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Abstract. We describe, for various degenerations S → ∆ of quartic K3 surfaces over the complex
unit disk (e.g., to the union of four general planes, and to a general Kummer surface), the limits
as t ∈ ∆∗ tends to 0 of the Severi varieties Vδ(St), parametrizing irreducible δ-nodal plane sections
of St. We give applications of this to (i) the counting of plane nodal curves through base points in
special position, (ii) the irreducibility of Severi varieties of a general quartic surface, and (iii) the
monodromy of the universal family of rational curves on quartic K3 surfaces.
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Introduction

Our objective in this paper is to study the following:

Question A Let f : S → ∆ be a projective family of surfaces of degree d in P3, with S a smooth
threefold, and ∆ the complex unit disc (usually called a degeneration of the general St := f−1(t), for
t 6= 0, which is a smooth surface, to the central fibre S0, which is in general supposed to be singular).
What are the limits of tangent, bitangent, and tritangent planes to St, for t 6= 0, as t tends to 0?

Similar questions make sense also for degenerations of plane curves, and we refer to [25, pp. 134–135]
for a glimpse on this subject. For surfaces, our contribution is based on foundational investigations by
Caporaso and Harris [9, 10], and independently by Ran [31, 32, 33], which were both aimed at the study
of the so-called Severi varieties, i.e. the families of irreducible plane nodal curves of a given degree. We
have the same kind of motivation for our study; the link with Question A resides in the fact that nodal
plane sections of a surface St in P3 are cut out by those planes that are tangent to St.

Ultimately, our interest resides in the study of Severi varieties of nodal curves on K3 surfaces. The
first interesting instance of this is the one of plane sections of smooth quartics in P3, the latter being
primitive K3 surfaces of genus 3. For this reason, we concentrate here on the case d = 4. We consider
a couple of interesting degenerations of such surfaces to quite singular degree 4 surfaces, and we answer
Question A in these cases.

The present paper is of an explorative nature, and hopefully shows, in a way we believe to be useful
and instructive, how to apply some general techniques for answering some specific questions. On the way,
a few related problems will be raised, which we feel can be attacked with the same techniques. Some of
them we solve (see below), and the other ones we plan to make the object of future research.

Coming to the technical core of the paper, we start from the following key observation due to Caporaso
and Harris, and Ran (see §2.4 for a complete statement). Assume the central fibre S0 is the transverse
union of two smooth surfaces, intersecting along a smooth curve R. Then the limiting plane of a family
of tangent planes to the general fibre St, for t 6= 0, is: (i) either a plane that is tangent to S0 at a smooth
point, or (ii) a tangent plane to R. Furthermore, the limit has to be counted with multiplicity 2 in case
(ii).

Obviously, this is not enough to deal directly with all possible degenerations of surfaces. Typically,
one overcomes this by applying a series of base changes and blow–ups to S → ∆, thus producing a
semistable model S̃ → ∆ of the initial family, such that it is possible to provide a complete answer to
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Question A for S → ∆ by applying a suitable extended version of the above observation to S̃ → ∆. We
say that S → ∆ is well behaved when it is possible to do so, and S̃ → ∆ is then said to be a good model
of S → ∆.

We give in §2.4 a rather restrictive criterion to ensure that a given semistable model is a good
model, which nevertheless provides the inspiration for constructing a good model for a given family. We
conjecture that there are suitable assumptions, under which a family is well behaved. We do not seek
such a general statement here, but rather prove various incarnations of this principle, thus providing a
complete answer to Question A for the degenerations we consider. Specifically, we obtain:

Theorem B Let f : S → ∆ be a family of general quartic surfaces in P3 degenerating to a tetrahedron
S0, i.e. the union of four independent planes. The singularities of S consist in four ordinary double
points on each edge of S0. The limits in |OS0

(1)| of δ-tangent planes to St, for t 6= 0, are:
(δ =1) the 24 webs of planes passing through a singular point of S, plus the 4 webs of planes passing
through a vertex of S0, the latter counted with multiplicity 3;
(δ =2) the 240 pencils of planes passing through two double points of the total space S that do not belong
to an edge of S0, plus the 48 pencils of planes passing through a vertex of S0 and a double point of S that
do not belong to a common edge of S0 (with multiplicity 3), plus the 6 pencils of planes containing an
edge of S0 (with multiplicity 16);
(δ =3) the 1024 planes containing three double points of S but no edge of S0, plus the 192 planes containing
a vertex of S0 and two double points of S, but no edge of S0 (with multiplicity 3), plus the 24 planes
containing an edge of S0 and a double point of S not on this edge (with multiplicity 16), plus the 4 faces
of S0 (with multiplicity 304).

Theorem C Let f : S → ∆ be a family of general quartic surfaces degenerating to a general Kummer
surface S0. The limits in |OS0

(1)| of δ-tangent planes to St, for t 6= 0, are:
(δ =1) the dual surface Š0 to the Kummer (which is itself a Kummer surface), plus the 16 webs of planes
containing a node of S0 (with multiplicity 2);
(δ =2) the 120 pencils of planes containing two nodes of S0, each counted with multiplicity 4;
(δ =3) the 16 planes tangent to S0 along a contact conic (with multiplicity 80), plus the 240 planes
containing exactly three nodes of S0 (with multiplicity 8).

We could also answer Question A for degenerations to a general union of two smooth quadrics, as
well as to a general union of a smooth cubic and a plane; once the much more involved degeneration to
a tetrahedron is understood, this is an exercise. We do not dwell on this here, and we encourage the
interested reader to treat these cases on his own, and to look for the relations between these various
degenerations. However, a mention to the degeneration to a double quadric is needed, and we treat this
in §5.

Apparent in the statements of Theorems B and C is the strong enumerative flavour of Question A,
and actually we need information of this kind (see Proposition 3.1) to prove that the two families under
consideration are well behaved. Still, we hope to find a direct proof in the future.

As a matter of fact, Caporaso and Harris’ main goal in [9, 10] is the computation of the degrees of
Severi varieties of irreducible nodal plane curves of a given degree, which they achieve by providing a
recursive formula. Applying the same strategy, we are able to derive the following statement (see §8):

Theorem D Let a, b, c be three independent lines in the projective plane, and consider a degree 12 divisor
Z cut out on a + b + c by a general quartic curve. The sub–linear system V of |OP2(4)| parametrizing
curves containing Z has dimension 3.

For 1 6 δ 6 3, we let Vδ be the Zariski closure in V of the locally closed subset parametrizing irreducible
δ-nodal curves. Then Vδ has codimension δ in V, and degree 21 for δ = 1, degree 132 for δ = 2, degree
304 for δ = 3.

Remarkably, one first proves a weaker version of this (in §8), which is required for the proof of Theorem
B, given in §4. Then, Theorem D is a corollary of Theorem B.

It has to be noted that Theorems B and C display a rather coarse picture of the situation. Indeed,
in describing the good models of the degenerations, we interpret all limits of nodal curves as elements
of the limit O(1) of |OSt

(1)|, for t 6= 0, inside the relative Hilbert scheme of curves in S. We call O(1)
the limit linear system of |OSt

(1)|, for t 6= 0 (see §2.2), which in general is no longer a P3, but rather
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a degeneration of it. While in |OS0
(1)|, which is also a limit of |OSt

(1)|, for t 6= 0, there are in general
elements which do not correspond to curves (think of the plane section of the tetrahedron with one of its
faces), all elements in O(1) do correspond to curves, and this is the right ambient to locate the limits of
nodal curves. So, for instance, each face appearing with multiplicity 304 in Theorem B is much better
understood once interpreted as the contribution given by the 304 curves in V3 appearing in Theorem D.

It should also be stressed that the analysis of a semistable model of S → ∆ encodes information about
several flat limits of the St’s in P3, as t ∈ ∆∗ tends to 0 (each flat limit corresponds to an irreducible
component of the limit linear system O(1)), and an answer to Question A for such a semistable model
would provide answers for all these flat limits at the same time. Thus, in studying Question A for
degenerations of quartic surfaces to a tetrahedron, we study simultaneously degenerations to certain
rational quartic surfaces, e.g., to certain monoid quartic surfaces that are projective models of the faces
of the tetrahedron, and to sums of a self–dual cubic surface plus a suitable plane. For degenerations to
a Kummer, we see simultaneously degenerations to double quadratic cones, to sums of a smooth quadric
and a double plane (the latter corresponding to the projection of the Kummer from one of its nodes),
etc.

Though we apply the general theory (introduced in §2) to the specific case of degenerations of singular
plane sections of general quartics, it is clear that, with some more work, the same ideas can be applied to
attack similar problems for different situations, e.g., degenerations of singular plane sections of general
surfaces of degree d > 4, or even singular higher degree sections of (general or not) surfaces of higher
degree. For example, we obtain Theorem D thinking of the curves in V as cut out by quartic surfaces
on a plane embedded in P3, and letting this plane degenerate. By the way, this is the first of a series of
results regarding no longer triangles, but general configurations of lines, which can be proved, we think,
by using the ideas in this paper. On the other hand, for general primitive K3 surfaces of any genus g > 2,
there is a whole series of known enumerative results [36, 3, 6, 30], yet leaving some open space for further
questions, which also can be attacked in the same way.

Another application of our analysis of Question A is to the irreducibility of families of singular curves
on a given surface. This was indeed Ran’s main motivation in [31, 32, 33], since he applied these ideas
to give an alternative proof to Harris’ one [23, 25] of the irreducibility of Severi varieties of plane curves.
The analogous question for the family of irreducible δ–nodal curves in |OS(n)|, for S a general primitive
K3 surface of genus g > 3 is widely open.

In [11] one proves that for any non negative δ 6 g, with 3 6 g 6 11 and g 6= 10, the universal
Severi variety V n,δ

g , parametrizing δ–nodal members of |OS(n)|, with S varying in the moduli space Bg

of primitive K3 surfaces of genus g in Pg, is irreducible for n = 1. One may conjecture that all universal
Severi varieties V

n,δ
g are irreducible (see [13]), and we believe it is possible to obtain further results in this

direction using the general techniques presented in this paper. For instance, the irreducibility of V
1,δ
3 ,

0 < δ 6 3, which is well known and easy to prove (see Proposition 9.1), could also be deduced with the
degeneration arguments developed here.

Note the obvious surjective morphism p : V n,δ
g → Bg. For S ∈ Bg general, one can consider V n,δ

g (S)
the Severi variety of δ–nodal curves in |OS(n)| (i.e. the fibre of p over S ∈ Bg), which has dimension
g − δ (see [11, 15]). Note that the irreducibility of V n,δ

g does not imply the one of the Severi varieties

V n,δ(S) for a general S ∈ Bg; by the way, this is certainly not true for δ = g, since V n,g(S) has dimension
0 and degree bigger than 1, see [3, 36]. Of course, V 1,1(S) is isomorphic to the dual variety Š ⊂ P̌g,
hence it is irreducible. Generally speaking, the smaller δ is with respect to g, the easier it is to prove the
irreducibility of V n,δ(S): partial results along this line can be found in [27] and [28, Appendix A]. To the
other extreme, the curve V 1,g−1(S) is not known to be irreducible for S ∈ Bg general. In the simplest
case g = 3, this amounts to proving the irreducibility of V 1,2(S) for a general quartic S in P3, which is
the nodal locus of Š. This has been commonly accepted as a known fact, but we have not been able to
find any proof of this in the current literature. We give one with our methods (see Theorem 9.2).

Finally, in §9.2, we give some information about the monodromy group of the finite covering V
1,3
3 →

B3, by showing that it contains some geometrically interesting sugbroups. Note that a remarkable open
question is whether the monodromy group of V 1,g

g → Bg is the full symmetric group for all g > 2.

The paper is organized as follows. In §2, we set up the machinery: we give general definitions, introduce
limit linear systems, state our refined versions of Caporaso and Harris’ and Ran’s results, introduce limit
Severi varieties. In §3, we state some known results for proper reference, mostly about the degrees of
the singular loci of the dual to a projective variety. In §§4 and 7, we give a complete description of limit
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Severi varieties relative to general degenerations of quartic surfaces to tetrahedra and Kummer surfaces
respectively; Theorems B and C are proved in §4.8 and §7.4 respectively. In §5 we briefly treat other
degenerations of quartics. Section 6 contains some classical material concerning Kummer quartic surfaces,
as well as a few results on the monodromy action on their nodes (probably known to the experts but for
which we could not find any proper reference): they are required for our proof of Theorem 9.2 and of the
results in §9.2. Section 8 contains the proof of a preliminary version of Theorem D; it is useful for §4,
and required for §9. Section 9 contains Theorem 9.2 and the aforementioned results on the monodromy.
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1 – Conventions

We will work over the field C of complex numbers. We denote the linear equivalence on a variety X
by ∼X , or simply by ∼ when no confusion is likely. Let G be a group; we write H ≤ G when H is a
subgroup of G.

We use the classical notation for projective spaces: if V is a vector space, then PV is the space of
lines in V , and if E is a locally free sheaf on some variety X , we let P(E) be Proj (Sym E∨). We denote
by P̌n the projective space dual to Pn, and if X is a closed subvariety of Pn, we let X̌ be its dual variety,
i.e. the Zariski closure in P̌n of the set of those hyperplanes in Pn that are tangent to the smooth locus
of X .

By a node, we always mean an ordinary double point. Let δ > 0 be an integer. A nodal (resp.
δ-nodal) variety is a variety having nodes as its only possible singularities (resp. precisely δ nodes and
otherwise smooth). Given a smooth surface S together with an effective line bundle L on it, we define
the Severi variety Vδ(S,L) as the Zariski closure in the linear system |L| of the locally closed subscheme
parametrizing irreducible δ-nodal curves.

We usually let H be the line divisor class on P2; when Fn = P(OP1 � OP1(n)) is a Hirzebruch
surface, we let F be the divisor class of its ruling over P1, we let E be an irreducible effective divisor
with self-intersection −n (which is unique if n > 0), and we let H be the divisor class of F + nE.

When convenient (and if there is no danger of confusion), we will adopt the following abuse of notation:
let ε : Y → X be a birational morphism, and C (resp. D) a divisor (resp. a divisor class) on X ; we use
the same symbol C (resp. D) to denote the proper transform (ε∗)

−1(C) (resp. the pull-back ε∗(D)) on
Y .

For example, let L be a line in P2, and H the divisor class of L. We consider the blow-up ε1 : X1 → P2

at a point on L, and call E1 the exceptional divisor. The divisor class H on X1 is ε∗1(H), and L on X1 is
linearly equivalent to H −E1. Let then ε2 : X2 → X1 be the blow-up of X1 at the point L∩E1, and E2

be the exceptional divisor. The divisor E1 (resp. L) on X2 is linearly equivalent to ε∗2(E1) − E2 (resp.
to H − 2E1 − E2).

In figures depicting series of blow–ups, we indicate with a big black dot those points that have been
blown up.

2 – Limit linear systems and limit Severi varieties

In this section we explain the general theory upon which this paper relies. We build on foundational
work by Caporaso and Harris [9, 10] and Ran [31, 32, 33], as reinvestigated by Galati [17, 18] (see also
the detailed discussion in [19]).
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2.1 – Setting

In this paper we will consider flat, proper families of surfaces f : S → ∆, where ∆ ⊂ C is a disc centered
at the origin. We will denote by St the (schematic) fibre of f over t ∈ ∆. We will usually consider the
case in which the total space S is a smooth threefold, f is smooth over ∆∗ = ∆−{0}, and St is irreducible
for t ∈ ∆∗. The central fibre S0 may be singular, but we will usually consider the case in which S0 is
reduced and with local normal crossing singularities. In this case the family is called semistable.

Another family of surfaces f ′ : S′ → ∆ as above is said to be a model of f : S → ∆ if there is a
commutative diagram

S′

f ′

��

✷

S̄′

��

oo
p

//___ S̄ //

��

S

f

��

✷

∆ ∆
td

′
←[t

oo ∆
t7→td

// ∆

where the two squares marked with a ’✷’ are Cartesian, and p is a birational map, which is an isomorphism
over ∆∗. The family f ′ : S′ → ∆, if semistable, is a semistable model of f : S → ∆ if in addition d′ = 1
and p is a morphism. The semistable reduction theorem of [29] asserts that f : S → ∆ always has a
semistable model.

Example 2.1 (Families of surfaces in P3) Consider a linear pencil of degree k surfaces in P3, gener-
ated by a general surface S∞ and a special one S0. This pencil gives rise to a flat, proper family ϕ : S →
P1, with S a hypersurface of type (k, 1) in P3 × P1, isomorphic to the blow–up of P3 along the base
locus S0 ∩ S∞ of the pencil, and S0, S∞ as fibres over 0,∞ ∈ P1, respectively.

We will usually consider the case in which S0 is reduced, its various components may have isolated
singularities, but meet transversely along smooth curves contained in their respective smooth loci. Thus
S0 has local normal crossing singularities, except for finitely many isolated extra singularities belonging
to one, and only one, component of S0.

We shall study the family f : S → ∆ obtained by restricting S to a disk ∆ ⊂ P1 centered at 0, such
that St is smooth for all t ∈ ∆∗, and we will consider a semistable model of f : S → ∆. To do so, we
resolve the singularities of S which occur in the central fibre of f , at the points mapped by S0 → S0 ⊂ P3

to the intersection points of S∞ with the double curves of S0 (they are the singular points of the curve
S0 ∩ S∞). These are ordinary double points of S, i.e. singularities analytically equivalent to the one at
the origin of the hypersurface xy = zt in A4. Such a singularity is resolved by a single blow–up, which
produces an exceptional divisor F ∼= P1 × P1, and then it is possible to contract F in the direction of
either one of its rulings without introducing any singularity: the result is called a small resolution of the
ordinary double point. If S0 has no extra singularities, the small resolution process provides a semistable
model. Otherwise we will have to deal with the extra singularities, which are in any case smooth points
of the total space. We will do this when needed.

Let f̃ : S̃ → ∆ be the semistable model thus obtained. One has S̃t
∼= St for t ∈ ∆∗. If S0 has

irreducible components Q1, . . . , Qr, then S̃0 consists of irreducible components Q̃1, . . . , Q̃r which are
suitable blow–ups of Q1, . . . , Qr, respectively. If q is the number of ordinary double points of the original
total space S, we will denote by E1, . . . , Eq the exceptional curves on Q̃1, . . . , Q̃r arising from the small
resolution process.

Going back to the general case, we will say that f : S → ∆ is quasi–semistable if S0 is reduced, with
local normal crossing singularities, except for finitely many isolated extra singularities belonging to one,
and only one, component of S0, as in Example 2.1.

Assume then that S0 has irreducible components Q1, . . . , Qr, intersecting transversally along the
double curves R1, . . . , Rp, which are Cartier divisors on the corresponding components.

Lemma 2.2 (Triple Point Formula, [7, 16]) Assume f : S → ∆ is quasi–semistable. Let Q,Q′ be
irreducible components of S0 intersecting along the double curve R. Then

deg(NR|Q) + deg(NR|Q′) + Card

{

triple points of S0

along Rs

}

= 0,

where a triple point is the intersection R ∩Q′′ with a component Q′′ of S0 different from Q,Q′.
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Remark 2.3 (See [7, 16]) There is a version of the Triple Point Formula for the case in which the
central fibre is not reduced, but its support has local normal crossings. Then, if the multiplicities of Q,Q′

are m,m′ respectively, one has

m′ deg(NR|Q) +m deg(NR|Q′) + Card

{

triple points of S0

along Rs

}

= 0,

where each triple point R ∩Q′′ has to be counted with the multiplicity m′′ of Q′′ in S0.

2.2 – Limit linear systems

Let us consider a quasi–semistable family f : S → ∆ as in §2.1. Suppose there is a fixed component free
line bundle L on the total space S, restricting to a line bundle Lt on each fibre St, t ∈ ∆. We assume
L to be ample, with h0(St,Lt) constant for t ∈ ∆. If W is an effective divisor supported on the central
fibre S0, we may consider the line bundle L(−W ), which is said to be obtained from L by twisting by
W . For t ∈ ∆∗, its restriction to St is the same as Lt, but in general this is not the case for S0; any such
a line bundle L(−W )|S0

is called a limit line bundle of Lt for t ∈ ∆∗.

Remark 2.4 Since Pic(∆) is trivial, the divisor S0 ⊂ S is linearly equivalent to 0. So if W is a divisor
supported on S0, one has L(−W ) ∼= L(mS0 −W ) for all integers m. In particular if W +W ′ = S0 then
L(−W ) ∼= L(W ′).

Consider the subscheme Hilb(L) of the relative Hilbert scheme of curves of S over ∆, which is the
Zariski closure of the set of all curves C ∈ |Lt|, for t ∈ ∆∗. We assume that Hilb(L) is a component
of the relative Hilbert scheme, a condition satisfied if Pic(St) has no torsion, which will always be the
case in our applications. One has a natural projection morphism ϕ : Hilb(L) → ∆, which is a projective
bundle over ∆∗; actually Hilb(L) is isomorphic to P := P(f∗(L)) over ∆∗. We call the fibre of ϕ over 0
the limit linear system of |Lt| as t ∈ ∆∗ tends to 0, and we denote it by L.

Remark 2.5 In general, the limit linear system is not a linear system. One would be tempted to say
that L is nothing but |L0|; this is the case if S0 is irreducible, but it is in general no longer true when
S0 is reducible. In the latter case, there may be non–zero sections of L0 whose zero–locus contains some
irreducible component of S0, and accordingly points of |L0| which do not correspond to points in the
Hilbert scheme of curves (see, e.g., Example 2.8 below).

In any event, Hilb(L) is a birational modification of P, and L is a suitable degeneration of the
projective space |Lt|, t ∈ ∆∗. One has:

Lemma 2.6 Let P′ → ∆ be a flat and proper morphism, isomorphic to P(f∗(L)) over ∆∗, and such that
P′ is a Zariski closed subset of the relative Hilbert scheme of curves of S over ∆. Then P′ = Hilb(L).

Proof. The two Zariski closed subsets P′ and Hilb(L) are irreducible, and coincide over ∆∗. ✷

In passing from P(f∗(L)) to Hilb(L), one has to perform a series of blow–ups along smooth centres
contained in the central fibre, which correspond to spaces of non–trivial sections of some (twisted) line
bundles which vanish on divisors contained in the central fibre. The exceptional divisors one gets in this
way give rise to components of L, and may be identified with birational modifications of sublinear systems
of twisted linear systems restricted to S0, as follows from Lemma 2.7 below. We will see examples of this
later (the first one in Example 2.8).

Lemma 2.7 (i) Let X be a connected variety, L a line bundle on X, and σ a non zero global section of
L defining a subscheme Z of X. Then the projectivized tangent space to PH0(X,L) at 〈σ〉 canonically
identifies with the restricted linear system

P Im
(

H0(X,L) → H0(Z, L|Z)
)

,

also called the trace of |L| on Z (which in general is not the complete linear system |L � OZ |).
(ii) More generally, let l be a linear subspace of PH0(X,L) with fixed locus scheme F defined by the

system of equations {σ = 0}〈σ〉∈l. Then the projectivized normal bundle of l in PH0(X,L) canonically
identifies with

l×P Im
(

H0(X,L) → H0(F, L|F )
)

.
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Proof. Assertion (i) comes from the identification of the tangent space of PH0(X,L) at 〈σ〉 with the
cokernel of the injection H0(X,OX) → H0(X,L), given by the multiplication by σ. As for (ii), note
that the normal bundle of l in PH0(X,L) splits as a direct sum of copies of Ol(1), hence the associated
projective bundle is trivial. Then the proof is similar to that of (i). ✷

Example 2.8 (See [21]) Consider a family of degree k surfaces f : S → ∆ arising, as in Example 2.1,
from a pencil generated by a general surface S∞ and by S0 = F ∪P , where P is a plane and F a general
surface of degree k − 1. One has a semistable model f̃ : S̃ → ∆ of this family, as described in Example
2.1, with S̃0 = F ∪ P̃ , where P̃ → P is the blow–up of P at the k(k − 1) intersection points of S∞ with
the smooth degree k − 1 plane curve R := F ∩ P (with exceptional divisors Ei, for 1 6 i 6 k(k − 1)).

