SAMPLING SETS FOR THE NEVANLINNA CLASS

XAVIER MASSANEDA & PASCAL J. THOMAS

ABSTRACT. We propose a definition of sampling set for the Nevanlinna and Smirnov classes in
the disk and show its equivalence with the notion of determination set for the same classes. We
also show the relationship with determination sets for related classes of functions and deduce a
characterization of Smirnov sampling sets. For Nevanlinna sampling we give general conditions
(necessary or sufficient), from which we obtain precise geometric descriptions in several regular

cases.
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1. INTRODUCTION

Let A be a subset in the unit digk In general\ is called sampling for a space of holomorphic
functionsX when any functiorf € X is determined by its restrictiofy A, with control of norms.
For Banach spaces it is usually clear what that control of norms means, but for the spaces we
have in mind the situation is not so obvious. ConsideMbganlinna class

_ AT T i0
N—{feHol(]D).}}ﬂ%/o log™ [f(re?)| df < oo},

which is not a Banach space, but enjoys the structure of complete metric space with the distance
d(f,9) = N(f — g) induced by

N(f) = lim 21 /02” log(1 + | f(re®)[) 8 .

r—1 27

The subharmonicity diog(1 + | f]) yields the pointwise estimate

(1= |z)log(L + [f(2)]) < 2N(f),
which shows that convergence in the distaddeplies uniform convergence on compact sets
[SS, Proposition 1.1].

The Nevanlinna clasd’ coincides with the set of functionse Hol(D) such thatog(1+ | f|)
admits a harmonic majorant (seée [Gar81, p.69] ér (2) later on). The Vélife can then be
rewritten in terms of an extremal problem for harmonic majorants. Hzet, (D) denote the
space of non-negative harmonic functions in the disk; then

N(f) =1inf{R(0) : h € Har, (D) with log(1 + |f|) < h}.

This expression makes sense for ghgneasurable i), in particular for a restrictiorf|A, and
suggests the following definition.

Definition. A setA is sampling for\V if there exists' > 0 such that
N(f) <N(fIN)+C  VfeN.

In Sectior] 2 we study first the relationship between Nevanlinna sampling sets and determi-
nation sets for the same class and for the spdteof bounded holomorphic functions. We
prove that sampling and determination setsoare the same. Also, from the characterization
of H> determination sets given by Brown, Shields and Zeller [BrShZe] we deduce a complete
description of sampling sets for tismirnov class

1 27 , 1 27 )
N = {1 eN dim o [Togt e a0 = o [Tlog” |f*(e")] 0 < oo},
r—12m Jo 21 Jo
Here f*(¢*) denotes the non-tangential limit ¢fat the boundary point?.

Next we study the relationship between sampling sets\faand determination sets for the
classHar, (D) of harmonic functions which can be written as the difference of two positive
harmonic functions. This is relevant because the Riesz-Smirnov factorization implies that for
any f € N there exist a Blaschke produBtandh € Hary (D) such thatog |f| = log |B| + h.

From the characterization of determination setdfer. (D) given by Hayman and Lyons [Haly]
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we deduce a necessary geometric condition for sampliog.irSome examples show that this
condition is far from being sufficient.

In Section B we give general conditions for Nevanlinna sampling (Theprem 3.2), which in
Sectior] 4 are used to obtain a precise geometric description for three different types of regular
sampling sets: fine nets of points, regular sequences on cercles tending to the unit cercle, and
uniformly dense unions of hyperbolic disks, as considered by Ortegaa@ertiSeip in [OrSe].

A final remark about notation. The expressidn< B means that there exists a constant
C > 0, independent of whatever arguments are involved, suchvtkatC B. If both A < B and
B < A then we writeA ~ B.

2. DETERMINATION SETS AND NECESSARY CONDITIONS

In this section we describe the relationship between our definition of sampling and other
related notions studied previously.

2.1. Sampling and determination sets.We begin with an easy observation: in the definition of
sampling given in the introductioN ( f) can be equivalently replaced by

1 27 . .

N, (f) = lim 2—/ log™ | f(re®)|dd = inf{h(0) : h € Har, (D) with log™ |f| < h} .

™ Jo

This is an immediate consequence of the inequalities
log™ [ f] < log(1 + |f]) <log2 +log™ |f] .
Also, the constant’ can be assumed to be 0, as the following Lemma shows.

Lemma 2.1. A setA is sampling forV if and only if N (f) = N, (f|A) forall f € N.
Proof. Of course, we only need to see that the equality is necessary. Sins@n algebra, the
sampling inequalityV, (f) < N, (f|A) + C yields automatically

NL(f") < Ny (fMA)+C  VfeN VneN.
By definition N, (f") = nN,(f), SO

C
No(f) S No(fI8)+— W eN VneN,
and the result follows letting tend tooc. |

Let us consider also two related notions for aséh D. A priori, one seems weaker and the
other stronger than the sampling property.

Definition. A setA is adetermination set fo if N N L>*(A) C H>, i.e. ifany f € N with
sup, |f| < oo must be bounded on the whole unit disk.

A set A is strongly sampling fot\ if wheneverf € N andh € Har, (D) are such that
log™ | f(A)] < h()) forall A € A, then necessarilpg™ | f| < h.



4 XAVIER MASSANEDA & PASCAL J. THOMAS

WhenA is strongly sampling the distandg¢f, g) between two functiong, g € N coincides
with the distance between their restrictiof{g. andg|A.

Remark 1. A setA is adetermination set foH{> when|| f||.. = sup, |f]| for all f € H>. It
is easy to see that determination setsfbrare also determination sets fa*°, which therefore
satisfy|| f|lc = sup, |f| forall f € N.

Indeed, assume that there exigte H> such that| f||. = 1 andsup, |f| = s < 1. Take
{zr}r C D such thatimy |f(z)| = 1 and consider any accumulation po{nt T of { f(zx) }«-
Then the functiory = 1/(¢ — f) belongs taV/, is not bounded, butip, |g| < 1/(1 — s).

Brown, Shields and Zeller showed thats a determination set fdr{> if and only if the set
NT(A) consisting of the € T which are a non-tangential limit of points inhas full measure,
i.e. [INT(A)| = 2r [BrShZe]. It was shown in [Th] that the same condition also characterizes
sampling sets for the Hardy spadk8 (0 < p < o0), if appropriately defined. This condition is
therefore necessary fdrto be a determination set fov'.

Ouir first result shows that the previous notions are all equivalent.
Theorem 2.2.Let A be a subset db. The following properties are equivalent:
(a) A is a sampling set fa.

(b) A is a determination set fok/'.
(c) A is a strongly sampling set foX/.

It is clear from (c) that the sampling property is invariant under automorphisms of the disk:

if Ais sampling for\ and¢(z) = ¢ =%, a € D, is an automorphism db, theng(A) is also
sampling for\V.

Before the proof we need to recall some well-known facts about the structure of the Nevan-
linna class (general references are e.q. [GarB1], [NikOZ] or [RdsRov]).

