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Abstract. We compute the number of moduli of all irreducible components of the
moduli space of smooth curves on Enriques surfaces. In most cases, the moduli maps
to the moduli space of Prym curves are generically injective or dominant. Exceptional
behaviour is related to existence of Enriques–Fano threefolds and to curves with nodal
Prym-canonical model.

1. Introduction

Moduli of curves on projective surfaces have been the object of intensive study for
a long time. In more recent times the so-called Mukai map cg from the (19 + g)–
dimensional moduli space of smooth K3 sections of genus g (that is, pairs (S,C), where
S is a smooth K3 surface and C ⊂ S is a smooth genus g curve) toMg has been given
much attention in relation to the birational geometry ofMg and of the moduli space of
K3 surfaces of genus g. In particular cg is dominant for g 6 11 and g 6= 10, is birational
onto its image for g > 11 and g 6= 12, and its image is a divisor in genus 10 and it
has generically one-dimensional fibers in genus 12 [33, 34, 35, 32, 10]. Notable are the
relations of pathologies of cg with the existence of Fano and Mukai manifolds [9, 6]. Also
recall that Mukai’s program towards reconstructing a fiber of cg is now proven [33, 1, 19],
and that the image of cg has been recently characterized, via the Gauss–Wahl map, for
Brill-Noether-Petri general curves [2, 45].

In this paper we consider smooth curves on Enriques surfaces. The moduli of such
curves have not been systematically investigated so far. Probably this is due to the fact
that the Enriques case is much more complicated and rich compared to the K3 case
due to the presence of many irreducible components of the moduli space of polarized
such surfaces, whence also of the moduli space of smooth curves on Enriques surfaces,
even when fixing the genus of the polarization. Remarkably enough our results give the
number of moduli of all such components, equivalently, the dimension of the image (or
of a general fiber) of the moduli map. It should be noted that there are some striking
analogies with the K3 case, including behaviour induced by the existence of Enriques–
Fano threefolds, as well as more exceptional behavior, e.g., related to curves with nodal
Prym–canonical models.

We now present our results. Let E denote the smooth irreducible 10-dimensional
moduli space parametrizing smooth, complex Enriques surfaces and Eg,φ the (in general
reducible) moduli space of pairs (S,H) such that S is a member of E and H is an ample
line bundle on S satisfying H2 = 2g − 2 and φ(H) = φ, where

(1) φ(H) := min
{
E ·H | E ∈ NS(S), E2 = 0, E > 0

}
.

Recall that φ2 6 2g − 2 by [15, Cor. 2.7.1].
Denote by ECg,φ the moduli space of triples (S,H,C) where (S,H) is a member of

Eg,φ and C ∈ |H| is a smooth irreducible curve. Note that ECg,φ has as many irreducible
1
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components as Eg,φ. There are natural morphisms

(2) ECg,φ
pg,φ

||xxxxxxxx
χg,φ

��

cg,φ

##FFFFFFFF

Eg,φ Rg //Mg,

where Rg is the moduli space of Prym curves, that is, of pairs (C, η), with C a smooth,
irreducible, genus g curve and η a non–zero 2-torsion element of Pic0(C). The map χg,φ
sends (S,H,C) to the Prym curve (C,ωS ⊗OC). The morphism cg,φ is the composition
of the latter with the forgetful covering map Rg → Mg, which has degree 22g − 1.
By a dimension count, one could expect χg,φ and cg,φ to be dominant (on some or all
components) for g 6 6 and generically finite (on some or all components) for g > 6.

As far as we know, the only known result so far concerning the maps χg,φ and cg,φ is
the one of Verra [43] stating that χ6,3 is dominant, equivalently generically finite (note
that E6,3 is irreducible).

Our main results are the following. We present the cases φ > 3, φ = 2 and φ = 1
separately. We refer to the tables in §2 and Notation 3.4 for the definition of the various
components of Eg,φ and ECg,φ showing up in the results below.

Theorem 1. Assume that φ > 3 (whence g > 6). The map χg,φ : ECg,φ → Rg is gener-
ically injective on any irreducible component of ECg,φ not appearing in the list below, for
which the dimension of a general fiber is indicated:
comp. EC7,3 EC(II)

9,3 EC+
9,4 EC−9,4 EC(II)

10,3 EC(II)
13,3 EC(II)+

13,4 EC(II)−
13,4 EC(IV )+

17,4 EC(IV )−
17,4

fib.dim. 1 1 3 0 2 1 1 0 1 0

In particular, we obtain that χ6,3 : EC6,3 −→ R6 is birational, improving the result
of [43]. Moreover, in analogy with the K3 case, for any g > 8 there is a component
of Eg,φ on which χg,φ is generically injective, whereas on E7,3 (which is irreducible), the
map χg,φ has generically one–dimensional fibers. However, in contrast to the K3 case,
there are more components of Eg,φ for g > 8 where χg,φ is not generically finite. This
phenomenon can be explained by the existence of Enriques–Fano threefolds, see §4.

For φ = 2 we obtain:

Theorem 2. The map χg,2 : ECg,2 → Rg is generically finite on all irreducible compo-
nents of ECg,2 when g > 10. For g 6 9 the dimension of a general fiber of χg,2 on the
various irreducible components of ECg,2 is as follows:
comp. EC(I)

9,2 EC(II)+

9,2 EC(II)−
9,2 EC8,2 EC(I)

7,2 EC(II)
7,2 EC6,2 EC(I)

5,2 EC(II)+

5,2 EC(II)−
5,2 EC4,2 EC3,2

fib.dim. 0 2 1 0 1 3 2 3 6 4 4 6

In particular, χg,2 is dominant precisely on EC3,2 and EC4,2 and is generically finite on
at least one component of ECg,2 precisely for g > 8. The positive-dimensional fibers of
χ9,2 on EC(II)+

9,2 and EC(II)−
9,2 can again be explained by the existence of Enriques–Fano

threefolds, see Corollary 4.3. The other positive-dimensional fibers are due to the fact
that the image of χg,2 lies in quite special loci, as we now explain. Define:

• R0
g — the locally closed locus in Rg of pairs (C, η) for which the complete linear

system |ωC(η)| is base point free and the map C → Pg−2 it defines (the so–
called Prym–canonical map) is not an embedding. This locus is irreducible (and
unirational) of dimension 2g+1 for g > 5 by [8, Thm. 1]. (Obviously, R0

g is dense
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in Rg for g 6 4.) Moreover, for the general element, the Prym–canonical map
is birational onto its image, which has precisely two nodes, cf. [8, Prop. 1.2].
• R0,nb

g — the closed locus in R0
g of pairs (C, η) for which the Prym–canonical map

is not birational onto its image. This locus is irreducible of dimension 2g− 2 for
g > 4 and dominates the bielliptic locus inMg via the forgetful map Rg →Mg

by [8, Cor. 2.2].
• D0

5 — the locally closed locus in R0
5 of pairs (C, η) with 4-nodal Prym-canonical

model. By [8, Prop. 5.3] this locus is an irreducible (unirational) divisor in R0
5

whose closure in R5 coincides with closure of the locus of pairs (C, η) carrying
a theta-characteristic θ such that h0(θ) = h0(θ + η) = 2.

The image of χg,2 (on any component of ECg,2) always lies in R0
g, cf. Lemma 3.5(ii)-

(v), and consequently, by counting dimensions one a priori sees that χg,2 has expected
fiber dimension max{0, 8− g}. Furthermore, as a consequence of Theorem 2, the maps
χg,2 dominate some of the peculiar loci above in various cases. Indeed, it follows from
Proposition 9.1(i)-(ii) and Corollary 8.7 that:

• χ5,2 on EC(I)
5,2 (respectively, χ6,2, χ7,2 on EC(I)

7,2 , χ8,2) dominates R0
5 (resp., R0

6,
R0

7, R0
8). In particular, the image of χ5,2 on EC(I)

5,2 is a divisor inR5; this parallells
the situation of im c10 in the K3 case.
• χ5,2 on EC(II)+

5,2 dominates R0,nb
5 .

• χ5,2 on EC(II)−
5,2 dominates D0

5.
For φ = 1 the moduli spaces Eg,1 are irreducible for all g and the image of χg,1 (and of

cg,1) lies in the hyperelliptic locus, cf. Lemma 3.5(i), hence the expected fiber dimension
is max{10− g, 0}. We prove that this is indeed the dimension of a general fiber:

Theorem 3. The dimension of a general fiber of χg,1 and of cg,1 is max{10 − g, 0}.
Hence, cg,1 dominates the hyperelliptic locus if g 6 10 and is generically finite if g > 10.

An immediate consequence of the above results is:

Corollary 1.1. A general curve of genus 2, 3, 4 and 6 lies on an Enriques surface,
whereas a general curve of genus 5 or > 7 does not. A general hyperelliptic curve of
genus g lies on an Enriques surface if and only if g 6 10.

The proof of Theorem 1 also has an application to the classification of projective
varieties having Enriques surfaces as linear sections. We recall that a projective variety
V ⊂ PN is said to be k-extendable if there exists a projective varietyW ⊂ PN+k, different
from a cone, such that V = W ∩ PN (transversely). The question of k-extendability
of Enriques surfaces is still open, although it is proved in [38, 27] that N 6 17 is a
necessary condition for 1–extendability, and terminal threefolds having Enriques surfaces
as hyperplane sections have been classified in [4, 41, 30].

Corollary 1.2. Let S ⊂ PN be an Enriques surface not containing any smooth rational
curve. If S is 1–extendable, then (S,OS(1)) belongs to the following list:

E(IV )+

17,4 , E(II)+

13,4 , E(II)
13,3 , E

(II)
10,3 , E

+
9,4, E

(II)
9,3 , E7,3.

Furthermore, the members of this list are all at most 1–extendable, except for members
of E(II)

10,3 , which are at most 2–extendable, and of E+
9,4, which are at most 3–extendable.
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This result is sharp in the case of 1-extendability: The general members of the moduli
spaces of Corollary 1.2 indeed occur as hyperplane sections of threefolds different from
cones, cf. Remark 4.9. Furthermore, one cannot remove the assumption about S not
containing smooth rational curves, as there are threefolds different from cones enjoying
the peculiar property that their Enriques hyperplane sections belong to E8,3 and E6,3
and contain a smooth rational curve, cf. Corollary 6.5. We remark that the proof of
Corollary 1.2 is independent from, and much simpler than, the results in [38, 27], but it
needs the technical assumption about rational curves, which can probably be avoided,
at the expense of adding more cases, cf. Remark 6.1. We refer to Corollary 4.10 for
another variant of Corollary 1.2.

Our general strategy is to compute the kernel of the differential of the map cg,φ, see §3;
to this end we develop in §5 tools to compute the cohomology of twisted tangent bundles
on Enriques surfaces. In some cases additional arguments are required, involving for
instance extensions to Enriques–Fano threefolds (see §4), and specializations to Enriques
surfaces containing smooth rational curves (see §§8–9). Theorem 1 and Corollary 1.2
are proved in §6; Theorem 2 is obtained by combining Propositions 6.6, 8.1 and 9.1;
Theorem 3 is proved in §9.