We let L := OS̃(1) be the pull–back by S̃ → S of OS(1), obtained by pulling back OP3(1) via
the map S → P3. The component Hilb(L) of the Hilbert scheme is gotten from the projective bundle
P(f∗(OS̃(1))), by blowing up the point of the central fibre |OS0

(1)| corresponding to the 1–dimensional
space of non–zero sections vanishing on the plane P . The limit linear system L is the union of L1,
the blown–up |OS0

(1)|, and of the exceptional divisor L2
∼= P3, identified as the twisted linear system

|OS0
(1) � OS0

(−P )|. The corresponding twisted line bundle restricts to the trivial linear system on F ,

and to |OP̃ (k) � OP̃ (−
∑k(k−1)

i=1 Ei)| on P̃ .
The components L1 and L2 of L meet along the exceptional divisor E ∼= P2 of the morphism L1 →

|OS0
(1)|. Lemma 2.7 shows that the elements of E ⊂ L1 identify as the points of |OR(1)| ∼= |OP (1)|,

whereas the plane E ⊂ L2 is the set of elements Γ ∈ |OP̃ (k) � OP̃ (−
∑k(k−1)

i=1 Ei)| containing the proper

transform R̂ ∼= R of R on P̃ . The corresponding element of |OR(1)| is cut out on R̂ by the further
component of Γ, which is the pull–back to P̃ of a line in P .

2.3 – Severi varieties and their limits

Let f : S → ∆ be a semistable family as in §2.1, and L be a line bundle on S as in §2.2. We fix a
non–negative integer δ, and consider the locally closed subset V̊δ(S,L) of Hilb(L) formed by all curves
D ∈ |Lt|, for t ∈ ∆∗, such that D is irreducible, nodal, and has exactly δ nodes. We define Vδ(S,L) (resp.
V cr
δ (S,L)) as the Zariski closure of V̊δ(S,L) in Hilb(L) (resp. in P(f∗(L))). This is the relative Severi

variety (resp. the crude relative Severi variety). We may write V̊δ, Vδ, and V cr
δ , rather than V̊δ(S,L),

Vδ(S,L), and V cr
δ (S,L), respectively.

We have a natural map fδ : Vδ → ∆. If t ∈ ∆∗, the fibre Vδ,t of fδ over t is the Severi variety
Vδ(St,Lt) of δ–nodal curves in the linear system |Lt| on St, whose degree, independent on t ∈ ∆∗, we
denote by dδ(L) (or simply by dδ). We let Vδ(S,L) (or simply Vδ) be the central fibre of fδ : Vδ → ∆;
it is the limit Severi variety of Vδ(St,Lt) as t ∈ ∆∗ tends to 0. This is a subscheme of the limit linear
system L, which, as we said, has been studied by various authors. In particular, one can describe in a
number of situations its various irreducible components, with their multiplicities (see §2.4 below). This
is what we will do for several families of quartic surfaces in P3.

In a similar way, one defines the crude limit Severi variety Vcr
δ (S,L) (or V

cr
δ ), sitting in |L0|.

Remark 2.9 For t ∈ ∆∗, the expected dimension of the Severi variety Vδ(St,Lt) is dim(|Lt|) − δ. We
will always assume that the dimension of (all components of) Vδ(St,Lt) equals the expected one for all
t ∈ ∆∗. This is a strong assumption, which will be satisfied in all our applications.

Notation 2.10 Let f : S → ∆ be a family of degree k surfaces in P3 as in Example 2.1, and let
f̃ : S̃ → ∆ be a semistable model of f : S → ∆. We consider the line bundle OS(1), defined as the
pull–back of OP3(1) via the natural map S → P3, and let OS̃(1) be its pull–back on S̃. We denote by

Vn,δ(S̃) (resp. Vn,δ(S)), or simply Vn,δ, the limit Severi variety Vδ(S̃,OS̃(n)) (resp. Vδ(S,OS(n))).

Similar notation Vcr
n,δ(S̃) (resp. V

cr
n,δ(S)), or V

cr
n,δ, will be used for the crude limit.

2.4 – Description of the limit Severi variety

Let again f : S → ∆ be a semistable family as in §2.1, and L a line bundle on S as in §2.2. The local
machinery developed in [17, 18, 19] enables us to identify the components of the limit Severi variety, with
their multiplicities. As usual, we will suppose that S0 has irreducible components Q1, . . . , Qr, intersecting
transversally along the double curves R1, . . . , Rp. We will also assume that there are q exceptional curves
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E1, . . . , Eq on S0, arising from a small resolution of an original family with singular total space, as
discussed in §2.1.

Notation 2.11 Let N be the set of sequences τ = (τm)m>2 of non–negative integers with only finitely
many non–vanishing terms. We define two maps ν, µ : N → N as follows:

ν (τ ) =
∑

m>2
τm · (m− 1), and µ (τ ) =

∏

m>2
mτm .

Given a p-tuple τ = (τ1, . . . , τp) ∈ Np, we set

ν(τ ) = ν(τ 1) + · · ·+ ν(τp), and µ(τ ) = µ(τ1) · · ·µ(τp),

thus defining two maps ν, µ : Np → N. Given δ = (δ1, . . . , δr) ∈ Nr, we set

|δ| := δ1 + · · ·+ δr.

Given a subset I ⊂ {1, . . . , q}, |I| will denote its cardinality.

Definition 2.12 Consider a divisor W on S, supported on the central fibre S0, i.e. a linear combination
of Q1, . . . , Qr. Fix δ ∈ Nr, τ ∈ Np, and I ⊆ {1, . . . , r}. We let V̊ (W, δ, I, τ ) be the Zariski locally closed
subset in |L(−W ) � OS0

| parametrizing curves D such that:
(i) D neither contains any curve Rl, with l ∈ {1, . . . , p}, nor passes through any triple point of S0;
(ii) D contains the exceptional divisor Ei, with multiplicity 1, if and only if i ∈ I, and has a node on it;
(iii) D −

∑

i∈I Ei has δs nodes on Qs, for s ∈ {1, . . . , r}, off the singular locus of S0, and is otherwise
smooth;
(iv) for every l ∈ {1, . . . , p} and m > 2, there are exactly τl,m points on Rl, off the intersections with
∑

i∈I Ei, at which D has an m-tacnode (see below for the definition), with reduced tangent cone equal to
the tangent line of Rl there.

We let V (W, δ, I, τ ) be the Zariski closure of V̊ (W, δ, I, τ ) in |L(−W ) � OX0
|.

Recall that an m-tacnode is an A2m−1-double point, i.e. a plane curve singularity locally analytically
isomorphic to the hypersurface of C2 defined by the equation y2 = x2m at the origin. Condition (iv)
above requires that D is a divisor having τl,m m–th order tangency points with the curve Rl, at points
of Rl which are not triple points of S0.

Notation 2.13 In practice, we shall not use the notation V (W, δ, I, τ ), but rather a more expressive
one like, e.g., V (W, δQ1

= 2, E1, τR1,2 = 1) for the variety parametrizing curves in |L(−W ) � OS0
|, with

two nodes on Q1, one simple tacnode along R1, and containing the exceptional curve E1.

Proposition 2.14 ([17, 18, 19]) Let W, δ, I, τ be as above, and set |δ| + |I| + ν(τ ) = δ. Let V be an
irreducible component of V (W, δ, I, τ ). If
(i) the linear system |L(−W ) � OX0

| has the same dimension as |Lt| for t ∈ ∆∗, and
(ii) V has (the expected) codimension δ in |L(−W ) � OX0

|,
then V is an irreducible component of multiplicity µ(V ) := µ(τ ) of the limit Severi variety Vδ(S,L).

Remark 2.15 Same assumptions as in Proposition 2.14. If there is at most one tacnode (i.e. all τl,m
but possibly one vanish, and this is equal to 1), the relative Severi variety Vδ is smooth at the general
point of V (see [17, 18, 19]), and thus V belongs to only one irreducible component of Vδ. There are
other cases in which such a smoothness property holds (see [9]).

If Vδ is smooth at the general point D ∈ V , the multiplicity of V in the limit Severi variety Vδ is the
minimal integer m such that there are local analytic m–multisections of Vδ → ∆, i.e. analytic smooth
curves in Vδ, passing through D and intersecting the general fibre Vδ,t, t ∈ ∆∗, at m distinct points.

Proposition 2.14 still does not provide a complete picture of the limit Severi variety. For instance,
curves passing through a triple point of S0 could play a role in this limit. It would be desirable to know
that one can always obtain a semistable model of the original family, where every irreducible component
of the limit Severi variety is realized as a family of curves of the kind stated in Definition 2.12.
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Definition 2.16 Let f : S → ∆ be a semistable family as in §2.1, L a line bundle on S as in §2.2, and
δ a positive integer. The regular part of the limit Severi variety Vδ(S,L) is the cycle in the limit linear
system L ⊂ Hilb(L)

Vreg
δ (S,L) :=

∑

W

∑

|δ|+|I|+ν(τ)=δ

µ(τ ) ·

(

∑

V ∈Irrδ(V (W,δ,I,τ))

V

)

(2.1)

(sometimes simply denoted by Vreg
δ ), where:

(i) W varies among all effective divisors on S supported on the central fibre S0, such that h0(L0(−W )) =
h0(Lt) for t ∈ ∆∗;
(ii) Irrδ(Z) denotes the set of all codimension δ irreducible components of a scheme Z.

Proposition 2.14 asserts that the cycle Z(Vδ)−Vreg
δ is effective, with support disjoint in codimension

1 from that of Vreg
δ (here, Z(Vδ) is the cycle associated to Vδ). We call the irreducible components of

the support of Vreg
δ the regular components of the limit Severi variety.

Let f̃ : S̃ → ∆ be a semistable model of f : S → ∆, and L̃ the pull–back on S̃ of L. There is a natural
map Hilb(L̃) → Hilb(L), which induces a morphism φ : L̃ → |L0|.

Definition 2.17 The semistable model f̃ : S̃ → ∆ is a δ–good model of f : S → ∆ (or simply good
model, if it is clear which δ we are referring at), if the following equality of cycles holds

φ∗
(

Vreg
δ (S̃, L̃)

)

= Vcr
δ (S,L).

Note that the cycle Vcr
δ (S,L)− φ∗

(

Vreg
δ (S̃, L̃)

)

is effective. The family f : S → ∆ is said to be δ–well

behaved (or simply well behaved) if it has a δ-good model. A semistable model f̃ : S̃ → ∆ of f : S → ∆
as above is said to be δ–absolutely good if Vδ(S̃, L̃) = Vreg

δ (S̃, L̃) as cycles in the relative Hilbert scheme.
It is then a δ–good model both of itself, and of f : S → ∆.

Theorems B and C will be proved by showing that the corresponding families of quartic surfaces are
well behaved.

Remark 2.18 Suppose that f : S → ∆ is δ–well behaved, with δ–good model f̃ : S̃ → ∆. It is possible
that some components in Vreg

δ (S̃, L̃) are contracted by Hilb(L̃) → |L0| to varieties of smaller dimension,

and therefore that their push–forwards are zero. Hence these components of Vδ(S̃) are not visible in
Vcr

δ (S). They are however usually visible in the crude limit Severi variety of another model f ′ : S′ → ∆,

obtained from S̃ via an appropriate twist of L. The central fibre S′0 is then a flat limit of St, as t ∈ ∆∗

tends to 0, different from S0.

Conjecture 2.19 Let f : S → ∆ be a semistable family of surfaces, endowed with a line bundle L as
above, and δ a positive integer. Then:
(Weak version) Under suitable assumptions (to be discovered), f : S → ∆ is δ–well behaved.
(Strong version) Under suitable assumptions (to be discovered), f : S → ∆ has a δ–absolutely good
semistable model.

The local computations in [18] provide a criterion for absolute goodness:

Proposition 2.20 Assume there is a semistable model f̃ : S̃ → ∆ of f : S → ∆, with a limit linear
system L̃ free in codimension δ + 1 of curves of the following types:
(i) curves containing double curves of S̃0;
(ii) curves passing through a triple point of S̃0;
(iii) non–reduced curves.
If in addition, for W, δ, I, τ as in Definition 2.12, every irreducible component of V (W, δ, I, τ ) has the
expected codimension in |L0(−W )|, then f̃ : S̃ → ∆ is δ–absolutely good, which implies that f : S → ∆
is δ–well behaved.

Unfortunately, in the cases we shall consider conditions (i)–(iii) in Proposition 2.20 are violated
(see Propositions 4.19 and 7.3), which indicates that further investigation is needed to prove the above
conjectures. The components of the various V (W, δ, I, τ ) have nevertheless the expected codimension,
and we are able to prove that our examples are well–behaved, using additional enumerative information.
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Absolute goodness seems to be a property hard to prove, except when the dimension of the Severi
varieties under consideration is 0, equal to the expected one (and even in this case, we will need extra
enumerative information for the proof). We note in particular that the δ–absolute goodness of f̃ : S̃ → ∆
implies that it is a δ–good model of every model f ′ : S′ → ∆, obtained from S̃ via a twist of L̃
corresponding to an irreducible component of the limit linear system L̃.

2.5 – An enumerative application

Among the applications of the theory described above, there are the ones to enumerative problems, in
particular to the computation of the degree dδ of Severi varieties Vδ(St,Lt), for the general member St

of a family f : S → ∆ as in §2.1, with L a line bundle on S as in §2.2.
Let t ∈ ∆∗ be general, and let mδ be the dimension of Vδ(St,Lt), which we assume to be mδ =

dim(|Lt|) − δ. Then dδ is the number of points in common of Vδ(St,Lt) with mδ sufficiently general
hyperplanes of |Lt|. Given x ∈ St,

Hx := {[D] ∈ |Lt| s.t. x ∈ D}

is a plane in |Lt|. It is well known, and easy to check (we leave this to the reader), that if x1, . . . , xmδ
are

general points of St, then Hx1
, . . . , Hxmδ

are sufficiently general planes of |Lt| with respect to Vδ(St,Lt).
Thus dδ is the number of δ–nodal curves in |Lt| passing through mδ general points of St.

Definition 2.21 In the above setting, let V be an irreducible component of the limit Severi variety
Vδ(S,L), endowed with its reduced structure. We let Q1, . . . , Qr be the irreducible components of S0, and
n = (n1, . . . , nr) ∈ Nr be such that |n| := n1 + · · · + nr = mδ. Fix a collection Z of n1, . . . , nr general
points on Q1, . . . , Qr respectively. The n–degree of V is the number deg

n
(V ) of points in V corresponding

to curves passing through the points in Z.

Note that in case mδ = 0, the above definition is somehow pointless: in this case, degn(V ) is simply
the number of points in V . By contrast, when V has positive dimension, it is possible that degn(V ) be
zero for various n’s. This is related to the phenomenon described in Remark 2.18 above. We will see
examples of this below.

By flatness, the following result is clear:

Proposition 2.22 Let f̃ : S̃ → ∆ be a semistable model, and name P1, . . . , Pr̃ the irreducible components
of S̃0, in such a way that P1, . . . , Pr are the proper transforms of Q1, . . . , Qr respectively.
(i) For every ñ = (n1, . . . , nr, 0, . . . , 0) ∈ Nr̃ such that |ñ| = mδ, one has

dδ >
∑

V ∈Irr(Vreg

δ
(S̃,L̃))

µ(V ) · deg
ñ
(V ) (2.2)

(recall the definition of µ(V ) in Proposition 2.14).
(ii) If equality holds in (2.2) for every ñ as above, then f̃ : S̃ → ∆ is a δ–good model of f : S → ∆
endowed with L.

3 – Auxiliary results

In this section we collect a few results which we will use later.
First of all, for a general surface S of degree k in P3, we know from classical projective geometry

the degrees dδ,k of the Severi varieties Vδ(S,OS(1)), for 1 6 δ 6 3. For K3 surfaces, this fits in a more
general framework of known numbers (see [3, 6, 30, 36]). One has:

Proposition 3.1 ([34, 35]) Let S be a general degree k hypersurface in P3. Then

d1,k =k(k − 1)2,

d2,k =
1

2
k(k − 1)(k − 2)(k3 − k2 + k − 12),

d3,k =
1

6
k(k − 2)(k7 − 4k6 + 7k5 − 45k4 + 114k3 − 111k2 + 548k − 960).

For k = 4, these numbers are 36, 480, 3200 respectively.
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Note that V1(S,OS(1)) identifies with the dual surface Š ⊂ P̌3. The following is an extension of the
computation of d1,k for surfaces with certain singularities. This is well–known and the details can be left
to the reader.

Proposition 3.2 Let S be a degree k hypersurface in P3, having ν and κ double points of type A1 and
A2 respectively as its only singularities. Then

deg(Š) = k(k − 1)2 − 2ν − 3κ.

The following topological formula is well-known (see, e.g., [2, Lemme VI.4]).

Lemma 3.3 Let p : S → B be a surjective morphism of a smooth projective surface onto a smooth curve.
One has

χtop(S) = χtop(Fgen)χtop(B) +
∑

b∈Disc(p)

(

χtop(Fb)− χtop(Fgen)
)

,

where Fgen and Fb respectively denote the fibres of p over the generic point of B and a closed point b ∈ B,
and Disc(p) is the set of points above which p is not smooth.

As a side remark, note that it is possible to give a proof of the Proposition 3.2 based on Lemma 3.3.
This can be left to the reader.

Propositions 3.1 and 3.2 are sort of Plücker formulae for surfaces in P3. The next proposition provides
analogous formulae for curves in a projective space of any dimension.

Proposition 3.4 Let C ⊂ PN be an irreducible, non–degenerate curve of degree d and of genus g, the
normalization morphism of which is unramified. Let τ 6 N be a non-negative integer, and assume 2τ < d.
Then the Zariski closure of the locally closed subset of P̌N parametrizing τ–tangent hyperplanes to C (i.e.
planes tangent to C at τ distinct points) has degree equal to the coefficient of uτvd−2τ in

(1 + 4u+ v)g(1 + 2u+ v)d−τ−g.

Proof. Let ν : C̄ → C be the normalization of C, and let g be the gNµ on C̄ defined as the pull–back

on C̄ of the hyperplane linear series on C. Since ν is unramified, the degree of the subvariety of P̌N

parametrizing τ -tangent hyperplanes to C is equal to the number of divisors having τ double points in
a general sublinear series gτµ of g. This number is computed by a particular instance of de Jonquières’
formula, see [1, p. 359]. ✷

The last result we shall need is:

Lemma 3.5 Consider a smooth, irreducible curve R, contained in a smooth surface S in P3. Let ŘS be
the irreducible curve in P̌3 parametrizing planes tangent to S along R. Then the dual varieties Š and Ř
both contain ŘS, and do not intersect transversely at its general point.

Proof. Clearly ŘS is contained in Š ∩ Ř. If either Š or Ř are singular at the general point of ŘS , there
is nothing to prove. Assume that Š and Ř are both smooth at the general point of ŘS . We have to show
that they are tangent there. Let x ∈ R be general. Let H be the tangent plane to S at x. Then H ∈ ŘS

is the general point. Now, the biduality theorem (see , e.g., [24, Example 16.20]) says that the tangent
plane to Š and of Ř at H both coincide with the set of planes in P3 containing x, hence the assertion. ✷

4 – Degeneration to a tetrahedron

We consider a family f : S → ∆ of surfaces in P3, induced (as in Example 2.1 and in §2.2) by a pencil
generated by a general quartic surface S∞ and a tetrahedron S0 (i.e. S0 is the union of four independent
planes, called the faces of the tetrahedron), together with the pull-back OS(1) of OP3(1). We will prove
that it is δ–well behaved for 1 6 δ 6 3 by constructing a suitable good model.

The plan is as follows. We construct the good model in §4.1, and complete its description in §4.2. We
then construct the corresponding limit linear system: the core of this is §4.3; the paragraphs 4.4, 4.5, and
4.6, are devoted to the study of the geometry of the exceptional components of the limit linear system
(alternatively, of the geometry of the corresponding flat limits of the smooth quartic surfaces St, t ∈ ∆∗);
eventually, we complete the description in §4.7. We then identify the limit Severi varieties in §4.8.
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4.1 – A good model

The outline of the construction is as follows:
(I) we first make a small resolution of the singularities of S as in Example 2.1;
(II) then we perform a degree 6 base change;
(III) next we resolve the singularities of the total space arisen with the base change, thus obtaining a new
semistable family π : X → ∆;
(IV) finally we will flop certain double curves in the central fibre X0, thus obtaining a new semistable
family ̟ : X̄ → ∆.
The central fibre of the intermediate family π : X → ∆ is pictured in Figure 1 (p. 14; we provide a
cylindrical projection of a real picture of X0, the dual graph of which is topologically an S2 sphere), and
the flops are described in Figure 2 (p. 15). The reason why we need to make the degree 6 base change
is, intuitively, the following: a degree 3 base change is needed to understand the contribution to the
limit Severi variety of curves passing through a vertex (i.e. a triple point) of the tetrahedron, while an
additional degree 2 base change enables one to understand the contributions due to the edges (i.e. the
double lines) of the tetrahedron.

Steps (I) and (II)

The singularities of the initial total space S consist of four ordinary double points on each edge of S0.
We consider (cf. Example 2.1) the small resolution S̃ → S obtained by arranging for every edge the four
(−1)–curves two by two on the two adjacent faces. We call f̃ : S̃ → ∆ the new family.

Let p1, . . . , p4 be the triple points of S̃0. For each i ∈ {1, . . . , 4}, we let Pi be the irreducible component
of S̃0 which is opposite to the vertex pi: it is a plane blown-up at six points. For distinct i, j ∈ {1, . . . , 4},
we let E+

ij and E−

ij be the two (−1)-curves contained in Pi and meeting Pj . We call z+

ij and z−

ij the two
points cut out on Pi by E+

ji and E−

ji respectively.

Let now f̄ : S̄ → ∆ be the family obtained from f̃ : S̃ → ∆ by the base change t ∈ ∆ 7→ t6 ∈ ∆. The
central fibre S̄0 is isomorphic to S̃0, so we will keep the above notation for it.

Step (III)

As a first step in the desingularization of S̄, we perform the following sequence of operations for all
i ∈ {1, . . . , 4}. The total space S̄ around pi is locally analytically isomorphic to the hypersurface of C4

defined by the equation xyz = t6 at the origin. We blow-up S̄ at pi. The blown–up total space locally
sits in C4 ×P3. Let (ξ : η : ζ : ϑ) be the homogeneous coordinates in P3. Then the new total space is
locally defined in C4 ×P3 by the equations

ξ4ηζ = ϑ6x3, ξη4ζ = ϑ6y3, ξηζ4 = ϑ6z3, and ξηζ = ϑ3t3. (4.1)

The equation of the exceptional divisor (in the exceptional P3 of the blow–up of C4) is ξηζ = 0, hence
this is the union of three planes meeting transversely at a point p′i in P3. For i, j distinct in {1, . . . , 4}, we
call Ai

j the exceptional planes meeting the proper transform of Pj (which, according to our conventions,
we still denote by Pj , see §1).

The equation of the new family around the point p′i given by
⋂

j 6=i A
i
j is ξηζ = t3 (which sits in the

affine chart ϑ = 1). Next we blow-up the points p′i, for i ∈ {1, . . . , 4}. The new exceptional divisor T i

at each point p′i is isomorphic to the cubic surface with equation ξηζ = t3 in the P3 with coordinates
(ξ : η : ζ : t). Note that T i has three A2–double points, at the vertices of the triangle t = 0, ξηζ = 0.

Next we have to get rid of the singularities of the total space along the double curves of the central
fibre. First we take care of the curves Chk := Ph ∩ Pk, for h, k distinct in {1, . . . , 4}. The model we
constructed so far is defined along such a curve by an equation of the type ξη = ϑ6z3, (as it follows,
e.g., from the third equation in (4.1) by setting ζ = 1). The curve Chk is defined by ξ = η = ϑ = 0. If
i ∈ {1, . . . , 4}− {h, k}, the intersection point phki := Chk ∩Ai

h ∩Ai
k is cut out on Chk by the hyperplane

with equation z = 0. Away from the phki’s, with i ∈ {1, . . . , 4} − {h, k}, the points of Chk are double
points of type A5 for the total space. We blow–up along this curve: this introduces new homogeneous
coordinates (ξ1 : η1 : ϑ1), with new equations for the blow–up

ξ51η1 = ϑ6
1ξ

4z3, ξ1η
5
1 = ϑ6

1η
4z3, and ξ1η1 = ϑ2

1ϑ
4z3.