For a setZ C D with multiplicities, theBlaschke productvith zeros on” is

By(z) = H a a—=z
a€”Z
where the points are repeated according to multiplicities. This is convergent, not identically
equal to0, if and only if >, (1 — |a|) < co. When this is the case, we say tliats aBlaschke
sequencgor verifies the Blaschke condition.

la| 1= za’

A function f is calledouterif it can be written in the form

2m il 4 2

0. dl
o= o [T G 2ot |

™

where|C| = 1,v > 0 a.e. onT andlogv € L'(T). Such a function is the quotierfit= f;/ f, of
two bounded outer functionf, fo € H*> with || f;||.c < 1,7 = 1,2. In particular, the weight
is given by the boundary values (gf / f>|. Settingw = log v, we have

log £ ()] = Plul(z) i= [ Pl

o’
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where

o 1P
P.(e") := —
(€”) =

denotes th&oisson kernehtz € D.

In general, for any finite measureon T, the Poisson integrabf ;. is the harmonic function
given by

Plul() = [ PAe®) du®)

Another important family in this context amener functions:/ € H> such that/| = 1 almost
everywhere offl. Any inner function/ can be factorized into a Blaschke prodittarrying the
zeros ofl, and a singular inner functiofi defined by

2 ei@ > )
)= {- [ G2 duen |

e — 2

for some positive Borel measupesingular with respect to Lebesgue measure.
According to the Riesz-Smirnov factorization, any functjpa \ is represented as

_ BSih
(1) f—CY SZfQ )

fillso <1, S; singular inner,B a Blaschke product and/| = 1.

with f; outer,

Remark 2. Let Har, (D) denote the set of harmonic functiohshat can be writteth = hy — ho,
with hy, hy € Har, (D). The factorization above shows that fre N there exist always
h € Har (D) and a Blaschke produé? such that

) log |f| =log|B|+h,

and reciprocally, for any € Har. (D) and any Blaschke produétthere existy € N satisfying

@.

Proof of Theorem 2]2(c)=(a) is immediate from the definition.

(@=(b). Let f € N with sy =: sup, |f| < oo and considey = f/sy € N. SinceA
is sampling andog™ |g(\)| = 0 for all A € A we have, according to Lemma R.&,, (g) =
N, (g]A) = 0. Thus 7™ log™ |g(re?)| d§ = 0 for all < 1, hencel|g|o < 1.

(b)=(c). Letf € N andh € Har, (D) be such thatog |f(\)| < h()\) for all A € A.
By Remark 2, there exists a functigne N such thatlog |g| = log|f| — h. We have then
log|g(\)| < 0forall A € A, and as pointed out in Remdrk 1, this impligg|.. < 1, i.e.
log |g] =log |f| —h < 0. u
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2.2. Sampling in the Smirnov class. All the definitions and proofs above can be similarly given
for the Smirnov classV* defined in the introduction. The Smirnov class consists of those
f € N for which the harmonic majorant abg™ | f| is quasi-bounded (the Poisson integral of
somew € L'(T)). Equivalently, it consists of thosg € A with no singular factoiS, in the
factorization|(1).

The geometric description of sampling sequences\fdris a straightforward consequence of
the results in[[BrShZe] and Remdrk 1. Recall thaf(A) denotes the non-tangential accumula-
tion set ofA in T.

Theorem 2.3.Let A be a subset db. The following properties are equivalent:

(a) A is a sampling set fan ™.

(b) A is a determination set fok/*.

(c) Ais a strongly sampling set foy/ .
(d) INT(A)| = 2.

Proof. The equivalence between (a), (b) and (c) is seen as in Thgorém 2.2.

The necessity of (d) is pointed out in Rempyk 1. The sufficency is immediate: for almost every
6 € [0,2n) there exists a sequende}, C A tending non-tangentially te?, and therefore
() = limy_.. f(\x) [Gar81, Theorem 5.3]. Then, jf € N+ andh € Har, (D) are such
thatlog™ [f(\)| < h()) for all A € A we havelog™ |f*(e?)] < h(e?) a.ef € T. This yields
NL(f) < Ny (fIN). _

2.3. Determination sets for harmonic functions and a necessary condition for Nevanlinna
sampling. From previous results on determination sets for harmonic functions and the equiva-
lences of Theoreifn 2.2 we deduce a first necessary condition for Nevanlinna sampling (Corolla-
ry[2.4). This can be obtained directly, as shown in the Appendix.

Givenz,w € D let

Z— W

stand for the itpseudohyperbolic distanc&orr € (0,1) andz € D let D(z,r) = {w € D :
p(z,w) <r}.
A sequenceé\ = {\;}, is calledseparatedvhen
jlg£ p(Aj, Ag) > 0.

For any set\ C D andJ € (0, 1), consider the pseudohyperbolic dilation

A= D(\,6),
AEA
and given( € T denote
1
I(A, ¢, 6) = /A5 de(z) ;

wheredm stands for the usual area measure.
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We note that for any fixed € T, the valued (A, ¢, §) are finite simultaneously for all values
of & € (0,1), and that this is equivalent to the fact that for any maximal separated subsequence

A’ C A, we have i
2. (1 —_MI )2 = > (1=AP)A(C) < .

e 6 =A &

We recall the following characterization of determination sets for the élass(DD) given by
Hayman and Lyons [Hally]. This is elaborated upon in/[Ga].

Theorem A. Let A C D. The following properties are equivalent.

(@) sup, h = supp h for all h € Har, (D).
(b) There exists € (0,1) such that/ (A, (,0) = oo forall ( € T.

We shall call the sets satisfying these condititayman-Lyonsets.

Condition (b) is more restrictive than Brown, Shields and Zeller’s conditldf(A)| = 2.
Actually, [NT'(A)| = 2x is equivalent tal (A, {,d) = co a.e.¢ € T [G4d, Corollary 2]. On the
other hand, it is clear that " 7'(A) = T then (b) is satisfied, since the Poisson keiél, () is
bounded below in any Stolz angle with vertexat

Corollary 2.4. A Nevanlinna sampling set is a Hayman-Lyons set.

Proof. By Theorenj 2.PA is a determination set fo¥, and thereforeup , log | f| = supy, log \f]
forall f € V. By RemarK 2, this implies (a) in Theorem A.

Notice also that when is a determination set fok” and f, g € N are such thatf(\)| <
lg(N)| for all A € A, then|Bf| < |g|, whereB indicates the Blaschke product associated to
the zeros ofy. To see this factorize = By, with gy non-vanishing. Themf(\)|/|go(A)| <
|B(\)| < 1 and by hypothesisf| < |go|, as desired.

The Hayman-Lyons condition is not sufficient for sampling\in as shown in the following
example.

Example 1. Take a dyadic partition of the disk: for ariy, k) in the set of indiced =
{(n,k):n eN, 0 <k <2"— 1} consider the interval

(3) Lp = {0 [2rk27", 21 (k + 1)27™)},
and the associated Whitney partition in “dyadic squares”:
@ Quie = {re? € € Ly 1~ 27 <7 < 1— 2771},

Observe that the pseudohyperbolic diameter of each Whitney squarés bounded between
two absolute constants.