In conclusion we remark that our work leaves several interesting open questions. For
example: is it possible to characterize curves on Enriques surfaces in terms of the suitable
Gauss–Prym map? In the cases of generic injectivity of χg,φ, is it possible to develop an
analogue of Mukai’s programme of explicit reconstruction of the Enriques surface from
its Prym curve section? The latter question was proposed to us by Enrico Arbarello.
Finally, in view of Corollary 1.2, are the general members of E(II)

10,3 (respectively, E+
9,4)

2–extendable (resp., 3–extendable)?
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Department Project CUP E83C180 00100006 (CC), project FOSICAV within the EU
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Foundation (ThD, ALK) and grant 261756 of the Research Council of Norway (ALK).
Finally the authors wish to thank the referee for the extremely careful reading of the
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2. Moduli spaces of Enriques surfaces

We first briefly recall some well-known properties of divisors on Enriques surfaces.
Any irreducible curve C on an Enriques surface satisfies C2 > −2, with equality

occurring if and only if C ' P1. The latter curves are called nodal, and Enriques surfaces
containing (respectively, not containing) them are called nodal (resp., unnodal). It is
well-known that the general Enriques surface is unnodal, cf. references in [14, p. 577].

A divisor E is said to be isotropic if E2 = 0 and E 6≡ 0 (where ’≡’ denotes numerical
equivalence) and primitive if it is non-divisible in NumS. If E is primitive, isotropic
and nef, then |2E| is a base point free pencil with general member a smooth elliptic
curve, cf. [15, Prop. 3.1.2]. In this case, dim(|E|) = 0 and E is called a half-fiber, cf.
[15, p. 172]. Conversely, any elliptic pencil |P | contains precisely two double fibers 2E
and 2E′, where E′ is the only member of |E +KS |. It is clear that, when H is big and
nef, the invariant φ(H) in (1) is computed by a half-fiber.
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Let E (resp. Kι) denote the 10-dimensional smooth moduli space parametrizing
smooth Enriques surfaces (respectively, smooth K3 surfaces with a fixed point free
involution), and let K denote the 20-dimensional moduli space parametrizing smooth
K3 surfaces, cf. [3, VIII.§12,§§19-21]. We have a natural bijective map sending a K3
surface with fixed point free involution to the quotient surface by the involution

(3) δ : Kι −→ E .

Let Eg,φ (respectively, Êg,φ) denote the moduli space of polarized (resp., numerically
polarized) Enriques surfaces, that is, pairs (S,H) (resp., (S, [H])) such that [S] ∈ E and
H ∈ Pic(S) (resp., [H] ∈ Num(S)) is ample with H2 = 2g − 2 > 2 and φ = φ(H).
There is an étale cover Eg,φ → E , and Eg,φ is smooth. There is also an étale double cover
ρ : Eg,φ → Êg,φ mapping (S,H) and (S,H + KS) to (S, [H]). We refer to [7, §2] for
details and references and also recall that φ(H)2 6 H2 by [15, Cor. 2.7.1].

The spaces Eg,φ need not be irreducible. In [7] various irreducible components were
determined and their unirationality or uniruledness was proved. In particular, all com-
ponents are determined and described for φ 6 4 and g 6 20 respectively. The description
is in terms of isotropic decompositions, as we now explain.

By [7, Cor. 4.6, Cor. 4.7, Rem. 4.11] any effective line bundle H with H2 > 0 on an
Enriques surface S can be written as (denoting linear equivalence by ’∼’):

(4) H ∼ a1E1 + · · ·+ anEn + εKS

where all Ei are effective, primitive and isotropic, all ai are positive integers, n 6 10,

ε =
{

0, if H +KS is not 2-divisible in Pic(S),
1, if H +KS is 2-divisible in Pic(S),

and moreover

(5)


either n 6= 9, Ei · Ej = 1 for all i 6= j,
or n 6= 10, E1 · E2 = 2 and otherwise Ei · Ej = 1 for all i 6= j,
or E1 · E2 = E1 · E3 = 2 and otherwise Ei · Ej = 1 for all i 6= j.

We call this a simple isotropic decomposition (up to reordering indices), cf. [7].
We say that two polarized Enriques surfaces (S,H) and (S′, H ′) in Eg,φ admit the

same simple decomposition type if one has two simple isotropic decompositions

H ∼ a1E1 + · · ·+ anEn + εKS and H ′ ∼ a1E
′
1 + · · ·+ anE

′
n + εKS′

and Ei · Ej = E′i · E′j for all i 6= j. This defines an equivalence relation on Eg,φ by [7,
Prop. 4.15].

By [7, Cor. 1.3 and 1.4] the irreducible components of Eg,φ when φ 6 4 or g 6 20
correspond precisely to the loci consisting of pairs (S,H) admitting the same decompo-
sition type. Moreover, by [7, Cor. 1.5], in the same range, for C ⊂ Eg,φ any irreducible
component, ρ−1(ρ(C)) is reducible if and only if C parametrizes pairs (S,H) such that
H is 2-divisible in Num(S). The various irreducible components of Êg,φ were labeled by
roman numbers in the appendix of [7]. We will use the same labels for the irreducible
components of Eg,φ, adding a superscript “+” and “−” in the cases there are two irre-
ducible components lying above one irreducible component of Êg,φ. We also adopt the
following from [7]:
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Notation 2.1. When writing a simple isotropic decomposition (4) verifying (5) (up to
permuting indices), we will adopt the convention that Ei, Ej , Ei,j are primitive isotropic
satisfying Ei · Ej = 1 for i 6= j, Ei,j · Ei = Ei,j · Ej = 2 and Ei,j · Ek = 1 for k 6= i, j.

In particular, we recall the following (cf. [7, Cor. 1.3 and Lemma 4.18]):
• Eg,1 is irreducible and unirational, and H ∼ (g − 1)E1 + E2.
• If g is even (resp., g = 3), then Eg,2 is irreducible and unirational, and H ∼

g−2
2 E1 + E2 + E3 (resp., H ∼ E1 + E1,2).

• If g > 7 and g ≡ 3 mod 4, then Eg,2 has two irreducible, unirational components
E(I)
g,2 and E(II)

g,2 corresponding, respectively, to simple decomposition types:
(I) H ∼ g−1

2 E1 + E1,2,
(II) H ∼ g−1

2 E1 + 2E2.
• If g > 5 and g ≡ 1 mod 4, then Eg,2 has three irreducible, unirational components
E(I)
g,2 , E

(II)+

g,2 and E(II)−
g,2 , corresponding, respectively, to simple decomposition

types
(I) H ∼ g−1

2 E1 + E1,2,
(II)+ H ∼ g−1

2 E1 + 2E2,
(II)− H ∼ g−1

2 E1 + 2E2 +KS ,
For later reference we list all irreducible components of Eg,φ for φ > 2 and g 6 10, cf.

[7, Appendix]:
g φ comp. dec. type
3 2 E3,2 H ∼ E1 + E1,2

4 2 E4,2 H ∼ E1 + E2 + E3

5 2 E(I)
5,2 H ∼ 2E1 + E1,2

5 2 E(II)+
5,2 H ∼ 2E1 + 2E2

5 2 E(II)−
5,2 H ∼ 2E1 + 2E2 + KS

6 2 E6,2 H ∼ 2E1 + E2 + E3
6 3 E6,3 H ∼ E1 + E2 + E1,2

7 2 E(I)
7,2 H ∼ 3E1 + E1,2

7 2 E(II)
7,2 H ∼ 3E1 + 2E2

7 3 E7,3 H ∼ E1 + E2 + E3 + E4

8 2 E8,2 H ∼ 3E1 + E2 + E3
8 3 E8,3 H ∼ 2E1 + E3 + E1,2

g φ comp. dec. type

9 2 E(I)
9,2 H ∼ 4E1 + E1,2

9 2 E(II)+
9,2 H ∼ 4E1 + 2E2

9 2 E(II)−
9,2 H ∼ 4E1 + 2E2 + KS

9 3 E(I)
9,3 H ∼ 2E1 + E2 + E1,2

9 3 E(II)
9,3 H ∼ 2E1 + 2E2 + E3

9 4 E+
9,4 H ∼ 2(E1 + E1,2)

9 4 E−
9,4 H ∼ 2(E1 + E1,2) + KS

10 2 E10,2 H ∼ 4E1 + E2 + E3

10 3 E(I)
10,3 H ∼ 2E1 + E2 + E3 + E4

10 3 E(II)
10,3 H ∼ 3(E1 + E2)

10 4 E10,4 H ∼ 2E1,2 + E1 + E2

We also list all irreducible components of E13,3, E13,4 and E17,4:
g φ comp. dec. type

13 3 E(I)
13,3 H ∼ 3E1 + E2 + E3 + E4

13 3 E(II)
13,3 H ∼ 4E1 + 3E2

13 4 E(I)
13,4 H ∼ 2E1 + 2E2 + E1,2

13 4 E(II)+
13,4 H ∼ 2(E1 + E2 + E3)

13 4 E(II)−
13,4 H ∼ 2(E1 + E2 + E3) + KS

13 4 E(III)
13,4 H ∼ 3E1 + 2E1,2

g φ comp. dec. type

17 4 E(I)
17,4 H ∼ 3E1 + 2E2 + 2E3

17 4 E(II)
17,4 H ∼ 3E1 + 2E2 + E1,2

17 4 E(III)+
17,4 H ∼ 4E1 + 2E1,2

17 4 E(III)−
17,4 H ∼ 4E1 + 2E1,2 + KS

17 4 E(IV )+
17,4 H ∼ 4E1 + 4E2

17 4 E(IV )−
17,4 H ∼ 4E1 + 4E2 + KS

3. Generalities on moduli maps

Recall that if a divisorH on an Enriques surface S is big and nef such thatH2 = 2g−2,
then dim |H| = g − 1 and a general member C of |H| is a smooth irreducible curve of
genus g if either g > 2, or g = 2 and S is unnodal or H is ample, by [14, Prop. 2.4] and
[12, Thm. 4.1 and Prop. 8.2]. As we explained in the introduction, one could expect
χg,φ and cg,φ from diagram (2) to be dominant (on some or all irreducible components)
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for g 6 6 and generically finite (on some or all irreducible components) for g > 6. This
expectation fails in the cases φ = 1, 2 for low genera as the curves in |H| are all special
from a Brill-Noether theoretical point of view, cf. Lemma 3.5 below. It also fails in case
of existence of Enriques–Fano threefolds, as we will see in §4 below.

Recalling the map (3), set Kιg,φ = δ−1(Eg,φ); thus Kιg,φ is a component of the moduli
space of polarized K3 surfaces (S̃, H̃, ι) of genus 2g−1 with a fixed point free involution
ι, and we have a generically injective morphism αg,φ : Kιg,φ → K2g−1 forgetting the
involution, where K2g−1 denotes the moduli space of polarized K3 surfaces of genus
2g − 1 (as the general K3 surface with a fixed point free involution contains only one
such). We have the commutative diagram

(6) M2g−1

KCιg,φ

cιg,φ ::vvvvvv

pιg,φ
��

α̃g,φ
// KC2g−1

c2g−1eeJJJJJJ

q2g−1
��

Kιg,φ αg,φ
// K2g−1

where KCιg,φ is the moduli space of quadruples (S̃, H̃, ι, C̃), with (S̃, H̃, ι) in Kιg,φ and
C̃ ∈ |H̃| is a smooth curve invariant under the involution ι, the map α̃g,φ forgets ι, and
KC2g−1 is the moduli space of triples (X,L, Y ), with (X,L) in K2g−1 and Y ∈ |L| is a
smooth curve.

Recall now, for any smooth C ∈ |H|, the sheaf TS〈C〉 defined by

(7) 0 // TS〈C〉 // TS // NC/S // 0,

and fitting into the exact sequence

(8) 0 // TS(−C) // TS〈C〉 // TC // 0.