The exceptional divisor is defined by ξ1η1 = 0, and is the transverse union of two ruled surfaces: we
call W ′hk the one that meets Ph, and W ′kh the other. The affine chart we are interested in is ϑ1 = 1,
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where the equation is ξ1η1 = ϑ4z3. We then blow–up along the curve ξ1 = η1 = ϑ = 0, which gives in
a similar way the new equation ξ2η2 = ϑ2z3 with the new coordinates (ξ2 : η2 : ϑ2). The exceptional
divisor consists of two ruled surfaces, and we call W ′′hk (resp. W ′′kh) the one that meets W ′hk (resp. W ′kh).
Finally, by blowing-up along the curve ξ2 = η2 = ϑ = 0, we obtain a new equation ξ3η3 = ϑ2

3z
3, with

new coordinates (ξ3 : η3 : ϑ3). The exceptional divisor is a ruled surface, with two A2–double points at
its intersection points with the curves Ci

hk := Ai
h ∩Ai

k, with i ∈ {1, . . . , 4}−{h, k}. We call it either Whk

or Wkh, with no ambiguity.
The final step of our desingularization process consists in blowing–up along the twelve curves Ci

hk,
with pairwise distinct h, k, i ∈ {1, . . . , 4}. The total space is given along each of these curves by an
equation of the type ξη = ϑ3t3 in the variables (ξ, η, θ, t), obtained from the last equation in (4.1) by
setting ζ = 1. The curve Ci

hk is defined by the local equations ξ = η = t = 0, which shows that they
consist of A2–double points for the total space. They also contain an A2–double point of Whk and T i

respectively. A computation similar to the above shows that the blow–up along these curves resolves
all singularities in a single move. The exceptional divisor over Ci

hk is the union of two transverse ruled
surfaces: we call V i

hk the one that meets Ai
h, and V i

kh the other.
At this point, we have a semistable family π : X → ∆, whose central fibre is depicted in Figure 1: for

each double curve we indicate its self–intersections in the two components of the central fibre it belongs
to. This is obtained by applying the Triple Point Formula (see Lemma 2.2).

Step (IV)

For our purposes, we need to further blow-up the total space along the twelve curves Γi
hk := V i

hk ∩ V i
kh.

This has the drawback of introducing components with multiplicity two in the central fibre, namely the
corresponding exceptional divisors. To circumvent this, we will flop these curves as follows.

Let π̂ : X̂ → ∆ be the family obtained by blowing-up X along the Γi
hk’s. We call W i

hk (or, unam-
biguously, W i

kh) the corresponding exceptional divisors: they appear with multiplicity two in the central

fibre X̂0. By applying the Triple Point Formula as in Remark 2.3, one checks that the surfaces W i
kh are

all isomorphic to P1 ×P1. Moreover, it is possible to contract W i
hk in the direction of the ruling cut out

by V i
hk and V i

kh, as indicated on Figure 2. We call X̂ → X̄ the contraction of the twelve divisors W i
hk in

this way, and ̟ : X̄ → ∆ the corresponding semistable family of surfaces.
Even though X̄ 99K X is only a birational map, we have a birational morphism X̄ → S̄ over ∆.

4.2 – Identification of the components of the central fibre

Summarizing, the irreducible components of the central fibre X̄0 are the following:

(i) The 4 surfaces Pi, with 1 6 i 6 4.

Each Pi is a plane blown–up at 6+3 points, and H (i.e. the pull-back of a general line in the plane, recall
our conventions in §1) is the restriction class of OX̄(1) on Pi. For j, k ∈ {1, . . . , 4} − {i}, we set

Lij := Pi ∩W ′ij and Gk
i := Pi ∩ Ak

i ,

as indicated in Figure 3. In addition to the three (−1)–curves Gk
i , we have on Pi the six exceptional

curves E+

ij , E
−

ij , for all j ∈ {1, . . . , 4} − {i}, with E+

ij , E
−

ij intersecting Lij at one point. Moreover, for
j ∈ {1, . . . , 4} − {i}, we have on Lij the two points z±

ji defined as the strict transform of the intersection

E±

ji ∩Lij in S̃. We will denote by Zi the 0–dimensional scheme of length 6 given by
∑

j 6=i(z
+

ji + z−

ji). We
let IZi

⊂ OPi
be its defining sheaf of ideals.

(ii) The 24 surfaces W ′ij ,W
′′
ij , with i, j ∈ {1, . . . , 4} distinct.

Each of them is isomorphic to F1. We denote by |F | the ruling. Note that the divisor class F corresponds
to the restriction of OX̄(1).

(iii) The 6 surfaces Wij , with i, j ∈ {1, . . . , 4} distinct.

For each k ∈ {1, . . . , 4} − {i, j}, we set

Λij := W ′′ij ∩Wij , Gk
ij := Wij ∩Ak

i , F k
ij = Wij ∩ V k

ij , Dk
ij = Wij ∩ T k,

and define similarly Λji, G
k
ji, F

k
ji (D

k
ij may be called Dk

ji without ambiguity). This is indicated in Figure
4.
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Figure 1: Planisphere of the model X0 of the degeneration into four planes
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Figure 2: One elementary flop of the birational transformation X 99K X̄

Figure 3: Notations for Pi ⊂ X̄0 Figure 4: Notations for Wij ⊂ X̄0

A good way of thinking to the surfaces Wij is to consider them as (non–minimal) rational ruled
surfaces, for which the two curves Λji and Λij are sections which do not meet, and the two rational
chains

Gk
ji + F k

ji + 2Dk
ij + F k

ij +Gk
ij , k ∈ {1, . . . , 4} − {i, j},

are two disjoint reducible fibres of the ruling |F |. One has furthermore OWij
(F ) = OX̄(1) � OWij

.
The surface Wij has the length 12 anticanonical cycle

Λji +Gk
ji + F k

ji +Dk
ij + F k

ij +Gk
ij + Λij +Gh

ij + Fh
ij +Dh

ij + Fh
ji +Gh

ji (4.2)

cut out by X̄0 − Wij , where we fixed k and h such that {i, j, k, h} = {1, . . . , 4}. It therefore identifies
with a plane blown–up as indicated in Figure 5: consider a general triangle L1, L2, L3 in P2, with
vertices a1, a2, a3, where a1 is opposite to L1, etc.; then blow–up the three vertices as, and call Es the
corresponding exceptional divisors; eventually blow–up the six points Lr ∩ Es, r 6= s, and call Ers the
corresponding exceptional divisors. The obtained surface has the anticanonical cycle

L1 + E13 + E1 + E23 + L2 + E21 + E1 + E31 + L3 + E32 + E2 + E12, (4.3)

which we identify term-by-term and in this order with the anticanonical cycle (4.2) of Wij .
We let H be, as usual, (the transform of) a general line in the plane

H ∼Wij
Λji +

∑

k 6∈{i,j}
(2Gk

ji + F k
ji +Dk

ji). (4.4)

15



Figure 5: Wij and T k as blown–up planes

Figure 6: Notations for T k ⊂ X̄0

The ruling |F | is the strict transform of the pencil of lines through the point a1, hence

|F | =
∣

∣H − (Λij +Gk
ij +Gh

ij)
∣

∣, with {1, . . . , 4} = {i, j, k, h}. (4.5)

(iv) The 4 surfaces T k, with 1 6 k 6 4.

Here we set

Γk
i = T k ∩ Ak

i , for i ∈ {1, . . . , 4} − {k}, and F ij
k = T k ∩ V k

ij , for i, j ∈ {1, . . . , 4} − {k} distinct.

Also recall that Dk
ij = T k ∩Wij for i, j ∈ {1, . . . , 4} − {k} distinct. This is indicated in Figure 6.

Each T k identifies with a plane blown–up as indicated in Figure 5, as in the case of the Wij ’s: it has
the length 12 anticanonical cycle

F js
k +Dk

sj + F sj
k + Γk

s + F si
k +Dk

is + F is
k + Γk

i + F ij
k +Dk

ij + F ji
k + Γk

j (4.6)

(where we fixed indices s, i, j such that {s, i, j, k} = {1, . . . , 4}) cut out by X̄0 − T k on T k, which we
identify term-by-term and in this order with the anticanonical cycle (4.3). This yields

H ∼Tk F js
k + (2Dk

sj + F sj
k + Γk

s) + (2Γk
j + F ji

k +Dk
ij). (4.7)

We have on T k the proper transform of a pencil of (bitangent) conics that meet the curves Γk
s and

Dk
ij in one point respectively, and do not meet any other curve in the anticanonical cycle (4.6): we call

this pencil |Φk
s |, and we have

∣

∣Φk
s

∣

∣ =
∣

∣2H − (F sj
k +Dk

sj + 2Γk
s)− (F ji

k + Γk
j + 2Dk

ij)
∣

∣.

The restriction of OX̄(1) on T k is trivial.

(v) The 12 surfaces Ak
i , with i, k ∈ {1, . . . , 4} distinct.

Each of them identifies with a blown–up plane as indicated in Figure 7. It is equipped with the ruling
|H − Γk

i |, the members of which meet the curves Gk
i and Γk

i at one point respectively, and do not meet

16



Figure 7: Ak
j as a blown-up plane

any other curve in the length 8 anticanonical cycle cut out by X̄0 −Ak
i on Ak

i . The restriction of OX̄(1)
on Ak

i is trivial.

(vi) The 24 surfaces V k
ij with i, j, k ∈ {1, . . .4} distinct.

These are all copies of P2, on which the restriction of OX̄(1) is trivial.

4.3 – The limit linear system, I: construction

According with the general principles stated in §2.2, we shall now describe the limit linear system of
|OX̄t

(1)| as t ∈ ∆∗ tends to 0. This will suffice for the proof, presented in §4.7, that ̟ : X̄ → ∆ is a
δ–good model for 1 6 δ 6 3.

We start with P := P(̟∗(OX̄(1))), which is a P3–bundle over ∆, whose fibre at t ∈ ∆ is |OX̄t
(1)|.

We set L = OX̄(1), and |OX̄t
(1)| = |Lt|; note that |L0| ∼= |OS0

(1)|. We will often use the same notation
to denote a divisor (or a divisor class) on the central fibre and its restriction to a component of the central
fibre, if this does not cause any confusion.

We will proceed as follows:
(I) we first blow–up P at the points πi corresponding to the irreducible components Pi of S0, for i ∈
{1, . . . , 4} (the new central fibre then consists of |OS0

(1)| ∼= P3 blown–up at four independent points, plus
the four exceptional P3’s);
(II) next, we blow–up the total space along the proper transforms ℓij of the six lines of |OS0

(1)| joining
two distinct points πi, πj, with i, j ∈ {1, . . . , 4}, corresponding to pencils of planes with base locus an
edge of S0 (the new central fibre is the proper transform of the previous one, plus the six exceptional
P
(

OP1 � OP1(1)�2
)

’s);
(III) finally, we further blow–up along the proper transforms of the planes Πk corresponding to the webs of
planes passing through the vertices pk of S0, for k ∈ {1, . . . , 4} (this adds four more exceptional divisors
to the central fibre, for a total of fifteen irreducible components).
In other words, we successively blow–up P along all the cells of the tetrahedron dual to S0 in P0, by
increasing order of dimension.

Each of these blow–ups will be interpreted in terms of suitable twisted linear systems as indicated in
Remark 2.5. It will then become apparent that every point in the central fibre of the obtained birational
modification of P corresponds to a curve in X̄0 (see §4.7), and hence that this modification is indeed the
limit linear system L.

Step (I)

In H0(X̄0,OX̄0
(1)) there is for each i ∈ {1, . . . , 4} the 1–dimensional subspace of sections vanishing on Pi,

which corresponds to the sections of H0(S0,OS0
(1)) vanishing on the plane Pi. As indicated in Remark

2.5, in order to construct the limit linear system, we have to blow up the corresponding points πi ∈ |L0|.
Let P′ → P be this blow–up, and call L̃i, 1 6 i 6 4, the exceptional divisors. Each L̃i is a P3, and can be
interpreted as the trace of the linear system

∣

∣L0(−Pi)
∣

∣ onX0 (see Lemma 2.7 and Example 2.8). However,
any section of H0(X̄0,L0(−Pi)) still vanishes on components of X̄0 different from Pi. By subtracting all
of them with the appropriate multiplicities (this computation is tedious but not difficult and can be left
to the reader), one sees that L̃i can be identified as the linear system Li :=

∣

∣L0(−Mi)
∣

∣, where
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Mi := 6Pi +
∑

j 6=i

(5W ′ij + 4W ′′ij + 3Wij + 2W ′′ji +W ′ji)+

+
∑

k 6=i

(

2T k + 4Ak
i +

∑

j 6∈{i,k}

(

3V k
ij + 2V k

ji +Ak
j

)

+
∑

{j<̄}∩{i,k}=∅

(

V k
j̄ + V k

̄j

)

)

. (4.8)

With the notation introduced in §4.2, one has:

Lemma 4.1 The restriction class of L0(−Mi) to the irreducible components of X̄0 is as follows:
(i) on Pi, we find 4H −

∑

j 6=i(E
+

ij + E−

ij);
(ii) on Pj , j 6= i, we find E+

ji + E−

ji;
(iii) for each j 6= i, we find 2F on each of the surfaces W ′ij, W

′′
ij , Wij , W

′′
ji, W

′
ji.

(iv) on the remaining components the restriction is trivial.

Proof. This is a tedious but standard computation. As a typical sample we prove (iii), and leave the
remaining cases to the reader. Set {h, k} = {1, . . . , 4} − {i, j}. Then, recalling (4.4) and (4.5), we see
that the restriction of L0(−Mi) to Wij is the line bundle determined by the divisor class

F +
(

W ′′ji −W ′′ij +
∑

k 6∈{i,j}

(

2Ak
j + V k

ji + T k −Ak
i

)

)

∣

∣

∣

∣

Wij

∼ F + Λji − Λij + (2Gk
ji + F k

ji +Dk
ij −Gk

ij) + (2Gh
ji + Fh

ji +Dh
ij −Gh

ij)

= F +
(

Λji + (2Gk
ji + F k

ji +Dk
ij) + (2Gh

ji + Fh
ji +Dh

ij)
)

− (Λij +Gk
ij +Gh

ij) = 2F.

✷

From this, we deduce that Li identifies with its restriction to Pi:

Proposition 4.2 There is a natural isomorphism

Li
∼=
∣

∣

∣
OPi

(

4H −
∑

j 6=i
(E+

ij + E−

ij)
)

� IZi

∣

∣

∣
. (4.9)

Proof. For each j 6= i, the restriction of Li to Pj has E+

ji +E−

ji as its only member. This implies that its
restriction to W ′ji has only one member as well, which is the sum of the two curves in |F | intersecting E+

ji

and E−

ji respectively. On W ′′ji, we then only have the sum of the two curves in |F | intersecting the two
curves on W ′ji respectively, and so on on Wij , W

′′
ij , and W ′ij . Now the two curves on W ′ij impose the two

base points z+

ji and z−

ji to the restriction of Li to Pi. The right hand side in (4.9) being 3–dimensional,
this ends the proof with (i) of Lemma 4.1. ✷

Step (II)

Next, we consider the blow–up P′′ → P′ along the proper transforms ℓij of the six lines of |L0| joining two
distinct points πi, πj , with i, j ∈ {1, . . . , 4}, corresponding to the pencils of planes in |OS0

(1)| respectively
containing the lines Pi∩Pj . The exceptional divisors are isomorphic to P(OP1 �OP1(1)�2); we call them

L̃ij , 1 6 i < j 6 4. Arguing as in Step (I) and leaving the details to the reader, we see that L̃ij is in a
natural way a birational modification (see §4.5 below) of the complete linear system Lij := |L0(−Mij)|,
where

Mij := 3Wij + (2W ′′ji +W ′ji) + (2W ′′ij +W ′ij)+

+
∑

k 6∈{i,j}

(

2T k +
∑

s6=k

Ak
s + 2

(

V k
ji + V k

ij

)

+
∑

s∈{i,j}
r 6∈{i,j,k}

(

V k
sr + V k

rs

)

)

. (4.10)

We will denote by k < h the two indices in {1, . . . , 4}−{i, j}, and go on using the notations introduced
in §4.2.
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Lemma 4.3 The restriction class of L0(−Mij) to the irreducible components of X̄0 is as follows:
(i) on Pk (resp. Ph) we find H −Gh

k (resp. H −Gk
h);

(ii) on each of the surfaces W ′kh, W
′′
kh, Wkh, W

′′
hk, and W ′hk, we find F ;

(iii) on Ak
h (resp. Ah

k) we find H − Γk
h (resp. H − Γh

k);
(iv) on T k (resp. T h), we find Φk

h (resp. Φh
k);

(v) on Pi (resp. Pj), we find E+

ij + E−

ij (resp. E+

ji + E−

ji);
(vi) on W ′ij ,W

′′
ij ,W

′′
ji,W

′
ji, we find 2F ;

(vii) on Wij, with H as in (4.4), we find

4H − 2
(

Λij +Gk
ij +Gh

ij

)

−
(

F k
ji +Gk

ji +Dk
ij

)

−
(

Fh
ji +Gh

ji +Dh
ij

)

−Dk
ij −Dh

ij ;

(viii) on the remaining components the restriction is trivial.

Proof. As for Lemma 4.1, this is a tedious but not difficult computation. Again we make a sample
verification, proving (vii) above. The restriction class is

F +
(

W ′′ji +
∑

l=k,h

(

2Al
j + V l

ji + T l + V l
ij + 2Al

i

)

+W ′′ij |Wij

)

∣

∣

∣

∣

Wij

∼ F + Λji +
∑

l=k,h

(

2Gl
ji + F l

ji +Dl
ij + F l

ij + 2Gl
ij

)

+ Λij

which, by taking into account the identification of Figure 5, i.e. with (4.4) and (4.5), is easily seen to be
equivalent to the required class. ✷

Let w±

ij ∈ Wij be the two points cut out onWij by the two connected chains of curves in |F |W ′
ij
×|F |W ′′

ij

meeting E±

ij respectively. We let w±

ji ∈ Wij be the two points defined in a similar fashion by starting with
E±

ji. Define the 0-cycle Zij = w+

ij + w−

ij + w+

ji + w−

ji on Wij , and let IZij
⊂ OWij

be its defining sheaf of
ideals.

Proposition 4.4 There is a natural isomorphism between Lij and its restriction to Wij , which is the
3–dimensional linear system
∣

∣

∣
OWij

(

4H − 2
(

Λij +Gk
ij +Gh

ij

)

−
(

F k
ji +Gk

ji +Dk
ij

)

−
(

Fh
ji +Gh

ji +Dh
ij

)

−Dk
ij −Dh

ij

)

� IZij

∣

∣

∣
, (4.11)

where we set {1, . . . , 4} = {i, j, h, k}, and H as in (4.4).

Proof. Consider a triangle L1, L2, L3 in P2, with vertices a1, a2, a3, where a1 is opposite to L1, etc.
Consider the linear system W of quartics with a double point at a1, two simple base points infinitely near
to a1 not on L2 and L3, two base points at a2 and a3 with two infinitely near base points along L3 and
L2 respectively, two more base points along L1. There is a birational transformation of Wij to the plane
(see Figure 5) mapping (4.11) to a linear system of type W . One sees that two independent conditions
are needed to impose to the curves of W to contain the three lines L1, L2, L3 and the residual system
consists of the pencil of lines through a1. This proves the dimensionality assertion (see §4.5 below for a
more detailed discussion).

Consider then the restriction of Lij to the chain of surfaces

Pj +W ′ji +W ′′ji +Wij +W ′′ij +W ′ij + Pi.

By taking into account (v), (vi), and (vii), of Lemma 4.3, we see that each divisor C of this system
determines, and is determined, by its restriction C′ on Wij , since C consists of C′ plus four rational tails
matching it.

The remaining components of X̄0 on which Lij is non–trivial all sit in the chain

T k +Ak
h + Ph +W ′hk +W ′′hk +Whk +W ′′kh +W ′kh + Pk +Ah

k + T h. (4.12)

The restrictions of Lij to each irreducible component of this chain is a base point free pencil of rational
curves, hence Lij restricts on (4.12) to the 1–dimensional system of connected chains of rational curves
in these pencils: we call it Nkh. Given a curve in Lij , it cuts T

k and T h in one point each, and there is
a unique chain of rational curves in Nkh matching these two points. ✷
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Step (III)

Finally, we consider the blow-up P′′′ → P′′ along the proper transforms of the three planes that are
strict transforms of the webs of planes in |OS0

(1)| containing a vertex pk, with 1 6 k 6 4. For each
k, the exceptional divisor L̃k is a birational modification (see §4.6 below) of the complete linear system
Lk :=

∣

∣L0(−Mk)
∣

∣, where

Mk := 2T k +
∑

s6=k

Ak
s +

∑

{s<r}6∋k

(

V k
sr + V k

rs

)

.

Lemma 4.5 The restriction class of L0(−Mk) to the irreducible components of X̄0 is as follows:
(i) on Pi, i 6= k, we find H −Gk

i ;
(ii) on Ak

i , i 6= k, we find H − Γk
i ;

(iii) on Pk, as well as on the chains W ′ik +W ′′ik +Wik +W ′′ki +W ′ki, i 6= k, we find the restriction class
of L0;
(iv) on T k, we find

3H − (F sj
k +Dk

sj + 2Γk
s)− (F ji

k +Dk
ij + 2Γk

j )− (F is
k +Dk

is + 2Γk
i ),

with {s, i, j, k} = {1, . . . , 4}, and H as in (4.7);
(v) on the remaining components it is trivial.

Proof. We limit ourselves to a brief outline of how things work for T k. The restriction class is

(

∑

r 6=k

Ak
r +

∑

{r<r′}6∋k

(

V k
rr′ + 2Wrr′ + V k

r′r

)

)

∣

∣

∣

∣

Tk

which is seen to be equal to the required class with the identification of Figures 5 and 6, i.e. with H as
in (4.7). ✷

Proposition 4.6 There is a natural isomorphism between Lk and its restriction to T k, which is the
3–dimensional linear system

∣

∣3H − (F sj
k +Dk

sj + 2Γk
s)− (F ji

k +Dk
ij + 2Γk

j )− (F is
k +Dk

is + 2Γk
i )
∣

∣,

where we set {s, i, j, k} = {1, . . . , 4}, and H as in (4.7).

Proof. This is similar (in fact, easier) to the proof of Proposition 4.4, so we will be sketchy here. The
dimensionality assertion will be discussed in §4.6 below.

For each i 6= k, the restriction of Lk to each irreducible component of the chain

Ak
i + Pi +W ′ik +W ′′ik +Wik +W ′′ki +W ′ki (4.13)

is a base point free pencil of rational curves, and Lk restricts on (4.13) to the 1–dimensional system of
connected chains of rational curves in these pencils, that we will call Nk

i .
Now the general member of Lk consists of a curve in Lk

∣

∣

Tk , which uniquely determines three chains

of rational curves in Nk
i , i 6= k, which in turn determine a unique line in |OPk(H)|. ✷

4.4 – The linear systems Li.

Let a, b, c be three independent lines in P2, and consider a 0–dimensional scheme Z cut out on a+ b+ c
by a general quartic curve. Consider the linear system P of plane quartics containing Z. This is a linear
system of dimension 3. Indeed containing the union of the three lines a, b, c is one condition for the curves
in P and the residual system is the 2–dimensional complete linear system of all lines in the plane.

Proposition 4.2 shows that Li can be identified with a system of type P . We denote by σi : Pi 99K P3

(or simply by σ) the rational map determined by Li and by Y its image, which is the same as the image
of the plane via the rational map determined by the linear system P .
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Proposition 4.7 The map σ : Pi 99K Y is birational, and Y is a monoid quartic surface, with a triple
point p with tangent cone consisting of a triple of independent planes through p, and with no other
singularity.

Proof. The triple point p ∈ Y is the image of the curve C =
∑3

i=j(2D
j
i +Lij) (alternatively, of the sides

of the triangle a, b, c). By subtracting C to Li one gets a homaloidal net, mapping to the net of lines in
the plane. This proves the assertion. ✷

Remark 4.8 The image of X̄ by the complete linear system |L(−Mi)| provides a model f ′ : S′ → ∆ of
the initial family f : S → ∆, such that the corresponding flat limit of S′t

∼= St6 with t 6= 0, is S′0 = Y
the quartic monoid image of the face Pi of the tetrahedron via σ. The map X̄0 → S′0 contracts all other
irreducible components of X̄0 to the triple point of the monoid.

