z) = g(z − h+O(|a|2)) = g(z) + dg(z).h+O(|a|2)
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for g ∈ C1,1(B̄), hence

(3.4) g ◦ Ta(z) + g ◦ T−a(z) ≤ 2g(z) + 2C2|a|,
where C2 = C2(g) depends on the C1,1-norm of g.

Extending φ as a function in C1,1(B̄) and applying (3.4) yields

(3.5) φ ◦ Ta + φ ◦ T−a ≤ 2φ+ 2C2|a|2,
where C2 = C2(φ) depends on the C1,1-norm of φ. We infer

Va(z) ≤ φ+ C2|a|2, ζ ∈ ∂B.

2.2. Estimating the Monge-Ampère measure of Va. We now esti-
mate ∆HVa from below, for H ∈ Ḣ+

n fixed. Observe that

∆H(U ◦ Ta) ≥ (detT ′
a)

2/n (f 1/n ◦ Ta).
where det T ′

a(z) = 1 + (n+ 1)⟨z, a⟩+O(|a|2), hence

(detT ′
a(z))

2/n
= 1 +

2(n+ 1)

n
⟨z, a⟩+O(|a|2).

Since f 1/n ∈ C1,1(B̄), it follows from (3.4) that

f 1/n ◦ Ta(z) = f 1/n(z − h+ o(|a|2)) = f 1/n(z) + ψ1(z, a) +O(|a|2).

setting ψ1(z, a) := df 1/n(z).h.
An elementary computation yields

|detTa(z)|2/n
(
f 1/n ◦ Ta(z)

)
+|detT−a(z)|2/n

(
f 1/n ◦ T−a(z)

)
≥ 2f 1/n(z)−c1|a|2,

for z ∈ B and |a| ≤ 1/2, where C1 = C1(n) > 0. Therefore

∆H(U ◦ Ta) + ∆H(U ◦ T−a) ≥ 2f 1/n − C2|a|2,
hence

∆HVa ≥ f 1/n − C3|a|2,
weakly in B.

For |a| ≤ 1/2 we consider the continuous plurisubharmonic function

z 7→ va(z) = Va(z) + C3|a|2(|z|2 − 2).

Observe that va ≤ φ on ∂B and for every H ∈ Ḣ+
n ,

∆Hva =
1

2
∆HVa + C|a|2∆H(|z|2) ≥ f 1/n − C3|a|2 + C3|a|2 ≥ f 1/n.

Thus va ∈ V(Ω, φ, f), hence va ≤ U . Therefore

1

2
Va(z)− C3|a|2 ≤

1

2
Va(z) + C3|a|2(|z|2 − 2) ≤ U(z)

for z ∈ B, hence

U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) ≤ 2C3|a|2,
as claimed.
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Step 3: Comparing invariant/usual symmetric differences. We now
compare U ◦ Ta(z) + U ◦ T−a(z) and U(z − h) + U(z + h), where h is
defined by (3.2). Fix K ⊂ B a compact set and |h| small enough.

Applying (3.3) with g = U , z ∈ K and |h| < dist(K, ∂B), we get

U(z − h) + U(z + h)− 2U(z)

≤ U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) + 2c1∥U∥C0,1(B̄)|a|2

≤ (2c1∥U∥C0,1(B̄) + 2C3)|a|2.
Observe that a 7−→ h(a, z) = a−⟨z, a⟩z is a non singular endomor-

phism of Cn which depends smoothly on z ∈ B. The inverse mapping
h 7→ a(h, z) is a linear map with norm less than 1

1−|z|2 since

|h| ≥ |a| − |⟨z, a⟩||z| ≥ |a| − |z|2|a|| ≥ |a|(1− |z|2).
For z ∈ K and |h| ≤ dist(K, ∂B)/2, we infer

U(z + h) + U(z − h)− 2U(z) ≤ C4

(1− |z|2)2
|h|2,

where C4 := (2c1∥U∥C0,1(B̄) + 2C3).
Consider now a convolution with a regularizing kernel χε, ε > 0

small enough. For z ∈ K and |h| small we obtain

Uε(z + h) + Uε(z − h)− 2Uε(z) ≤
C4

(1− (|z|+ ε)2)2
|h|2.

The Taylor expansion of order two of Uϵ yields

D2Uε(z).h
2 ≤ C4

(1− (|z|+ ε)2)2
|h|2 ≤ A|h|2,

for z ∈ K,h ∈ Cn, where A := C4/dist(K, ∂B)2. Since Uε ∈ PSH(Bε)

D2Uε(z).h
2 +D2Uε(z).(ih)

2 = 4
∑
j,k

∂2Uε

∂zj∂z̄k
.hjh̄k ≥ 0.