We have the following, cf. [42, §3.4.4] or [5]:

Lemma 3.1. The differential of cg,φ at (S,H,C) (resp., of c2g−1 at (S̃, H̃, C̃)) is the
morphism H1(TS〈C〉) → H1(TC) (resp., H1(T

S̃
〈C̃〉) → H1(T

C̃
)) induced by (8). Its

kernel is H1(TS(−C)) (resp., H1(T
S̃

(−C̃))).

The spaces H1(TS(−C)) and H1(T
S̃

(−C̃)) in the lemma are related in the following
way. Let π : S̃ → S be the K3 double cover and set H̃ := π∗H. As π is étale, we have
π∗TS ' TS̃ . Therefore,

(9) H1(T
S̃

(−H̃)) = H1(TS(−H))⊕H1(TS(−H +KS)).

Lemma 3.2. Assume that φ > 3 (whence g > 6). Let (C,KS ⊗ OC) be a general
element of the image of χg,φ. Denote by C̃ → C its induced double cover. If c−1

2g−1(C̃)
is finite, then it consists of only one point, and also χ−1

g,φ((C,KS ⊗OC)) consists of only
one point.

Proof. Thanks to the bijective map δ in (3) and αg,φ being generically injective, the
fact that χ−1

g,φ((C,KS ⊗ OC)) is a point is equivalent to the fact that (cιg,φ)−1(C̃) is a
point, where cιg,φ is as in (6). The latter will follow if c−1

2g−1(C̃) is a point. By [10], this
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property follows if C̃ has a corank one Gauss-Wahl map, cf. [28, Sketch of proof of Prop.
3.3]. Since 2g − 2 = C2 > φ(C)2 > 9 (using [15, Cor. 2.7.1]), we have g > 6, hence
2g − 1 > 11. Therefore, if Cliff(C̃) > 3, the fiber c−1

2g−1(C̃) is positive dimensional as
soon as the Gauss-Wahl map of C̃ has corank > 1, cf. [6, Thm. 2.6]. Hence, c−1

2g−1(C̃)
consists of exactly one point if it is finite.

We thus have left to prove that Cliff(C̃) > 3. As the Clifford index is constant among
smooth curves in the linear system |H̃| (see [22]), we may assume that C is general
in its linear system. Furthermore, Cliff(C̃) > 3 is equivalent to gon(C̃) > 5, which is
satisfied if gon(C) > 5. The cases with gon(C) < 2φ(H) are classified in [26, Cor. 1.5]
and a direct check shows that gon(C) > 5 when φ > 3 and g > 7. If g = 6, we use the
assumption that S is general, so that gon(C̃) = 2φ(C) = 6 by [39, Thm. 1.1]. �

Corollary 3.3. Let (S,H) be a general element of an irreducible component E ′g,φ of Eg,φ
and let χ′g,φ denote the restriction of χg,φ to p−1

g,φ(E ′g,φ).
(i) If φ > 3 and h1(TS(−H)) = h1(TS(−H + KS)) = 0, then χ′g,φ is generically

injective.
(ii) If h1(TS(−H)) = 0, then χ′g,φ is generically finite.

In any case, the dimension of a general fiber of χ′g,φ is h1(TS(−H)).

Proof. This follows from Lemmas 3.2 and 3.1, as well as (9). �

In the rest of the paper we will adopt the following:

Notation 3.4. For any irreducible component E ′g,φ of Eg,φ we express the irreducible
component p−1

g,φ(E ′g,φ), as well as the restrictions of the maps χg,φ and cg,φ to this irre-
ducible component, by the same superscripts as the ones used to label E ′g,φ. For instance,
we set EC(II)

5,2 := p−1
5,2(E(II)

5,2 ), c(II)
5,2 := c5,2|EC(II)

5,2
and χ(II)

5,2 := χ5,2|EC(II)
5,2

.

We finish this section with a lemma that will be needed later. We refer to the
introduction for the definitions of the loci R0

g, R
0,nb
5 and D0

5.

Lemma 3.5. (i) For any g > 2 the image of cg,1 lies in the hyperelliptic locus; in
particular the fiber dimension is > max{0, 10− g}.

(ii) The image of χ(I)
5,2 lies in R0

5; in particular the fiber dimension is > 3.
(iii) The image of χ(II)+

5,2 lies in R0,nb
5 ; in particular the fiber dimension is > 6.

(iv) The image of χ(II)−
5,2 lies in D0

5; in particular the fiber dimension is > 4.
(v) For any g > 6 the image of χg,2 restricted to any component of ECg,2 lies in R0

g;
in particular the fiber dimension is > max{0, 8− g}.

Proof. Item (i) follows from [15, Prop. 4.5.1, Cor. 4.5.1], items (ii) and (v) from [8,
Ex. 5.1], item (iii) from [8, Rem. 5.5] and (iv) from [8, Ex. 5.2]. �

4. Fibers of the moduli maps and Enriques–Fano threefolds

An Enriques–Fano threefold of genus g is a pair (X,L) where X is a normal threefold
and L is an ample line bundle on X with L3 = 2g − 2 such that |L| contains a smooth
Enriques surface S, and X is not a generalized cone over S, that is, X is not isomorphic
to a variety obtained by contracting to a point a negative section of some P1-bundle over
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S. Such threefolds with terminal singularities are classified in [4, 41, 30], and examples
with canonical, nonterminal singularities are given in [27, 38], but a full classification of
these threefolds is still missing, although it is proved in [27, 38] that g 6 17. We say that
a polarized Enriques surface (S,H) is extendable to an Enriques–Fano threefold (X,L)
if S ∈ |L| with H = L|S .

Lemma 4.1. Let (X,L) be an Enriques–Fano threefold of genus g, π : X̃ → X a
desingularization and S ∈ |L| a smooth surface. Then

(i) h0(X,L) = g + 1 and the restriction map H0(X,L)→ H0(S,L|S) is onto;
(ii) h1(O

X̃
) = 0 and H0(X̃, π∗L) ' H0(X,L).

Proof. Since π is an isomorphism outside the singular locus of X, we may identify S
with π−1(S). By the fact that π∗L is big and nef and

(10) 0 // O
X̃

(−π∗L) // O
X̃

// OS // 0,

we get h1(O
X̃

) = 0. The rest of (ii) follows from the normality of X. Tensoring (10) by
π∗L and taking cohomology, we get (i). �

In particular, part (i) implies that |L| is base point free if and only if |L|S | is, for any
smooth Enriques surface S ∈ |L|, which holds if and only if φ(L|S) > 2 by [12, Thms.
4.1] or [15, Thm. 4.4.1]. Similarly, the morphism ϕL defined by |L| is an isomorphism
on S if and only if φ(L|S) > 3 by [12, Thms. 5.1] or [15, Thm. 4.6.1] (since L|S is
ample), in which case we get that ϕL(X) ⊂ Pg is a (possibly non-normal) threefold
whose general hyperplane section is a smooth Enriques surface.

The connection to the topic of this paper is given by:

Proposition 4.2. Let (X,L) be an Enriques–Fano threefold of genus g > 6. Let S ∈ |L|
be general, and C ∈ |L|S | be general, with φ = φ(L|S) > 2. Then the dimension of the
fiber of cg,φ at (S,L|S , C) is at least 1.

Proof. Consider the linear pencil l in |L| with base locus C, so that S ∈ l. Consider
the open subset U of l whose points correspond to smooth sections of X. We claim
that two general points of U correspond to non–isomorphic polarized Enriques surfaces
(S′,L|S′), (S′′,L|S′′). The assertion clearly follows from this claim.

To prove the claim, suppose, to the contrary, that all points of U correspond to
isomorphic polarized Enriques surfaces. This implies that two general members in |L|
are isomorphic as polarized Enriques surfaces. Since g > 6 and φ > 2, Lemma 4.1
together with [12, Thms. 4.1 and 5.1] or [15, Thm. 4.4.1 and Prop. 4.7.1] yield that the
map ϕL determined by |L| is a morphism that maps X birationally onto its image, which
is not a cone. Hence, two general hyperplane sections of Y = ϕL(X) are projectively
equivalent. By [37, Prop. 1.7] (which applies in fact to all varieties different from cones)
this would imply that the general hyperplane section of Y is ruled, a contradiction. �

Corollary 4.3. The maps χ(IV )+

17,4 , χ
(II)+

13,4 , χ
(II)+

9,2 , χ
(II)−
9,2 , χ7,3 are not generically finite.

Proof. This will follow from Lemmas 4.5, 4.6, 4.8 and Proposition 4.7 below, where we
prove that the general members of E(IV )+

17,4 , E(II)+

13,4 , E(II)+

9,2 , E(II)−
9,2 , E7,3 are extendable. �

We will make use of the following auxiliary result:
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Lemma 4.4. Let (S,L) be a polarized Enriques surface of genus g > 6 with φ(L) >
2. Assume that (S,L + D) is extendable to an Enriques–Fano threefold (Y,H) for an
effective divisor D, and that Y is unirational. Then (S,L) is extendable to an Enriques–
Fano threefold (X,L) and the elements in |L| are in one-to one correspondence with the
elements in |H ⊗ JD|.

Proof. Let π : Ỹ → Y be a desingularization and identify S with π−1(S). Then
h1(O

Ỹ
) = 0 by Lemma 4.1(ii). Therefore, the exact sequence

(11) 0 // O
Ỹ

// π∗H⊗JD // OS(L) // 0,

shows, as |L| is base point free and birational by [12, Thms. 4.1 and 5.1] or [15, Thm.
4.4.1 and Prop. 4.7.1], that the closure of the image of the rational map defined by the
linear system |π∗H⊗JD| is a threefold X ′ in Pg, where L2 = 2g−2, having the surfaces
in |π∗H⊗JD|, including S, as hyperplane sections. Since Y is unirational, also X ′ is. If
X ′ were a cone, then it would be birational to H × P1, for a general hyperplane section
H of X ′. Thus, H would be unirational, a contradiction. Hence, X ′ is not a cone. Let
ν : X → X ′ be its normalization and L := ν∗OX′(1). Then (X,L) is an Enriques–Fano
threefold extending (S,L). Identifying D with π−1(D), we get, as Y is normal,

H0(Y,H⊗JD) ' H0(Ỹ , π∗H⊗JD) ' H0(X ′,OX′(1)) ' Cg+1,

and the latter is contained in H0(X ′, ν∗L) ' H0(X,L). Since h0(L) = g + 1 by Lemma
4.1, we must have H0(Y,H⊗JD) ' H0(X,L), proving the last assertion. �

The classical Enriques–Fano threefold Y of genus 13 is the image of P3 via the linear
system of sextic surfaces that are double along the edges of a tetrahedron, cf. [11, 18]. Its
smooth hyperplane sections are Enriques surfaces with polarization of the form 2(E1 +
E2 + E3) (cf. [27, Pf. of Prop. 13.1]), that is, they belong to E(II)+

13,4 .

Lemma 4.5. Any (S,H = 2(E1 + E2 + E3)) ∈ E(II)+

13,4 such that E1, E2, E3 are nef and
|E1 + E2 + E3| is birational is extendable to the classical Enriques–Fano threefold.