Remark 4.9 Theorem D says that the degree of the dual surface of the monoid Y is 21.

The strict transform of L̃i in P′′′0 (which we still denote by L̃i, see §1) can be identified as a blow–up
of Li

∼= P : first blow–up the three points corresponding to the three non–reduced curves 2a + b + c,
2b+ a+ c, 2c+ a+ b. Then blow–up the proper transforms of the three pencils of lines with centres at
A,B,C plus the fixed part a+ b+ c. We will interpret this geometrically in §4.7, using Lemma 2.7.

4.5 – The linear systems Lij .

Next, we need to study some of the geometric properties of the linear systems Lij as in Proposition 4.4.
Consider the rational map ϕij : Wij 99K P3 (or simply ϕ) determined by Lij . Alternatively, one may
consider the rational map, with the same image W (up to projective transformations), determined by
the planar linear system W of quartics considered in the proof of Proposition 4.4.

Proposition 4.10 The map ϕ is birational onto its image, which is a quartic surface W ⊂ P3, with a
double line D, and two triple points on D.

Proof. First we get rid of the four base points in Zij by blowing them up and taking the proper transform
L̄ij of the system. Let u : W̄ → Wij be this blow–up, and let I±

ij (resp. I±

ji) be the two (−1)–curves that
meet Λij (resp. Λji).

The strict transform L̄ij := u∗(Lij) −
(

I+

ij + I−

ij + I+

ji + I−

ij

)

, has self–intersection 4. Set, as usual,
{1, . . . , 4} = {i, j, h, k} and consider the curves

Cji := Λji + (2Gk
ji + F k

ji) + (2Gh
ji + Fh

ji) and Cij := Λij + (2Gk
ij + F k

ij) + (2Gh
ij + Fh

ij). (4.14)

One has
L̄ij · Cs = 0, pa(Cs) = 0, C2

s = −3, for s ∈ {(ij), (ji)}.

By mapping W̄ to Wij , and this to the plane as in Figure 5 with (4.2) and (4.3) identified, one sees that
Cji goes to the line L1 and Cij to the union of the two lines L2, L3. The considerations in the proof of
Proposition 4.4 show that L̄ij has no base points on Cji∪Cij (i.e., W has only the prescribed base points
along the triangle L1 +L2 +L3). On the other hand, the same considerations show that the base points
of L̄ij may only lie on Cji ∪ Cij . This shows that L̄ij is base points free, and the associated morphism
ϕ̄ : W̄ → P3 contracts Cji and Cij to points c1 and c2 respectively.

The points c1 and c2 are distinct, since subtracting the line L1 from the planar linear system W
does not force subtracting the whole triangle L1 + L2 + L3 to the system. By subtracting Cji from L̄ij ,
the residual linear system is a linear system of rational curves with self–intersection 1, mapping Wij

birationally to the plane. Indeed, this residual linear system corresponds to the residual linear system of
L1 with respect to W , which is the linear system of plane cubics, with a double point at a1, two simple
base points infinitely near to a1 not on L2 and L3, two base points at a2 and a3, and this is a homaloidal
system. This shows that c1 is a triple point of W and that ϕ̄ is birational. The same for c2. Finally ϕ̄
maps (the proper transforms of) Dk

ij and Dh
ij both to the unique line D containing c1 and c2. ✷
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Figure 8: Desingularization of the branch curve of the projection of Wij

Remark 4.11 The subpencil of Lij corresponding to planes in P3 that contain the line D corresponds
to the subpencil of curves in W with the triangle L1 + L2 + L3 as its fixed part, plus the pencil of lines
through a1. In this subpencil we have two special curves, namely L1+2L2+L3 and L1+L2+2L3. This
shows that the tangent cone to W at the general point of D is fixed, formed by two planes.

Remark 4.12 The image of X̄ via the complete linear system |L(−Mij)| provides a model f ′ : S′ → ∆
of the initial family f : S → ∆, such that the corresponding flat limit of S′t

∼= St6 with t 6= 0, is S′0 = W
the image of Wij via ϕ. The map X̄0 → S′0 contracts the chain (4.12) to the double line of W , and the
two connected components of X̄0 −Wij minus the chain (4.12) (cf. Figure 1) to the two triple points of
W respectively.

Corollary 4.13 The exceptional divisor L̃ij of P′′ → P′ is naturally isomorphic to the blow–up of the
complete linear system L̄ij

∼= |OW (1)| along its subpencil corresponding to planes in P3 containing the
line D.

Proof. This is a reformulation of the description of P′′ → P′ (cf. Step (II) in §4.3 above), taking into
account Propositions 4.4 and 4.10. ✷

The divisor L̃ij ⊂ P′′0 is a P(OP1(1)�2
�OP1), and its structure of P2–bundle over P1 is the minimal

resolution of indeterminacies of the rational map Lij 99K |OD(1)|, which sends a general divisor C ∈ Lij

to its intersection point with D. The next Proposition provides an identification of the general fibres of
L̃ij over |OD(1)| = P1 as certain linear systems.

Proposition 4.14 The projection of W from a general point of D is a double cover of the plane, branched
over a sextic B which is the union

B = B0 +B1 +B2

of a quartic B0 with a node p, and of its tangent cone B1 +B2 at p, such that the two branches of B0 at
p both have a flex there (see Figure 8; the intersection Bi ∩B0 is concentrated at the double point p, for
1 6 i 6 2).

Proof. Let us consider a double cover of the plane as in the statement. It is singular. Following [8,
§4], we may obtain a resolution of singularities as a double cover of a blown–up plane with non–singular
branch curve. We will then observe that it identifies with W̄ blown–up at two general conjugate points
on Dk

ij and Dh
ij respectively (here conjugate means that the two points are mapped to the same point

x of D by ϕ̄). We will denote by W̃ the surface W̄ blown–up at two such points, and by I ′x, I
′′
x the two

exceptional divisors.
First note that our double plane is rational, because it has a pencil of rational curves, namely the

pull-back of the pencil of lines passing through p (eventually this will correspond to the pencil of conics
cut out on W by the planes through D).

In order to resolve the singularities of the branch curve (see Figure 8), we first blow–up p, pull–back
the double cover and normalize it. Since p has multiplicity 4, which is even, the exceptional divisor E of
the blow–up does not belong to the branch curve of the new double cover, which is the proper transform
B (still denoted by B according to our general convention). Next we blow–up the two double points of
B which lie on E, and repeat the process. Again, the two exceptional divisors E1, E2 do not belong to
the branch curve. Finally we blow–up the two double points of B (which lie one on E1 one on E2, off
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E), and repeat the process. Once more, the two exceptional divisors E′1, E
′
2 do not belong to the branch

curve which is the union of B0, B1 and B2 (which denote here the proper transforms of the curves with
the same names on the plane). This curve is smooth, so the corresponding double cover is smooth.

The final double cover has the following configuration of negative curves: B1 (resp. B2) is contained in
the branch divisor, so over it we find a (−1)-curve; E′1 (resp. E′2) meets the branch divisor at two points,
so its pull-back is a (−2)-curve; E1 (resp. E2) does not meet the branch divisor, so its pull-back is the
sum of two disjoint (−2)-curves; similarly, the pull-back of E is the sum of two disjoint (−3)-curves. In
addition, there are four lines through p tangent to B0 and distinct from B1 and B2. After the resolution,
they are curves with self-intersection 0 and meet the branch divisor at exactly one point with multiplicity
2. The pull-back of any such a curve is the transverse union of two (−1)-curves, each of which meets
transversely one component of the pull-back of E.

This configuration is precisely the one we have on W̃ , after the contraction of the four (−1)-curvesGk
ji,

Gk
ij , G

h
ji, and Gh

ij . Moreover, the pull-back of the line class of P2 is the pull–back to W̃ of Lij(−(I ′x+I ′′x )).
✷

Corollary 4.15 In the general fibre of the generic P2 bundle structure of L̃ij , the Severi variety of 1–
nodal (resp. 2–nodal) irreducible curves is an irreducible curve of degree 10 (resp. the union of 16 distinct
points).

Proof. This follows from the fact that the above mentioned Severi varieties are respectively the dual
curve B̌0 of a plane quartic as in Proposition 4.14, and the set of ordinary double points of B̌0. One
computes the degrees using Plücker formulae. ✷

4.6 – The linear systems Lk

Here we study some geometric properties of the linear systems Lk appearing in the third step of §4.3.
Consider a triangle L1, L2, L3 in P2, with vertices a1, a2, a3, where a1 is opposite to L1, etc. Con-

sider the linear system T of cubics through a1, a2, a3 and tangent there to L3, L1, L2 respectively. By
Proposition 4.6, there is a birational transformation of T k to the plane (see Figure 5) mapping Lk to
T . We consider the rational map φk : T k 99K P3 (or simply φ) determined by the linear system Lk, or,
alternatively, the rational map, with the same image T (up to projective transformations), determined
by the planar linear system T . The usual notation is {1, . . . , 4} = {i, j, s, k}.

Proposition 4.16 The map φ : T k → T ⊂ P3 is a birational morphism, and T is a cubic surface with
three double points of type A2 as its only singularities. The minimal resolution of T is the blow–down
of T k contracting the (−1)–curves Dk

ij , D
k
is, D

k
js. This cubic contains exactly three lines, each of them

containing two of the double points.

Proof. The linear system T is a system of plane cubics with six simple base points, whose general
member is clearly irreducible. This implies that φ : T k → T ⊂ P3 is a birational morphism and T is a
cubic surface. The linear system Lk contracts the three chains of rational curves

C1 = F js
k + 2Dk

sj + F sj
k , C2 = F si

k + 2Dk
is + F is

k , C3 = F ij
k + 2Dk

ij + F ji
k ,

which map in the plane to the sides of the triangle L1, L2, L3. By contracting the (−1)–curves Dk
ij , D

k
is,

Dk
js, the three curves C1, C2, C3 are mapped to three (−2)–cycles contracted by φ to double points of

type A2.
The rest follows from the classification of cubic hypersurfaces in P3 (see, e.g., [5]). The three lines on

T are the images via φ of the three exceptional divisors Γk
i ,Γ

k
j ,Γ

k
s ,. ✷

Remark 4.17 We now see that the image of X̄ by the complete linear system |L(−Mk)| provides a
model f ′ : S′ → ∆ of the initial family f : S → ∆, such that the corresponding flat limit of S′t

∼= St6 with
t 6= 0, is S′0 = T + P , where T is the image of T k via φ, and P is the plane in P3 through the three lines
contained in T , image of Pk by the map associated to Lk. The three other faces of the initial tetrahedron
S0 are contracted to the three lines in T respectively.
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Proposition 4.18 The dual surface Ť ⊂ P̌3 to T is itself a cubic hypersurface with three double points
of type A2 as its only singularities. Indeed, the Gauss map γT fits into the commutative diagram