Let A be the sequence consisting of the centgisof ), .. An immediate computation shows
that for every( € T

oo 2"—1 oo 2"—1 ‘C k’ oo 2"—1 9—n 9
1_ n c = - - !
nzl];) |C k| nk ;;(K_an’) ;%(2 n 4 ko-n ) o0
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and thereforé\ is a Hayman-Lyons set.

In order to see thak is not a determination set fav' fix ( = 1 € T and consider &orocycle
{2z : P.(1) = ¢}, the boundary of the euclidian disR(-%-, =) (see Figure 1). The& =

T+e’ 1+
AN B(;%, ) is a Blaschke sequence:

14+c¢’ 1+c
l—lal=> > (1—|cn’k|)222_”/2<oo.

ac”Z n=1 0<k<+/27 n=1

PSfrag replacements

Qn,k

Cn,k
P,(1)=c
¢

Figure 1. Upper half-plane representatiomoénd the horocyclé, (1) = c.

Therefore, there exists € N such that
log |f(2)| = log |Bz(2)| + P.(1) zeD.
Clearlylog|f(\)| < cforall A € A. The fact thatf is not bounded rests on the following
more general lemma.
Lemma 2.5. [SS, Lemma 2.3For any Blaschke produd® and any( € T,
lim SFp(l —r)log|B(r¢)| = 0.

This implies in particular thdim sup,_,(1 —r)log|f(r)| = limsup,_,,(1—7)P,(1) = 2, so
f cannot be bounded dn, 1).

3. GENERAL CONDITIONS

In order to see what extra conditions are required on a Hayman-Lyongaeéie a determina-
tion set for\/, assume that € A is such thatup, | f| < 1. According to Remark|2, there exist
a Blaschke produdB (with zero-sequencg) andF € Har, (D) such thatog | f| = log | B|+ F.
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It will enough to see that’ is quasi-bounded, that is, thgtbelongs to the Smirnov class.
This is so because the Hayman-Lyons condition impli€%'(A)| = 2x, and we deduce then

from Theoren 23 thatup, | f| = supy, | f| (see Remark]1).
The hypothesis is, in these terms,

F(X\) <log AeEA,

[BOV)]

and we would like to impose certain conditions &rso that this estimate implies thathas a
guasi-bounded harmonic majorant.

A first observation is that the zeros 6f far from a given\ are no obstruction to such ma-
jorization. The following is a restatement 0f [HMINT, Proposition 4.1, pp. 13—-14], and of part of
its proof.

Lemma 3.1. Let B be the Blaschke product associated to a Blaschke sequéndeor any
§ € (0,1), there exists a positive quasi-bounded harmonic funclign= P[w], w € L'(T),
such that-log |B(2)| < Hp(2) — Xueznp(»s log p(z, a), for anyz € D. Furthermore

w(¢) = co Y x1.(C),

a€”Z

wherec, is an appropriate positive constant, ardg = {( € T : | — ﬁ\ < 1—|a|} is the
“Privalov shadow” ofa onT.

Givensé € (0, 1), there exists thug/ ; harmonic, quasi-bounded and positive such that,

AeA.

5 F(A Hgp(A 1
©) () < H5( )Jraezmzz;(x,a) % p(A a)

It is clear that we cannot expect to bound the local sum in the right hand side of this inequality by
a quasi-bounded harmonic function for &l A (it could happen, for example, that A # ().
Rather, we would like to find conditions ahthat ensure such a bound for a subsetc A big
enough so that the estimate Bfby a quasi-bounded harmonic function dhimplies the same
estimate everywhere (in the spirit of the Hayman-Lyons condition for functioHsiin (D)).

For that purpose we need a measure of the “vulnerabilityX od the presence of zeros of a
Blaschke product.

Consider the dyadic squaré®),, ;. } ..x)cz defined in[(4) and denote h@nk the union of all
Qm,; such tha),, . N Q,,.; # 0. There existg, > 0 such thaQan0 C QM
To measure the vulnerabilty df at each?),, ;, for N € Nandj € (0, 1) consider

N 1 s
Wy (A, N) = sup inf log———|,a1,...,an € @y, )
(A1) { (AEAﬂQn,kJZl p(\a;) ) " ’

We take an empty sum to lte so thatw,, ,(A,0) = 0 for any setA. Clearly,w, (A, N) is an
increasing function ofV, and there exist§’(6) > 0 such thatw,, (A, N) > NC(9).
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Given a Blaschke sequencglet N, , = #(Z N Qn,k). The Blaschke condition is thus
equivalent toy,, 27" 32" 1 N, < oo. Any sequence of integesVy, i} (n,x)ez Satisfying this
condition will be called @laschke distribution

Theorem 3.2.Let A C D. Each of the following properties implies the next one.

(a) For any Blaschke distributioRV,, 1. } (nx)ez, there exist®) C 7 such that

(6) ANQui#0 forany(n, k) € Q,
(7) > 2P, () =00
(n,k)eQ

forall ( € T, and

(8) Z 2_”wn7k(A, Nn,k) < 0.
(n,k)eQ

(b) For any Blaschke distributiodV,, «. } (n,.x)cz @and any positive finite measureon T, sin-
gular with respect to the Lebesgue measure, there egdsts 7 satisfying(6), and
condition (7)) almost everywhere with respectito

(c) A is a determination set for the Nevanlinna class.

(d) For any Blaschke distributiofN,, . } (.1 ez and any positive finite measureon T, sin-
gular with respect to the Lebesgue measure, there egsts Z satisfying(6), and

(©) L X 2R, (Qdv(0) = .

T (nk)eo

(e) For any Blaschke distributiofNV,, ;. } (n.k)cz @and any¢ € T, there exist®) C 7 satisfying
®), (7) and (8).

As pointed out before the statement of Theorem A, condifidn (7) is precisely the Hayman-
Lyons condition for the sek N {Qn 1} (n.k)co-

We will see in the next Section how this somewhat cumbersome conditions can be used to
provide precise geometric conditions, at least when then gets some regularity.

Open question: are there examples of gete show that the first and last of those properties
are actually different ?

Proof. (a) = (b). Obvious.

(b) = (c). Start, as in the general scheme, witle A such thatup, |f| < 1 and consider
the decompositiotog | f| = log|B| + F. By the Riesz-Smirnov factorizatioh](1), the function
F can be written as

F:hl—h2+Hl—HQ,
whereh;, H; € Har (D), H; are quasi-bounded artd = P[v;], with v; positive finite measure
in T, singular with respect to the Lebsesgue measure.
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In order to see that € N'* it will be enough to prove thai; has a quasi-bounded majorant.
To do that we use (b) with the singular measurend the Blaschke distribution determined by
B. Let Q C 7 be the set of indices for which (b) holds.