Proof. By assumption, |E1 + E2 + E3| maps S birationally onto a sextic surface in P3

singular along the edges of a tetrahedron, which are the images of all Ei and E′i, the
only member of |Ei +KS |, for i = 1, 2, 3, cf., e.g., [15, Thm. 4.9.3]. All such sextics are
by construction hyperplane sections of the classical Enriques–Fano threefold. �

Lemma 4.6. A general member of E7,3 is extendable.

Proof. Let (S,H) ∈ E7,3 be general with H ∼ E1 + E2 + E3 + E4. In particular, S
is unnodal, whence |E1 + E2 + E3| is birational by [12, Thm. 7.2]. Thus (S,L :=
2(E1 + E2 + E3)) is extendable to the classical Enriques–Fano threefold Y by Lemma
4.5. Note that (E1 +E2 +E3−E4)2 = 0, so that E1 +E2 +E3 ∼ E4 +F , for an effective
isotropic F . In particular, L ∼ H + F , and the result follows from Lemma 4.4. �

Next we consider the only known Enriques–Fano threefold of genus 17, namely the
one constructed by Prokhorov in [38, §3] with canonical nonterminal singularities in
the following way: Let x and yi,j , 0 6 i, j 6 2 be homogeneous coordinates in P9 and
consider the anticanonical embedding of P := P1 × P1 in P8 = {x = 0} ⊂ P9 given by

(u0 : u1)× (v0 : v1) 7→ (y0,0 : · · · : y2,2), yi,j = ui0u
2−i
1 vj0v

2−j
1 .
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Let V be the projective cone over P and v = (0 : · · · : 0 : 1) its vertex. Then V
is a Gorenstein Fano threefold V with canonical singularities. Let π : V → W be the
quotient map of the involution τ defined by τ(x) = −x and τ(yi,j) = (−1)i+jyi,j . Letting
M := OV (1), we have −KV ∼ 2M by [38, Lemma 3.1] and every smooth member of
| −KV | is a K3 surface. The τ -invariant ones are precisely the ones cut out on V by
quadrics of the form q1(y0,0, y0,2, y2,0, y2,2, y1,1) + q2(y0,1, y2,1, y1,0, y1,2, x), where q1 and
q2 are quadratic homogeneous forms, on which the action of τ is free. The quotient of
any such τ -invariant S̃ by τ is thus an Enriques surface S. Since π∗S = S̃ we have
2g − 2 = S3 = 1

2 S̃
3 = 1

2(2M)3 = 32, whence g = 17. Set L := OW (S). Then (W,L) is
an Enriques–Fano threefold of genus 17.

Proposition 4.7. The threefold W is unirational and its polarized Enriques sections
(S,L|S) belong to E(IV )+

17,4 . Conversely, any (S,H = 4(E1 + E2)) ∈ E(IV )+

17,4 with E1 and
E2 nef is extendable to (W,L).

Proof. We keep the notation above. The unirationality ofW follows from the rationality
of V . Set L|S = L. As we have an induced double cover S̃ → P1×P1, we haveM|

S̃
∼ 2D,

with D2 = 4. Thus, π|∗
S̃
L = π∗L|

S̃
∼ O

S̃
(S̃) ∼ 2M|

S̃
∼ 4D, so that either L or L+KS

is 4-divisible in Pic(S). By [27, Prop. 12.1], either L or L − E with E · L = φ(L)
is 2-divisible in Pic(S), and this implies that L + KS is not 2-divisible. Hence, L is
4-divisible in Pic(S), and the only possibility is L ∼ 4(E1 + E2) as desired.

Now let (S,H = 4(E1 +E2)) ∈ E(IV )+

17,4 with E1 and E2 nef, and denote by pi : S → P1

the morphism induced by the pencil |2Ei|, i = 1, 2. Let π : S̃ → S be the K3 double
cover. Then each |π∗Ei| is an elliptic pencil and we have a commutative diagram

S̃
π //

p̃i
��

S

pi
��

P1 σi // P1,

where p̃i is the map induced by the pencil |π∗Ei| and σi is a double cover branched at
the two points corresponding to the double fibers of pi.

The map S̃ → P1 × P1 given by x 7→ (p̃1(x), p̃2(x)) is a double cover branched
on a smooth curve in | − 2KP1×P1 |. Equivalently, it is defined by the linear system
|π∗(E1 +E2)|, as its image in P3 factors through P1×P1 by [40] (see also [3, VIII.§18]).
Then S̃ is embedded in the total space T (−KP1×P1) of the line bundle −KP1×P1 on
P1×P1. The variety T (−KP1×P1) compactifies to V ′ = P(−KP1×P1⊕OP1×P1) by adding
a section at infinity Σ of V ′ corresponding to the surjection−KP1×P1⊕OP1×P1 → OP1×P1 .
Then V ′ identifies with the blow–up of the cone V at its vertex, the exceptional divisor
being Σ. We have the inclusion S̃ ⊂ T (−KP1×P1) = V ′ − Σ ⊂ V ′, hence an inclusion
S̃ ⊂ V , and it is easy to check that S̃ identifies with a quadric section of V .

Let now ti : P1 → P1 be the involution corresponding to the double cover σi, for
i = 1, 2. Consider the involution t : (x, y) ∈ P1 × P1 → (t1(x), t2(y)) ∈ P1 × P1. By
appropriately choosing coordinates we may assume that t coincides with the involution
t : (u0 : u1) × (v0 : v1) 7→ (−u0 : u1) × (−v0 : v1). The involution t on P1 × P1 lifts
to the involution τ of V defined above and one checks that S̃ is τ -invariant. Indeed, τ
lifts to an involution of S̃ because t clearly fixes the branch divisor of the double cover
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S̃ → P1×P1, and S̃ is also invariant by the involution of T (−KP1×P1) that sends a point
z in a fibre C over a point of P1 × P1 to −z. Thus, the quotient map π : V → W maps
S̃ back to S, and the last assertion follows. �

Lemma 4.8. The general members of E(II)+

9,2 and E(II)−
9,2 are extendable.

Proof. Let (S,H) ∈ E(II)+

9,2 (respectively, E(II)−
9,2 ) be general. We have H ∼ 4E1 + 2E2

(resp., 4E1 +2E2 +KS). Set D := 2E2 (resp., 2E2 +KS). Then (S,H+D ∼ 4(E1 +E2))
is extendable to (W,L) by Proposition 4.7, and the result follows from Lemma 4.4. �

Remark 4.9. Similar reasonings yield that the general members of E(II)
13,3 , E

(II)
10,3 , E

(II)
9,3 ,

E(II)
7,2 , E6,2 are extendable, and the corresponding moduli maps are not generically finite,

but we will not need this fact. Similarly, a thorough study of the only Enriques–Fano
threefold of genus 9 in [4, 41] shows that the general member of E+

9,4 is extendable. In
particular, the general members of all the moduli spaces occurring in Corollary 1.2 are
extendable to an Enriques–Fano threefold (X,L) such that the morphism ϕL defined
by |L| is an isomorphism on the general member S of |L| (as φ(L|S) > 3), whence
ϕL(X) ⊂ Pg is not a cone and has smooth Enriques surfaces as hyperplane sections.

We conclude the section by explaining how to use our results (without using [27, 38]) to
bound the families of Enriques–Fano threefolds having the property that their Enriques
sections are general in moduli, meaning that the family of polarized Enriques sections
obtained from the family dominates the moduli space E of Enriques surfaces.

Corollary 4.10. Consider a family of Enriques–Fano threefolds (X,L) such that L is
globally generated and whose Enriques sections are general in moduli. Then the general
polarized Enriques sections of the family belong to one of the following moduli spaces:

E(IV )+

17,4 , E(II)+

13,4 , E(II)
13,3 , E

(II)
10,3 , E

+
9,4, E

(II)
9,3 , E7,3, E(II)+

9,2 , E(II)−
9,2 ,

E(I)
7,2 , E

(II)
7,2 , E6,2, E(I)

5,2 , E
(II)+

5,2 , E(II)−
5,2 , E4,2, E3,2

Proof (granting Theorems 1-2). Let (X,L) be general in the family and S ∈ |L| be gen-
eral. The assumption that L is globally generated yields φ(L|S) > 2 by [12, Thms.
4.1] or [15, Prop. 4.7.1]. If g 6 5, then φ 6 2 and (S,L|S) belongs to one of
E(I)

5,2 , E
(II)+

5,2 , E(II)−
5,2 , E4,2, E3,2, as those are all irreducible components of Eg,2. If g > 6,

then Proposition 4.2 and the assumptions of the corollary yield that (S,L|S) belongs to
one of the components of Eg,φ over which the moduli map χg,φ is not generically finite.
These are given in Theorems 1-2. �

5. Computing cohomology of twisted tangent bundles

In the rest of the paper we adopt the following:

Notation 5.1. For an Enriques surface S, we denote by π : S̃ → S the K3 double
cover. For any divisor (or line bundle) D on S we write D̃ := π∗D.

In view of Corollary 3.3 and (9), in this section we will develop some tools for com-
puting or bounding h1(T

S̃
(−H̃)), where H is a big and nef line bundle on S.

Let F1 and F2 be two half-fibers such that F1 · F2 = 1. Then |F̃1 + F̃2| is base point
free and (as in the proof of Proposition 4.7) it defines a double cover g : S̃ → P1 × P1,
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branched on a smooth curve R ∈ | − 2KP1×P1 | (see also [40] and [3, VIII.§18]). Denote
by R̃ ∈ |2F̃1 + 2F̃2| the ramification divisor. Define, for any big and nef H on S

α = α(H,F1, F2) := h1(H−2F1)+h1(H−2F1 +KS)+h1(H−2F2)+h1(H−2F2 +KS)

and
β = β(H,F1, F2) := h0(O

R̃
(4F̃1 + 4F̃2 − H̃)).

Lemma 5.2. Let H be a big and nef line bundle on S and F1 and F2 two half-fibers
such that F1 · F2 = 1. Then h1(T

S̃
(−H̃)) 6 α+ β, with equality if α = 0.

Proof. Dualizing the sequence of relative differentials and tensoring by O
S̃

(−H̃) we get

0→ T
S̃

(−H̃)→ g∗TP1×P1(−H̃) ' O
S̃

(2F̃1 − H̃)⊕O
S̃

(2F̃2 − H̃)→ O
R̃

(2R̃− H̃)→ 0.

Since H is big and nef, we have h0(2F̃i − H̃) = 0, and the result follows. �

The following bounds on β will be useful later on:

(12) β = 0 if (F1 + F2) ·H > 8,

and

(13) β 6 h0(4F1 + 4F2 −H) + h0(4F1 + 4F2 −H +KS)
+ h1(H − 2F1 − 2F2) + h1(H − 2F1 − 2F2 +KS).

Indeed, (12) follows by reasons of degree, as

deg(O
R̃

(4F̃1 + 4F̃2 − H̃)) = π∗(2F1 + 2F2) · π∗(4F1 + 4F2 −H)
= 4(F1 + F2)(4F1 + 4F2 −H) = 4 (8− (F1 + F2) ·H) ,

whereas (13) follows from the exact sequence

(14) 0 −→ π∗OS(2F1 + 2F2 −H) −→ π∗OS(4F1 + 4F2 −H) −→ O
R̃

(2R̃− H̃) −→ 0.