T k

φ

~~~~
~~

~ φ̌

  
@@

@@
@

T γT

//_____ Ť

where φ̌ is the morphism associated to the linear system
∣

∣3H − (F sj
k + Γk

s + 2Dk
sj)− (F ji

k + Γk
j + 2Dk

ij)− (F is
k + Γk

i + 2Dk
is)
∣

∣,

which is mapped to the linear system T ′ of cubics through a1, a2, a3 and tangent there to L2, L3, L1

respectively, by the birational map T k 99K P2 identifying Lk with T .

Proof. The dual hypersurface Ť has degree 3 by Proposition 3.2. Let p be a double point of T . The
tangent cone to T at p is a rank 2 quadric, with vertex a line Lp. A local computation shows that the
limits of all tangent planes to T at smooth points tending to p are planes through Lp. This means that
γT is not well defined on the minimal resolution of T , which is the blow–down of T k contracting the
(−1)–curves Dk

ij , D
k
is, D

k
js, its indeterminacy points being exactly the three points images of these curves.

The same local computation also shows that γT is well defined on T k, hence γT fits in the diagram as
stated.

In T there are the three curves 2L1 + L3, 2L2 + L1, 2L3 + L2, which implies that for any given line
ℓ ⊂ T there is a plane Πℓ in P3 tangent to T at the general point of ℓ (actually one has Πℓ∩T = 3ℓ). Then
γT contracts each of the three lines contained in T to three different points, equivalently φ̌ contracts to
three different points the three curves Γk

i ,Γ
k
j ,Γ

k
s . Being Ť a (weak) Del Pezzo surface, this implies that φ̌

must contract the three chains of rational curves F sj
k +2Γk

s +F si
k , F is

k +2Γk
i +F ij

k , and F ji
k +2Γk

j +F js
j ,

because they have 0 intersection with the anticanonical system, and the rest of the assertion follows. ✷

Recalling the description of P′′′ → P, one can realize L̃k as a birational modification of Lk ∼= |OT (1)|:
first blow–up the point corresponding to the plane containing the three lines of T , then blow–up the
strict transforms of the three lines in |OT (1)| corresponding to the three pencils of planes respectively
containing the three lines of T . Notice that L̃k has a structure of P1–bundle on the blow–up of P2 at
three non–colinear points, as required.

Alternatively, we have in T the four curves C0 = L1 + L2 + L3, C1 = 2L1 + L3, C2 = 2L2 + L1, C3 =
2L3 + L2, corresponding to four independent points c0 . . . , c3 of T . Then L̃k is the blow–up of T at c0,
further blown–up along the proper transforms of the lines 〈c0, c1〉, 〈c0, c2〉, and 〈c0, c3〉. Via the map
L̃k → T , the projection of the P1–bundle structure corresponds to the projection of T from c0 to the
plane spanned by c1, c2, c3.

This will be interpreted using Lemma 2.7 in §4.7 below.

4.7 – The limit linear system, II: description

We are now ready to prove:

Proposition 4.19 The limit linear system of |Lt| = |OX̄t
(1)| as t ∈ ∆∗ tends to 0 is P′′′0 .

Proof. The identification of P′′′ as Hilb(L) will follow from the fact that every point in P′′′0 corresponds
to a curve in X̄0 (see Lemma 2.6). Having the results of §§4.3—4.6 at hand, we are thus left with the
task of describing how the various components of the limit linear system intersect each other. We carry
this out by analyzing, with Lemma 2.7, the birational modifications operated on the components P0, L̃i,
L̃ij , and L̃k, during the various steps of the construction of P′′′ (see §4.3).

(I) In P′0, the strict transform of P0 (which we shall go on calling P0, according to the conventions
set in §1) is the blow up of |L0| ∼= |OS0

(1)| at the four points corresponding to the faces of S0. For each
i ∈ {1, . . . , 4}, the corresponding exceptional plane is the intersection P0 ∩ L̃i, and it identifies with the
subsystem of Li consisting of curves

L+
∑

j 6=i
{i,j,k,h}={1,...,4}

(Lij +Gh
i +Gk

i ), L ∈ |OPi
(H)|,
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together with six rational tails respectively joining E±

ji to z±

ji, j 6= i.

(II) For each {i 6= j} ⊂ {1, . . . , 4}, the intersection P0∩L̃ij ⊂ P′′0 identifies as the exceptional P1×P1

of both the blow–up of P0 ⊂ P′0 along the line ℓij , and the blow–up L̃ij → L̄ij described in Corollary
4.13. As a consequence, it parametrizes the curves

C +Φ+Dk
ij +Dh

ij + Cji + Cij , {i, j, k, h} = {1, . . . , 4}, Cji and Cij as in (4.14), (4.15)

where C is a chain in Nkh, and Φ ∈ |F |Wij
is the proper transform by ϕij of a conic through the two

triple points of W (cf. Proposition 4.10), together with four rational tails respectively joining E±

ij and
E±

ji to w±

ij and w±

ji. The two components C and Φ are independent one from another, and respectively
move in a 1–dimensional linear system.

The intersection L̃ij ∩ L̃i ⊂ P′′0 is a P2. In L̃ij , it identifies as the proper transform via L̃ij → L̄ij of
the linear system of curves

Cij + C, C ∈ |L0(−Mij) � OWij
(−Cij)|, and Cij as in (4.14), (4.16)

while in L̃i it is the exceptional divisor of the blow–up of L̃i ⊂ P′0 at the point corresponding to the curve

2(Lij +Gh
i +Gk

i ) + (Lih +Gj
i +Gk

i ) + (Lik +Gj
i +Gh

i ), {i, j, k, h} = {1, . . . , 4}.

It follows that it parametrizes sums of a curve as in (4.16), plus the special member of Nkh consisting of
double curves of X̄0 and joining the two points Dk

ij ∩ F k
ij and Dh

ij ∩ Fh
ij .

(III) For each k ∈ {1, . . . , 4}, the intersection Πk = L̃k ∩ P0 is a P2 blown up at three non colinear
points. Seen in P0, it identifies as the blow–up of the web of planes in |L0| ∼= |OS0

(1)| passing through
the vertex k of S0, at the three points corresponding to the faces of S0 containing this very vertex. In L̃k

on the other hand, it is the strict transform of the exceptional P2 of the blow–up T̃ → T ∼= Lk at the
point [a+ b+ c]. It therefore parametrizes the curves

L+
∑

i6=k

(

Γk
i +

∑

j 6∈{i,k}

(F ij
k +Dk

ij)
)

, (4.17)

where L is a line in Pk, together with three rational tails joining respectively L ∩ Lki to Γk
i , i 6= k.

For i 6= k, L̃k ∩ L̃i is a P1 × P1, identified as the exceptional divisor of both the blow–up L̃k → T̃
along the strict transform of the line parametrizing planes in T ∼= |OT (1)| containing the line φk(Γk

i ),
and the blow–up of L̃i ⊂ P′′0 along the strict transform of the line parametrizing curves

L+Gk
i +

∑

j 6=i
{i,j,k,h}={1,...,4}

(Lij +Gh
i +Gk

i ), L ∈ |OPi
(H −Gk

i )|. (4.18)

It therefore parametrizes sums of

Φ +
(

Γk
i +

∑

j 6∈{i,k}

(

F ij
k + 2Dk

ij + F ji
k

)

+ C
)

(4.19)

(where Φ ∈ Nk
i , and the second summand is a member of Lk

∣

∣

Tk), plus the fixed part Lki + E+

ki + E−

ki +
∑

j 6∈{i,k}(G
j
k+Φj), where Φj is the special member ofNk

j consisting of double curves of X̄0 and joining the

two points Gj
k∩Lk̄ on Pk and F ̄j

k ∩Γk
̄ on T k, for each j 6∈ {i, k}, with ̄ such that {i, k, j, ̄} = {1, . . . , 4}.

The two curves Φ and C are independent one from another, and respectively move in a 1–dimensional
linear system.

For each j 6∈ {k, i}, L̃k ∩ L̃ij is an F1, and identifies as the blow–up of the plane in Lk corresponding
to divisors in |OT (1)| passing through the double point φk(Γk

i ) ∩ φk(Γk
j ), at the point

[
∑

i6=k φ
k(Γk

i )
]

;

it also identifies as the exceptional divisor of the blow–up of L̃ij ⊂ P′′0 along the P1 corresponding to
the curves as in (4.15), with Φ the only member of |F |Wij

containing Dk
ij . We only need to identify the

curves parametrized by the exceptional curve of this F1; they are as in (4.17), with L corresponding to
a line in the pencil |OPk

(H −Gs
k)|, s 6∈ {i, j, k}.

In conclusion, P′′′ is an irreducible Zariski closed subset of the relative Hilbert scheme of X̄ over ∆,
and this proves the assertion. ✷

25



4.8 – The limit Severi varieties

We shall now identify the regular parts of the limit Severi varieties V1,δ(X̄) = Vδ(X̄,L) for 1 6 δ 6 3
(see Definition 2.16). To formulate the subsequent statements, we use Notation 2.13 and the notion of
n–degree introduced in §2.5.

We will be interested in those n that correspond to a choice of 3− δ general base points on the faces
Pi of S0, with 1 ≤ i ≤ 4. These choices can be identified with 4–tuples n = (n1, n2, n3, n4) ∈ N4 with
|n| = 3− δ (by choosing ni general points on Pi). The vector n is non–zero only if 1 6 δ 6 2. For δ = 1
(resp. for δ = 2), to give n is equivalent to give two indices i, j ∈ {1, . . . , 4}2 (resp. an i ∈ {1, . . . , 4}):
we let ni,j (resp. ni) be the 4–tuple corresponding to the choice of general base points on Pi and Pj

respectively if i 6= j, and of two general base points on Pi if i = j (resp. a general base point on Pi).

Proposition 4.20 (Limits of 1-nodal curves) The regular components of the limit Severi variety
V1,1(X̄) are the following (they all appear with multiplicity 1):
(i) the proper transforms of the 24 planes V (E) ⊂ |OS0

(1)|, where E is any one of the (−1)–curves E±

ij ,
for 1 6 i, j 6 4 and i 6= j. The nhk–degree is 1 if h 6= k; when h = k, it is 1 if h 6∈ {i, j}, and 0 otherwise;
(ii) the proper transforms of the four degree 3 surfaces V (Mk, δTk = 1) ⊂ Lk, 1 6 k 6 4. The nij–degree
is 3 if i 6= j; when i = j, it is 3 if k = i, and 0 otherwise;
(iii) the proper transforms of the four degree 21 surfaces V (Mi, δPi

= 1) ⊂ Li, 1 6 i 6 4. The nhk–degree
is 21 if h = k = i, and 0 otherwise;
(iv) the proper transforms of the six surfaces in V (Mij , δWij

= 1) ⊂ Lij , 1 6 i < j 6 4. They have
nhk–degree 0 for every h, k ∈ {1, . . . , 4}2.

Proof. This follows from (2.1), and from Propositions 4.18 and 8.3. Proposition 8.3 tells us that
V (Mi, δPi

= 1) has degree at least 21 in Li for 1 6 i 6 4; the computations in Remark 4.21 (a) be-
low yield that it cannot be strictly larger than 21 (see also the proof of Corollary 4.23), which proves
Theorem D for δ = 1. The nhk–degree computation is straightforward. ✷

Remark 4.21 (a) The degree of the dual of a smooth surface of degree 4 in P3 is 36. It is instructive
to identify, in the above setting, the 36 limiting curves passing through two general points on the proper
transform of S0 in X̄ . This requires the nhk–degree information in Proposition 4.20. If we choose the
two points on different planes, 24 of the 36 limiting curves through them come from (i), and 4 more,
each with multiplicity 3, come from (ii). If the two points are chosen in the same plane, then we have 12
contributions from (i), only one contribution, with multiplicity 3, from (ii), and 21 more contributions
form (iii). No contribution ever comes from (iv) if we choose points on the faces of the tetrahedron.

(b)We have here an illustration of Remark 2.18: the components V (Mi, δPi
= 1) are mapped to points

in |OS0
(1)|, hence they do not appear in the crude limit Vcr

1,1(S) (see Corollary 4.22 below); they are
however visible in the crude limit Severi variety of the degeneration to the quartic monoid corresponding
to the face Pi. In a similar fashion, to see the component V (Mij , δWij

= 1) one should consider the flat
limit of the St, t ∈ ∆∗, given by the surface W described in Proposition 4.10.

Corollary 4.22 (Theorem B for δ = 1) Consider a family f : S → ∆ of general quartic surfaces in
P3 degenerating to a tetrahedron S0. The singularities of the total space S consist in 24 ordinary double
points, four on each edge of S0 (see §2.1). It is 1–well behaved, with good model ̟ : X̄ → ∆. The limit in
|OS0

(1)| of the dual surfaces Št, t ∈ ∆∗ (which is the crude limit Severi variety Vcr
1,1(S)), consists in the

union of the 24 webs of planes passing through a singular point of S, and of the 4 webs of planes passing
through a vertex of S0, each counted with multiplicity 3.

Proof. The only components of Vreg
1,1(X̄) which are not contracted to lower dimensional varieties by

the morphism P′′′ → P are the ones in (i) and in (ii) of Proposition 4.20. Their push–forward in
P0

∼= |OS0
(1)| has total degree 36. The assertion follows. ✷

Corollary 4.23 Consider a family f ′ : S′ → ∆ of general quartic surfaces in P3, degenerating to a
monoid quartic surface Y with tangent cone at its triple point p consisting of a triple of independent
planes (see Remark 4.8). This family is 1–well behaved, with good model ̟ : X̄ → ∆. The crude limit
Severi variety Vcr

1,1(S
′) consists in the surface Y̌ (which has degree 21), plus the plane p̌ counted with

multiplicity 15.
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Proof. We have a morphism P′′′ → P
(

̟∗
(

L(−Mi)
))

∼= P
(

f ′∗
(

OS′(1)
))

. The push–forward by this map

of the regular components of V1,1(X̄) are Y̌ for V (Mi, δPi
= 1), 3 · p̌ for V (M i, δT i = 1), p̌ for each of

the twelve V (E) corresponding to a (−1)–curve E±

hk with i ∈ {h, k}, and 0 otherwise. The degree of
V (Mi, δPi

= 1) in Li is at least 21 by Proposition 8.3, so the total degree of the push–forward in |OS′
0
(1)|

of the regular components of V1,1(X̄) is at least 36. The assertion follows. ✷

Proposition 4.24 (Limits of 2-nodal curves) The regular components of the limit Severi variety
V1,2(X̄) are the following (they all appear with multiplicity 1):
(i) V (E,E′) for each set of two curves E,E′ ∈ {E±

ij , 1 6 i, j 6 4, i 6= j} that do not meet the same edge
of the tetrahedron S0. The nh–degree is 1 if Ph ⊂ S0 does not contain the two edges met by E,E′, and 0
otherwise;
(ii) V (Mk, δTk = 1, E) for k = 1, . . . , 4 and E ∈

{

E±

ij , 1 6 i, j 6 4, i 6= j, k ∈ {i, j}
}

, which is a degree

3 curve in Lk. The nh–degree is 3 if Ph does not contain both the edge met by E and the vertex corre-
sponding to T k, it is 0 otherwise;
(iii) V (Mij , δWij

= 2) for 1 6 i < j 6 4, which has nh-degree 16 for h 6∈ {i, j}, and 0 otherwise;
(iv) V (Mi, δPi

= 2) for 1 6 i 6 4, which which has nh-degree 132 for h = i, and 0 otherwise;
(v) V (Mij , δWij

= 1, E) for 1 6 i < j 6 4, and E ∈
{

E±

ı̄̄, {ı̄, ̄} ∪ {i, j} = {1, . . . , 4}
}

, which is a curve of
nh-degree 0 for 1 6 h 6 4.

Proof. It goes as the proof of Proposition 4.20. Again, Proposition 8.4 asserts that V (Mi, δPi
= 2) has

degree at least 132 in Li, but it follows from the computations in Remark 4.25 (a) below that it is exactly
132, which proves Theorem D for δ = 2. ✷

Remark 4.25 (a) The degree of the Severi variety V2(Σ,OΣ(1)) for a general quartic surface Σ is 480
(see Proposition 3.1). Hence if we fix a general point x on one of the components Ph of S0 we should
be able to see the 480 points of the limit Severi variety V1,2 through x. The nh–degree information in
Proposition 4.24 tells us this.

For each choice of two distinct edges of S0 spanning a plane distinct from Ph, and of two (−1)-curves
E and E′ meeting these edges, we have a curve containing x in each of the items of type (i) . This
amounts to a total of 192 such curves.

For each choice of a vertex and an edge of S0, such that they span a plane distinct from Ph, there are
3 curves containing x in each of the four corresponding items (ii). This amounts to a total of 108 such
curves.

For each choice of an edge of S0 not contained in Ph, there are 16 curves containing x in the corre-
sponding item (iv). This gives a contribution of 48 curves.

Finally, there are 132 plane quartics containing x in the item (iv) for i = h. Adding up, one finds the
right number 480.

(b) Considerations similar to the ones in Remark 4.21 (b) could be made here, but we do not dwell
on this.

Corollary 4.26 (TheoremB for δ = 2) Same setting as in Corollary 4.22. The family f : S → ∆ is
2–well behaved, with good model ̟ : X̄ → ∆. The crude limit Severi variety Vcr

1,2(S) consists of the
image in |OS0

(1)| of:
(i) the 240 components in (i) of Proposition 4.24, which map to as many lines in |OS0

(1)|;
(ii) the 48 components in (ii) of Proposition 4.24, each mapping 3 : 1 to as many lines in |OS0

(1)|;
(iii) the 6 components in (iii) of Proposition 4.24, respectively mapping 16 : 1 to the dual lines of the
edges of S0.

Proof. The components in question are the only ones not contracted to points by the morphism
P′′′0 → |OS0

(1)|, and their push–forward sum up to a degree 480 curve. ✷

Corollary 4.27 Same setting as in Corollary 4.23; the family f ′ : S′ → ∆ is 2–well behaved, with good
model ̟ : X̄ → ∆. The crude limit Severi variety Vcr

1,2(S
′) consists of the ordinary double curve of the

surface Y̌ , which has degree 132, plus a sum (with multiplicities) of lines contained in the dual plane p̌
of the vertex of Y .
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Proof. It is similar to that of Corollary 4.23. The lines of Vcr
1,2(S

′) contained in p̌ are the push–forward

by P′′′0 → |OY (1)| of the regular components of V1,2(X̄) listed in Remark 4.25 (a), with the excep-
tion of V (Mi, δPi

= 2). They sum up (with their respective multiplicities) to a degree 348 curve, while
V (Mi, δPi

= 2) has degree at least 132 in Li by Proposition 8.4. ✷

Proposition 4.28 (Limits of 3-nodal curves) The family ̟ : X̄ → ∆ is absolutely 3–good, and the
limit Severi variety V1,3(X̄) is reduced, consisting of:
(i) the 1024 points V (E,E′, E′′), for E,E′, E′′ ∈ {E±

ij , 1 6 i < j 6 4} such that the span of the three
corresponding double points of S is not contained in a face of S0;
(ii) the 192 schemes V (Mk, δTk = 1, E,E′), for 1 6 k 6 4 and E,E′ ∈ {E±

ij , 1 6 i < j 6 4}, such that
the two double points of S corresponding to E and E′ and the vertex with index k span a plane which is
not a face of S0. They each consist of 3 points;
(iii) the 24 schemes V (Mij , δWij

= 2, E), for 1 6 i < j 6 4, and E ∈ {E±

ij , 1 6 i < j 6 4}, such that the
double point of S corresponding to E does not lie on the edge Pi ∩ Pj of S0, and that these two together
do not span a face of S0. They each consist of 16 points;
(iv) the 4 schemes V (Mi, δPi

= 3), each consisting of 304 points.

Proof. The list in the statement enumerates all regular components of the limit Severi variety V1,3(X̄)
with their degrees (as before, Corollary 8.7 only gives 304 as a lower bound for the degree of (iv)). They
therefore add up to a total of at least 3200 points, which implies, by Proposition 4.28, that V1,3(X̄) has
no component besides the regular ones, and that those in (iv) have degree exactly 304. Reducedness then
follows from Remark 8.8, (b). ✷

In conclusion, all the above degenerations of quartic surfaces constructed from X̄ → ∆ with a twist
of L are 3–well behaved, with X̄ as a good model. In particular:

Corollary 4.29 (Theorem B for δ = 3) Same setting as in Corollary 4.22. The limits in |OS0
(1)| of

3-tangent planes to St, for t ∈ ∆∗, consist of:
(i) the 1024 planes (each with multiplicity 1) containing three double points of S but no edge of S0;
(ii) the 192 planes (each with multiplicity 3) containing a vertex of S0 and two double points of S, but no
edge of S0;
(iii) the 24 planes (each with multiplicity 16) containing an edge of S0 and a double point of S on the
opposite edge;
(iv) the 4 faces of S0 (each with multiplicity 304).

5 – Other degenerations

The degeneration of a general quartic we considered in §4 is, in a sense, one of the most intricate. There
are milder ones, e.g. to:
(i) a general union of a cubic and a plane;
(ii) a general union of two quadrics (this is an incarnation of a well known degeneration of K3 surfaces
described in [12]).
Though we encourage the reader to study in detail the instructive cases of degenerations (i) and (ii),
we will not dwell on this here, and only make the following observation about degeneration (ii). Let
f : S → ∆ be such a degeneration, with central fibre S0 = Q1 ∪ Q2, where Q1, Q2 are two general
quadrics meeting along a smooth quartic elliptic curve R. Then the limit linear system of |OSt

(1)| as
t ∈ ∆∗ tends to 0 is just |OS0

(1)|, so that f : S → ∆ endowed with OS(1) is absolutely good.
On the other hand, there are also degenerations to special singular irreducible surfaces, as the one we

will consider in §6 below. In the subsequent sub–section, we will consider for further purposes another
degeneration, the central fibre of which is still a (smooth) K3 surface.

5.1 – Degeneration to a double quadric

Let Q ⊂ P3 be a smooth quadric and let B be a general curve of type (4, 4) on Q. We consider the
double cover p : S0 → Q branched along B. This is a K3 surface and there is a smooth family f : S → ∆
with general fibre a general quartic surface and central fibre S0. The pull–back to S0 of plane sections
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of Q which are bitangent to B fill up a component V of multiplicity 1 of the crude limit Severi variety
Vcr

2 . Note that Vcr
2 naturally sits in |OS0

(1)| ∼= P̌3 in this case, hence one can unambiguously talk about
its degree. Although it makes sense to conjecture that V is irreducible, we will only prove the following
weaker statement:

Proposition 5.1 The curve V contains an irreducible component of degree at least 36.

We point out the following immediate consequence, which will be needed in §9.1 below:

Corollary 5.2 If X is a general quartic surface in P3, then the Severi variety V2(X,OX(1)) (which
naturally sits in |OX(1)| ∼= P̌3) has an irreducible component of degree at least 36.

To prove Proposition 5.1 we make a further degeneration to the case in which B splits as B = D+H ,
where D is a general curve of type (3, 3) on Q, and H is a general curve of type (1, 1), i.e. a general
plane section of Q ⊂ P3. Then the limit of V contains the curve W := WD,H in P̌3 parametrizing those
planes in P3 tangent to both H and D (i.e., W is the intersection curve of the dual surfaces Ȟ and Ď).
Note that Ȟ is the quadric cone circumscribed to the quadric Q̌ and with vertex the point P̌ orthogonal
to the plane P cutting out H on Q, while Ď is a surface scroll, the degree of which is 18 by Proposition
3.4, hence deg(W) = 36. To prove Proposition 5.1, it suffices to prove that:

Lemma 5.3 The curve W is irreducible.

To show this, we need a preliminary information. Let us consider the irreducible, locally closed
subvariety U ⊂ |OQ(4)| of dimension 18, consisting of all curves B = D + H , where D is a smooth,
irreducible curve of type (3, 3), and H is a plane section of Q which is not tangent to D. Consider
I ⊂ U × P̌3 the Zariski closure of the set of all pairs (D+H,Π) such that the plane Π is tangent to both
D and H , i.e. Π̌ ∈ Ȟ ∩ Ď. We have the projections p1 : I → U and p2 : I → P̌3. The curve W is a
general fibre of p1.

Lemma 5.4 The variety I contains a unique irreducible component J of dimension 19 which dominates
P̌3 via the map p2.

Proof. Let Π be a general plane of P3. Consider the conic Γ := Π ∩Q, and fix distinct points q1, . . . , q6
on Γ. There is a plane P tangent to Γ at q1, and a cubic surface F passing through q3, . . . , q6 and tangent
to Γ at q2; moreover P and F can be chosen general enough for D+H to belong to U , where H = P ∩Q
and D = F ∩Q. Then (D +H,Π) ∈ I, which proves that p2 is dominant.

Let FΠ be the fibre of p2 over Π. The above argument shows that there is a dominant map
FΠ 99K Γ2×Sym4(Γ) whose general fibre is an open subset of P1×P9: precisely, if ((q1, q2), q3+. . .+q6) ∈
Γ2 × Sym4(Γ) is a general point, the P1 is the linear system of plane sections of Q tangent to Γ at q1,
and the P9 is the linear subsystem of |OQ(3)| consisting of curves passing through q3, . . . , q6 and tangent
to Γ at q2. The existence and unicity of J follow. ✷

Now we consider the commutative diagram

J ′
ν //

  A
AA

AA
AA

A

p′

��

J

p1

��

U ′
f

// U

(5.1)

where ν is the normalization of J , and f ◦ p′ is the Stein factorization of p1 ◦ ν : J ′ → U . The morphism
f : U ′ → U is finite of degree h, equal to the number of irreducible components of the general fibre of p1,
which is W. The irreduciblity of J implies that the monodromy group of f : U ′ → U acts transitively on
the set of components of W.

Proof of Lemma 5.3. We need to prove that h = 1. To do this, fix a general D ∈ |OQ(3)|, and
consider the curve W = WD,H , with H general, which consists of h components. We can move H to be
a section of Q by a general tangent plane Z. Then the quadric cone Ȟ degenerates to the tangent plane
TQ̌,z to Q̌ at z := Ž, counted with multiplicity 2.
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We claim that, for z ∈ Q̌ general, the intersection of TQ̌,z with Ď is irreducible. Indeed, since Ď is a

scroll, a plane section of Ď is reducible if and only if it contains a ruling, i.e. if and only if it is a tangent
plane section of Ď. Since Ď 6= Q̌, the biduality theorem implies the claim.

The above assertion implies h 6 2. If equality holds, the general curve W consists of two curves
which, by transitivity of the monodromy action of f , are both unisecant to the lines of the ruling of Ď.

To see that this is impossible, let us degenerate D as D1 +D2, where D1 is a general curve of type
(2, 1) and D2 is a general curve of type (1, 2) on Q. Then Ď accordingly degenerates and its limit contains
as irreducible components Ď1 and Ď2, which are both scrolls of degree 4 (though we will not use it, we
note that D1 ·D2 = 5 and the (crude) limit of Ď in the above degeneration consists of the union of Ď1,
Ď2, and of the five planes dual to the points of D1 ∩D2, each of the latter counted with multiplicity 2).
We denote by D either one of the curves D1, D2.

Let again H be a general plane section of Q. We claim that the intersection of Ď with Ȟ does not