Hence for z ∈ K and |h| small enough,

D2Uε(z).h
2 ≥ −D2Uε(z).(ih)

2 ≥ −A|h|2.
Therefore for z ∈ K we have a uniform bound |D2Uε(z)| ≤ A.

The Alaoglu-Banach theorem insures that there exists g ∈ L∞(K)
such that D2Uε converges weakly to g in L∞(K). Since D2Uε → D2U
in the sense of distributions, we infer D2U = g in the sense of dis-
tributions. The second order derivatives of U therefore exist almost
everywhere and are locally bounded in B with

∥D2U∥L∞(K) ≤ A,

where A := C4/dist(K, ∂B)2 and C4 depends on the C0,1 norm of U , the
C1,1 norm of φ and f 1/n. We have thus shown that U ∈ C1,1

loc (B). □

In general U does not belong to C1,1(B̄) as Exercise 5.11 shows.
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3.2. Solution to the Dirichlet problem. We now show that the
Perron-Bremermann envelope is the solution to the Dirichlet problem:

Theorem 5.14. Assume 0 ≤ f 1/n ∈ C1,1(B̄) and φ ∈ C1,1(∂B).
Then U = U(B, φ, f) is the unique solution to the Dirichlet problem

(3.6)

 u ∈ PSH(B) ∩ C(B)
(ddcu)n = fβn in B
u = φ in ∂B.

Proof. We already know that U ∈ C1,1
loc (B) ∩ V(B, φ, f) and has

the right boundary values. It remains to show that (ddcU)n = fβn.
Since U ∈ C1,1

loc (B), it suffices to show that for almost every z ∈ B

det

(
∂2U

∂zj∂z̄k
(z)

)
= f(z).

The inequality ≥ holds almost everywhere since U is a subsolution.
Suppose by contradiction that there exists a point z0 ∈ B at which

U twice differentiable and satisfies

det

(
∂2U

∂zj∂z̄k
(z0)

)
> f(z0) + ε,

for some ε > 0. Then for any H ∈ Ḣ+
n ,

(3.7) ∆HU(z0) > (f(z0) + 2ϵ)1/n.

Using the Taylor expansion of U at order 2 at the point z0, we get

U(z) = U(z0) +ReP (z − z0) + L(z − z0) + o(|z − z0|2),

where P is a complex polynomial of degree 2 and

L(ζ) =
∑
j,k

∂2U

∂zj∂z̄k
(z0)ζj ζ̄k

is the Levi form of U at z0.
Since L is positive, for any 0 < s < 1 close to 1, there exists δ, r > 0

small enough such that B(z0, r) ⋐ B, and for |z − z0| = r,

U(z) ≥ U(z0) +ReP (z − z0) + sL(z − z0) + δ,

Observe that the function defined by

w(z) := U(z0) +ReP (z − z0) + sL(z − z0) + δ

is smooth and plurisubharmonic in Cn.
Then the function

(3.8) v(z) =

{
U(z), z ∈ B \ B(z0, r)
max{U(z), w(z)}, z ∈ B(z0, r)

is plurisubharmonic in B, continuous near ∂B with v = φ in ∂B.
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We claim that ∆Hv ≥ f 1/n for all H ∈ Ḣ+
n . Indeed if A is the com-

plex hessian matrix associated to U at z0, we have ∆Hw = s tr(HA).
Lemma 5.8 yields tr(HA) ≥ (detA)1/n, hence by (3.7) for z ∈ B(z0, r),

∆Hw(z) ≥ s(f(z0) + 2ε)1/n ≥ (f(z0) + ε)1/n,

if s < 1 is choosen close enough to 1.
Since f 1/n is continuous in B̄, shrinking r if necessary, can assume

that (f(z0) + ε)1/n ≥ f(z)1/n for z ∈ B(z0, r), hence

∆Hw(z) ≥ f(z)1/n,

pointwise in B(z0, r). It follows therefore from (2.3) that ∆Hv ≥ f 1/n.
We infer v ∈ V(B, φ, f) hence v ≤ U in B. On the other hand

v(z0) = U(z0)+ δ > U(z0), a contradiction. The proof is complete. □

Using an approximation process, we can now solve the Dirichlet
problem in the unit ball with continuous data:

Corollary 5.15. Assume φ ∈ C(∂B) and 0 ≤ f ∈ C(B̄). Then
U = U(B, φ, f) is the solution to Dirichlet problem (3.6).