Let next G1 and G2 be two effective primitive isotropic divisors such that G1 ·G2 = 2
and G1 +G2 is nef (e.g., G1 and G2 are half-fibers). Then |G̃1 + G̃2| is base point free
and embeds S̃ into P5 as a complete intersection of three quadrics by [40]. Set

γ = γ(H,G1, G2) := h1(H −G1 −G2) + h1(H −G1 −G2 +KS)
δ = δ(H,G1, G2) := h0(2G1 + 2G2 −H) + h0(2G1 + 2G2 −H +KS)
ε = ε(H,G1, G2) := corkµ

G̃1+G̃2,H̃−G̃1−G̃2
,

where µA,B : H0(A)⊗H0(B) −→ H0(A+B) is the multiplication map of sections.

Lemma 5.3. Let H be a big and nef line bundle on S with H2 > 4 and let G1 and
G2 be two effective primitive isotropic divisors such that G1 · G2 = 2 and G1 + G2 is
nef. If H 6≡ G1 + G2, then h1(T

S̃
(−H̃)) 6 ε + 6γ + 3δ, with equality if ε = γ = 0. If

H ≡ G1 +G2, then h1(T
S̃

(−H̃)) = 12.
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Proof. The Euler sequence twisted by O
S̃

(−H̃) is

0 // O
S̃

(−H̃) // H0(G̃1 + G̃2)∨ ⊗O
S̃

(G̃1 + G̃2 − H̃) // TP5 |
S̃

(−H̃) // 0.

The map on cohomology H2(O
S̃

(−H̃)) → H0(G̃1 + G̃2)∨ ⊗ H2(O
S̃

(G̃1 + G̃2 − H̃)) is
the dual of µ

G̃1+G̃2,H̃−G̃1−G̃2
. Thus, as h0(−H̃) = h1(−H̃) = 0, we have

(15) h0(TP5 |
S̃

(−H̃)) = 6h0(O
S̃

(G̃1 + G̃2 − H̃)) =
{

6 if H ≡ G1 +G2,

0 if H 6≡ G1 +G2

and
(16) h1(TP5 |

S̃
(−H̃)) = ε+ 6γ.

The normal bundle sequence twisted by O
S̃

(−H̃) is

(17) 0 // T
S̃

(−H̃) // TP5 |
S̃

(−H̃) // O
S̃

(2G̃1 + 2G̃2 − H̃)⊕3 // 0.

Taking cohomology, and using (15) and (16), yields the desired result (using that
h0(T

S̃
(−H̃)) = 0 by the Mori-Sumihiro-Wahl Theorem [31, 44] when H ≡ G1 +G2). �

Remark 5.4. Pushing forward (17) by π and using the fact that T
S̃
' π∗TS , we obtain

a splitting of the coboundary map into the direct sum of H0(OS(2G1 + 2G2−H))⊕3 →
H1(TS(−H)) and H0(OS(2G1 + 2G2 −H +KS))⊕3 → H1(TS(−H +KS)).

We end this section with some results that will be useful to compute the corank of
multiplication maps. They are similar to the generalization by Mumford of a theorem
of Castelnuovo, cf. [36, Thm. 2, p. 41]:

Lemma 5.5. Let F and G be divisors on a projective surface S and assume that |G| is
a base point free pencil. Then cork(µF,G) 6 h1(F −G), with equality if h1(F ) = 0.

Proof. This follows by tensoring the evaluation exact sequence
0 −→ OS(−G) −→ H0(G)⊗OS −→ OS(G) −→ 0

with OS(F ) and taking cohomology. �

Lemma 5.6. ([21, Obs. 1.4.1]) Let F and G =
∑n
i=1Gi be divisors on a projective

surface. If the multiplication maps µF+G1+···+Gi−1,Gi are surjective for all 1 6 i 6 n,
then also µF,G is surjective.

Remark 5.7. When all |Gi| are base point free pencils, the criterion in Lemma 5.6 is
satisfied (by Lemma 5.5) if h1(F +G1 + · · ·+Gi−1 −Gi) = 0 for all i = 1, . . . , n.

6. Fiber dimensions of moduli maps

In this section we will apply the results of the previous section, combined with Corol-
lary 3.3 and (9), to prove Theorem 1 and part of Theorem 2.

We will make use of the following facts. Let S be an Enriques surface. By [25,
Lemma 2.1], if A and B are effective divisors on S, then
(18) A2, B2 > 0 =⇒ A ·B > 0, with equality iff A2 = 0 and A ≡ kB for some k ∈ Q.
For any divisor D such that D2 > 0 and D 6∼ KS , either D or −D is effective. If
moreover S is unnodal, then any effective divisor D is nef, and it is ample if and only
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if D2 > 0. Thus, for any divisor D on an unnodal S we have (by Riemann-Roch and
Mumford vanishing)

(19) D2 6 −2 =⇒
{
h0(D) = h0(D +KS) = h2(D) = h2(D +KS) = 0 and
h1(D) = h1(D +KS) = −1

2D
2 − 1,

(20) h1(D) = h1(D +KS) = 0 ⇐⇒ D2 > −2 and D 6≡ ±lE, l > 2, for a half-fiber E.

Remark 6.1. Recall that the general Enriques surface is unnodal. The assumption in
the results below that S be unnodal is not necessary in order to apply the results from
§5. It is added to simplify the proofs of the vanishings of various cohomology groups.
A more thorough study will yield bounds on h1(TS(−H)) in terms of the existence
of specific configurations of rational curves. We therefore expect that a result similar
to Corollary 1.2 can also be obtained in the nodal cases (yielding for instance the two
additional cases of Corollary 6.5 below), but it would require additional work that would
bring us beyond the scope of this paper.

We use Notations 2.1 and 5.1. We say that a simple isotropic decomposition H ∼∑n
i=1 αiFi + εKS contains

∑n
i=1 aiFi if αi > ai for all i ∈ {1, . . . , n}.

Lemma 6.2. Assume S is an unnodal Enriques surface and H a big and nef line bundle
on S. We have h1(T

S̃
(−H̃)) = 0 if a simple isotropic decomposition of H contains

(a) E1 + E2 + E3 + E4 + E5,
(b) 2E1 + E2 + E3 + E4,
(c) 3E1 + E2 + E3,
(d) 5E1 + 3E2,

(e) 2E1 + E3 + E1,2,
(f) E1 + E2 + E1,2,
(g) 3E1 + 2E1,2,
(h) 2E1 + 3E1,2.

Proof. (a) We have H ∼ E1 +E2 +E3 +E4 +E5 +D, where D is nef. By [15, Cor. 2.5.6]
there are primitive isotropic F1, F2 such that F1 · F2 = Fi · Ej = 1 for i ∈ {1, 2} and
j ∈ {1, 2, 3, 4, 5} and such that Fj 6≡ 1

2(E1 + · · ·+ E5)− 1
E1·DD.

We apply Lemma 5.2. We have (F1 + F2) ·H > 10, whence β = 0 by (12). We have
(E1 + · · ·+ E5 − 2F1)2 = 0, whence

(H − 2F1)2 = (E1 + · · ·+ E5 − 2F1)2 + 2(E1 + · · ·+ E5 − 2F1) ·D +D2

= 2(E1 + · · ·+ E5 − 2F1) ·D +D2 > 0,
with equality if and only if D2 = 0 and D ≡ k(E1 + · · · + E5 − 2F1) for some k ∈ Q
by (18). In the latter case, intersecting with E1 yields k = 1

2E1 · D, whence F1 ≡
1
2(E1 + · · ·+E5)− 1

E1·DD, a contradiction. Hence h1(H−2F1) = h1(H−2F1 +KS) = 0
by (20). By symmetry, also h1(H − 2F2) = h1(H − 2F2 +KS) = 0, so that α = 0. The
result then follows from Lemma 5.2.

(b) We have H ∼ 2E1 + E2 + E3 + E4 + D, where D is nef. By symmetry, we may
assume that
(21) D · E4 > D · E2.

We apply Lemma 5.2 with F1 = E1 and F2 = E2.
We have (H − 2E1)2 = (E2 + E3 + E4 + D)2 > 0, whence h1(H − 2E1) = h1(H −

2E1 +KS) = 0 by (20). We have (2E1 + E3 + E4 − E2)2 = 2, whence

(H − 2E2)2 = (2E1 + E3 + E4 − E2)2 + 2(2E1 + E3 + E4 − E2) ·D +D2 > 2,
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since both 2E1 + E3 + E4 − E2 and D are effective. It follows that h1(H − 2E2) =
h1(H − 2E2 +KS) = 0 again by (20). Hence α = 0.

We next prove that β = 0. We will apply (13). We first note that, by (19),

h0(4E1 + 4E2 −H) = h0(2E1 + 3E2 − E3 − E4 −D) 6 h0(2E1 + 3E2 − E3 − E4) = 0,
as (2E1 + 3E2−E3−E4)2 = −6. Similarly, h0(4E1 + 4E2−H +KS) = 0. We also have

(H − 2E1 − 2E2)2 = (E3 + E4 − E2)2 + 2(E3 + E4 − E2) ·D +D2

= −2 + 2(E3 + E4 − E2) ·D +D2 > −2,
by (21), and (H−2E1−2E2)2 = 0 if and only if (D2, (E3 +E4−E2) ·D) ∈ {(0, 1), (2, 0)}.
But in the latter case we must have D ·E3 = 0 by (21), contradicting (18). In the former
case we have D · (H−2E1−2E2) = 1, implying that H−2E1−2E2 is primitive. Hence,
h1(H − 2E1 − 2E2) = h1(H − 2E1 − 2E2 +KS) = 0 by (20). Thus, β = 0 by (13).

(c) We have H ∼ 3E1 +E2 +E3 +D, where D is nef. By symmetry, we may assume
that
(22) D · E3 > D · E2.

We apply Lemma 5.2 with F1 = E1 and F2 = E2.
We have (H − 2E1)2 = (E1 + E2 + E3 + D)2 > 0, whence h1(H − 2E1) = h1(H −

2E1 +KS) = 0 by (20). We have

(H − 2E2)2 = (3E1 + E3 − E2)2 + 2(3E1 + E3 − E2) ·D +D2

= −2 + 2(3E1 + E3 − E2) ·D +D2 > −2,
by (22), and (H − 2E2)2 = 0 if and only if (D2, (3E1 + E3 − E2) ·D) ∈ {(0, 1), (2, 0)}.
But in the latter case we must have D · E1 = 0 by (22), contradicting (18). In the first
case we have D · (H − 2E2) = 1, implying that H − 2E2 is primitive. It follows that
h1(H − 2E2) = h1(H − 2E2 +KS) = 0 again by (20). Hence α = 0.

We next prove that β = 0. We will apply (13). We first note that, by (19),

h0(4E1 + 4E2 −H) = h0(E1 + 3E2 − E3 −D) 6 h0(E1 + 3E2 − E3) = 0,
as (E1 + 3E2 − E3)2 = −2. Similarly, h0(4E1 + 4E2 −H +KS) = 0. We also have

(H − 2E1 − 2E2)2 = (E1 + E3 − E2)2 + 2(E1 + E3 − E2) ·D +D2

= −2 + 2(E1 + E3 − E2) ·D +D2 > −2,
by (22), and (H−2E1−2E2)2 = 0 if and only if (D2, (E1 +E3−E2) ·D) ∈ {(0, 1), (2, 0)}.
But in the latter case we must have D · E1 = 0 by (22), contradicting (18). In the first
we have D · (H − 2E1 − 2E2) = 1, implying that H − 2E1 − 2E2 is primitive. Hence,
h1(H − 2E1 − 2E2) = h1(H − 2E1 − 2E2 +KS) = 0 by (20). Thus, β = 0 by (13).