Let g € N be such thatog |g| = log|f| — Hy = log|B| + hy — hy — H, (explicitly g =
fe~(Hitilh) \whereH, denotes the harmonic conjugatef®f). Then, the corresponding estimate
(5) for g becomes
1

a€ZND(A,5) p(A,a)
for some positive quasi-bounded harmonic functis.
For each(n, k) € Q there is a particulaj = j(n, k) such that\;,, ) € AN @, and
1

Z log N N inf Z log
a€Zn@?’ p<)‘j(n7k)7 a) ek aezn@Q?’ p(Nj, a)

S wn,k(Aa Nn,k)

Let ,,, be the dyadic arcs defined in| (3) and ¢ét> 0. According to [(8) the functior, =
P[W], with
W:.=C Z wn,k<A7 Nn,k)XInyk )
(n,k)eQ
is a positive quasi-bounded harmonic function. The usual estimate of the Poisson kernel by a
“square” kernel (or a direct computation) shows tRaf.](z) > ¢ > 0, with ¢ independent of
z, hence forC' well chosen,

Wn (A, Nopi) < Hp(Ajng))s (n,k) e Q.

Then, defining\’ = {X;u.0) }(n0)co We haveh, — hy — H, < Hp + Hy, on A’. Condition [T)
being satisfied,-a.e. and [Ga, Theorem 2] show then that
he + Hy + Hp + H, :infh2+H2+HB+HL ‘
hy D hy
Thush, — hy — Hy < Hg + H|, everywhere, antbg | f| < log |B|+ H, + Hp + Hy, as desired.
(c) = (d). Following the original ideas of Beurling, and similarly to the proof of Lemma 1 in

[HaLy], for a given set of indice® C 7 satisfying [6) and fo(n, k) € Q, let A\, € AN Qnk,
and define the (possibly divergent) series

Hy(z) = > 27"P](Ar) (A0,
(n,k)eQ

1 <inf
A/

where\; ;. = Ao/ Al
The terms of this series are positive harmonic functions so by Harnack’s thégyésreither
identically +oo or it defines a positive harmonic function.

Suppose tha® is a set for which[(9) fails. Then the series definiig(0) converges, and
thereforefd,, is a positive harmonic function. Notice also thiat .., (1 — |z|) H,(z) = 0, since
each term of the sum has this property, and we can apply dominated convergence.
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By retaining only thgn, k) term of the sum, we see that
1

Hl,()\n’k) i 2inP[V] (/\n’k)m

= Plv](Ank)-

Thus, using Harnack’s inequality and choosing an appropriate cor(sgant0, we obtain a
function
h, := Plv] — CoH,
which is non-positive o, ;)co @n.x» @nd tends to infinity as tends radially to the boundary
a.e. with respect to.

Now suppose that (d) doesn’t hold. This means that we are given a Blaschke distribution
{ Nk} nr)ez and a singular measuresuch that for any2 such that|[(B) holds, thef](9) fails.

Claim. There exist a constant> 0 and a subset, C A such that

(i) S 2P () = 27" [ P, (Qdv(o) < o,
(n,k): (A\A0)NQr, 1 #0 (n,k): (A\Ao YNQnp 1 70
(i) YP[V](Ank) < wyi(A, Ny yi) forany (n, k) with Ag N Q. # 0.

To see this, define
£j = {(n, k‘) eZ:AN ka 7é @ andwmk(A, Nnd) < 2_jP[V](/\n7k)}.
If there exists somg, such that

Z 2_nP[V]<)‘n,k‘) < 00,

(n,k)E[,jO
then define\ \ Ag := AN U(nvk)eﬁjo Qn.1, and we have the result with= 2.
Otherwise, sef; = 1 and define recursively,,;; > j,,, and subsetsl,, C £; , such that
e A, .1NA=0,1<1<m,and
o 1 <> (miedn 27" Pv](Ang) < M.

This is possible because the terms to be summed belong to a divergent series, and are all bounded
by a constant. Now, takin@ := UA,,, we have

2 2ni(A Noy) < 22 ]m( > 2_nP[V](/\n,k)) <MY 27" < o0,
(k€2 (n)eAn -
while 3, yco 27" P[V](An) = oo, which contradicts the hypothesis. The claim is proved.

We now proceed to prove that the geis not of determination for the Nevalinna class. ket
be the function constructed above, using the/sgt\, as the set which doesn't satisfy (9). Let

B be a Blaschke product withy,, ;. zerosby, . .., by, , located iank chosen as the solution to
the extremal problem in the definition of, ;:
Ny, 1 Nn.k
inf Z log = sup inf Z log = Wy (A, Npio)-

AEANQ,, j=1 /)()\, bj) at,..., aNn,kleL,k AEANQ,, 1 j=1 /)()\, aj)
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Choose an integen such thatn~y > 1 and pick a functiory € N with
log |f| = mlog |B| + h,.

By constructiom,, < 0 on A\ Ay andh, < Plv] onA. Also, (ii) implies thatlog | f| < 0 on
Ao, so altogethelog [ f| < 0 on the whole of\. On the other hand the fact that sup,, (1 —
|z])[log | B(%)| + H,(z)] = 0 shows thatf cannot be bounded on the disk.

(d) = (e). Condition (e) is the special case of (d) wherie a point mass. |

4., REGULAR SAMPLING SEQUENCES

In this section we give precise conditions for three types of regular sets to be samplivig for

4.1. Fine nets. Letg : (0,1] — (0, 1] be a non-decreasing continuous function with) = 0
A sequence\ is called ag-netif and only if

(i) The disksD(\, g(1 —|A])), A € A, are mutually disjoint,
(if) There exists”' > 0 such thatJ,c, D(A, Cg(1 —|A])) = D.

We characterize samplingnets in terms of the growth gf (Theorenj 4.]L below).The growth
condition is equivalent to a condition in terms of approach regions. Let

F = {w :[0,1) — R, non-decreasing, continuous, withi0) = 0 and/zp(yc)/yc2 dr < oo}.
0

Given( € T define the approach regidi,(¢) = {z € D : (|2 — (]) <1 —|2|}.

Theorem 4.1. Let A be ag-net. The following properties are equivalent:

(a) A is a sampling sequence far
(b) Xxeanr, 1 — [A| =ocoforall ¢ € Tand ally € F.
dt
© Jy gz =
Remark 3. (i) The conditions above can be reformulated in terms of the numbgr of points
of A in a dyadic squaré€),, ;.. In this casel/, ;. is essentially independent &f in the sense that
there existV/,, and a constar’ > 0 such thaC~'M,, < M,,, < CM, forall0 < k < 2". Then

the conditions in the theorem above are equivaledt {6),2~")"/? = co (see Lemma 4]3).

(i) As we will see soon, condition (b) is always necessary. However, the results of Section
[4.3 show that it is not always sufficient.

We will begin by proving that condition (b) is necessary in general. We first give a reformula-
tion of Example 6.4 in[[Haly], where we look at when the outside of an approach régian
is, or is not, Hayman-Lyons. All computations should be done in the disc, depending only on
what happens in a neighbourhood of a pd@imn the boundary. Passing to the upper half-plane
U with the standard conformal mapping, we may perform the corresponding computations in a
disc of fixed radius centered on any point of the real axis.
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Lemma 4.2. Lety) : (0,00) — (0, 1] be a non-decreasing continuous function witft)) = 0.
TheseD,, == {z+ 1y € C:0 <y <(|z]) ory > 1} is a Hayman-Lyons set if and only if

¥()

5 dr = 0.
0 X

Furthermore, ifD,, is not a Hayman-Lyons set, there exists a harmonic funcétienHar_ (U),
non-positive orD,;,, and withlim %’lf yh(iy) > 0.
y—)

Proof. For any point{ € R except the origin (but including the point at infinity,, contains a
half-disc centered af, so that the integral(D),, ,5) > I(Dy,(,0) = oco. There remains the
case( = 0.