Proof. Let (fj) be a sequence of smooth positive functions which
decrease to f uniformly on B̄. Fix also φj C

∞-smooth functions in ∂B
such that φj increases to φ uniformly on ∂B.

The upper envelope Uj := U(B, φj, fj) is the unique plurisubhar-
monic solution to the Dirichlet problem (3.6) with boundary data φj

and right hand side fj. Observe that (Uj) is non decreasing in B.
Fix ε > 0 small and set ρ(z) := |z|2 − 1. Note that for k ≥ j,

(ddc(Uk + ερ)n ≥ (ddcUk)
n + εnβn = (fk + εn)βn.

Since (fk) decreases fo f uniformly in B̄, we can find j0 > 0 such that
fj ≤ fk + εn in B̄ for k ≥ j ≥ j0, hence

(ddc(Uk + ερ)n ≥ fjβ
n.

Since Uk+ε(|z|2−1) = fk ≤ fj in ∂B, it follows from the comparison
principle that Uk+ερ ≤ Uj in B̄. Since Uj ≤ Uk we infer for k ≥ j ≥ j0,

max
B̄

|Uk − Uj| ≤ ε.

The sequence (Uj) therefore uniformly converges in B̄ to a function
u ∈ PSH(B)∩C0(B̄) such that u = φ in ∂B. The uniform convergence
insures that (ddcUj)

n converge to (ddcu)n weakly hence (ddcu)n = fβn.
The comparison principle guarantees that u = U(B, φ, f) is the

unique solution to the Dirichlet problem (3.6). □
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4. Strictly pseudo-convex domains

4.1. Continuous densities. We generalize here Corollary 5.15 to
the case when Ω ⋐ Cn is a strictly pseudo-convex domain in Cn.

Theorem 5.16. Assume φ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄). The
envelope U = U(Ω, φ, f) is the unique solution to Dirichlet problem.

Proof. We already know that U ∈ PSH(Ω)∩C0(Ω̄) and satisfies
(ddcU)n ≥ fβn weakly. It remains then to check that (ddcU)n ≤ fβn.

We use the classical balayage technique. Let B ⋐ Ω be an arbitrary
euclidean ball. By Corollary 5.15, we can solve the Dirichlet problem

(ddcu)n = fβn in B and u = U on ∂B.

The comparison principle insures U ≤ u in B. It follows therefore from
Proposition 5.10 that

z 7→ v(z) =

{
u(z) if z ∈ B
U(z) if z ∈ Ω \B

belongs to the class V(Ω, φ, f) and v = U = φ on ∂Ω. We infer v ≤ U ,
hence u = U in B so that (ddcU)n = (ddcu)n = fβn in B. The equality
holds in Ω since B was arbitrary. □

4.2. More general densities. We start by extending Theorem
5.16 to the case when the density is merely bounded:

Theorem 5.17. Assume φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω). Then
the envelope U(Ω, φ, f) is a bounded plurisubharmonic function in Ω
which is the unique solution to the Dirichlet problem

(4.1)

 u ∈ PSH(Ω) ∩ L∞(Ω)
(ddcu)n = fβn in Ω
limz→ζ u(z) = φ(ζ) for ζ ∈ ∂Ω

Proof. Let (fj) be a sequence of continuous functions in Ω̄ which
converge to f in L1(Ω) and almost everywhere. Theorem 5.16 yields, for
each j ∈ N, a solution Uj ∈ PSH(Ω)∩C0(Ω̄) such that (ddcUj)

n = fjβ
n

in Ω and Uj = φ in ∂Ω.
Set V0 := U(Ω, φ, 0) and V1 := U(Ω, φ,M), where where M is

a uniform L∞-bound for the fj’s. The comparison principle yields
V1 ≤ Uj ≤ V0 Hence the Uj’s are uniformly bounded.

Extracting and relabelling we can assume that (Uj) converges in
L1(Ω) and almost everywhere to a bounded plurisubharmonic function
U such that U = (lim supj Uj)

∗ in Ω.
We claim that (Uj) converges to U in capacity. Indeed fix a compact

set K ⊂ Ω and δ, ε > 0. There exists an open set G ⊂ Ω such that
CapΩ(G) < ε and all the function Uj, U are continuous in Ω \ G, by
quasocontinuity. Hartogs lemma yields

lim sup
j→+∞

max
K\G

(Uj − U) ≤ 0,
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hence {Uj − U ≥ 2δ} ⊂ G for j > 1 large enough. We infer

lim
j→+∞

CapΩ({Uj − U ≥ 2δ}) = 0.