contain any unisecant curve to the lines of the ruling of Ď. This clearly implies that the general curve
W cannot split into two unisecant curves to the lines of the ruling of Ď, thus proving that h = 1.

To prove the claim, it suffices to do it for specific D, Q and H . For D we take the rational normal
cubic with affine parametric equations x = t, y = t2, z = t3, with t ∈ C. For Q we take the quadric
with affine equation x2 + y2 − xz − y = 0, and for H the intersection of Q with the plane z = 0. Let
(p, q, r) be affine coordinates in the dual space, so that (p, q, r) corresponds to the plane with equation
px + qy + rz + 1 = 0 (i.e., we take as plane at infinity in the dual space the orthogonal to the origin).
Then the affine equation of Ď is gotten by eliminating t in the system

pt+ qt2 + rt3 + 1 = 0, p+ 2qt+ 3rt2 = 0, (5.2)

which defines the ruling ρt of Ď orthogonal to the tangent line toD at the point with coordinates (t, t2, t3),
t ∈ C. The affine equation of Ȟ is gotten by imposing that the system

px+ qy + qz + 1 = 0, x2 + y2 − xz − y = 0, z = 0,

has one solution with multiplicity 2; the resulting equation is p2− 4q− 4 = 0. Adding this to (5.2) means
intersecting Ȟ with ρt; for t 6= 0, the resulting system can be written as

p2t2 + 8pt− 4(t2 − 3) = 0, q =
p2

4
− 1, r =

4− p2

6t
−

p

3t2
.

For a general t ∈ C, the first equation gives two values of p and the remaining equations the corresponding
values of q and r, i.e., we get the coordinates (p, q, r) of the two intersection points of Ȟ and ρt. Now we
note that the discriminant of p2t2+8pt− 4(t2− 3) as a polynomial in p is 16t2(t2 +1), which has the two
simple solutions ±i. This implies that the projection on D ∼= P1 of the curve cut out by Ȟ on Ď has two
simple ramification points. In particular Ȟ∩Ď is locally irreducible at these points, and it cannot split as
two unisecant curves to the lines of the ruling. This proves the claim and ends the proof of the Lemma. ✷

6 – Kummer quartic surfaces in P3

This section is devoted to the description of some properties of quartic Kummer surfaces in P3. They
are quartic surfaces with 16 ordinary double points p1, . . . , p16 as their only singularities. Alternatively
a Kummer surface X is the image of the Jacobian J(C) of a smooth genus 2 curve C, via the degree
2 morphism ϑ : J(C) → X ⊂ P3 determined by the complete linear system |2C|, where C ⊂ J(C) is
the Abel–Jacobi embedding, so that (J(C), C) is a principally polarised abelian surface (see, e.g., [4,
Chap.10]). Since ϑ is composed with the ± involution on J(C), the 16 nodes of X are the images of the
16 points of order 2 of J(C). By projecting from a node, Kummer surfaces can be realised as double
covers of the plane, branched along the union of six distinct lines tangent to one single conic (see, e.g.,
[2, Chap.VIII, Exercises]). We refer to the classical book [26] for a thorough description of these surfaces
(see also [14, Chap.10]).

6.1 – The 166 configuration and self–duality

An important feature of Kummer surfaces is that they carry a so-called 166–configuration (see [20], as
well as the above listed references). Let X be such a surface. There are exactly 16 distinct planes Πi
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tangent to X along a contact conic Γi, for 1 6 i 6 16. The contact conics are the images of the 16
symmetric theta divisors C1, . . . , C16 on J(C). Each of them contains exactly 6 nodes of X , coinciding
with the branch points of the map ϑ|Ci

: Ci
∼= C → Γi

∼= P1 determined by the canonical g12 on C.
Two conics Γi,Γj , i 6= j, intersect at exactly two points, which are double points of X : they are the

nodes corresponding to the two order 2 points of J(C) where Ci and Cj meet. Since the restriction map
Pic0(J(C)) → Pic0(C) is an isomorphism, there is no pair of points of J(C) contained in three different
theta divisors. This implies that, given a pair of nodes of X , there are exactly two contact conics
containing both of them. In other words, if we fix an i ∈ {1, . . . , 16}, the map from {1, . . . , 16} − {i}
to the set of pairs of distinct nodes of X on Γi, which maps j to Γi ∩ Γj , is bijective. This yields that
each node of X is contained in exactly 6 conics Γi. The configuration of 16 nodes and 16 conics with the
above described incidence property is called a 166–configuration.

Let X̃ be the minimal smooth model of X , E1, . . . , E16 the (−2)-curves over the nodes p1, . . . , p16 of
X respectively, and Di the proper transform of the conic Γi, for 1 6 i 6 16. Since X̃ is a K3 surface and
the Di’s are rational curves, the latter are (−2)-curves. The 166–configuration can be described in terms
of the existence of the two sets

E = {E1, . . . , E16} and D = {D1, . . . , D16}

of 16 pairwise disjoint (−2)–curves, enjoying the further property that each curve of a given set meets
exactly six curves of the other set, transversely at a single point.

Proposition 6.1 Let X be a Kummer surface. Then its dual X̌ ⊂ P̌3 is also a Kummer surface.

Proof. By Proposition 3.2, we have deg(X̌) = 4. Because of the singularities on X , the Gauss map
γX : X 99K X̌ is not a morphism. However we get an elimination of indeterminacies

X̃
f

����
��

� g

��
??

??
?

X γX

//_____ X̌

by considering the minimal smooth model X̃ of X . The morphism f is the contraction of the sixteen
curves in E , and g maps each Ei to a conic which is the dual of the tangent cone to X at the node
corresponding to Ei. On the other hand, since γX contracts each of the curves Γ1, . . . ,Γ16 to a point,
then g contracts the curves in D to as many ordinary double points of X̌. The assertion follows. ✷

6.2 – The monodromy action on the nodes

Let K◦ be the locally closed subset of |OP3(4)| whose points correspond to Kummer surfaces and let π :
X → K◦ be the universal family: over x ∈ K◦, we have the corresponding Kummer surface X = π−1(x).
We have a subscheme N ⊂ X such that p := π|N : N → K◦ is a finite morphism of degree 16: the fibre
p−1(x) over x ∈ K◦ consists of the nodes of X . We denote by G16,6 ⊂ S16 the monodromy group of
p : N → K◦

There is in addition another degree 16 finite covering q : G → K◦: for x ∈ K◦, the fibre q−1(x) consists
of the set of the contact conics on X . Proposition 6.1 implies that the monodromy group of this covering
is isomorphic to G16,6. Then we can consider the commutative square

J

p′

��

q′
// N

p
��

G q
// K◦

(6.1)

where J is the incidence correspondence between nodes and conics. Note that p′, q′ are both finite of
degree 6, with isomorphic monodromy groups (see again Proposition 6.1).

Here, we collect some results on the monodromy groups of the coverings appearing in (6.1). They are
probably well known to the experts, but we could not find any reference for them.

Lemma 6.2 The monodromy group of q′ : J → N and of p′ : J → G is the full symmetric group S6.
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Proof. It suffices to prove only one of the two assertions, e.g. the one about p′. Let X be a general
Kummer surface and let e be a node of X . As we noticed, by projecting from e, we realise X as a double
cover of P2 branched along 6 lines tangent to a conic E, which is the image of the (−2)–curve over e.
These 6 lines are the images of the six contact conics through e, i.e. the fibre over q′. Since X is general,
these 6 tangent lines are general. The assertion follows. ✷

Corollary 6.3 The group G16,6 acts transitively, so G and N are irreducible.

Proof. It suffices to prove that the monodromy of p : N → K◦ is transitive. This follows from Lemma
6.2 and from the fact that any two nodes of a Kummer surface lie on some contact conic. ✷

It is also possible to deduce the transitivity of the monodromy action of p and q from the irreducibility
of the Igusa quartic solid, which parametrizes quartic Kummer surfaces with one marked node (see, e.g.,
[14, Chap.10]). The following is stronger:

Proposition 6.4 The group G16,6 acts 2–transitively.

Proof. Again, it suffices to prove the assertion for p : N → K◦. By Corollary 6.3, proving that the
monodromy is 2–transitive is equivalent to showing that the stabilizer of a point in the general fibre of p
acts transitively on the remaining points of the fibre. Let X be a general Kummer surface and e ∈ X a
node. Consider the projection from e, which realizes X as a double cover of P2 branched along 6 lines
tangent to a conic E. The 15 nodes on X different from e correspond to the pairwise intersections of the 6
lines. Moving the tangent lines to E one leaves the node e fixed, while acting transitively on the others. ✷

Look now at the pull back q∗(N ). Of course J is a component of q∗(N ). We set W = q∗(N ) − J ,
and the morphism p′ : W → G which is finite of degree 10. We let H16,6 ⊆ S10 be the monodromy of
this covering.

Lemma 6.5 The group H16,6 acts transitively, i.e. W is irreducible.

Proof. Let a, b ∈ X be two nodes not lying on the contact conic Γ. There is a contact conic Γ′ that
contains both a and b; it meets Γ transversely in two points, distinct from a and b, that we shall call c
and d. Now a monodromy transformation that fixes Γ′ and fixes c and d necessarily fixes Γ. It therefore
suffices to find a monodromy transformation fixing Γ′ which fixes c and d, and sends a to b. Such a
transformation exists by Lemma 6.2. ✷

Proposition 6.6 Let X be a general Kummer surface. Then:
(i) G16,6 acts transitively the set of unordered triples of distinct nodes belonging to a contact conic;
(ii) the action of G16,6 on the set of unordered triples of distinct nodes not belonging to a contact conic
has at most two orbits.

To prove this, we need to consider degenerations of Kummer surfaces when the principally polarised
abelian surface (J(C), C) becomes non–simple, e.g., when C degenerates to the union of two elliptic curves
E1, E2 transversally meeting at a point. In this case the linear system |2(E1+E2)| on the abelian surface
A = E1 ×E2, is still base point free, but it determines a degree 4 morphism ϑ : A → Q ∼= P1 ×P1 ⊂ P3

(where Q ⊂ P3 is a smooth quadric), factoring through the product Kummer surface X = A/±, and a
double cover X → Q branched along a curve of bidegree (4, 4) which is a union of 8 lines; the lines in
question are L1a = P1 × {a} (resp. L2b = {b} × P1) where a (resp. b) ranges among the four branch
points of the morphism E1 → (E1/±) ∼= P1 (resp. E2 → (E2/±) ∼= P1). We call the former horizontal
lines, and the latter vertical lines. Each of them has four marked points: on a line L1a (resp. L2b), these
are the four points L2b ∩ L1a where b (resp. a) varies as above. One thus gets 16 points, which are the
limits on X of the 16 nodes of a general Kummer surface X . The limits on X of the sixteen contact conics
on a general Kummer surface X are the sixteen curves L1a + L2b. On such a curve, the limits of the six
double points on a contact conic on a general Kummer surface are the six marked points on L1a and L2b

that are distinct from L1a ∩ L2b.

Proof of Proposition 6.6. Part (i) follows from Lemma 6.2. As for part (ii), consider three distinct
nodes a, a′ and a′′ (resp. b, b′ and b′′) of X that do not lie on a common conic of the 166 configuration
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Figure 9: Limits in a product Kummer surface of three double points not on a double conic

on X . We look at their limits a, a′ and a′′ (resp. b, b′ and b′′) on the product Kummer surface X; they
are in one of the two configurations (a) and (b) described in Figure 9.

The result follows from the fact that the monodromy of the family of product Kummer surfaces acts
as the full symmetric group S4 on the two sets of vertical and horizontal lines respectively. Hence the
triples in configuration (a) [resp. in configuration (b)] are certainly in one and the same orbit. ✷

7 – Degeneration to a Kummer surface

We consider a family f : S → ∆ of surfaces in P3 induced (as explained in §2.1) by a pencil generated by
a general quartic surface S∞ and a general Kummer surface S0. We will describe a related δ-good model
̟ : X̄ → ∆ for 1 ≤ δ ≤ 3.

7.1 – The good model

Our construction is as follows:
(I) we first perform a degree 2 base change on f : S → ∆;
(II) then we resolve the singularities of the new family;
(III) we blow–up the proper transforms of the sixteen contact conics on S0.
The base change is useful to analyze the contribution of curves passing through a node of S0.

Steps (I) and (II)

The total space S is smooth, analytically–locally given by the equation

x2 + y2 + z2 = t

around each of the double points of S0. We perform a degree 2 base change on f , and call f̄ : S̄ → ∆ the
resulting family. The total space S̄ has 16 ordinary double points at the preimages of the nodes of S0.

We let ε1 : X → S̄ be the resolution of these 16 points, gotten by a simple blow–up at each point.
We have the new family π : X → ∆, with π = f̄ ◦ ε1. The new central fibre X0 consists of the minimal
smooth model S̃0 of S0, plus the exceptional divisors Q1, . . . , Q16. These are all isomorphic to a smooth
quadric Q ∼= P1 ×P1 ⊂ P3. We let E1, . . . , E16 be the exceptional divisors of S̃0 → S0. Each Qi meets
S̃0 transversely along the curve Ei, and two distinct Qi, Qj do not meet.

Step (III)

As in §6.1, we let D1, . . . , D16 be the proper transforms of the 16 contact conics Γ1, . . . ,Γ16 on S0: they
are pairwise disjoint (−2)-curves in X0. We consider the blow-up ε2 : X̄ → X of X along them. The
surface S̃0 is isomorphic to its strict transform on X̄0. Let W1, . . . ,W16 be the exceptional divisors of
ε2. Each Wi meets S̃0 transversely along the (strict transform of the) curve Di. Note that, by the Triple
Point Formula 2.2, one has deg(NDi|Wi

) = − deg(NDi|S̃0
) − 6 = −4, so that Wi is an F4–Hirzebruch

surface, and Di is the negative section on it.
We call Q̃1, . . . , Q̃16 the strict transforms of Q1, . . . , Q16 respectively. They respectively meet S̃0

transversely along (the strict transforms of) E1, . . . , E16. For 1 6 i 6 16, there are exactly six curves
among the Dj ’s that meet Ei: we call them Di

1, . . . , D
i
6. The surface Q̃i is the blow-up of Qi at the

six intersection points of Ei with Di
1, . . . , D

i
6: we call ′Gi

1, . . . ,
′Gi

6 respectively the six corresponding
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(−1)-curves on Q̃i. Accordingly, Q̃i meets transversely six Wj ’s, that we denote by W 1
i , . . . ,W

6
i , along

′Gi
1, . . . ,

′Gi
6 respectively. The surface Q̃i is disjoint from the remaining Wj ’s.

For 1 6 j 6 16, we denote by E1
j , . . . , E

6
j the six Ei’s that meet Dj . There are correspondingly six

Q̃i’s that meet Wj : we denote them by Q̃1
j , . . . , Q̃

6
j , and let G1

j , . . . , G
6
j be their respective intersection

curves with Wj . Note the equality of sets
{

′Gi
s, 1 6 i 6 16, 1 6 s 6 6

}

=
{

Gs
j , 1 6 j 6 16, 1 6 s 6 6

}

.

We shall furthermore use the following notation (cf. §1). For 1 6 j 6 16, we let FWj
(or simply F )

be the divisor class of the ruling on Wj , and HWj
(or simply H) the divisor class Dj + 4FWj

. Note that

Gs
j ∼Wj

F and ′Gs
i ∼W s

i
F , for 1 6 i, j 6 16 and 1 6 s 6 6. We write H0 for the pull-back to S̃0 of the

plane section class of S0 ⊂ P3. For 1 6 i 6 16, we let L′i and L′′i be the two rulings of Qi, and HQi
(or

simply H) be the divisor class L′i + L′′i ; we use the same symbols for their respective pull-backs in Q̃i.
When designing one of these surfaces by Q̃s

j , we use the obvious notation Ls
j
′ and Ls

j
′′.

7.2 – The limit linear system

We shall now describe the limit linear system of |OX̄t
(1)| as t ∈ ∆∗ tends to 0, and from this we will

see that X̄ is a good model of S over ∆. We start with P = P(̟∗(OX̄(1))), which is a P3–bundle
over ∆, whose fibre at t ∈ ∆ is |OX̄t

(1)|; we set L = OX̄(1), and |OX̄t
(1)| = |Lt| for t ∈ ∆. Note that

|L0| ∼= |OS0
(1)|.

We will proceed as follows:
(I) we first blow–up P at the points of P0

∼= |L0| corresponding to planes in P3 containing at least three
distinct nodes of S0 (i.e. either planes containing exactly three nodes, or planes in the 166 configuration);
(II) then we blow–up the resulting variety along the proper transforms of the lines of |L0| corresponding
to pencils of planes in P3 containing two distinct nodes of S0;
(III) finally we blow–up along the proper transforms of the planes of |L0| corresponding to webs of planes
in P3 containing a node of S0.

The description of these steps parallels the one in §4.3, so we will be sketchy here.

Step (Ia)

The
(

16
3

)

− 16
(

6
3

)

= 240 planes in P3 containing exactly three distinct nodes of S0 correspond to the
0-dimensional subsystems

∣

∣H0 − Es′ − Es′′ − Es′′′
∣

∣

S̃0
(7.1)

of |H0| ∼= |L0|, where {s′, s′′, s′′′} ranges through all subsets of cardinality 3 of {1, . . . , 16} such that
the nodes ps′ , ps′′ , ps′′′ corresponding to the (−2)–curves Es′ , Es′′ , Es′′′ do not lie in a plane of the 166
configuration of S0. We denote by Cs′s′′s′′′ the unique curve in the system (7.1) and we set Hs′s′′s′′′ =
Cs′s′′s′′′ + Es′ + Es′′ + Es′′′ , which lies in |H0| .

The exceptional component L̃s′s′′s′′′ of the blow-up of P at the point corresponding to Hs′s′′s′′′ can
be identified with the 3–dimensional complete linear system

Ls′s′′s′′′ :=
∣

∣L0(−Q̃s′ − Q̃s′′ − Q̃s′′′)
∣

∣,

which is isomorphic to the projectivization of the kernel of the surjective map

f : (ς ′, ς ′′, ς ′′′, ς) ∈

(

⊕

s∈{s′,s′′,s′′′}

H0
(

Q̃s,OQ̃s
(H)

)

)

� H0
(

S̃0,OS̃0
(Cs′s′′s′′′)

)

7−→ (ς ′ − ς, ς ′′ − ς, ς ′′′ − ς) ∈
⊕

s∈{s′,s′′,s′′′}

H0
(

OEs
(−Es)

)

∼= H0
(

P1,OP1(2)
)�3

.

The typical element of Ls′s′′s′′′ consists of
(i) the curve Cs′s′′s′′′ on S̃0, plus
(ii) one curve in |OQ̃s

(H)| for each s ∈ {s′, s′′, s′′′}, matching Cs′s′′s′′′ along Es, plus
(iii) two rulings in each Wj (i.e. a member of |OWj

(2F )| = |L0 � OWj
|), 1 6 j 6 16, matching along the

divisor Dj, while

(iv) the restriction to Q̃s is trivial for every s ∈ {1, . . . , 16} − {s′, s′′, s′′′}.
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The strict transform of P0 is isomorphic to the blow–up of |H0| at the point corresponding to Hs′s′′s′′′ .
By Lemma 2.7, the exceptional divisor Hs′s′′s′′′

∼= P2 of this blow-up identifies with the pull–back linear
series on Hs′s′′s′′′ of the 2-dimensional linear system of lines in the plane spanned by ps′ , ps′′ , ps′′′ (note
that in this linear series there are three linear subseries corresponding to sections vanishing on the curves
Es′ , Es′′ , Es′′′ which are components of Hs′,s′′,s′′′ ).

The divisor Hs′s′′s′′′ is cut out on the strict transform of |H0| by L̃s′s′′s′′′ , along the plane Π ⊂ Ls′s′′s′′′

given by the equation ς = 0 in the above notation. The identification of Hs′s′′s′′′ with Π is not immediate.
It would become more apparent by blowing up the curves Cs′s′′s′′′ in the central fibre; we will not do
this here, because we do not need it, and we leave it to the reader (see Step (Ib) for a similar argument).
However, we note that ker(f) ∩ {ς = 0} coincides with the C3 spanned by three non–zero sections
(ςs′ , 0, 0, 0), (0, ςs′′ , 0, 0), (0, 0, ςs′′′ , 0), where ςs vanishes exactly on Es for each s ∈ {s′, s′′, s′′′}. These
three sections correspond to three points πs′ , πs′′ , πs′′′ in Π. In the identification of Π with Hs′s′′s′′′

the points πs′ , πs′′ , πs′′′ are mapped to the respective pull–backs on Hs′s′′s′′′ of the three lines ℓs′′s′′′ =
〈ps′′ , ps′′′ 〉, ℓs′s′′′ = 〈ps′ , ps′′′ 〉, ℓs′s′′ = 〈ps′ , ps′′〉.

Step (Ib)

The 16 planes of the 166 configuration correspond to the 0-dimensional subsystems
∣

∣H0 − E1
j − · · · − E6

j

∣

∣

S̃0
⊂
∣

∣H0

∣

∣ ∼=
∣

∣L0

∣

∣ (1 6 j 6 16),

consisting of the only curve 2Dj . The blow-up of P at these points introduces 16 new components L̃j ,
1 6 j 6 16, in the central fibre, respectively isomorphic to the linear systems

Lj :=
∣

∣L0(−2Wj − Q̃1
j − · · · − Q̃6

j)
∣

∣.

The corresponding line bundles restrict to the trivial bundle on all components of X̄0 but Wj and Q̃s
j ,

for 1 6 s 6 6, where the restriction is to OWj
(2H) and to OQ̃s

j
(H − 2Gs

j), respectively.

For each s ∈ {1, . . . , 16}, the complete linear system |H − 2Gs
j |Q̃s

j
is 0-dimensional, its only divisor is

the strict transform in Q̃s
j of the unique curve in |H |Qs

j
that is singular at the point Dj ∩Qs

j . This is the

union of the proper transforms of the two curves in |Ls
j
′|Qs

j
and |Ls

j
′′|Qs

j
through Dj ∩Qs

j , and it cuts out
a 0-cycle Zs

j of degree 2 on Gs
j . We conclude that

Lj ∼=
∣

∣OWj
(2H) � IZj

∣

∣, for 1 6 j 6 16, (7.2)

where IZj
⊂ OWj

is the defining sheaf of ideals of the 0-cycle Zj := Z1
j + · · ·+ Z6

j supported on the six

fibres G1
j , . . . , G

6
j of the ruling of Wj . We shall later study the rational map determined by this linear

system on Wj (see Proposition 7.4).

For each j, the glueing of L̃j with the strict transform of |H0| is as follows: the exceptional plane
Hj on the strict transform of |H0| identifies with |ODj

(H0)| ∼= |OP1(2)| by Lemma 2.7, and the latter
naturally identifies as the 2-dimensional linear subsystem of

∣

∣OWj
(2H) � IZj

∣

∣ consisting of divisors of
the form

2Dj +G1
j + · · ·+G6

j +Φ, Φ ∈ |OWj
(2F )|.

Step (II)

Let P′ be the blow-up of P at the 240 + 16 distinct points described in the preceding step. The next
operation is the blow-up P′′ → P′ along the

(

16
2

)

pairwise disjoint respective strict transforms of the
pencils

∣

∣H0 − Es′ − Es′′
∣

∣

S̃0
, 1 6 s′ < s′′ 6 16. (7.3)

To describe the exceptional divisor L̃s′s′′ of P
′′ → P′ on the proper transform of (7.3), consider the

3–dimensional linear system Ls′s′′ :=
∣

∣L0(−Q̃s′ − Q̃s′′)
∣

∣, isomorphic to the projectivization of the kernel
of the surjective map

(

⊕

s∈{s′,s′′}

H0
(

Q̃s,OQ̃s
(H)

)

)

� H0
(

S̃0,OS̃0
(H0 − Es′ − Es′′)

)

→
⊕

s∈{s′,s′′}

H0
(

Es,OEs
(−Es)

)

(7.4)

(ς ′, ς ′′, ς) 7→ (ς ′ − ς, ς ′′ − ς).
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Then L̃s′s′′ identifies as the blow–up of Ls′s′′ along the line defined by ς = 0 in the above notation; in
particular it is isomorphic to P

(

OP1 � OP1(1)�2
)

, with P2–bundle structure

ρs′s′′ : L̃s′s′′ →
∣

∣H0 − Es′ − Es′′
∣

∣

S̃0

induced by the projection of the left-hand side of (7.4) on its last summand, as follows from Lemma 2.7.
The typical element of L̃s′s′′ consists of
(i) a member C of |H0 − Es′ − Es′′ |S̃0

, plus
(ii) two curves in |H |Q̃′

s
and |H |Q̃′

s
respectively, matching C along Es′ and Es′′ , together with

(iii) rational tails on the Wj ’s (two on those Wj meeting neither Q̃s′ nor Q̃s′′ , one on those Wj meeting

exactly one component among Q̃s′ and Q̃s′′ , and none on the two Wj ’s meeting both Q̃s′ and Q̃s′′)
matching C along Dj .
The image by ρs′s′′ of such a curve is the point corresponding to its component (i).

Remark 7.1 The image of X̄ via the complete linear system |L(−Q̃s′ − Q̃s′′)| provides a model f ′ :
S′ → ∆ of the initial family f : S → ∆, with central fibre the transverse union of two double planes Πs′

and Πs′′ . For s ∈ {s′, s′′}, the plane Πs is the projection of Q̃s from the point ps̄ corresponding to the
direction of the line ℓs,s′ in |OQ̃s

(H)|∨ ∼= |L0(−Q̃s)|∨, where {s, s̄} = {s′, s′′}; there is a marked conic on

Πs, corresponding to the branch locus of this projection. The restriction to Es of the morphism Q̃s → Πs

is a degree 2 covering Es → Πs′ ∩Πs′′ =: Ls′s′′ . The two marked conics on Πs′ and Πs′′ intersect at two
points on the line Ls′s′′ , which are the two branch points of both the double coverings Es′ → Ls′s′′ and
Es′ → Ls′s′′ . These points correspond to the two points cut out on Es′ (resp. Es′′) by the two curves Dj

that correspond to the two double conics of S0 passing through ps′ and ps′′ . There are in addition six
distinguished points on Ls′s′′ , corresponding to the six pairs of points cut out on Es′ (resp. Es′′) by the
six curves Cs′s′′s′′′ on S̃0.

Step (III)

The last operation is the blow-up P′′′ → P′′ along the 16 disjoint surfaces that are the strict transforms
of the 2-dimensional linear systems

∣

∣H0 − Es

∣

∣

S̃0
, 1 6 s 6 16.

We want to understand the exceptional divisor L̃s. Consider the linear system Ls :=
∣

∣L0(−Q̃s)
∣

∣,
which identifies with the projectivization of the kernel of the surjective map

fs : H
0
(

Q̃s,OQ̃s
(H)

)

� H0
(

S̃0,OS̃0
(H0 − Es)

)

→ H0
(

Es,OEs
(−Es)

)

(ς ′, ς) 7→ (ς ′ − ς)

(itself isomorphic to H0(Q̃s,OQ̃s
(H)), by the way). Blow–up Ls at the point ξ corresponding to ς = 0;

one thus gets a P1–bundle over the plane |H0 −Es|S̃0
. Then L̃s is obtained by further blowing–up along

the proper transforms of the lines joining ξ with the 6+
[(

15
2

)

− 6
(

5
2

)]

= 51 points of |H0−Es| we blew–up

in Step (I). The typical member of L̃s consists of two members of |H0 − Es|S̃0
and |H |Q̃s

respectively,
matching along Es, together with rational tails on the surfaces Wj .

Remark 7.2 The image of X̄ by the complete linear system |L(−Q̃s)| provides a model f ′ : S′ → ∆ of
the initial family f : S → ∆, with central fibre the transverse union of a smooth quadric Q, and a double