A direct computation shows that

dx dy GO Larctan(y(x)/x)
100,00 = [ 2~ [ -/ dx
(Dy,0,0) Dy 12 + 32 o Jo 2?4192 0 x o

which is finite if and only iff, ¢'(z) /2% dz < co. Hencel (Dy, 0,0) = oo when [, ¢ (x)/2? dx =
Q.

This same estimate shows that in order to prove i), 0,0) < oo when J, ¢ (x)/2? dz <
oo it is enough to see that for ardy > 0, there exists a non-decreasing function > 0 with
15(0) = 0 and such that

() D} c D,
(i) fo vs(x)/a? dv = fyib(x)/a? da.

In the construction ofs only the behavior near zero is relevant, hence we restrict our attention
toz € [0,1/2]. Recall that the pseudohyperbolic distance between two pejgts U is given

by p(z,¢) = |z = ¢l/Iz — |-

Letn > 0 (to be chosen later) and consider the function

< 1
Pylx) = 1+n¢( ")X - n+2) 2- ey (T) -

n=0

This corresponds to “raising” the value ofatx = 2= by n (in the pseudohyperbolic metric)
and assign it to the whole intervig("+2) 2-("+1)) (see Figure 2).
It is clear that), satisfies (i) for any; > 0:

[e.9] —-n

1/1,7( ) 1+77 Zz/; /2—(n+1> dj N Z ¢(2

0o 2 (nt2) 2

Let us see that the pseudohyperbolic distance between the graphaafl the graph of is
bigger thary if n is big enough, and therefore (i) holds as well. In the vertical direction it is clear
that we only need to take > 9, by construction of),. For the horizontal direction we have, for
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anyz € [2-(+) 2-n),

]

7 =270 (o) — Hy(2-n0))

—(n —(n 1-n ‘
(2702, 4 (27 ) (2, () ) =
_ 9—(n+2 ; 147 —(n+1
T — 270v) () + 1EI(2- D))
S 1
= . T —(n+1)
1+ Len @y Gor)

This is clearly bounded below, since the integrability condition/agives in particular

() Hyp27Y) 2927
Jm ey S e oy T A o

PSfrag replacements

Figure 2.

In the case where the integral is convergent, denoting temporayrily (t) := %m let

h(@ + iy) == Priiy(0) — Chy(z +1y),
whereC' > 0 andh, is the Poisson integral of the integrable functioft)/t* restricted to the
interval[—1, 1].

It is well known that the growth of the Poisson integral of an integrable function is such that
lim, 0 yhy(z + iy) = 0 (see for instance [S$S, Corollary 2]), thus it will be enough to prove that
for C' > 0 sufficiently bigh < 0 onD,.

This will be done as soon as we see thax 0 for pointsz = zy + iyy € 0Dy. Since
lir% ¥(x)/z = 0, we have then

g+ Y2(z) g
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On the other hand
' 1 y(x) 1 zo+(wo) 1) ()
hy(zo + 1 > / dx > /
(@0 igo) le—o|<t(z0) Y(T0) ¥ V(o) Jao 2
S (i o1 ) = ¥(20) 1 . ¥(0)
Ty o + (o) xg 1+ (w0)/70 xg
hence withC' big enough we get the desired estimate.

dx

Proof of Theorem 4]1(a)=(b). Assume that there exist a functigne F and¢ € T such that
Yaeanr, ) L = [Al < oc. Similarly to Example 1, consider the functigne A such that
10g|f‘ = 10g|BZ‘ + h¢ 5

whereBy is the Blaschke product associatedte= A N I'y(¢) andh,, is the harmonic function
obtained by transporting to the disk the function given by the previous lemma.

Itis clear then thaf is bounded on\. But by the properties of, and by Lemma 2|5 we see
that f cannot be bounded in the whole disk. Thus not a determination set fav'.

(b)=-(c). It will be enough to prove the following lemma.
Lemma 4.3. Assume thah satisfies condition (b) in Theorgm #.1. L, ;. = #A N Q. and

assume that there exiét > 0 and positive integers/, such thatC~'M,, < M,,, < C'M,. Then
S (M,27™)Y2 = o0,

A volume estimate shows thaf,, ~ (¢(27"))~2, and therefore
dt 1
—~Y 2~ M,27™")V? = 0 .
g = X7 gy~ R = o0

Proof. We want to prove that if",,(M,,27")'/? < oo there existg) € F such thad~sexr, ) 1—
|A| < oo, thus contradicting (b).
It will be expedient to write the computation in the upper half-pléhafter a conformal

mapping. We call the resulting setsandl',(¢) again. Thus, we need to prove that there exists
veF

(10) So1-PY em#(AnT(ON{2 <y <27 < oo

AEANT Y, (C) n>0

Since is an increasing function, the sBt,(¢) N {27! < y < 27"} is contained in the
rectangle{|xz| < ¢~1(27"),27""! < y < 27"}. Therefore, splitting the sum for the different
Qn.x and using that/,, ~ g=2(27") we have

T Oz Y M =Y Moy 2

2(0—
AEANT,(€) n>0 k:k2—n<ip=1(2-7) n>0 w0 92(277)
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It will be enough to see that defined by~ (t) = v/tg(t ) is in F, since then

> 1= 22”2~/
AeT,(¢) 30 g(2 \/_g
By definition¢ is non-decreasing, continuous an() = 0. Also
dt s ] 1 B 1 . %
/ /w /1 {t: 1)y (t)Za}‘da—/o‘{t.w ) <s) 5

:/0 |{t:t§¢<s>}|i§=/;w§)ds<oo,

as desired. ]

(c)=-(a). Given a Blaschke sequenZaeve want to choose a family of indic&® C 7 satisfy-
ing the conditions of Theorem 3.2(a). First we need a control of the vulnerability on the squares
whereN,, , = #(Z N Qyx) is small.

Lemma 4.4. If A is a g-net, there exist > 0, no € NandC > 0 such that whenever > n,
andN < e#(ANQnk), thenw, (A, N) < CN.

Proof. DenoteQ = Q, 1, Q@ = Qnx andM = #(AN Q). ThenM ~ g(2-")~2 and there exist
constants: < C' such that the disk® (A, cg(27")), A € @, are mutually disjoint and the disks

D(\,Cg(27™)) cover the whole s&p. Let Z = {ay,...,an} C @5 and consider
Ay ={ eANnQ:p(\a)>Cg(2™"), forallac ZNQ}.
Fore small enough, and (and therefore\/) large enoughg#Ay > M/2.