On the other hand, Lemma 5.18 shows that for all j ∈ N,

CapΩ({U − Uj ≥ 2δ}) ≤ δ−n

∫
{U−Uj≥δ}

(ddcUj)
n

≤ Mδ−n

∫
Ω

(U − Uj)+β
n.

The right hand side converges to 0 since Uj → U in L1, hence

lim
j→+∞

CapΩ({U − Uj ≥ 2δ}) = 0.

Our claim is proved.
We infer (ddcUj)

n → (ddcU)n and (ddcU)n = fβn weakly in Ω.
Since V1 ≤ U ≤ V0, Theorem 5.16 shows that U tends to φ at the
boundary of Ω.

The comparison principle insures that U = U(Ω, φ, f) is the unique
solution to the Dirichlet problem (4.1). □

We need to prove the following lemma which was used in the pre-
vious proof.

Lemma 5.18. Assume u, v are bounded plurisubharmonic functions
such that {u < v} ⋐ Ω. Then for all s, t > 0

tnCapΩ({u− v ≤ −s− t}) ≤
∫
{u−v≤−s}

(ddcu)n

Proof. Fix w ∈ PSH(Ω) s.t. −1 ≤ w ≤ 0, s, t > 0 and note that

{u ≤ v − s− t} ⊂ {u ≤ v − s+ tw} ⊂ {u ≤ v − s} ⋐ Ω.

The comparison principle thus yields

tn
∫
{u<v−s−t}

(ddcw)n ≤
∫
{u<v−s+tw}

(ddc(v − s+ tw))n

≤
∫
{u<v−s+tw}

(ddcu)n

≤
∫
{u<v−s}

(ddcu)n.

The required estimate follows by taking the sup over all such w’s. □
When the density f is merely in L1

loc(Ω), we can show that the
existence of a subsolution implies the existence of a solution:

Corollary 5.19. Fix φ ∈ C0(∂Ω) and 0 ≤ f ∈ L1
loc(Ω). As-

sume there exists v ∈ PSH(Ω) ∩ L∞(Ω) such that v = φ in ∂Ω and
(ddcv)n ≥ fβn in the weak sense. Then the Perron-Bremermann en-
velope U(Ω, φ, f) is the unique solution to the Dirichlet problem (4.1).
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Proof. Set fj := min{f, j}. Then (fj) is a sequence of bounded
densities which increase to f everywhere and in L1

loc(Ω).
Theorem 5.17 guarantees the existence of a unique Uj ∈ PSH(Ω)∩

L∞(Ω) such that (ddcUj)
n = fjβ

n in Ω and Uj = φ in ∂Ω. Set

uφ := U(Ω, φ, 0).

The comparison principle yields Uj ≤ Uj+1 ≤ uφ, therefore (Uj) is
uniformly bounded in Ω.

Since (Uj) is non decreasing, it converges to a bounded plurisub-
harmonic function U in Ω such that U1 ≤ U ≤ uφ. The continuity of
the complex Monge-Ampère operator for decreasing sequences insures
(ddcU)n = fβn. The comparison principle implies that U = U(Ω, φ, f)
is the unique solution to the Dirichlet problem (4.1). □

Remark 5.20. The result above is due to Cegrell and Sadullaev
[CS92] who also gave examples of densities 0 ≤ f ∈ L1(Ω) for which
there is no bounded plurisubharmonic subsolution to the Dirichlet prob-
lem (4.1) (see Exercise 5.8).

When 0 ≤ f ∈ Lp(Ω), p > 1, Kolodziej has shown in [Kol98] that
the Dirichlet problem (4.1) has a unique continuous solution. The case
p = 2 was proved earlier by Cegrell and Person [CP92].

The balayage procedure used in the proof of Theorem 5.16 is quite
classical in Potential Theory. It can be be generalized as follows.

Corollary 5.21. Let B ⋐ Ω be a ball and 0 ≤ f ∈ L1(B). Fix
u ∈ PSH(Ω) ∩ L∞

loc(Ω) such that (ddcu)n ≥ fβn in B. There exists a
unique û ∈ PSH(Ω)∩L∞

loc(Ω) such that û = u in Ω\B, u ≤ û in B and
(ddcû)n = fβn in B. If f ∈ C0(B̄) and u ∈ C0(∂B), then û ∈ C0(B̄).