plane Π branched along six lines tangent to the conic Γ := Π∩Q (i.e. the projection of S0 from the node
ps). There are fifteen marked points on Π, namely the intersection points of the six branch lines of the
double covering S0 → Π.

Conclusion

We shall now describe the curves parametrized by the intersections of the various components of P′′′0 ,
thus proving:

Proposition 7.3 The central fibre P′′′0 is the limit linear system of |Lt| = |OX̄t
| as t ∈ ∆∗ tends to 0.
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Proof. We analyze step by step the effect on the central fibre of the birational modifications operated
on P in the above construction, each time using Lemma 2.7 without further notification.

(I) At this step, recall (cf. §1) that P0 ⊂ P′ denotes the proper transform of P0 ⊂ P in the blow–
up P′ → P. For each {s′, s′′, s′′′} ⊂ {1, . . . , 16} such that 〈p′, p′′, p′′′〉 is a plane that does not belong
to the 166 configuration, the intersection L̃s′s′′s′′′ ∩ P0 ⊂ P′ is the exceptional P2 of the blow–up of
|L0| ∼= |OS0

(1)| at the point corresponding to Hs′s′′s′′′ . Its points, but those lying on one of the three
lines joining two points among πs′ , πs′′ , πs′′′ which also have been blown–up (the notation is that of Step
(Ia)), correspond to the trace of the pull–back of |OS0

(1)| on Cs′s′′s′′′ + Es′ + Es′′ + Es′′′ .
For each j ∈ {1, . . . , 16}, the intersection L̃j ∩P0 ⊂ P′ is a plane, the points of which correspond to

curves 2Dj+G1
j+· · ·+G6

j+Φ of X̄0, Φ ∈ |OWj
(2F )|, except for those points on the six lines corresponding

to the cases when Φ contains one of the six curves G1
j , . . . , G

6
j .

(II) Let {s′ 6= s′′} ⊂ {1, . . . , 16}. The intersection L̃s′s′′ ∩P0 ⊂ P′′ is a P1 × P1; the first factor is
isomorphic to the proper transform of the line |H0 − Es′ − Es′′ |S̃0

in P0, while the second is isomorphic

to the line {ς = 0} ⊂ Ls′s′′ in the notation of Step (II) above. Then the points in L̃s′s′′ ∩ P0 ⊂ P′′

correspond to curves C + Es′ + Es′′ in X̄0, with C ∈ |H0 − Es′ − Es′′ |S̃0
, exception made for the points

with second coordinate [ςs′ : 0 : 0] or [0 : ςs′′ : 0] in Ls′s′′ , where ςs ∈ H0(OQ̃s
(H)) vanishes on Es for

each s ∈ {s′, s′′}.
Let s′′′ 6∈ {s′, s′′} be such that 〈p′, p′′, p′′′〉 is a plane outside the 166 configuration. The intersection

L̃s′s′′ ∩ L̃s′s′′s′′′ ⊂ P′′ is the P2 preimage of the point corresponding to Cs′s′′s′′′ in |H0 −Es′ −Es′′ |S̃0
via

ρs′s′′ , and parametrizes curves Cs′s′′s′′′+Es′′′+C′+C′′+rational tails, with C′ ∈ |H |Q̃s′
and C′′ ∈ |H |Q̃s′′

matching Cs′s′′s′′′ along Es′ and Es′′ respectively.
On the other hand, for s′′′ 6∈ {s′, s′′} such that 〈p′, p′′, p′′′〉 belongs to the 166 configuration, let

j ∈ {1, . . . , 16} be such that 2Dj is cut out on S0 by 〈p′, p′′, p′′′〉, and set Q̃s′ = Q̃1
j and Q̃s′′ = Q̃2

j ; then

L̃s′s′′ ∩ L̃s′s′′s′′′ ⊂ P′′ is the preimage by ρs′s′′ of the point corresponding to Dj in |H0 − Es′ − Es′′ |S̃0
,

and parametrizes the curves

2Dj +
(

G1
j + C′

)

+
(

G2
j + C′′

)

+
∑6

s=3

(

Gs
j + Es

j

)

,

where C′ ∈ |H −G1
j |Q̃s′

is the proper transform by Q̃s′ → Qs′ of a member of |H |Qs′
tangent to Es′ at

Dj ∩ Es′ , and similarly for C′′.

(III) Let s ∈ {1, . . . , 16}. The intersection L̃s∩P0 ⊂ P′′′ is isomorphic to the plane |H0−Es|S̃0
blown–

up at the 51 points corresponding to the intersection of at least two lines among the fifteen |H0−Es−Es′ |,
s′ 6= s. Each point of the non–exceptional locus of this surface corresponds to a curve C+Es ⊂ X̄0, with
C ∈ |H0 − Es|S̃0

.

Let s′ ∈ {1, . . . , 16}− {s}. The intersection L̃s ∩ L̃ss′ ⊂ P′′′ is an F1, isomorphic to the blow–up at ξ
of the plane in Ls projectivization of the kernel of the restriction of fs to H0

(

OQ̃s
(H)

)

� H0
(

OS̃0
(H0 −

Es −Es′)
)

. It has the structure of a P1–bundle over |H0 −Es−Es′ |, and its points correspond to curves
C + Es′ + Cs + rational tails, with Cs ∈ |H |Q̃s

matching with C ∈ |H0 − Es − Es′ | along Es; note that
the points on the exceptional section correspond to the curves C + Es′ + Es + rational tails.

Let s′′ ∈ {1, . . . , 16}−{s, s′}, and assume the plane 〈p′, p′′, p′′′〉 is outside the 166 configuration. Then
L̃s∩L̃ss′s′′ ⊂ P′′′ is a P1×P1, the two factors of which are respectively isomorphic to the projectivization
of the kernel of the restriction of fs to H0

(

OQ̃s
(H)

)

� H0
(

OS̃0
(H0 − Es − Es′ − Es′′)

)

, and to the line
〈πs′ , πs′′〉 in Lss′s′′ (with the notations of Step (Ib)). It therefore parametrizes the curves

Css′s′′ + Es′ + Es′′ + C + rational tails,

where C ∈ |H |Q̃s
matches Css′s′′ along Es.

Let j ∈ {1, . . . , 16} be such that Wj intersects Q̃s, and set Q̃1
j = Q̃s. Then L̃s∩ L̃j ⊂ P′′′ is a P1×P1,

the two factors of which are respectively isomorphic to the pencil of pull–backs to Q̃s of members of
|H |Qs

tangent to Es at the point Dj ∩ Es, and to the subpencil 2Dj + 2G1
j +G2

j + · · ·+ G6
j + |F |Wj

of

Lj . It parametrizes curves

2Dj +
(

G1
j + C

)

+
∑6

s=2

(

Gs
j + Es

j

)

,

where C ∈ |H −G1
j |Q̃s

is the proper transform of a curve on Qs tangent to Es at Dj ∩ Es.
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It follows from the above analysis that the points of P′′′0 all correspond in a canonical way to curves
on X̄0, which implies our assertion by Lemma 2.6. ✷

7.3 – The linear system Lj

In this section, we study the rational map ϕj (or simply ϕ) determined by the linear system Lj =
∣

∣OWj
(2H) � IZj

∣

∣ on Wj , for 1 6 j 6 16.
Let uj : W̄j → Wj be the blow–up at the twelve points in the support of Zj. For 1 6 s 6 6, we denote

by Ĝs
j the strict transform of the ruling Gs

j , and by Isj
′, Isj

′′ the two exceptional curves of uj meeting Ĝs
j .

Then the pull–back via uj induces a natural isomorphism

∣

∣OWj
(2H) � IZj

∣

∣ ∼=
∣

∣

∣
OW̄j

(

2H −
6
∑

s=1

(Isj
′
+ Isj

′′)
)

∣

∣

∣
;

we denote by L̄j the right hand side linear system.

Proposition 7.4 The linear system L̄j determines a 2 : 1 morphism

ϕ̄ : W̄j → Σ ⊂ P3,

where Σ is a quadric cone. The divisor D̃j := Dj + F̂ 1
j + · · ·+ F̂ 6

j is contracted by ϕ̄ to the vertex of Σ.
The branch curve B of ϕ̄ is irreducible, cut out on Σ by a quartic surface; it is rational, with an ordinary
six–fold point at the vertex of Σ.

Before the proof, let us point out the following corollary, which we will later need.

Corollary 7.5 The Severi variety of irreducible δ–nodal curves in
∣

∣OWj
(2H)�IZj

∣

∣ is isomorphic to the

subvariety of P̌3 parametrizing δ–tangent planes to B, for δ = 1, . . . , 3. They have degree 14, 60, and 80,
respectively.

For the proof of Proposition 7.4 we need two preliminary lemmas.

Lemma 7.6 The linear system |OWj
(2H) � IZj

| ⊂ |2HWj
| has dimension 3.

Proof. The 0-cycle Zj is cut out on G1
j + · · ·+G6

j by a general curve in |2H |. Let then

σ ∈
6
⊕

s=1

H0(Gs
j ,OGs

j
(2H)) ∼= H0(P1,OP1(2))�6

be a non–sero section vanishing at Zj. Then H0(Wj ,OWj
(2H) � IZj

) ∼= r−1(〈σ〉) where

r : H0(Wj ,OWj
(2H)) →

6
⊕

s=1

H0(Gs
j ,OGs

j
(2H)) ∼= H0(P1,OP1(2))�6

is the restriction map. The assertion now follows from the restriction exact sequence, since

h0(Wj ,OWj
(2H) � IZj

) = 1 + h0(Wj ,OWj
(2H − 6F )) = 4.

✷

Lemma 7.7 The rational map ϕj has degree 2 onto its image, and its restriction to any line of the ruling
|FWj

| but the six Gs
j , 1 6 s 6 6, has degree 2 as well.
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Proof. Let x ∈ Wj be a general point and let Fx be the line of the ruling containing x. One can
find a divisor D ∈ |OWj

(2H) � IZj
| containing x but not containing Fx. Let x + x′ be the length two

scheme cut out by D on Fx. By an argument similar to the one in the proof of Lemma 7.6, one has
dim

(

|OWj
(2H)�IZj

�Ix+x′|
)

= 2. This shows that x and x′ are mapped to the same point by ϕ. Then,
considering the sublinear system

2Dj +G1
j + · · ·+G6

j + Fx +Φ, Φ ∈ |OWj
(F )|,

of Lj , with fixed divisor 2Dj +G1
j + · · ·+G6

j + Fx, the assertion follows from the base point freeness of
|OWj

(F )|. ✷

Proof of Proposition 7.4. First we prove that Lj has no fixed components, hence that the same holds
for L̄j . Suppose Φ is such a fixed component. By Lemma 7.7, Φ ·F = 0, hence Φ should consist of curves
contained in rulings. The argument of the proof of Lemma 7.6 shows that no such a curve may occur in
Φ, a contradiction.

Let D ∈ L̄j be a general element. By Lemmas 7.6 and 7.7, D is irreducible and hyperelliptic, since
D · F = 2. Moreover D2 = 4 and pa(D) = 3. This implies that D is smooth and that L̄j is base point
free. Moreover the image Σ of ϕ has degree 2. Since D · D̃j = 0 and D̃2

j = −4, the connected divisor D̃j

is contracted to a double point v of Σ, which is therefore a cone.
Since D is mapped 2 : 1 to a general plane section of Σ, which is a conic, we see that deg(B) = 8.

Let Φ ∈ |F |Wj
be general, and ℓ its image via ϕ, which is a ruling of Σ. The restriction ϕ|Φ : Φ → ℓ

is a degree 2 morphism, which is ramified at the intersection point of Φ with Dj . This implies that ℓ
meets B at one single point off the vertex v of Σ. Hence B has a unique irreducible component B0 which
meets the general ruling ℓ in one point off v. We claim that B = B0. If not, B − B0 consists of rulings
ℓ1, . . . , ℓn, corresponding to rulings F1, . . . , Fn, clearly all different from the Gs

j , with 1 6 s 6 6. Then
the restrictions ϕ|Fi

: Fi → ℓi would be isomorphisms, for 1 6 i 6 n, which is clearly impossible. Hence
B is irreducible, rational, sits in |OΣ(4)|. Finally, taking a plane section of Σ consisting of two general
rulings, we see that it has only two intersection points with B off v. Hence B has a point of multipilicity
6 at v and the assertion follows. ✷

Remark 7.8 Each of the curves Ĝs
j + Isj

′ + Isj
′′ ∈ |F |W̄j

, for 1 6 s 6 6, is mapped by ϕ̄ to a ruling ℓs
of Σ, and this ruling has no intersection point with B off v. This implies that v is an ordinary 6–tuple
point for B and that the tangent cone to B at v consists of the rulings ℓ1, . . . , ℓ6 of Σ.

Remark 7.9 Let S′ → ∆ be the image of X̄ → ∆ via the map defined by the linear system |L(−2Wj −
∑

s Q̃
s
j)|. One has S′t

∼= St2 for t 6= 0, and the new central fibre S′0 is a double quadratic cone Σ in P3.

7.4 – The limit Severi varieties

In this section we describe the regular components of the limit Severi varieties V1,δ(X̄) for 1 6 δ 6 3.
The discussion here parallels the one in §4.8, therefore we will be sketchy, leaving to the reader most of
the straightforward verifications, based on the description of the limit linear system in §7.2.

Proposition 7.10 (Limits of 1-nodal curves) The regular components of the limit Severi variety
V1,1(X̄) are the following (they all appear with multiplicity 1, but the ones in (iii) which appear with
multiplicity 2):
(i) V

(

δS̃0
= 1
)

, which is isomorphic to the Kummer quartic surface Š0 ⊂ |OS0
(1)| ∼= P̌3;

(ii) V
(

Q̃s, δQ̃s
= 1
)

, which is isomorphic to the smooth quadric Q̌s ⊂ |OQs
(1)| ∼= P̌3, for 1 6 s 6 16;

(iii) V (Q̃s, τEs,2 = 1), which is isomorphic to a quadric cone in |OQs
(1)|, for 1 6 s 6 16;

(iv) V
(

Q̃s′ + Q̃s′′ , δQ̃s′
= 1
)

, which is isomorphic to Q̌s ⊂ |OQs
(1)| ∼= P̌3, for 1 6 s′ < s′′ 6 16;

(v) V
(

Q̃s′ + Q̃s′′ + Q̃s′′′ , δQ̃s′
= 1

)

, for 1 6 s′, s′′, s′′′ 6 16 such that Q̃s′ , Q̃s′′ , Q̃s′′′ are pairwise distinct

and do not meet a common Wj: it is again isomorphic to Q̌s ⊂ |OQs
(1)| ∼= P̌3;

(vi) V
(

2Wj + Q̃1
j + · · ·+ Q̃6

j , δWj
= 1
)

, which is isomorphic to the degree 14 surface B̌ ⊂ |OB(1)| ∼= P̌3,
for 1 6 j 6 16.
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Corollary 7.11 (Theorem C for δ = 1) The family f : S → ∆ of general quartic surfaces degenerat-
ing to a Kummer surface S0 we started with, with smooth total space S, and endowed with the line bundle
OS(1), is 1–well behaved, with good model ̟ : X̄ → ∆. The limit in |OS0

(1)| of the dual surfaces Št,
t ∈ ∆∗, consists in the union of the dual Š0 of S0 (which is again a Kummer surface), plus the 16 planes
of the 166 configuration of Š0, each counted with multiplicity 2.

Proof. The push–forward by the morphism P′′′0 → P0
∼= |OS0

(1)| of the regular components of V1,1

with their respective multiplicities in Vreg
1,1 is Š0 in case (i), 2 · p̌s in case (ii), and 0 otherwise. The

push-forward of Vreg
1,1(X̄) has thus total degree 36, and is therefore the crude limit Severi variety Vcr

1,1(S)
by Proposition 3.1. ✷

Remark 7.12 (a) Similar arguments show that ̟ : X̄ → ∆ is a 1–good model for the degenerations
of general quartic surfaces obtained from X̄ → ∆ via the line bundles L(−2Wj − Q̃1

j − · · · − Q̃6
j) and

L(−Q̃s) respectively (see Remarks 7.9 and 7.2 for a description of these degenerations).
To see this in the former case, let us consider two general points on a given Wj , and enumerate the

regular members of V1,1 that contain them. There are 2 curves in (i) (indeed, the two points on Wj

project to two general points on Dj
∼= Γj ⊂ S0 ⊂ P3, which span a line ℓ ⊂ P̌3; the limiting curves in S0

passing through the two original points on Wj correspond to the intersection points of ℓ̌ with Š0; now ℓ̌
meets Š0 with multiplicity 2 at the double point which is the image of Γj via the Gauss map, and only
the two remaining intersection points are relevant). There are in addition 2 limiting curves in each of
the 10 components of type (ii) corresponding to the Q̃s’s that do not meet Wj , and 14 in the relevant
component of type (vi).

In this case, the crude limit Severi variety therefore consists, in the notation of Remark 7.9, of the
degree 14 surface B̌, plus the plane v̌ with multiplicity 22 (this has degree 36 as required).

For the degeneration given by L(−Q̃s), the crude limit Severi variety consists, in the notation of
Remark 7.2, of the dual to the smooth quadric Q, plus the dual to the conic Γ with multiplicity 2, plus
the fifteen planes p̌ with multiplicity 2, where p ranges among the fifteen marked points on the double
plane Π.

(b) One can see that ̟ : X̄ → ∆ is not a 1–good model for the degeneration to a union of two double
planes obtained via the line bundle L(−Q̃s′ − Q̃s′′) described in Remark 7.1. In addition (see Step (Ia))
the line bundles L(−Q̃s′ − Q̃s′′ − Q̃s′′′), though corresponding to 3–dimensional components of the limit
linear system, do not provide suitable degenerations of surfaces. Despite all this, it seems plausible that
one can obtain a good model by making further modifications of X̄ → ∆. The first thing to do would be
to blow–up the curves Cs′s′′s′′′ .

Proposition 7.13 (Limits of 2-nodal curves) The regular components of the limit Severi variety
V1,2(X̄) are the following (they all appear with multiplicity 1, except the ones in (ii) appearing with
multiplicity 2):
(i) V

(

Q̃s′+Q̃s′′ , δQ̃s′
= δQ̃s′′

= 1
)

for s′ 6= s′′, proper transform of the intersection of two smooth quadrics
in Ls′s′′ ;
(ii) V

(

Q̃s′ + Q̃s′′ , δQ̃s′
= 1, τEs′′ ,2 = 1

)

for s′ 6= s′′, proper transform of the intersection of a smooth
quadric and a quadric cone in Ls′s′′ ;
(iii) V

(

Q̃s′ + Q̃s′′ + Q̃s′′′ , δQ̃s′
= δQ̃s′′

= 1
)

for 1 6 s′, s′′, s′′′ 6 16 such that Q̃s′ , Q̃s′′ , Q̃s′′′ are pairwise
distinct and do not meet a common Wj, proper transform of the intersection of two smooth quadrics in
Ls′s′′s′′′ ;
(iv) V

(

2Wj+Q̃1
j+· · ·+Q̃6

j , δWj
= 2
)

for each j ∈ {1, . . . , 16}, proper transform of a degree 60 curve in Lj.

Proof. Again, one checks that the components listed in the above statement are the only ones provided
by Proposition 2.14, taking the following points into account:
(a) the condition δS̃0

= 2 is impossible to fulfil, because there is no plane of P3 tangent to S0 at exactly
two points (see Proposition 6.1);
(b) the condition δS̃0

= δQ̃i
= 1 is also impossible to fulfil, because there is no plane in P3 tangent to S0

at exactly one point, and passing through one of its double points. Indeeed, let pi be a double point of
S0, the dual plane p̌i is everywhere tangent to Š0 along the contact conic Gauss image of Ei;
(c) the condition δQ̃s

= τEs,2 = 1 imposes to a member of |H |Q̃s
to be the sum of two rulings intersecting

at a point on Es, and such a curve does not belong to the limit Severi variety:
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(d) the condition τEs′ ,2 = τEs′′ ,2 = 1 imposes to contain one of the two curves Dj intersecting both Es′

and Es′′ , which violates condition (i) of Definition 2.12. ✷

Remark 7.14 As in Remark 4.25, we can enumerate the 480 limits of 2–nodal curves passing through
a general point in certain irreducible components of X̄0:
(a) for a general point on S̃0, we find 4 limit curves in each of the

(

16
2

)

= 120 components in (i) of
Proposition 7.13;
(b) for a general point on a given Wj , we find 60 limit curves in the appropriate component in (iv), and

4 in each of the
(

16
2

)

−
(

6
2

)

= 105 different components of type (i) such that Q̃s′ and Q̃s′′ do not both
meet Wj .

This shows that X̄ → ∆ is a 2–good model for the degenerations of quartics corresponding to the line
bundles L and L(−2Wj − Q̃1

j − · · · − Q̃6
j). In particular, it implies Corollary 7.15 below.

Corollary 7.15 (Theorem C for δ = 2) Same setting as in Corollary 7.11. The crude limit Severi
variety Vcr

1,2(S) consists of the images in |OS0
(1)| of the 120 irreducible curves listed in case (a) of

Remark 7.14. Each of them projects 4 : 1 onto a pencil of planes containing two double points of S0.

Proposition 7.16 (Limits of 3-nodal curves) The family X̄ → ∆ is absolutely 3–good, and the limit
Severi variety V1,3 is reduced, consisting of:

(i) 8 distinct points in each V
(

−Q̃s′ − Q̃s′′ − Q̃s′′′ , δQ̃s′
= δQ̃s′′

= δQ̃s′′′
= 1

)

, where 1 6 s′, s′′, s′′′ 6 16

are such that 〈ps′ , ps′′ , ps′′′〉 is a plane that does not belong to the 166 configuration of S0;
(ii) the 80 distinct points in each V

(

2Wj + Q̃1
j + · · ·+ Q̃6

j , δWj
= 3
)

, corresponding to the triple points of

the double curve of B̌ ⊂ |OB(1)| ∼= P̌3 that are also triple points of B̌.

Proof. There are 240 unordered triples {s′, s′′, s′′′} such that the corresponding double points of S0 do
not lie on a common Dj , so Vreg

1,3 has degree 3200, which fits with Proposition 3.1. ✷

Corollary 7.17 (Theorem C for δ = 3) Same setting as in Corollary 7.11. The crude limit Severi
variety Vcr

1,3(S) ⊂ |OS0
(1)| consists of:

(i) the 240 points corresponding to a plane through three nodes of S0, but not member of the 166 configu-
ration, each counted with multiplicity 8;
(ii) the 16 points corresponding to a member of the 166 configuration, each counted with multiplicity 80.

8 – Plane quartics curves through points in special position

In this section we prove the key result needed for the proof of Theorem D, itself given in §4.8. We believe
this result, independently predicted with tropical methods by E. Brugallé and G. Mikhalkin (private
communication), is interesting on its own. Its proof shows once again the usefulness of constructing
(relative) good models.

The general framework is the same as that of §4 and §7, and we are going to be sketchy here.

8.1 – The degeneration and its good model

We start with the trivial family f : S := P2 × ∆ → ∆, together with flatly varying data for t ∈ ∆ of
three independent lines at, bt, ct lying in St, and of a 0-dimensional scheme Zt of degree 12 cut out on
at + bt + ct by a quartic curve Γt in St, which is general for t ∈ ∆∗. We denote by OS(1) the pull–back
line bundle of OP2(1) via the projection S → P2.

We blow–up S along the line c0. This produces a new family Y → ∆, the central fibre Y0 of which is
the transverse union of a plane P (the proper transform of S0, which we may identify with P ) and of an
F1 surface W (the exceptional divisor). The curve E := P ∩W is the line c0 in P , and the (−1)– section
in W . The limit on Y0 of the three lines at, bt, ct on the fibre Yt

∼= P2, for t ∈ ∆∗, consists of:
(i) two general lines a, b in P plus the curves a′, b′ ∈ |F |W matching them on E;
(ii) a curve c ∈ |H |W = |F + E|W on W .

We denote by OY (1) the pull–back of OS(1) and we set L♮ = OY (4)�OY (−W ). One has L♮
t
∼= OP2(4)

for t ∈ ∆∗, whereas L♮
0 restrict to OP (3H) and OW (4F + E) ∼= OW (4H − 3E) respectively. We may
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Figure 10: Degeneration of base points on a triangle

assume that the quartic curve Γt ∈ |L♮
t| cutting Zt on at+ bt+ ct for t ∈ ∆∗ tends, for t → 0, to a general

curve Γ0 ∈ |L♮
0|. Then Γ0 = ΓP +ΓW , where ΓP is a general cubic in P and ΓQ ∈ |4H − 3E|W , with ΓP

and ΓW matching along E. Accordigly Z0 = ZP + ZW , where ZP has length 6 consisting of 3 points on
a and 3 on b, and ZW consists of 1 point on both a′ and b′, and 4 points on c (see Figure 10).

Next we consider the blow–up ε : X → Y along the curve Z in Y described by Zt, for t ∈ ∆, and
thus obtain a new family π : X → ∆, where each Xt is the blow–up of Yt along Zt. We call EZ the
exceptional divisor of ε. The fibre of ε|EZ

: EZ → ∆ at t ∈ ∆ consists of the twelve (−1)–curves of the

blow–up of Yt at Zt. The central fibre X0 is the transverse union of P̃ and W̃ , respectively the blow–ups
of P and W along ZP and ZW ; we denote by EP and EW the corresponding exceptional divisors.

We let L := ε∗L♮
�OX(−EZ). Recall from §4.4 that the fibre of P(π∗(L)) over t ∈ ∆∗ has dimension

3. We will see that X → ∆, endowed with L, is well behaved and we will describe the crude limit Severi
variety Vcr

δ for 1 6 δ 6 3. This analysis will prove Theorem D.

Remark 8.1 We shall need a detailed description of the linear system |L0|. The vector space H0(X0,L0)
is the subspace of H0(W̃ ,OW̃ (4H − 3E − EW )) × H0(P̃ ,OP̃ (3H − EP )) which is the fibred product
corresponding to the Cartesian diagram

H0(X0,L0)

��

// H0(P̃ ,OP̃ (3H − EP ))

rP
��

H0(W̃ ,OW̃ (4H − 3E − EW )) rW
// H0(E, L|E)

∼= H0(P1,OP1(3))

(8.1)

where rP , rW are restriction maps. The map rW is injective, whereas rP has a 1-dimensional kernel
generated by a section s vanishing on the proper transforms of a + b + c. Since h0(X0,L0) > 4 by
semicontinuity, one has Im(rP ) = Im(rW ), and therefore H0(X0,L0) ∼= H0(P̃ ,OP̃ (3H − EP )) has also
dimension 4. Geometrically, for a general curve CP ∈ |3H − EP |, there is a unique curve CW ∈ |4H −
3E − EW | matching it along E and CP + CW ∈ |L0|. On the other hand (0, s) ∈ H0(X0,L0) is the
only non–trivial section (up to a constant) identically vanishing on a component of the central fibre
(namely W̃ ), and H0(X0,L0)/(s) ∼= H0(W̃ ,OW̃ (4H−3E−EW )). Therefore, if we denote by D the point
corresponding to (0, s) in |L0|, a line through D parametrizes the pencil consisting of a fixed divisor in
|4H − 3E − EW | on W̃ plus all divisors in |3H − EP | matching it on E.

We will denote by R the g23 on E given by |Im(rP )| = |Im(rW )|.

To get a good model, we first blow–up the proper transform of a in P̃ , and then we blow–up the
proper transform of b on the strict transform of P̃ . We thus obtain a new family ̟ : X̄ → ∆. The
general fibre X̄t, t ∈ ∆∗, is isomorphic to Xt. The central fibre X̄0 has four components (see Figure 11):
(i) the proper transform of P̃ , which is isomorphic to P̃ ;
(ii) the proper transform W̄ of W̃ , which is isomorphic to the blow–up of W̃ at the two points a∩E, b∩E,
with exceptional divisors Ea and Eb;
(iii) the exceptional divisor Wb of the last blow–up, which is isomorphic to F0;
(iv) the proper transform Wa of the exceptional divisor over a, which is the blow–up of an F0–surface,
at the point corresponding to a ∩ b (which is a general point of F0) with exceptional divisor Eab.

As usual, we go on calling L the pull–back to X̄ of the line bundle L on X .
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Figure 11: Good model for plane quartics through twelve points

8.2 – The limit linear system

We shall now describe the limit linear system L associated to L. As usual, we start with P := P(̟∗(L)),
and we consider the blow–up P′ → P at the point D ∈ P0

∼= |L0|. The central fibre of P′ → ∆ is, as we
will see, the limit linear system L. It consists of only two components: the proper transform L1 of |L0|
and the exceptional divisor L2

∼= P3. Let us describe these two components in terms of twisted linear
systems on the central fibre.

Since the map rW in (8.1) is injective, it is clear that L2
∼= |L0(−W̄ −Wa −Wb)|. The line bundle

L0(−W̄−Wa−Wb) is trivial on P̃ and restricts to OW̄ (4H−2E−3Ea−3Eb−EW ),OWa
(H−Eab),OWb

(H)
on W̄ ,Wa,Wb respectively. Once chosen CW ∈

∣

∣OW̄ (4H − 2E − 3Ea − 3Eb − EW )
∣

∣, there is only one

possible choice of two curves Ca and Cb in
∣

∣OWa
(H −Eab)

∣

∣ and
∣

∣OWb
(H)

∣

∣ respectively, that match with
CW along Ea, Eb respectively. They automatically match along Eab.

In conclusion, by mapping W̄ to P2 (via |H |W̄ ), we have:

Proposition 8.2 The component L2
∼= |L0(−W̄ − Wa − Wb)| of P′0 is isomorphic to a 3-dimensional

linear system of plane quartics with an imposed double point x, prescribed tangent lines t1, t2 at x, and
six further base points, two of which general on t1, t2 and the remaining four on a general line.

To identify L1 as the blow–up of |L0| at D, we take into account Lemma 2.7, which tells us that the