Chooser € (0,1) large enough so tha) ¢ D(a,r) for anya € Q. For X e Ay and
z € D(N,cg(27™)) we havep(z, a;) < p(N, a;) for all a; € Q, and therefore
1 1

1
11 lo / lo dm(z).
(11) 8 p(N,a;) = m(D(N,cg(27")) Jp(V,cq(2-m)) 8 p(z,a;) (2)
Then, foranwl,...,aN € qQ,
> 3 SD S D MRS . - ——r
og 0g = o mo_n\2 0g miz),
)\IEA' j=1 ) 7=1 /\/EAQg p()\/7a’j) 7=1 (9(2 )2 )2 D(aj,r) p(Z, a])

Applying an automorphism of the disk sendiagto the origin, we see that there is a radius
€ (r,1) with
1/ log — d()</ log ——dm(z) < C
— —amiz —am .
22 o ° plzay) = Joa P4 =

Finally,

1
2. (Zk’gp ',aj>) = e =M

NeAy U=l
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and since# Ay > M/2, the average value of the summands in the first sum is bounded by a
constant multiple ofV. |

Fore € (0,1) small enough, define

(12) Q - {(n7 k) : Nn,k S 5#(/\ N Qn,k)} .
Lemmg 4.4 together with the Blaschke condition gjve (8) in Thegrein 3.2.

In order to prove[(7) in Theorem 3.2, for eagh k) pick ¢, € Q. for instance its center.
By rotation invariance of the properties of being-aet or a Blaschke sequence, it will be enough
to see that,

(13) 3 (W) e

(n,k)eQ Cn,k:|
Let

Observe tha% is bigger when the argument oin (—, 7] is closer to). So we must have,
for any fixedn,

1— Jennl?\ A |
(15) > ( - > — | =
k:(n,k)€Q 1= cnil koL, \K2 Ly
On the other hand

2

Yo Nap>e Y, #ANQup) 20—,
E:(n,k)¢Q k:(n,k)¢Q (9( ))

and the Blaschke condition implies
27"L

ZW<OO

n 3
If (L3) doesn't hold we hav&’,, 1/L,, < oo, and

27"/ 1 2L, \? 1/2 27" L, \1/2
/otlTNZ -n) Z(L g(2—n )) (Zi) (Z (2—n)2> < %,

n>0 g9(2 n>0 n>0 n>0Y

which contradicts the hypothesis. |

4.2. Discretized rings. Letr, € (0,1) be an increasing sequence of radii with,, ,, = 1 and

0 < inf, 1;1;:1 < sup, 11““ < 1. Lete, be a decreasing sequence of hyperbolic distances
such thatlim, ¢, = 0. The discretized rings associated fo-,},, and {¢, }, is the sequence

A ={\.;}n;, Where

A\ ) 271 1
ni = Tp€X —_ — .
g PV ) (1 —rn)en

Theorem 4.5. Let A be discretized rings. The following properties are equivalent:

) neN, 0<75<
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(@) A is a sampling sequence forf
(b) Yaeanr, )1 —[A =ooforall ¢ € Tandally € F.

©) gjo (1 ;r")m — 0.

The proof follows the same scheme as the proof of Theprem 4.1.

Proof. (a)=(b). As in Theorem 4]1.

(b)=-(c). Assume tha}_, (1 ’"")1/2 < oo. Consider the sequeneg = [(1 — 7,,)en]'/?
decreasing to zero and the functrgz)rwhlch in each intervaly,,. 1, n,) is defined as the segment

joining the points(ry,+1, 1 — 1) and(n,, 1 — r,); ie.
Tnel — Tn
V() = D[ = 1) + (2 = 00) X am (7))
n>0 Tn T+
It is clear thaty is continuous, non-decreasing and witfD) = 0. Also, by the hypotheses on
{rntn
n M 1 1
Wiy " Was e s 7 S e xam (L - )
0 x n>0 7 Mn+1 n>0 Mnt1 L n>0 +1 T
N 1/2
<Z — Tnt1 :Z(l Tn) < o0,
n>0 77”+1 n €n
hencey € F.

On the other hand, a length estimate shows that the numbeswth that\,, ; € I';(() is
approximatelyw. Sincey (1 — r,,) = 1, we have

~1(1 _ 12
> W= o) O 5 (120 T,

AEANT,(C) n>0 Tn)€n n>0 fn >0 €n

which contradicts (b).

(c)=(a). Given a Blaschke sequenZe we want to choose a family of indic&3 satisfying
the conditions of Theorem 3.2(a).

We begin by showing that Lemma 4.4 still holds for discretized rings.

Proof of Lemm&4]4 for discretized ringset Q = Q,.x, @ = Qnr andM = #(AN Q).

Since0 < inf, 1;3;:1 < sup,, 117"7’;“ < 1, there is at most a finite number of, with
2=+ < 1 —p, < 27" There is no loss of generality in assuming that there is just one such
rm, and thereforé\/ ~ 1/¢,,. In particular, there exist < C such thatD(\, ce,,,), A € Q, are
mutually disjoint andD(\, C¢,,) cover the segmedt: : |z| = r,,} N Q.
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GivenZ = {ay,...,an} C @5 consider now
Ay = {/\ eANQ:p(\a)>Cepy, foralla € Zﬂ@}.
Again, for suitableC’, m andr € (0, 1), we have#Ay, > M/2 andQ C D(a,r) for anya € Q.

We proceed as before, but replacing the area averages in (11) by the line averages

1 - 1 l/ | 1
= og
p(Na;) = | TN, cem)| Javeem)  — p(2,a5)
1 / ) 1
~ og
(1 — 7)) €m JI(V cem) p(z,a;)

log |dz|

|dz],

whereJ (X, ce,) = {z : |2z| = rm} N D(N, cen). Then, for anyay, ..., ax € Q,
N
1

1
> Zlog Z > log =2 (1—7“m)€m/Qﬂ{|z|rm} tog p(z,a;)

/\’eA/ j=1 Jj= IA'eA/ p a]) j=1

|dz| .

Since the hyperbolic length @ N {|z| = r,,} is approximately2=" ~ 1 — r,,, we have, for
somer’ < 1,

1 / 1
log dz| < log — dr~1.
1— T'm JQN{|z|=rm} p(Z’ CL]) ‘ ‘ et | ‘
Hence
Z Z log < N/Em 9
J=1NeN, p()\ i)
and using thag A, > 1/(2¢,,) we get the desired result. n

From here we proceed as in the proof of Theofem 4.1. As pointed out before, there is no loss
of generality in assuming that there is just onewith 2"+ < 1 —r,, < 27", To simplify the
notation we re-index,,, and call itr,,.

Given a Blaschke sequengeands small enough, defin® as in [12). The previous lemma
ensures|(8) in Theorem 3.2. In order to see thiat (7) also holds it is enough toshow (1B8). Let
as in [14). Since (A N Q. k) ~ 1/, we have now

Y Nax>e > #(ANQnx) >eCLy/ey,

k:(n,k)€Q k:(n,k)eQ

hence the Blaschke condition impli&s,(1 — r,) L, /e, < oo . If (L3) does not hold we have
> 1/L, < oo, and

2"« (52) (55 o

n €n n n €n

which contradicts the hypothesis. |
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4.3. Uniformly dense disks. In this section we consider a different kind of sampling sets. We
begin with the sequences considered by Ortega-#and Seip in[[OrSe].