(d) We have H ∼ 5E1 +3E2 +D, where D is nef. We apply Lemma 5.2 with F1 = E1
and F2 = E2 and argue as in (c).

(e) We have H ∼ 2E1 + E3 + E1,2 + D, where D is nef. We apply Lemma 5.2 with
F1 = E1 and F2 = E3.

We have (H−2E1)2 = (E3+E1,2+D)2 > 0, whence h1(H−2E1) = h1(H−2E1+KS) =
0 by (20). We have (2E1 + E1,2 − E3)2 = 2, whence

(H − 2E3)2 = (2E1 + E1,2 − E3)2 + 2(2E1 + E1,2 − E3) ·D +D2 > 0,

so that also h1(H − 2E3) = h1(H − 2E3 +KS) = 0 by (20). It follows that α = 0.
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To prove that β = 0, we will use (12) and (13). We first note that

(23) h0(4E1 + 4E3 −H) = h0(2E1 + 3E3 − E1,2 −D) 6 h0(2E1 + 3E3 − E1,2) = 0,

by (19), as (2E1 + 3E3−E1,2)2 = −2. Similarly, h0(4E1 + 4E3−H+KS) = 0. To finish
the proof that β = 0 we divide the treatment in different cases.

Assume that E1,2 is present in the isotropic decomposition of D. Then E1 · H > 5
and E3 ·H > 4, so that β = 0 by (12).

Assume that E3 is present in the isotropic decomposition of D, whereas E1,2 is not.
Write D′ = D − E3. Then H − 2E1 − 2E3 = E1,2 + D′, so that h1(H − 2E1 − 2E3) =
h1(H − 2E1 − 2E3 +KS) = 0 by (20). Hence β = 0 by (23) and (13).

Assume that Ej is present in the isotropic decomposition of D, for j = 1 or 2, whereas
E1,2 is not. Then D · (E1,2 − E3) > 1 and

(H − 2E1 − 2E3)2 = (−E3 + E1,2 +D)2 = (E1,2 − E3)2 + 2(E1,2 − E3) ·D +D2

= −2 + 2(E1,2 − E3) ·D +D2 > 0,

with equality if and only if D = Ej . In this case, h1(H − 2E1 − 2E3) = h1(H − 2E1 −
2E3 +KS) = 0 by (20), as Ej · (H − 2E1 − 2E3) = 1. Again, β = 0 by (23) and (13).

Finally, assume that neither E1, E2, E3 nor E1,2 are present in the isotropic decom-
position of D. Then D · (E1,2 − E3) = 0, whence

(H−2E1−2E3)2 = (−E3+E1,2+D)2 = (E1,2−E3)2+2(E1,2−E3)·D+D2 = D2−2 > −2,

and is 0 if and only if D2 = 2. In this case, we have E1 ·D > 2 and E3 ·D > 2, so that
E1 ·H > 5 and E3 ·H > 5. Hence, β = 0 by (12).

(f) We have H ∼ E1 +E2 +E1,2 +D, where D is nef. By symmetry between E1 and
E2, we may assume that D 6≡ kE2 for any k > 1. We apply Lemma 5.3 with G1 = E1
and G2 = E1,2.

We haveH−E1−E1,2 = E2+D, whence h1(H−E1−E1,2) = h1(H−E1−E1,2+KS) =
0 by (20) and the fact that D 6≡ kE2. Therefore, γ = 0.

By (19) and the fact that (E1 + E1,2 − E2)2 = −2, we have

h0(2E1 + 2E1,2 −H) = h0(E1 + E1,2 − E2 −D) 6 h0(E1 + E1,2 − E2) = 0.

Similarly, h0(2E1 + 2E1,2 −H +KS) = 0. Hence, δ = 0.
To check that the multiplication map µ

Ẽ1+Ẽ1,2,Ẽ2+D̃ is surjective, we apply Lemmas
5.5 and 5.6, cf. Remark 5.7. Write D ≡

∑n
i=1 αiEi + α0E1,2 for some n 6 9. The

multiplication map

µ
Ẽ1+Ẽ1,2,Ẽ2

: H0(Ẽ1 + Ẽ1,2)⊗H0(Ẽ2) −→ H0(Ẽ1 + Ẽ1,2 + Ẽ2)

is surjective, since (20) and the fact that (E1 + E1,2 − E2)2 = −2 imply that

h1(Ẽ1 + Ẽ1,2 − Ẽ2) = h1(E1 + E1,2 − E2) + h1(E1 + E1,2 − E2 +KS) = 0.

Likewise, all multiplication maps µ
Ẽ1+Ẽ1,2+jẼ2,Ẽ2

for 1 6 j 6 α2 are surjective, since

all
(
(Ẽ1 + Ẽ1,2 + jẼ2) − Ẽ2

)2
> 0. For the same reason, all µ

Ẽ1+Ẽ1,2+(α2+1)Ẽ2+jẼ1,Ẽ1
,

for 0 6 j 6 α1 − 1, are surjective, as well as all µ(α1+1)Ẽ1+Ẽ1,2+(α2+1)Ẽ2+jẼ1,2,Ẽ2
, for

0 6 j 6 α0 − 1. Finally, for any i ∈ {3, . . . , n} and any 0 6 j 6 αi − 1, set

Bij := (α1 + 1)E1 + (α0 + 1)E1,2 + (α2 + 1)E2 + α3E3 + · · ·+ αi−1Ei−1 + jEi − Ei.
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Then B̃ij = Ẽ1 + Ẽ1,2 + Ẽ2 − Ẽi + ∆, with

∆ := α1Ẽ1 + α0Ẽ1,2 + α2Ẽ2 + α3Ẽ3 + · · ·+ αi−1Ẽi−1 + jẼi.

Since ∆2 > 0 and (Ẽ1 + Ẽ1,2 + Ẽ2 − Ẽi)2 = 8, we have B̃2
ij > 0, whence h1(B̃ij) =

h1(Bij) + h1(Bij + KS) = 0 by (20). It follows by Lemma 5.6 and Remark 5.7 that
µ
Ẽ1+Ẽ1,2,Ẽ2+D̃ is surjective, whence ε = 0.
(g) We have H ∼ 3E1 + 2E1,2 +D, where D is nef. If E2 is present in D, we are done

by (f). If any Ej , for j 6= 1, 2, is present in D, we are done by (e). We have therefore left
to treat the case where H ≡ a1E1 + a0E1,2, with a1 > 3 and a0 > 2. By symmetry, we
may assume that a1 > a0. As in the previous case, we apply Lemma 5.3 with G1 = E1
and G2 = E1,2.

We have H − E1 − E1,2 = (a1 − 1)E1 + (a2 − 1)E1,2, whence h1(H − E1 − E1,2) =
h1(H − E1 − E1,2 +KS) = 0 by (20). Therefore, γ = 0.

We have 2E1 +2E1,2−H ≡ −(a1−2)E1−(a0−2)E1,2, whence h0(2E1 +2E1,2−H) =
h0(2E1 + 2E1,2 −H +KS) = 0. Thus, δ = 0.

To check that the map µ
Ẽ1+Ẽ1,2,(a1−1)Ẽ1+(a0−1)Ẽ1,2

is surjective, we apply Lemma 5.6.
The map µ

Ẽ1+Ẽ1,2,(a0−1)
(
Ẽ1+Ẽ1,2

) is surjective by [40, Thm. 6.1]. Finally, for 0 6 j 6

a1 − a0 − 1, set Bj := (a0 + j)E1 + (a0 − 1)E1,2 − E1. Then B2
j > 0, so that h1(B̃j) =

h1(B) + h1(B + KS) = 0 by (20), whence all µ(a0+j)Ẽ1+(a0−1)Ẽ1,2,Ẽ1
are surjective by

Lemma 5.5. The map µ
Ẽ1+Ẽ1,2,(a1−1)Ẽ1+(a0−1)Ẽ1,2

is thus surjective by Lemma 5.6.
(h) This case is treated as the previous one, exchanging the roles of E1 and E1,2. �

Lemma 6.3. Assume S is an unnodal Enriques surface and H a big and nef line bundle
on S. If h1(T

S̃
(−H̃)) 6= 0, then we are in one of the following cases:

component of moduli space simple isotr. decomp. h1(T
S̃

(−H̃))

E(IV )+

17,4 and E(IV )−

17,4 H ≡ 4(E1 + E2) = 1
E(II)

13,3 H ∼ 4E1 + 3E2 = 2
E(II)+

13,4 and E(II)−

13,4 H ≡ 2(E1 + E2 + E3) 6 1
E(II)

10,3 H ∼ 3E1 + 3E2 = 4
E(II)

9,3 H ∼ 2E1 + 2E2 + E3 = 2
E+

9,4 and E−9,4 H ≡ 2(E1 + E1,2) = 3
E7,3 H ∼ E1 + E2 + E3 + E4 6 2
E6,2 H ∼ 2E1 + E2 + E3 = 4
E4,2 H ∼ E1 + E2 + E3 = 8
E3,2 H ∼ E1 + E1,2 = 12
E(I)

2k+1,2, k > 2 H ∼ kE1 + E1,2, k > 2
E(II)

2k+1,2 if k is odd; E(II)+
2k+1,2 and E(II)−

2k+1,2 if k is even H ≡ kE1 + 2E2, k > 2
Ek+1,1 H ≡ kE1 + E2, k > 1

Proof. Up to rearranging indices, the decompositions in the table are the only ones
not covered by Lemma 6.2, except for H ≡ E1 + kE3 + lE1,2, with k, l > 1. Set
F := E1 + E1,2 − E3. Then F 2 = 0, E1,2 · F = 1 and E3 · F = 2. Thus, H ≡
(k+ 1)E3 +F + (l− 1)E1,2 is a simple isotropic decomposition, which can be rewritten,
after renaming indices, H ≡ (k + 1)E1 + E1,2 + (l − 1)E3. This falls into case (e) of
Lemma 6.2 if l > 2, and is present in the table of the lemma if l = 1. We now study
h1(T

S̃
(−H̃)).
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• Cases E(IV )+

17,4 and E(IV )−
17,4 . We apply Lemma 5.2 with F1 = E1 and F2 = E2. We

have (H − 2E1)2 = (2E1 + 4E2)2 > 0, whence h1(H − 2E1) = h1(H − 2E1 +KS) = 0 by
(20). Similarly, we have h1(H − 2E2) = h1(H − 2E2 +KS) = 0, so that α = 0. We have
4F̃1 + 4F̃2 − H̃ = 0, whence β = 1 by definition. Lemma 5.2 implies h1(T

S̃
(−H̃)) = 1.

• Case E(II)
13,3 . We apply Lemma 5.2 with F1 = E1 and F2 = E2. We find α = 0

as above. We have 4F1 + 4F2 − H = E2 and 2F1 + 2F2 − H = −2E1 − E2. Hence
h0(4F̃1 + 4F̃2− H̃) = h0(E2) +h0(E2 +KS) = 2, and hi(2F̃1 + 2F̃2− H̃) = 0 for i = 0, 1.
Hence, β = 2 by the exact sequence (14). Thus, h1(T

S̃
(−H̃)) = 2 by Lemma 5.2.

• Cases E(II)+

13,4 and E(II)−
13,4 . We apply Lemma 5.2 with F1 = E1 and F2 = E2. We

find α = 0 as above. We have 4F1 + 4F2 − H ≡ 2(E1 + E2 − E3), which has square
−8, whence h0(4F1 + 4F2 − H) = h0(4F1 + 4F2 − H + KS) = 0 by (19). We have
2F1 + 2F2 − H ≡ −2E3, whence h1(2F1 + 2F2 − H) + h1(2F1 + 2F2 − H + KS) = 1.
Therefore, β 6 1 by (13). It follows that h1(T

S̃
(−H̃)) 6 1 by Lemma 5.2.