Proof. Let (φj) a decreasing sequence of continuous function con-
verging to u in B̄. Applying Theorem 5.17 we find Uj ∈ PSH(B) ∩
L∞(B̄) such that Uj = φj in ∂B and (ddcUj)

n = fβn in B.
The comparaison principle insures that u ≤ Uj ≤ Uj+1 in B. There-

fore (Uj) converges to a plurisubharmonic function U in B such that
u ≤ U ≤ Uj and (ddcU)n = fβn in B. Moreover

U∗(ζ) := lim sup
B∋z→ζ

U(z) ≤ lim sup
B∋z→ζ

Uj(z) = φj(ζ)

for any ζ ∈ ∂B, hence U∗(ζ) ≤ u(ζ) in ∂B.
The function û defined by û = u in Ω\B and û = U in B is therefore

plurisubharmonic in Ω and has all the required properties. □

4.3. Stability estimates. We address here the following issue: if
f1 and f2 (resp. φ1 and φ2) are close (in an appropriate sense), does it
imply that so are U(f1, φ2) and U(f2, φ2) ?
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Proposition 5.22. Fix φ1, φ2 ∈ C0(∂Ω) and f1, f2 ∈ C0(Ω). The
solutions U1 = U(Ω, φ1, f1) , U2 = U(Ω, φ2, f2) satisfy

(4.2) ∥U1 − U2∥L∞(Ω) ≤ R2∥f1 − f2∥1/nL∞(Ω)
+ ∥φ1 − φ2∥L∞(∂Ω)

where R := diam(Ω). In particular if φ ∈ C0(∂Ω) and f ∈ C0(Ω), then

(4.3) ∥U(Ω, φ, f)∥L∞(Ω) ≤ R2∥f∥L∞(Ω) + ∥φ∥L∞(∂Ω.

Proof. For z0 ∈ Ω and R > 0 such that B(z0, R) ⊂ Ω we set

v1(z) = ∥f1 − f2∥1/nL∞(Ω)
(|z − z0|2 −R2) + U2(z)

and
v2(z) = U1(z) + ∥φ1 − φ2∥L∞(∂Ω).

Observe that v1, v2 ∈ PSH(Ω)∩C(Ω), v1 ≤ v2 in ∂Ω and (ddcv1)
n ≥

(ddcv2)
n in Ω. It follows therefore from the comparison principle that

v1 ≤ v2 on Ω. We infer

U2 − U1 ≤ R2∥f1 − f2∥1/nL∞(Ω)
+ ∥φ1 − φ2∥L∞(∂Ω)

The inequality (4.2) follows by reversing the roles of U1 and U2. □
These stability estimates show that the operator

UΩ : C0(∂Ω)× L∞
+ (Ω) −→ PSH(Ω) ∩ L∞(Ω)
(φ, f) 7−→ U(Ω, φ, f)

is continuous for the corresponding topologies. Here L∞
+ (Ω) denotes

the set of all non-negative measurable and bounded densities in Ω.
The reader will check in Exercise 5.13 that this stability property does
not hold for arbitrary measures.

Remark 5.23. Finer stability estimates have been established by
Cegrell and Persson [CP92] when f ∈ L2(Ω) and by Kolodziej [Kol02]
when f ∈ Lp(Ω), p > 1 (see also [GKZ08]).

4.4. More general right hand side. We now allow the right
hand side to depend on the unknown function, following Cegrell in
[Ceg84]. We consider the Dirichlet problem.

(4.4)

 u ∈ PSH(Ω) ∩ L∞(Ω)
(ddcu)n = eufβn in Ω
limz→ζ u(z) = φ(ζ) in ∂Ω

where φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω).
The class W(Ω, φ, f) of subsolutions to this Dirichlet problem is

the set of all functions w ∈ PSH(Ω) ∩ L∞(Ω) such that w∗ ≤ φ in ∂Ω
and (ddcw)n ≥ ewfβn in Ω. The corresponding upper envelope is

(4.5) W (Ω, φ, f) = W (z) := sup{w(z);w ∈ W(Ω, φ, f)}.

Theorem 5.24. Fix φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω). Then
W (Ω, φ, f) is the unique solution to the Dirichlet problem (4.4).
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Proof. We can always assume that φ ≤ 0 in ∂Ω. Let ρ be a
defining function for Ω̄ defining Ω and u0 := U(Ω, φ, 0). The function
v0 := Aρ + u0 is a subsolution to the Dirichlet problem (4.4) if we
choose A > 1 so large that An(ddcρ)n ≥ fβn in Ω. Thus W(Ω, φ, f) is
non empty.

We prove that the envelope W (Ω, φ, f) is the solution by using
Theorem 5.17 and applying the Schauder fixed point theorem. Set

C := {w ∈ PSH(Ω) ∩ L∞(Ω); v0 ≤ w ≤ u0}.