Definition. A sequence\ C D is uniformly densef

(i) Ais separated, i.a@nfy_.y p(A, ') > 0.
(i) There exists < 1 such thaD = Uycp D(A, 7).

Notice that, in the terminology of Sectipn 4.1, uniformly dense sequences correspond to
nets.

Let ¢ be a non-decreasing continuous function, bounded by some constant less than 1. Given
A uniformly dense define, = ¢(1 — |\|), DY = D(), r,) and the unions of disks

A(p) = U Dy.
AEA

Theorem 4.6. The set\(y) is sampling for\ if and only if

1 dt
(16) , Tostemy =

In Sectior{ b we will see that this condition actually characterizes determination sets for the
space of subharmonic functions in the disk having the characteristic growth of the Nevanlinna
class.

Remark 4. Condition [16) is equivalent to the fact that the harmonic measuw@®ah D\ A(p)
is zero, see [OrSe, Theorem 1]. Notice also that for any fiXed 1 condition [16) is equivalent

to
1

2 Tog(Lp K )

Remark 5. The above family of examples allows us to see that there is no general relationship
betweend~“-sampling sets and Nevanlinna sampling sets.

= 0.

A setA C D is samplingfor the space
AT ={f € Hol(D) : [ flla := sup(l — 12D f(2)] <00} a>0,

when there exist§’ > 0 such that]| f||, < Csupyea(1 — |A])*|f(N)| forall f e A=,

A well-known result of K. Seip[[Se, Theorem 1.1] characteriZes-sampling sets as those
A for which there exists a separated subsequeénce A such that

> logng

D_ (A’) — liminf inf A:1/2<p(,\7z)<r1
r—1— z€D logE

> Q.

Let A, be a fine net associated to a functipwith [, tl/gl% < oo, for instancey(t) = /4.

According to Theorern 4} 1), is not a Nevanlinna sampling set. On the other hand, for any given



22 XAVIER MASSANEDA & PASCAL J. THOMAS

a > 0, we can extract a maximal separated sequénedth the separation small enough so that
D_(A") > «, hence), is A~*-sampling for alloe > 0.

Also, givena > 0, consider a uniformly dense sequentevith D_(A) < « and takey
satisfyinglim, .o ¢(¢) = 0 and [16). Then\(y) is Nevanlinna sampling but it is not -
sampling, sinceéD_(A’) < a for any separated’ C A(p).

Better yet, take a sétasin Secti02, sampling for the Nevanlinna class, lith ., . 1::;11 =
oo. ThenD_(A) = 0, so it cannot bed~*-sampling for anyx > 0.

Proof. Assume thaf (16) does not hold. We will exhibit a functipre N such thalog | f(z)| =
log |B(z)| + dP.(1) is bounded on\(y), for an appropriate choice of the Blaschke prodHct
and the constant > 0. Since, according to Lemnja 2.5,¢ >, this will contradict the fact
that A(p) is sampling.

Let Z be the set of\ € A such thatn, = [m} > 1, where each poink is taken
with multiplicity m.,.

In order to see that the Blaschke sun¥ofwith multiplicities) is finite, split it into the different
dyadic squareg),, . Notice that for\ € Q,, x
B 1-— |)\|2 N 27" B 2"
L= AR T @2 k2 )2 (14 k)2
Also, the uniform density condition implieA N @, = 1. Therefore

2" —1 2" —1 P)\(l)

S-lah=3 3 > m-M) =32 Y 3 s

a€Z n>0 k=0 AEZNQp k n>0 k=0 A€ZNQp .k

P\(1)

1 2l 1 dt
*L et s 15w =), tlog(1/p(t) ~

n>0 k=0

On the other hand, if € DY we have

R
o8 |B(2)] < loglp(=. )™ = 2

Thereforelog | f| is bounded ot ., DY if ¢ is chosen small enough.

log p(1 = [A]) = =Pa(1).

Assume now thaf (16) holds. By the uniform density condition, there ekists 1 such that
for someC' > 0

L<#XN:D{ND(z,1-1/K)#0} <C forall z € D.
There is no restriction in assuming thiét= 2, and equivalently, that
L<H#MN:DENQuir #0} <C foralln e Nandk =0,...,2" — 1.

In order to check the conditions of Theorgm|3.2(a), and given a Blaschke sedlicleteis
see first that

1
Wk (A(@), Npi) =~ Ny log —— .
KA(P), Nog) elog 2o
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Let A be suchthaD{ N Q.. x # 0. Takea, ... ,anx € DY;thenp(a;, A) < ¢(27™) and therefore,
if there is only one such disk overlapping with, x,

Nn,k

Z log

1 1
j=1 p(z,a;) p(2™)

If there is a finite numbe€' of such disks, putV,, ;,/C points in each disk, and the same result
will hold.

On the other hand

b Nn,k log

Pl 1
o7 ijzl 08 oy ) = 3 Gy o 8 oy )
= %1_/ log idm(z)
= (@(27)2 Ipee) T |7
=Nn’klog L nklog#,
= T2 T (2

which proves the reverse estimate.

Let N, = 70" Noui,» Tm € (0, 1) to be determined later, anid, = [(1 — 7,,) N,,]. Let Q¢ be
the set of indice$n, k) corresponding to thé,, dyadic squares),, ; with the largest values of
N, . By definition

(n,k)eQs,
Call Q,, the remaining indice&, k) and defineQ = U,,Q,,. Then
n 1
Z 27wy 1 (A 22 (log o2 ))( Z Nmk) .
(n,k)eQ k:(n,k)eQ

Since
k:(n,k)eQ k:(n,k)eQc
condition [8) is now equivalent to

;771 (log 90(21”))2_”]\[” < 00.

The hypothesis, as stated in Remdrk 4, implies

lim inf (log

n—oo

1 -n
90(2”))2 =0

since otherwis@ " N,, = (log1/¢(27™))~! and the Blaschke condition would be violated. In
particular, there exists a subsequence such that

1
lo 27" N, < oo.

J
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Define
1—-1/N, if n=n;
Tn = Cav—1
(log1/p(27™) ™" if n#mn;.
Then [8) holds:

1 —n ]- —n; -n
gyn(logw_n>)2 Nnﬁg(logw@_w))Q JN,L].+;2 N, < 0.

To prove [(T) in Theorern 3.2 we use an argument (15). Here

9] 9—n 2

n=0 k:(n,k)€Q

as desired. [ |

5. UNIFORMLY DENSE DISKS FOR SUBHARMONIC FUNCITONS

In this section we show that Theorém|4.6, with a different proof, can be extended to the class

2w

SN = {u : D — R subharmonic withsup ut(re) df < oo} .

r<l J0
A setA C D is called adetermination sefior SN if sup, u = supp u for allu € SN.

Theorem 5.1. A uniformly dense family of disks(y) is a determination set faS\V if and only

if (18) holds.

Proof. The necessity of (16) is contained in Theo@ 4.6, slogef| € SN wheneverf € N.