exceptional divisor E ⊂ L1 identifies with R. Since E = L1 ∩ L2, the linear system E identifies with a
sublinear system of codimension 1 in L2, namely that of curves

a+ b+ E + C, C ∈
∣

∣4H − 3E − 3Ea − 3Eb − EW

∣

∣

W

(in the setting of Proposition 8.2, C corresponds to a quartic plane curve with a triple point at x passing
through the six simple base points).

It follows from this analysis that L is the limit as t → 0 of the linear systems |Lt|, t ∈ ∆∗, in the sense
of §2.2.

8.3 – The limit Severi varieties

We will use the notion of n–degree introduced in Definition 2.21. However we will restrict our attention
to the case in which we fix 1 or 2 points only on P̃ . Hence, if we agree to set P̃ = Q1, then we call
P–degree of a component V of Vδ its n–degree with n = (3− δ, 0, 0, 0); we denote it by degP (V ).

Proposition 8.3 (Limits of 1-nodal curves) The regular components of the limit Severi variety
V1(X̄,L) are the following, all appearing with multiplicity 1, except (iii), which has multiplicity 2:
(i) V (δP̃ = 1), with P–degree 9;
(ii) V (δW̄ = 1), with P–degree 4;
(iii) V (τE,2 = 1), with P–degree 4;
(iv) V (W̄ +Wa +Wb, δW̄ = 1), with P–degree 0.
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Proof. The list is an application of Proposition 2.14. The only things to prove are the degree assertions.
Since L2 is trivial on P̃ , case (iv) is trivial. Case (i) follows from Proposition 3.2, because the P–degree
of V (δP̃ = 1) is the degree 9 of the dual surface of the image XP of P̃ via the linear system |3H − EP |,
which is a cubic surface with an A2 double point (see Proposition 3.2).

As for (ii), note that nodal curves in |4H − 3E −EW | on W̄ consist of a ruling in |F | plus a curve C
in |4H − F − 3E − EW |. If F does not intersect one of the 4 exceptional curves in EW meeting c0, then
C = c0 + a′ + b′ and the matching curve on P̃ contains the proper transform of a and b, which is not
allowed. So F has to contain one of the 4 exceptional curves in EW meeting c0. This gives rise to four
pencils of singular curves in |4H − 3E −EW |, which produce (see Remark 8.1) four 2–dimensional linear
subsystems in |L0|, and this implies the degree assertion.

The degree assertion in (iii) follows from the fact that a g13 on E has 4 ramification points. ✷

Proposition 8.4 (Limits of 2-nodal curves) The regular components of the limit Severi variety
V2(X̄,L) are the following, all appearing with multiplicity 1, except (iv) and (v), which have multi-
plicity 2, and (vi), which has multiplicity 3:
(i) V (δP̃ = 2), with P -degree 9;
(ii) V (δW̄ = 2), with P -degree 6;
(iii) V (δP̃ = δW̄ = 1), with P -degree 36;
(iv) V (δP̃ = τE,2 = 1), with P -degree 28;
(v) V (δW̄ = τE,2 = 1), with P -degree 8;
(vi) V (τE,3 = 1), with P -degree 3;
(vii) V (W̄ +Wa +Wb, δW̄ = 2), with P–degree 0.

Proof. Again, the list is an immediate application of Proposition 2.14, and the only things to prove are
the degree assertions. Once more case (vii) is clear.

In case (i) the degree equals the number of lines on XP (the cubic surface image of P̃ ), that do not
contain the double point; this is 9.

In case (ii), we have to consider the binodal curves in |4H − 3E−EW | not containing E. Such curves
split into a sum Φ1 + Φ2 + C, where Φ1 and Φ2 are the strict transforms of two curves in |F |W . They
are uniquely determined by the choice of two curves in EW meeting c0: these fix the two rulings in |F |
containing them, and there is a unique curve in |2H − E| containing the remaining curves in EW . This
shows that the degree is 6.

Next, the limit curves of type (iii) consist of a nodal cubic in |3H − EP |P̃ and a nodal curve in
|4H − 3E − EW |W̄ ; a ruling necessarily splits from the latter curve. Again, the splitting rulings F are
the ones containing one of the four curves in EW meeting c0. The curves in |3H − 2E|W̄ containing the
remaining curves in EW , fill up a pencil. Let F0 be one of these four rulings. The number of nodal curves
in |3H − EP |P̃ passing through the base point F0 ∩ E and through a fixed general point on P̃ equals
the degree of the dual surface of XP , which is 9. For each such curve, there is a unique curve in the
aforementioned pencil on W̃ matching it. This shows that the degree is 36.

The general limit curve of type (iv) can be identified with the general plane of P3 = |3H − EP |∨P̃
which is tangent to both XP and the curve CE (image of E in XP ), at different points. The required
degree is the number of such planes passing through a general point p of XP . The planes in question are
parametrized in P̌3 by a component Γ1 of X̌P ∩ ČE : one needs to remove from X̌P ∩ ČE the component
Γ2, the general point of which corresponds to a plane which is tangent to XP at a general point of CE .
The latter appears with multiplicity 2 in X̌P ∩ ČE by Lemma 3.5. Moreover, X̌P and ČE have respective
degrees 9 and 4 by Proposition 3.2. Thus we have

degP
(

V (δP̃ = τE,2 = 1)
)

= 36− 2 deg(Γ2).

To compute deg(Γ2), take a general point q = (q0 : . . . : q3) ∈ P3, and let Pq(XP ) be the first polar of
XP with respect to q, i.e. the surface of homogeneous equation

q0
∂f

∂x0
+ · · ·+ q0

∂f

∂x3
= 0,

where f = 0 is the homogeneous equation of XP . The number of planes containing q and tangent to XP

at a point of CE is then equal to the number of points of Pq(XP ) ∩ CE , distinct from the singular point
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v of XP . A local computation, which can be left to the reader, shows that v appears with multiplicity 2
in Pp(XP ) ∩CE , which shows that deg(Γ2) = 4, whence degP

(

V (δP̃ = τE,2 = 1)
)

= 28.
In case (v), we have to determine the curves in |4H − 3E − EW | with one node (so that some ruling

splits) that are also tangent to E. As usual, the splitting rulings are the one containing one of the four
curves in EW meeting c0. Inside the residual pencil there are 2 tangent curves at E. This yields the
degree 8 assertion.

Finally, in case (vi), the degree equals the number of flexes of CE , which is a nodal plane cubic: this
is 3. ✷

Proposition 8.5 (Limits of 3-nodal curves) The regular components of the limit Severi variety
V3(X̄,L) are the following 0–dimensional varieties, all appearing with multiplicity 1, except the ones
in (iv) and (v) appearing with multiplicity 2, and (vi) with multiplicity 3:
(i) V (δP̃ = 3), which consists of 6 points;
(ii) V (δP̃ = 2, δW̄ = 1), which consists of 36 points;
(iii) V (δP̃ = 1, δW̄ = 2), which consists of 54 points;
(iv) V (δP̃ = 2, τE,2 = 1), which consists of 18 points;
(v) V (δP̃ = δW̄ = τE,2 = 1), which consists of 56 points;
(vi) V (δP̃ = τE,3 = 1), which consists of 18 points;
(vii) V (W̄ +Wa +Wb, δW̄ = 3), which consists of 6 points.

In the course of the proof, we will need the following lemma.

Lemma 8.6 Let p, q be general points on E.
(i) The pencil l ⊂ |3H −EP | of curves containing q, and tangent to E at p, contains exactly 7 irreducible
nodal curves not singular at p.
(ii) The pencil m ⊂ |3H−EP | of curves with a contact of order 3 with E at p contains exactly 6 irreducible
nodal curves not singular at p.

Proof. First note that l and m are indeed pencils by Remark 8.1. Let Ppq → P̃ be the blow-up at p and q,
with exceptional curves Ep and Eq above p and q respectively. Let P ′pq → Ppq be the blow-up at the point

E ∩Ep, with exceptional divisor E′p. Then l pulls back to the linear system
∣

∣3H −EP −Ep −Eq − 2E′p
∣

∣,
which induces an elliptic fibration P ′pq → P1, with singular fibres in number of 12 (each counted with its
multiplicity) by Lemma 3.3. Among them are: (i) the proper transform of a+ b+E, which has 3 nodes,
hence multiplicity 3 as a singular fibre; (ii) the unique curve of l containing the (−2)-curve Ep, which has
2 nodes along Ep, hence multiplicity 2 as a singular fibre. The remaining 7 singular fibres are the ones
we want to count.

The proof of (ii) is similar and can be left to the reader. ✷

Proof of Proposition 8.5. There is no member of L1 with 3 nodes on W̄ , because every such curve
contains one of the curves a′, b′, c0.

There is no member of L1 with two nodes on W̄ and a tacnode on E either. Indeed, the component on
W̄ of such a curve would be the proper transform of a curve of W consisting of two rulings plus a curve
in |2H −E|, altogether containing ZW . Each of the two lines passes through one of the points of ZW on
c0. The curve in |2H−E| must contain the remaining points of ZW , hence it is uniquely determined and
cannot be tangent to E.

Then the list covers all remaining possible cases, and we only have to prove the assertion about the
cardinality of the various sets.

The limiting curves of type (i) are in one-to-one correspondence with the unordered triples of lines
distinct from a and b in P , the union of which contains the six points of ZP . There are 6 such triples.

The limiting curves of type (ii) consist of the proper transform CP in P̃ of the union of a conic and a
line on P containing ZP , plus the union CW of the proper transforms in W̄ of a curve in |F | and one in
|3H− 2E| altogether containing ZW , with CP and CW matching along E. We have 9 possible pencils for
CP , corresponding to the choice of two points on ZP , one on a and one on b; each such pencil determines
by restriction on E a line l ⊂ R. There are 4 possible pencils for CW , corresponding to the choice of
one of the points of ZW on c0: there is a unique ruling containing this point, and a pencil of curves in
|3H − 2E| containing the five remaining points in ZW ; each such pencil defines a line m ⊂ R. For each
of the above choices, the lines l and m intersect at one point, whence the order 36.
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We know from the proof of Proposition 8.4 that there are six 2–nodal curves in |4H − 3E−EW |. For
each such curve, there is a pencil of matching curves in |3H − EP |. This pencil contains deg(X̌P ) = 9
nodal curves, whence the number 54 of limiting curves of type (iii).

The component on P̃ of a limiting curve of type (iv) is the proper transform of the union of a conic
and a line on P , containing EP . As above, there are 9 possible choices for the line. For each such choice,
there is a pencil of conics containing the 4 points of ZP not on the line. This pencil cuts out a g12 on E,
and therefore contains 2 curves tangent to E. It follows that there are 18 limiting curves of type (iv).

The component on W̄ of a limiting curve of type (v) is the proper transform of a ruling of W plus a
curve in |3H − 2E| tangent to E, altogether passing through ZW . The line necessarily contains one of
the four points of ZW on c0. There is then a pencil of curves in |3H − 2E| containing the five remaining
points of ZW . It cuts out a g12 on E, hence contains 2 curves tangent to E. For any such curve CW on
W̄ , there is a pencil of curves on the P̃–side matching it. By Lemma 8.6, this pencil contains 7 curves,
the union of which with CW is a limiting curve of type (v). This proves that there are 56 such limiting
curves.

As for (vi), there are 3 members of R that are triple points (see the proof of Proposition 8.4). Each
of them determines a pencil of curves on the P̃–side, which contains six 1-nodal curves by Lemma 8.6.
This implies that there are 18 limiting curves of type (vi).

Finally we have to count the members of V (W̄ +Wa +Wb, δW̄ = 3). They are in one–to–one corre-
spondence with their components on W̄ , which decompose into the proper transform of unions Ca ∪ Cb

of two curves Ca ∈ |2H − E − 2Ea − Eb| and Cb ∈ |2H − E − Ea − 2Eb|, altogether containing ZW .
The curves Ca, Cb must contain the two base points on b′, a′ respectively. We conclude that each limiting
curve of type (vii) corresponds to a partition of the 4 points of ZW on c0 in two disjoint sets of two points,
and the assertion follows. ✷

In conclusion, the following is an immediate consequence of Propositions 8.3, 8.4, and 8.5, together
with the formula (2.2).

Corollary 8.7 (preliminary version of Theorem D) Let a, b, c be three independent lines in the pro-
jective plane, and Z be a degree 12 divisor on a+ b+ c cut out by a general quartic curve. We consider
the 3–dimensional sub–linear system V of |OP2(4)| parametrizing curves containing Z, and we let, for
1 6 δ 6 3, Vδ be the Zariski closure in V of the codimension δ locally closed subset parametrizing irre-
ducible δ–nodal curves. One has

deg(V1) > 21, deg(V2) > 132, and deg(V3) > 304. (8.2)

Remark 8.8 (a) (Theorem D) The three inequalities in (8.2) above are actually equalities. This is
proved in §4.8, by using both (8.2) and the degrees of the Severi varieties of a general quartic surface,
given by Proposition 3.1.

Incidentally, this proves that ̟ : X̄ → ∆ is a good model for the family f̂ : Ŝ → ∆ obtained by
blowing–up S = P2 ×∆ along Z, and endowed with the appropriate subline bundle of OŜ(1).

(b) In particular, we have V3 = Vreg
3 . It then follows from Remark 2.15 that the relative Severi

variety V3(X̄,L) is smooth at the points of V3. This implies that the general fibre of V3(X̄,L) is reduced.
Therefore, in the setting of Corollary 8.7, if a+ b + c and Z are sufficiently general, then V3 consists of
304 distinct points.

9 – Application to the irreducibility of Severi varieties and to the monodromy

action

Set B = |OP3(4)|. We have the universal family p : P → B, such that the fibre of p over S ∈ B is
the linear system |OS(1)|. The variety P is a component of the flag Hilbert scheme, namely the one
parametrizing pairs (C, S), where C is a plane quartic curve in P3 and S ∈ B contains C. So P ⊂ B×W ,
where W is the component of the Hilbert scheme of curves in P3 whose general point corresponds to a
plane quartic. The map p is the projection to the first factor; we let q be the projection to the second
factor.

Denote by U ⊂ B the open subset parametrizing smooth surfaces, and set PU = p−1(U). Inside PU
we have the universal Severi varieties V◦δ , 1 6 δ 6 3, such that for all S ∈ U , the fibre of V◦δ over S is
the Severi variety Vδ(S,OS(1)). Since S is a K3 surface, we know that for all irreducible components V
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of Vδ(S,OS(1)), we have dim(V ) = 3 − δ, so that all components of V◦δ have codimension δ in PU . We
then let Vδ be the Zariski closure of V◦δ in P ; we will call it universal Severi variety as well.

The following is immediate (and it is a special case of a more general result, see [11]):

Proposition 9.1 The universal Severi varieties Vδ are irreducible for 1 6 δ 6 3.

Proof. It suffices to consider the projection q : Vδ → W , and notice that its image is the irreducible
variety whose general point corresponds to a quartic curve with δ nodes (cf. [23, 25]), and that the fibres
are all irreducible of the same dimension 20. ✷

Note that the irreducibility of V1 also follows from the fact that for all S ∈ U , we have V1(S,OS(1)) ∼=
Š. To the other extreme, p : V◦3 → U is a finite cover of degree 3200. We will denote by G4,3 ≤ S3200 the
monodromy group of this covering, which acts transitively because V3 is irreducible.

9.1 – The irreducibility of the family of binodal plane sections of a general quartic surface

In the middle we have p : V◦2 → U . Though V2 is irreducible, we cannot deduce from this that for the
general S ∈ U , the Severi variety V2(S,OS(1)) (i.e., the curve of binodal plane sections of S) is irreducible.
Though commonly accepted as a known fact, we have not been able to find any proof of this in the current
literature. It is the purpose of this paragraph to provide a proof of this fact.

In any event, we have a commutative diagram similar to the one in (5.1)

V ′2
ν //

  
AA

AA
AA

AA

p′

��

V◦2

p

��

U ′
f

// U

where ν is the normalization of V◦2 , and f ◦ p′ is the Stein factorization of p ◦ ν : V ′2 → U . The morphism
f : U ′ → U is finite, of degree h equal to the number of irreducible components of V2(S,OS(1)) for general
S ∈ U . The monodromy group of this covering acts transitively. This ensures that, for general S ∈ U ,
all irreducible components of V2(S,OS(1)) have the same degree, which we denote by n. By Proposition
5.1, we have n > 36.

Theorem 9.2 If S ⊂ P3 is a general quartic surface, then the curve V2(S,OS(1)) is irreducible.

Proof. Let S0 be a general quartic Kummer surface, and f : S → ∆ a family of surfaces induced as in
Example 2.1 by a pencil generated by S0 and a general quartic S∞. Given two distinct nodes p and q of
S0, we denote by lpq the pencil of plane sections of S0 passing through p and q. Corollary 7.15 asserts that
the union of these lines, each counted with multiplicity 4, is the crude limit Severi variety Vcr

2 (S,OS(1)).
Let Γt be an irreducible component of V1(St,OSt

(1)), for t ∈ ∆∗, and let Γ0 be its (crude) limit as t
tends to 0, which consists of a certain number of (quadruple) curves lpq. Note that, by Proposition 7.13,
the pull–back of the lines lpq to the good limit constructed in §7 all appear with multiplicity 1 in the
limit Severi variety. This yields that, if l is an irreducible component of Γ0, then it cannot be in the limit
of an irreducible component Γ′t of V1(St,OSt

(1)) other than Γt.
We shall prove successively the following claims, the last one of which proves the theorem:

(i) Γ0 contains two curves lpq, lpq′ , with q 6= q′;
(ii) Γ0 contains two curves lpq, lpq′ , with q 6= q′, and p, q, q′ on a contact conic D of S0;
(iii) there is a contact conic D of S0, such that Γ0 contains all curves lpq with p, q ∈ D;
(iv) property (iii) holds for every contact conic of S0;
(v) Γ0 contains all curves lpq.

If Γ0 does not verify (i), then it contains at most 8 curves of type lpq, a contradiction to n > 36. To
prove (ii), we consider two curves lpq and lpq′ contained in Γ0, and assume that p, q, q′ do not lie on a
contact conic, otherwise there is nothing to prove. Consider a degeneration of S0 to a product Kummer
surface S, and let p, q, q′ be the limits on S of p, q, q′ respectively: they are necessarily in one of the three
configurations depicted in Figure 12. In all three cases, we can exchange two horizontal lines in S (as
indicated in Figure 12), thus moving q′ to q′′, in such a way that p and q remain fixed, and there is a
limit in S of contact conics that contains the three points p, q′, and q′′. Accordingly, there is an element
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Figure 12: How to obtain three double points on a double conic

γ ∈ G16,6 mapping p, q, q′ to p, q, q′′ respectively, such that p, q′, q′′ lie on a contact conic D of S0. Then
γ(Γ0) contains γ(lpq) = lpq. By the remark preceding the statement of (i)–(v), we have γ(Γ0) = Γ0. It
follows that Γ0 contains lpq′ and lpq′′ , and therefore satisfies (ii).

Claim (iii) follows from (ii) and the fact that the monodromy acts as S6 on the set of nodes lying
on D (see Lemma 6.2). As for (iv), let D′ be any other contact conic of S0. There exists γ ∈ G16,6

interchanging D and D′ (again by Lemma 6.2). The action of γ preserves D ∩ D′ = {x, y}. We know
that Γ0 contains lxy + lxy′ with y′ ∈ D different from y. Then the same argument as above yields that
Γ0 contains lγ(x)γ(y′), where γ(x) ∈ {x, y} and γ(y′) ∈ D′ − {x, y}. This implies that Γ0 satisfies (ii) for
D′, and therefore (iii) holds for D′. Finally (iv) implies (v). ✷

It is natural to conjecture that Theorem 9.2 is a particular case of the following general statement:

Conjecture 9.3 Let S ⊂ P3 be a general surface of degree d ≥ 4. Then the following curves are irre-
ducible:
(i) V2(S,OS(1)), the curve of binodal plane sections of S;
(ii) Vκ(S,OS(1)), the curve of cuspidal plane sections of S.

We hope to come back to this in a future work.

9.2 – Some noteworthy subgroups of G4,3 ≤ S3200

In this section we use the degenerations we studied in §§4 and 7 to give some information on the mon-
odromy group G4,3 of p : V◦3 → U . We will use the following:

Remark 9.4 Let f : X → Y be a dominant, generically finite morphism of degree n between projective
irreducible varieties, with monodromy group G ≤ Sn. Let V ⊂ Y be an irreducible codimension 1
subvariety, the generic point of which is a smooth point of Y . Then fV := f |f−1(V ) : f−1(V ) → V is
still generically finite, with monodromy group GV . If V is not contained in the branch locus of f , then
GV ≤ G.

Suppose to the contrary that V is contained in a component of the branch locus of f . Then GV ≤ SnV
,

with nV := deg fV < n, and GV is no longer a subgroup of G. We can however consider the local
monodromy group Gloc

V of f around V , i.e. the subgroup of G ≤ Sn generated by permutations associated
to non–trivial loops turning around V . Precisely: let UV be a tubular neighbourhood of V in Y ; then
Gloc

V is the image in G of the subgroup π1

(

UV − V
)

of π1(Y − V ).
There is an epimorphism Gloc

V → GV , obtained by deforming loops in UV − V to loops in V . We let
H loc

V be the kernel of this epimorphism, so that one has the exact sequence of groups

1 → H loc
V → Gloc

V → GV → 1. (9.1)

We first apply this to the degeneration studied in §4. To this end, we consider the 12–dimensional
subvariety T of B which is the Zariski closure of the set of fourtuples of distinct planes. Let f : B̃tetra → B
be the blow–up of B along T , with exceptional divisor T̃ . The proof of the following lemma (similar to
Lemma 2.7) can be left to the reader:

Lemma 9.5 Let X be a general point of T . Then the fibre of f over X can be identified with |OΛ(4)|,
where Λ = Sing(X).
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Thus, for general X ∈ T , a general point of the fibre of f over X can be identified with a pair (X,D),
with D ∈ |OΛ(4)| general, where Λ = Sing(X). Consider a family f : S → ∆ of surfaces in P3, induced
as in Example 2.1 by a pencil l generated by X and a general quartic; then the singular locus of S is a
member of |OΛ(4)|, which corresponds to the tangent direction normal to T defined by l in B.

Now the universal family p : P → B can be pulled back to p̃ : P̃ → B̃tetra, and the analysis of §4 tells
us that we have a generically finite map p̃ : Ṽ3 → B̃tetra, which restricts to p : V◦3 → U over U , and such
that T̃ is in the branch locus of p̃. We let Gtetra be the monodromy group of p̃ : Ṽ3 → B̃tetra on T̃ , and
Gloc

tetra, resp. H
loc
tetra, be as in (9.1).

Proposition 9.6 Consider a general (X,D) ∈ B̃t. One has:

(a) Gtetra
∼=
∏4

i=1 Gi, where:
(i) G1

∼= S1024 is the monodromy group of planes containing three points in D, but no edge of X;
(ii) G2

∼= S4 ×S3 × (S4)
2 is the monodromy group of planes containing a vertex of X and two points in

D, but no edge of X;
(iii) G3

∼= S6 ×S4 is the monodromy group of planes containing an edge of X, and a point in D on the
opposite edge of X;
(iv) G4

∼= S4 is the monodromy group of faces of X;
(b) H loc

tetra
∼= S3 × G ×H, where G ≤ S16 is the monodromy group of bitangent lines to 1–nodal plane

quartics as in Proposition 4.14, and H ≤ S304 is the monodromy group of irreducible trinodal curves
in the linear system of quartic curves with 12 base points at a general divisor of |Oa+b+c(4)|, with a, b, c
three lines not in a pencil (see §8).

Proof. The proof follows from Corollary 4.29. Recall that a group G ≤ Sn is equal to Sn, if and only
if it contains a transposition and it is doubly transitive. Using this, it is easy to verify the assertions in
(ai)–(aiv) (see [22, p.698]). As for (b), the factor S3 comes from the fact that the monodromy acts as the
full symmetric group on a general line section of the irreducible cubic surface T as in Proposition 4.16.
✷

Analogous considerations can be made for the degeneration studied in §7. In that case, we consider
the 18–dimensional subvariety K of B which is the Zariski closure of the set K◦ of Kummer surfaces. Let
g : B̃Kum → B be the blow–up along K, with exceptional divisor K̃. In this case we have:

Lemma 9.7 Let X ∈ K be a general point, with singular locus N . Then the fibre of g over X can be
identified with |ON (4)| ∼= P15.

The universal family p : P → B can be pulled back to p̃ : P̃ → B̃Kum. The analysis of §7 tells us that
we have a map p̃ : Ṽ3 → B̃Kum, generically finite over K̃, which is in the branch locus of p̃. We let GKum

be the monodromy group of p̃ on K̃, and set Gloc
Kum and H loc

Kum as in (9.1).

Proposition 9.8 One has:
(a) GKum

∼= G16,6 × G′, where G′ is the monodromy group of unordered triples of distinct nodes of a
general Kummer surface which do not lie on a contact conic (see §6.2 for the definition of G16,6);
(b) H loc

Kum
∼= S8 ×G′′, where G′′ is the monodromy group of the tritangent planes to a rational curve B

of degree 8 as in the statement of Proposition 7.4.

Proof. Part (a) follows right away from Proposition 7.16. Part (b) also follows, since the monodromy on
complete intersections of three general quadrics in P3 (which gives the multiplicity 8 in (i) of Proposition
7.16) is clearly the full symmetric group. ✷

Concerning the group G′ appearing in Proposition 9.8, (a), remember that it acts with at most two
orbits on the set of of unordered triples of distinct of nodes of a general Kummer surface which do not
lie on a contact conic (see Proposition 6.6, (ii)).
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