• Case E(II)
10,3 . We apply Lemma 5.2 with F1 = E1 and F2 = E2. As above, α = 0. We

have 2F1+2F2−H = −E1−E2, whence hi(2F1+2F2−H) = hi(2F1+2F2−H+KS) = 0,
i = 0, 1 by (20). We have 4F1+4F2−H = E1+E2, whence h0(4F1+4F2−H) = h0(4F1+
4F2 −H +KS) = 2. Thus, hi(2F̃1 + 2F̃2 − H̃) = 0, i = 0, 1 and h0(4F̃1 + 4F̃2 − H̃) = 4,
so β = 4 by (14). Lemma 5.2 yields h1(T

S̃
(−H̃)) = 4.

• Case E(II)
9,3 . We apply Lemma 5.2 with F1 = E1 and F2 = E2. We find α = 0 as

above. We have 2F1 +2F2−H = −E3, whence hi(2F1 +2F2−H) = hi(2F1 +2F2−H+
KS) = 0 for i = 0, 1 by (20). We have 4F1 +4F2−H = 2E1 +2E2−E3, which has square
0. Since E1·(4F1+4F2−H) = 1, we have h0(4F1+4F2−H) = h0(4F1+4F2−H+KS) = 1
(using (20)). It follows that hi(2F̃1+2F̃2−H̃) = 0 for i = 0, 1 and h0(4F̃1+4F̃2−H̃) = 2,
whence β = 2 by (14). Thus, h1(T

S̃
(−H̃)) = 2 by Lemma 5.2.

• Cases E+
9,4 and E−9,4. We apply Lemma 5.3 with G1 = E1 and G2 = E1,2. We have

H −G1 −G2 ≡ E1 + E1,2, whence γ = 0. We have 2G1 + 2G2 −H ≡ 0, whence δ = 1.
Finally, the multiplication map µ

Ẽ1+Ẽ1,2,Ẽ1+Ẽ1,2
is surjective by [40, Thm. 6.1]. Hence,

ε = 0. Thus, h1(T
S̃

(−H̃)) = 3 by Lemma 5.3. (See also Remark 6.4 below.)
• Case E7,3. We apply Lemma 5.2 with F1 = E1 and F2 = E2. We have (H −

2F1)2 = (E2 + E3 + E4 − E1)2 = 0 and E2 · (H − 2F1) = 1, whence h1(H − 2F1) =
h1(H − 2F1 + KS) = 0 by (20). Similarly, h1(H − 2F2) = h1(H − 2F2 + KS) = 0,
whence α = 0. We have (4F1 + 4F2 − H)2 = (3E1 + 3E2 − E3 − E4)2 = −4, whence
h0(4F1 +4F2−H) = h0(4F1 +4F2−H+KS) = 0 by (19). We have (2F1 +2F2−H)2 =
(E1 +E2−E3−E4)2 = −4, whence h1(2F1 + 2F2−H) = h1(2F1 + 2F2−H +KS) = 1
by (19). It follows that h1(2F̃1 + 2F̃2 − H̃) = 2 and h0(4F̃1 + 4F̃2 − H̃) = 0, whence
β 6 2 by (14). Thus, h1(T

S̃
(−H̃)) 6 2 by Lemma 5.2.

• Case E6,2. We apply Lemma 5.2 with F1 = E1 and F2 = E2. We have (H−2F1)2 =
(E2 + E3)2 = 2, whence h1(H − 2F1) = h1(H − 2F1 + KS) = 0 by (20). We have
(H − 2F2)2 = (2E1 + E3 − E2)2 = −2, whence h1(H − 2F2) = h1(H − 2F2 + KS) = 0
by (20). It follows that α = 0. We have (4F1 + 4F2 −H)2 = (2E1 + 3E2 − E3)2 = 2,
whence h0(4F1 + 4F2 − H) = h0(4F1 + 4F2 − H + KS) = 2 by (20) and Riemann-
Roch. We have (2F1 + 2F2 − H)2 = (E2 − E3)2 = −2, whence hi(2F1 + 2F2 − H) =
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hi(2F1 +2F2−H+KS) = 0 for i = 0, 1 by (19). Thus, hi(2F̃1 +2F̃2−H̃) = 0 for i = 0, 1
and h0(4F̃1 + 4F̃2 − H̃) = 4, so β = 4 by (14). Lemma 5.2 yields h1(T

S̃
(−H̃)) = 4.

• Case E4,2. We apply Lemma 5.2 with F1 = E1 and F2 = E2. We have (H−2F1)2 =
(E2 +E3−E1)2 = −2, whence h1(H−2F1) = h1(H−2F1 +KS) = 0 by (20). Similarly,
h1(H − 2F2) = h1(H − 2F2 + KS) = 0, whence α = 0. We have (4F1 + 4F2 − H)2 =
(3E1 + 3E2 − E3)2 = 6, whence h0(4F1 + 4F2 − H) = h0(4F1 + 4F2 − H + KS) = 4.
We have (2F1 + 2F2 − H)2 = (E1 + E2 − E3)2 = −2, whence hi(2F1 + 2F2 − H) =
hi(2F1 + 2F2 −H +KS) = 0, i = 0, 1 by (19). Thus, hi(2F̃1 + 2F̃2 − H̃) = 0 for i = 0, 1
and h0(4F̃1 + 4F̃2 − H̃) = 8, so β = 8 by (14). Lemma 5.2 yields h1(T

S̃
(−H̃)) = 8.

• Case E3,2. Lemma 5.3 with G1 = E1 and G2 = E1,2 yields h1(T
S̃

(−H̃)) = 12. �

Remark 6.4. In the cases E+
9,4 and E−9,4, applying Remark 5.4, we obtain more precisely

that h1(TS(−H)) = 3 and h1(TS(−H +KS)) = 0 for (S,H) ∈ E+
9,4 and h1(TS(−H)) = 0

and h1(TS(−H +KS)) = 3 for (S,H) ∈ E−9,4.

We draw some consequences from the last two lemmas:

Proof of Theorem 1. The cases not in the table of Lemma 6.3 satisfy h1(T
S̃

(−H̃)) = 0,
where the result follows from Corollary 3.3 and (9). Let us consider the other cases.
• Cases E(IV )+

17,4 and E(IV )−
17,4 . The moduli map χ

(IV )+

17,4 is not generically finite by
Corollary 4.3, whence h1(TS(−H)) > 0 for (S,H) ∈ E(IV )+

17,4 by Corollary 3.3. Lemma
6.3 then implies that h1(TS(−H)) = 1 and h1(TS(−H + KS)) = 0, so that χ(IV )+

17,4 has
generically one-dimensional fibers and χ(IV )−

17,4 is generically finite by Corollary 3.3.
• Cases E(II)+

13,4 and E(II)−
13,4 . These cases are treated exactly as the previous ones.

• Cases E+
9,4 and E−9,4. Lemma 6.3 and Remark 6.4 imply that for (S,H) ∈ E+

9,4,
we have h1(TS(−H)) = 3 and h1(TS(−H + KS)) = 0. Thus χ+

9,4 has generically three-
dimensional fibers by Corollary 3.3. It also follows that h1(TS(−H)) = 0 for (S,H) ∈
E−9,4, whence χ

−
9,4 is generically finite.

• Case E7,3. By Corollary 4.3, the moduli map χ7,3 is not generically finite, whence
h1(TS(−H)) > 0 for (S,H) ∈ E7,3 by Corollary 3.3, and also h1(TS(−H+KS)) > 0, since
(S,H + KS) ∈ E7,3 as well. Lemma 6.3 then implies that h1(TS(−H)) = h1(TS(−H +
KS)) = 1, in particular χ7,3 has generically one-dimensional fibers by Corollary 3.3.
• Cases E(II)

13,3 , E(II)
10,3 and E(II)

9,3 . Since these spaces are all irreducible and (S,H) and
(S,H+KS) belong to the same spaces, we must have h1(TS(−H)) = h1(TS(−H+KS)) =
1
2h

1(T
S̃

(−H̃)). Then Lemma 6.3 and Corollary 3.3 yield the rest. �

Proof of Corollary 1.2. Assume that S ⊂ PN is k-extendable, for some k > 1. In the
language of [29] this means that S can be nontrivially extended k steps. Since S is not
a quadric, [29, Thm. 0.1] yields that
(24) α(S) := h0(NS/PN (−1))−N − 1 > min{k,N}.

The normal bundle and Euler sequences yield h0(NS/PN (−1)) 6 N + 1 +h1(TS(−1)),
whence α(S) 6 h1(TS(−1)). Hence, h1(TS(−1)) > min{k,N} by (24). In particular, we
must have h1(TS(−1)) > 0, which may also be deduced from Lemma 3.1 and Proposition
4.2. Since φ(OS(1)) > 3 by [12, Thm. 5.1] or [15, Thm. 4.6.1] and we assume S is
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unnodal, (S,OS(1)) must therefore be in one of the cases listed in Lemma 6.3. The
proof of Theorem 1 shows that h1(TS(−1)) = 0 for (S,OS(1)) in E(IV )−

17,4 , E(II)−
13,4 and E−9,4,

leaving us with the list of the corollary. The same proof also shows that h1(TS(−1)) = 1
in all cases, except for the cases E(II)

10,3 and E+
9,4, where h1(TS(−1)) = 2 and 3, respectively.

Since N > 4, we get from from (24) that k 6 2, resp. 3, in these cases. �

Corollary 6.5. The general Enriques surface sections of the Enriques–Fano threefolds
(1) and (3) in the list of [4, Thm. A] are nodal Enriques surfaces.

Proof. Let (X,L) be one of the Enriques–Fano threefolds in question and S ∈ |L| be
general. We have (g, φ) = (8, 3) and (6, 3), which do not appear in the table of Lemma
6.3. By Proposition 4.2, the map cg,φ has positive dimensional fiber at (S,L|S , C) for
general C ∈ |L|S |. The result thus follows from Lemma 6.3, Corollary 3.3 and (9). �

The next result proves part of Theorem 2.

Proposition 6.6. (i) The moduli map χg,2 is generically finite for even g > 8, dominant
for g = 3, 4, and with image of codimension 2 for g = 6.

(ii) A general fiber of χ(I)
5,2 is three-dimensional.

Proof. (i) By Lemma 6.3 we have h1(T
S̃

(−H̃)) = 0 for even g > 8, and the result follows
from Corollary 3.3 and (9). In the remaining cases, as (S,H) and (S,H+KS) both belong
to Eg,2, which is irreducible by [7], we must have h1(TS(−H)) = h1(TS(−H + KS)) =
1
2h

1(T
S̃

(−H̃)), whence Lemma 6.3 yields

h1(TS(−H)) =


2 if (S,H) ∈ E6,2

4 if (S,H) ∈ E4,2

6 if (S,H) ∈ E3,2,

which is the dimension of a general fiber of χg,2 by Corollary 3.3. Comparing dimensions
of ECg,2 and Rg yields the rest.