Observe that C is compact and convex in L1(Ω). It follows from
Theorem 5.17 that for each w ∈ C there exists a unique function v =
S(w) ∈ PSH(Ω) ∩ L∞(Ω) such that v = φ in ∂Ω and

(ddcv)n = ewfβn in Ω.

Observe that (ddcv)n ≤ fβn ≤ (ddcv0)
n, as w ≤ 0. Since v = v0 = u0

in ∂Ω, the comparison principle yields v0 ≤ v ≤ u0, hence S(w) ∈ C.
We claim that the operator S : C −→ C is continuous for the L1-

topology. Indeed assume (wj) ∈ CN converges to w ∈ C in L1(Ω) and
set vj := S(wj). Extracting and relabelling, we can assume that vj → v
in C and wj → w almost everywhere.

The sequence (vj) converges to v in capacity. Indeed fix δ > 0.
Since (ddcvj)

n = ewjfβn and wj ≤ 0, Lemma 5.18 yields for all j ∈ N,

CapΩ({v − vj ≥ 2δ}) ≤ δ−n

∫
{v−vj≥δ}

(ddcvj)
n

≤ δ−(n+1)∥f∥L∞(Ω)

∫
Ω

(v − vj)+β
n,

The right hand side converges to 0 for vj → v in L1(Ω), hence the
claim. We infer (ddcvj)

n → (ddcv)n weakly in Ω.
On the other hand (wj) is uniformly bounded in Ω and ewjf → ewf

in L1(Ω), hence (ddcv)n = ewfβn. Since v0 ≤ v ≤ u0 in Ω it follows
that v = φ in ∂Ω. The comparison principle now yields v = S(w).

It follows that S(wj) → S(w) in L1(Ω) hence S : C −→ C is con-
tinuous. Schauder fixed point theorem insures that S admits a fixed
point w ∈ C, i.e. w is a solution to the Dirichlet problem (4.4).

The uniqueness of solutions to the Dirichlet problem (4.4) is a conse-
quence of the lemma to follow. It guarantees that w = W (Ω, φ, f). □

Lemma 5.25. Assume 0 ≤ f1 ≤ f2 and w1, w2 ∈ PSH(Ω)∩L∞(Ω)
are such that (ddcw1)

n ≤ ew1f1β and (ddcw2)
n ≥ ew2f2 in Ω.

If w2 ≤ w1 on ∂Ω then w2 ≤ w1 in Ω.

Proof. We infer from f1 ≤ f2 that∫
{w1<w2}

ew2f1β
n ≤

∫
{w1<w2}

ew2f2β
n =

∫
{w1<w2}

(ddcw2)
n.
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The comparison principle thus yields∫
{w1<w2}

(ddcw2)
n ≤

∫
{w1<w2}

(ddcw1)
n ≤

∫
{w1<w2}

ew1f1.

Therefore
∫
{w1<w2} e

w2f1β
n ≤

∫
{w1<w2} e

w1f1β
n, hence∫

{w1<w2}
(ew2 − ew1)f1β

n = 0 and 1{w1<w2}(e
w2 − ew1) = 0,

almost everywhere with respect to µ1 := f1β
n.

Since (ddcw1)
n ≤ µ1 we infer w2 ≤ w1 almost everywhere for

(ddcwn
1 ). The domination principle now yields w2 ≤ w1 everywhere. □

4.5. Further results. We mention here without proof a few im-
portant results for the sake of completeness.

Theorem 5.26 (Krylov). Let Ω ⊂ Cn be a smoothly bounded strictly
pseudoconvex domain and fix φ ∈ C3,1(∂Ω). The unique plurisubhar-
monic solution U = UΩ,φ,0 of the homogeneous complex Monge-Ampère
equation in Ω with boundary values φ is C1,1-smooth on Ω.

This result (together with many other regularity results) has been
obtained by Krylov by probabilistic methods, in a series of articles (see
notably [Kry89]). We refer the interested reader to the lecture notes
by Delarue [Del12] for an overwiev of these techniques.

Theorem 5.27 (Caffarelli-Kohn-Nirenberg-Spruck). Let Ω ⊂ Cn be
a smoothly bounded strictly pseudoconvex domain and fix φ ∈ C∞(∂Ω).
If the density f is smooth and strictly positive on Ω, then the unique
solution U = UΩ,φ,f is smooth up to the boundary.

This result (together with many others) has been obtained by Caf-
farelli, Kohn, Nirenberg and Spruck in [CKNS85]. We refer the inter-
ested reader to the lecture notes by Boucksom [Bou12] for an up-to-
date presentation.