Assume now thaf (16) holds. Letc SA be such thatup,,, v < 0. We want to prove that
u(p) < Oforallp ¢ A(y).

LetR, =1 — K", whereK > 1 will be chosen later on, and consider the domains
Qu(p.Ao)=D(p,R.)\ U  Df.

Letw(A;p, Q) denote the harmonic measurepadf a setA C 09, and letg, denote the auto-
morphism ofD) exchanging and0. The subharmonicity of™ gives then

u(p) < o6 () u' () dw(C;p, Qu(p, A, 9)) :/amp,gn) wt () dw(C;p, Qulp, A, )
= [, (1 0 90)(Q) dw(G:0,8y(Qu(p A 2))

First observe that the harmonic measure,jf2,(p, A, ¢))) can be estimated by the harmonic
measure of a domain,, (0, A, ¥)), whereA is uniformly dense and is a non-decreasing, contin-
uous function bounded by some constant less than 1 satisfyihg (16). To see this lej(A),



SAMPLING SETS FOR THE NEVANLINNA CLASS 25

consider the hyperbolic rings
A, ={2€D:R,1 <p(z,p) < R,}
and take) non-decreasing, continuous, and such th@k,,) = miny, ¢. ThenD¢ o C D7

and therefores(A; 0, ¢, (2 (p, A, ©))) < w(A4;0,9,(0,A,v)) forany A c {|z| = R, }. Notice
also thatmin,, ¢ is attained forz with

el = SR ) < (R ) = K- ).
and therefore
1 dt o > 1 1 dt
/o tlog(1/4(t) ng 1/w< z:: g(1/ (K1 —pl)) _/o tlog(1/¢(t))
We have thus
WP < f L (e 6,)() dw(C0,2(0,A))

As mentioned in Rema 4, the hypothesis implig®D; 0, \ A())) = 0. In order to see
that the previous integrals tend to zero we need a slight refinement of Theoreim 1 ih [OrSe]. Let
do, = df/(2mR,) denote the normalized Lebesgue measute|ig- R,,.

Lemma 5.2. Given a uniformly dense sequentend a non-decreasing continuous functipn
satisfying(18), there exist?, < 1 with lim,, R, = 1, ande, > 0 with lim, ¢, = 0 such that
w(1;0,92,(0,A,¢)) < e,0,(I) forall intervalsI C {¢ : |¢| = R,}.

Once this lemma is proved, the above estimate yields

€n 2 0, dO
) e [ (0706,)(Q) don(¢) < grsup [t 0 0)(re”) oo
and lettingn — oo we obtainu™ (p) < 0, as desired. |

Proof of Lemm@5]2We prove this by induction. We drop the superindexZii and denote
0,(0,A, ¢) simply by(2,.

There is no restriction in assuming that there areian D(0, R, ); thusw(7;0,€,)) < |/|
for all intervals! C {C : || = R:}.

We have
W(I;0,9,) = /| Pz — 1) dw(z0,9_1)
_Rn 1

whereP(z — I) denotes the probability that a Brownian motion starting akits (2,, through
1. The hypothesis of induction gives then

a7) w(l;0,9Q,) < en_1/ P(z—I)do,1(2) .

|z|=Rn—1
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In the estimate ofP(z — [I) we use the uniform density of: there existd € (0,1) and
K > 1 (independent of:) such that for eackh € {|z| = R,_,} there isA € A with D, €
D(0, R,) \ D(0, R,—1) andp(z, A) < 6. Then

P(z—1)<w(l;z,D(0,R,)\ D) .

This harmonic measure can be estimaded by comparing with an explicit harmonic function.
Let ¥, (2) = z/R,, which sendsD(0, R,,) to D, and letP{"™(¢) denote the Poisson kernel in
D(0, R,). LetA™ e D, r{" € (0,1) be such thalr,,(Dy) = U, (D(\, 7)) = D(A™, ), and
define the harmonic function (0, R,,) \ D,

log p(A™), W (2))
log r{" '

F\(z,I) =w(Il;z,D(0, R,) ( inf /P(” )

’LUE(?D)\

It is clear thatv(/;n, D(0, R,) \ D)) < F\(n,I) for n in the boundary of(0, R,,) \ D,, and
therefore in allD(0, R,,) \ D,. Hence
P(z— 1)< F\(z,1).

We want to give an estimate @, (z, I) independent of. Using thatw(7; z, D(0, R,)) =
[; P™(¢) do,(¢), we can write

</ p ) doa( ) (1 _ infyeap, /i Pgl)(f)dan(f) log P()\(n)a \Ijn(z))) ‘
J; PY(C) dan(C) log ™

Sincelim,_; 7, = 0 andp(z, ) < 4, by the Harnack’s estimates (or by a direct computation),
there exists: > 0 such that

infyeon, J; PV (¢)don(Q) >c
fi PEC) don(Q) T

Also, there exist$’ > 0 such that fom big enoughp(A\™, ¥, (z)) < §’. With this and the fact
that K—! <1 — |\ < K" we deduce that there exists sofile> 0 such that

Pz - I) (/P ¢) don(C )(1-@1/;@).

From [1T) we have therefore

W(I;0,) < en_y (1 o /80 ) / /z| o PO doa(2) do ()

o (1 - 1g1/f<f<>> 70

and using RemaiK 4 we obtain the stated properties. [ |

Defining
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6. APPENDIX.

Here we give a direct proof that a determination setNois a Hayman-Lyons set. According
to [Gé&, Corollary 2] this implie$NT'(A)| = 27, and thereforé\ is determination set fok .

Leté € (0,1) and letA, C A be maximal among the subsequences stich thap(A, \') > ¢
forall A\, \ € Ag, A # N'. We want to prove that

> (I—|A)P\(¢) =00  forall¢ eT.

AEAo
There is no loss of generality in reducing ourselves to the ¢asel. Also, we restrict our
attention to those. € Ay with P\(1) > 1, and denote bylo the subsequence made with such
points. Notice that\ N {z : P,(1) < 1} cannot be a determination sequence/foanyway, as
the functionf € A with log|f(z)| = P.(1) shows. Thus, let us assume that

> (L= [ADPA(1) < o0

)\E[\O
and see that there exisfse N\ H>™ with sup, |f| < oo.

Consider the sequencg consisting of the points. € A,, with multiplicity [P\(1)]. By
assumptior? is a Blaschke sequence, and therefore, for @y 0, there existsf € N such

that
log |f(2)] =log|Bz(2)| + C P.(1) .

As seen in Example 1, sughcannot be bounded in the whole disk.

We want to choos€' so thatsup, |f| < oo. By construction, we only need to consider
A ¢ Ag. We separate two cases:

(i) If P,(1) < 2 obviouslylog |f()\)| < 2C.

(i) If P\(1) > 2 there exists\, € Ay such thatp(\, \g) < d. By Harnack’s inequalities we

obtain:
log [ f(A)] = log p(A, Ag) "0t 4+ O PA(1) < 5 (log ) Pag (1) + C(m)PAo(l) :

ChoosingC' = 174 log ; we see that in this caseg | /()| < 0, as desired.
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