5. Exercises

Exercise 5.1. Let µ be a probability measure with compact support
in RN .

1. Show that the function

x ∈ RN 7→ Uµ(x) :=

∫
Rn

KN(x− y)dµ(y) ∈ R,

is subharmonic and satisfies the Poisson equation ∆Uµ = µ in RN .

2. Let D ⋐ RN be a domain and u a subharmonic function in a
neighborhood of D. Show that u can be written, in D,

u = Uµ + hD,

where µ is the Riesz measure of u and hD is harmonic in D.
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Exercise 5.2. Let u ∈ SH(B) ∩ C0(B̄). Show that for all x ∈ B,

u(x) =

∫
S
u(y)P (x, y)dσ(y) +

∫
B
G(x, y)dµu(y),

where µu := ∆u is the the Riesz measure of u.

Exercise 5.3. Let φ be a continous function on ∂B. Show that

Pφ(x) :=

∫
|y|=1

φ(y)P (x, y)dσ(y), x ∈ B,

defines a harmonic function in the ball B, which is continuous on B̄
and satisfies Pφ(x) = φ(x) for x ∈ S.

Exercise 5.4. Let T : Cn → Cn be a C-linear isomorphism and
q : Cn

ζ → Cn
z be a C2-smooth function in a neighborhood of a point z0.

Set z = T (ζ) and qT (ζ) := q(z) = q(T (ζ).

1) Check that qT is C2-smooth near ζ0 := T−1(z0) and

∆qT (ζ) =
n∑

j=1

∂2qT (ζ)

∂ζj∂ζ̄k
= tr(T ∗Q(z)T ),

where T ∗ denotes the complex conjugate transpose of T := (
∂zj
∂ζk

) and

Q(z) := ( ∂2q
∂zj∂z̄k

(z)) is the complex hessian of q at z.

2) Fix H ∈ Ḣn. Show that there exists a unitary complex matrix U
such that U∗HU = D is a diagonal matrix with positive entries. Set
T = D1/2U . Check that T is hermitian, T ∗T = H and

tr(T ∗AT ) = tr(HT−1AT ) = tr(HA)

for all hermitian matrix A.

3) Apply 2) with A(z) the complex hessian of q at z = T (ζ) to get

∆qT (ζ) = ∆Hq(z).

Exercise 5.5. Let µ be a non-negative Borel measure in Ω ⊂ Cn

such that there exists u ∈ PSH(Ω) ∩ L∞(Ω) with µ ≤ (ddcu)n in Ω.
Show that that PSH(Ω) ⊂ L1

loc(µ) and for any compact subsets
K ⊂ E ⊂ Ω with K ⊂ E◦, there exists C > 0 such that∫

K

|V |dµ ≤ C

∫
E

|V |dλ,

for all V ∈ PSH(Ω), where λ is the Lebesgue measure on Ω.

Exercise 5.6. Let u be a plurisubharmonic function in Ω ⋐ Cn.
1) Assume that there exists constants A, δ > 0 such that

u(z + h) + u(z − h)− 2u(z) ≤ A∥h∥2,
for all 0 < ∥h∥ < δ and for all z ∈ Ω such that dist(z, ∂Ω) > δ.

Show that u is C1,1-smooth and its second derivatives, which exist
almost everywhere, satisfy ∥D2u∥L∞(Ω) ≤ A.
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2) Show that the Monge-Ampère measure (ddcu)n is absolutely con-
tinuous with respect to the Lebesgue measure dV in Ω, with

(ddcu)n = cn det

(
∂2u

∂zj∂z̄k

)
dV,

for some constant cn > 0. Check that this last result actually holds
whenever u belongs to the Sobolev space W 2,n

loc .

Exercise 5.7. Let B denote the unit ball. For a ∈ B, we set

Ta(z) =
Pa(z)− a+

√
1− |a|2(z − Pa(z))

1− ⟨z, a⟩
; Pa(z) =

⟨z, a⟩
|a|2

a

where ⟨·, ·⟩ denote the Hermitian product in Cn.
Check that Ta is a holomorphic automorphism of the unit ball such

that Ta(a) = 0 and that T0 is the identity.

Exercise 5.8. Fix α > 1 and set

fα(z) :=
1

|z|2n(1− log |z|)α
,

1. Check that fα ∈ L1(B) \ Lp(B) for all p > 1 and show that there
is no u ∈ PSH(B) ∩ L∞(B) such that (ddcu)n ≥ fβn in B.

2. Show that there exists a unique radial plurisubharmonic function
U in B which is smooth in B \ {0} and such that U(z) = 0 in ∂B,
(ddcU)n = fβn in B and U(0) = −∞.

Exercise 5.9. Give an example of a non-negative Borel measure
µ on Ω such that the class B(Ω, φ, f) is non empty but contains no
element u such that limu(z) = φ(ζ) for all ζ ∈ ∂Ω (see [CS92]).

Exercise 5.10. Let h : Ω −→ R be an upper semi-continuous
function. The plurisubharmonic envelope of h is defined, for z ∈ Ω, by

PΩh(z) := sup{u(z);u ∈ PSH(Ω);u ≤ h in Ω}.
1. Show that PΩh is a plurisubharmonic function in Ω. Observe

that PΩh = h is h is plurisubharmonic in Ω.

2. Show that if h : Ω −→ R is continuous then PΩh is continuous
in Ω and satisfies

1{PΩh<h}(dd
cPΩh)

n = 0.

3. Show that if Ω = B and h is locally C1,1, then PBh is locally C1,1

in B and satisfies the Monge-Ampère equation:

(ddcPBh)
n = 1{PBh=h}(dd

ch)n.

Exercise 5.11. Let B ⊂ C2 the unit ball. Fix α > 0 and set

φ(z, w) := (1 +Rez)α for (z, w) ∈ ∂B.
Observe that the function φ is C∞-smooth in ∂B, except at the point
(−1, 0) and near this point we have 1 + ℜz = O(|w|2 + (ℑz)2).
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1) Assume that α := 1+ ϵ with 0 < ε ≤ 1. Show that φ ∈ C2,2ϵ(∂B)
if ε ≤ 1/2 and φ ∈ C3,2ε−1(∂B) if 1/2 < ε ≤ 1.

2) Observe that the function defined by U(z, w) := (1 + Rez)1+ϵ,
(z, w) ∈ B, is plurisubharmonic and continuous in B̄ and that it is the
unique solution to the homogeneous Dirichlet problem u ∈ PSH(B) ∩ C(B)

(ddcu)2 = 0 in B
u = φ in ∂B

3) Check that U ∈ C1,ϵ(B̄) ∩ C∞(B). When ε = 1/2, verify that
φ ∈ C2,1(∂B) and U is no better than C1,1/2.

For 1/2 < α < 1 show that Theorem 5.12 is optimal: the solution
is no better than Lipschitz on B̄ when φ in no better than C1,1 on ∂B.

Exercise 5.12. Let f ∈ Lp(B), with p > 1, be a radial non-negative
desnity and φ ≡ 0 in ∂B.

1) Prove that the solution U of the Dirichlet problem (ddcU)n = fβn

with U = 0 on ∂B is radial.

2) Show that U is given, for r := |z| < 1, by

U(r) = −
∫ 1

r

2

t

(∫ t

0

ρ2n−1f(ρ)dρ

)1/n

dt,

3) Check that U ∈ C0,2− 2
p (B̄) for 1 < p < 2 hence U ∈ C0,1(B̄) for

p ≥ 2 (see [Mon86] for more details).

Exercise 5.13. Let φj be a sequence of uniformly bounded plurisub-
harmonic functions in the unit ball B of Cn such that φj → φ in L1 but
(ddcφj)

n does not converge to (ddcφ)n. By modifying φj near ∂B, con-
struct a sequence of probability measures µj in B and plurisubharmonic
functions ψj in B such that

• the ψj’s are uniformly bounded and continuous in B;
• the ψj’s are solutions of the Dirichlet problem Dir(B, 0, µj);
• the sequence (µj) weakly converges to a probability measure µ;
• (ψj) does not converge to the solution of Dir(B, 0, µ).

This shows that the stability property obtained in Proposition 5.22
does not hold in general. We refer the interested reader to [CK94,
CK06] for more information.

Exercise 5.14. Let K be a compact subset of Cn. Recall that the
polynomial hull of K is

K̂ := {z ∈ Cn ; |P (z)| ≤ sup
K

|P | for all polynomials P}.

Fix Ω ⊂ Cn a bounded pseudoconvex domain, ϕ ∈ C∞(∂Ω) and set

F := {(z, w) ∈ ∂Ω× C ; |w| ≤ exp(−ϕ(z))} .
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Show that

F̂ = {(z, w) ∈ ∂Ω× C ; |w| ≤ exp(−u(z))} ,
where u = UΩ,ϕ,0 is the unique maximal plurisubharmonic function in
Ω with ϕ as boundary values.
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