(ii) Recalling that H ∼ 2E1 + E1,2, we first apply Lemma 5.3 with G1 = E1 and
G2 = E1,2 to compute h1(T

S̃
(−H̃)). We have H − G1 − G2 = E1, whence γ = 0. We

have 2G1 + 2G2 −H = E1,2, whence δ = 2. Finally, the multiplication map µ
Ẽ1+Ẽ1,2,Ẽ1

is surjective by Lemma 5.5, as

h1(Ẽ1 + Ẽ1,2 − Ẽ1) = h1(Ẽ1,2) = h1(E1,2) + h1(E1,2 +KS) = 0.

Hence, ε = 0. Thus, h1(T
S̃

(−H̃)) = 6 by Lemma 5.3 and the result follows as in (i). �

To finish the proof of Theorem 2 we will have to study the cases φ = 2 of odd genus
g > 5 apart from χ

(I)
5,2. We will do this in Sections 8 and 9 after a technical result in the

next section. Theorem 2 will follow from Propositions 6.6, 8.1 and 9.1.

7. A technical result

We here give a result that we will need in the next section, where we will bound the
fiber dimension of a moduli map by specializing to a union C ∪ Γ of a smooth curve C
and a rational curve Γ and using knowledge of the fiber dimension over C.
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Although we will need the result in the case X is an Enriques–Fano threefold, we
formulate it in a more general setting. Its proof is independent of the rest of the paper
and its reading can be postponed.

Lemma 7.1. Let X be a normal projective threefold and L a big and nef line bundle on
X such that the general member of |L| is a smooth, regular surface. Assume that there
is a smooth surface S0 ∈ |L| containing a smooth irreducible rational curve Γ0 such that:

(i) kod(S0) > 0 (where kod denotes the Kodaira dimension);
(ii) the general element in |L| does not contain any deformation of Γ0;
(iii) L|S0 ∼M +N such that M and N are effective and nontrivial and M is globally

generated; moreover, Γ0 ·M > 0;
(iv) there is a smooth, irreducible nonrational D ∈ |N | such that h0(OD(Γ0)) = 1.

Then, possibly up to substituting the pair (S0,Γ0) with a deformation of it keeping S0
inside |L⊗JD| (which automatically maintains N ∼ D andM ∼ L|S0−N), the following
holds: For general C ∈ |M |, the linear system |L ⊗ JD∪C | is a pencil with base locus
D ∪ C and either

(a) Γ0 does not deform to a general member of |L ⊗ JD∪C |, or
(b) Γ0 deforms to a general member of |L⊗JD∪C | in such a way that the intersection

Γt ∩ C 6= Γ0 ∩ C for the general deformation Γt of Γ0.

Proof. Let π : X̃ → X be a resolution of singularities of X (which is an isomorphism on
the smooth locus of X). Arguing precisely as in the proof of Lemma 4.1, one finds that
h1(O

X̃
) = 0 and H0(X̃, π∗L) ' H0(X,L). We can therefore without loss of generality

assume that X is smooth and h1(OX) = 0.
Let S0, Γ0, M , N and D ∈ |N | be as in the statement. From

0 // OX // L ⊗ JD // L|S0 −D 'M // 0,

and the fact that M is globally generated and h1(OX) = 0, we see that |L⊗JD| is base
point free off D and dim |L ⊗ JD| = dim |M |+ 1 > 2. For any C ∈ |M | we see from

0 // OX // L ⊗ JD∪C // L|S0 −D − C ' OS0
// 0,

that |L⊗JD∪C | is a pencil (containing the element S0) with base locusD∪C. Conversely,
for any pencil Λ ⊂ |L⊗JD| containing S0, the base locus is CΛ ∪D for some CΛ ∈ |M |.
Hence, giving a pencil Λ ⊂ |L⊗JD| containing the element S0 is equivalent to giving a
curve C ∈ |M | (which will be the base curve off D of Λ). Note that Γ0 6⊆ CΛ ∪ D for
general Λ, since |M | is base point free and D 6= Γ0 by assumption (iv). A general pencil
Λ ⊂ |L ⊗ JD| containing S0 therefore does not have Γ0 in its base locus.

Denote by R the union of the components of the incidence variety
{(Γ, S) | [Γ] ∈ HilbX,S ∈ |L ⊗ JD|,Γ ⊂ S} ⊂ HilbX × |L ⊗ JD|

containing (Γ0, S0), where we denote by [Γ] the point corresponding to the curve Γ in
the Hilbert scheme. We further denote by p : R → |L ⊗ JD| the natural projection,
which is generically finite as a general member in |L ⊗ JD| has nonnegative Kodaira
dimension by assumption (i), whence it contains at most finitely many curves that are
deformations of Γ0. If p is not dominant, we end up in case (a), taking the pencil
generated by S0 and a general element not in the image of p. We may thus henceforth
assume p is dominant. In particular, we can assume that S0 is general in |L ⊗ JD|.



MODULI OF CURVES ON ENRIQUES SURFACES 23

Indeed, for general St ∈ |L ⊗ JD|, one may define Nt := OSt(D) and Mt := L|St −D,
and properties (i)-(iv) are preserved passing from (S0,Γ0) to a general (St,Γt).

Let now Λ ⊂ |L⊗JD| be a general pencil containing S0. Its general member therefore
does not contain Γ0 and contains only finitely many rational curves deformations of Γ0,
as it has nonnegative Kodaira dimension by assumption (i). For λ ∈ Λ we denote by
Sλ the corresponding surface. Let RΛ be any irreducible component of the incidence
variety

{(Γ, λ) | [Γ] ∈ HilbX,λ ∈ Λ,Γ ⊂ Sλ} ⊂ HilbX × Λ
containing ([Γ0], 0 = S0) and such that the second projection pΛ : RΛ → Λ is dominant.
Such a component exists since p is dominant. Moreover, pΛ is generically finite by what
we said above.

Assume pΛ is not generically injective. Then the general S ∈ Λ contains at least two
curves that are deformations of Γ0. As we assume that S0 is general in |L⊗JD|, it is not
a branch point of p, so that the limit curves on S0 are all distinct. As we assume that
Λ is general, the curve CΛ (the base curve of Λ off D) is general in |M | and therefore
does not pass through the intersection points of the finitely many curves on S0 in the
component of HilbX containing [Γ0]. This forces the intersection points Γ∩CΛ to vary
as (Γ, S) varies in RΛ; indeed, Γ cannot specialize to a curve containing CΛ, because
the latter is not rational for general Λ, as it moves on S0 and kod(S0) > 0. We thus end
up in case (b).

Assume therefore that pΛ is generically injective. In particular, there is a dense,
open subset Λ◦ ⊂ Λ such that for all λ ∈ Λ◦, the surface Sλ is smooth and contains
a distinguished curve Γλ 6= Γ0 that is a deformation of Γ0. Consider the irreducible
closed surface RΛ := ∪λ∈Λ◦Γλ ⊂ X. This surface can also be described as the image in
X of the universal family over the image of Λ → HilbX. Let us study the intersection
RΛ ∩ Sλ for general λ ∈ Λ. Clearly, RΛ ∩ Sλ is a curve containing Γλ.

If RΛ ∩ Sλ = Γλ (set-theoretically), then the intersection is transversal for general
λ ∈ Λ, as Λ is base point free off D ∪ CΛ. Hence Γλ = RΛ · Sλ = RΛ · L, and it would
follow that a general member of |L| contains a deformation of Γ0, contradicting (ii).

Therefore, RΛ ∩Sλ contains a curve Fλ in addition to Γλ. We claim that Fλ does not
vary with λ, and therefore Fλ = D, CΛ or D ∪ CΛ. Indeed, if Fλ varies, it cannot lie in
RΛ \ ∪λ∈Λ◦Γλ, as it consists of finitely many curves. But then Fλ, for general λ, must
intersect ∪λ∈Λ◦Γλ in infinitely many points, and must therefore lie in the base locus
D ∪ CΛ of Λ, a contradiction. Thus, RΛ ∩ Sλ = Fλ ∪ Γλ, with Fλ = D, CΛ or D ∪ CΛ.
Moreover, RΛ∩Sλ contains D (respectively, CΛ) for general λ ∈ Λ◦, only if Γλ∩D (resp.,
Γλ ∩ CΛ) varies with λ: indeed, the finitely many curves in RΛ \ ∪λ∈Λ◦Γλ are rational,
being components of limit curves of the Γλ with λ ∈ Λ◦, whereas D is not rational by
assumption (iv) and neither is CΛ as it moves on S0. Thus RΛ ∩ Sλ cannot contain D,
as {Γλ ∩D}λ∈Λ◦ would then form a nonconstant family of rationally equivalent cycles
on D, whence h0(OD(Γ0)) > 2, contradicting assumption (iv). Hence RΛ ∩ Sλ contains
CΛ, and we end up in case (b). �

8. The moduli maps on EC(I)
g,2 for g > 7

The main result of this section is the following, which proves part of Theorem 2.

Proposition 8.1. The map χ(I)
g,2 is generically finite if g > 9 and has generically one-

dimensional fibers if g = 7.
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Recall that the irreducible component E(I)
g,2 occurs for all odd g, and corresponds to

polarizations g−1
2 E1 + E1,2. The proposition will be proved by semicontinuity, special-

izing the curves in EC(I)
g,2 to a union of a curve in ECg−1,2 and a smooth rational curve.

We will therefore first develop some auxiliary results on E2k+2,2. Recall that by [7] these
spaces are irreducible and that H ∼ kE1 + E2 + E3 for (S,H) ∈ E2k+2,2.

Let k > 1. We define E◦2k+2,2 ⊂ E2k+2,2 to be the subset parametrizing pairs (S,H =
kE1+E2+E3) such that E1, E2, E3 are nef and both |E1+E2+E3| and |E1+E2+E3+KS |
map S birationally onto a sextic. Nonemptiness of this locus follows from [12, §7].

We set EC◦2k+2,2 := p−1
2k+2,2(E◦2k+2,2) ⊂ EC2k+2,2 and denote by c◦2k+2,2 : EC◦2k+2,2 →

Mg the restriction of c2k+2,2 to EC◦2k+2,2. A key result is the following stronger version
of Proposition 6.6(i):

Proposition 8.2. For any C ∈ im c◦2k+2,2, we have dim
(
c◦2k+2,2

−1(C)
)

= 0 if k > 3,
whereas c◦6,2−1(C) is equidimensional of dimension two.

To prove this, we first need an auxiliary result:

Lemma 8.3. Let (S,H ∼ kE1 + E2 + E3) ∈ E◦2k+2,2. Then, for {α, β, γ} = {1, 2, 3},
and any l ∈ Z, we have hi(lEα + Eβ − Eγ) = 0, i = 0, 1, 2.

Proof. Since (lEα+Eβ−Eγ)2 = −2, the statement is by Riemann-Roch and Serre duality
equivalent to the fact that the divisor lEα + Eβ − Eγ is not numerically equivalent to
an effective divisor for any l ∈ Z and {α, β, γ} = {1, 2, 3}.

By [14, Def. 5.3.1 and (5.3.2)] (see also [12, §7]), neither Eα+Eβ−Eγ nor Eα+Eβ−
Eγ + KS is linearly equivalent to an effective divisor. It is clear that lEα + Eβ − Eγ
cannot be numerically equivalent to an effective divisor if l 6 0.

Assume therefore, to get a contradiction, that lEα+Eβ−Eγ is numerically equivalent
to an effective divisor ∆ for some l > 2. We claim that

(25) 2Eα −∆ > 0.

This yields the desired contradiction, as Eγ · (2Eα −∆) = 1− l < 0.
Let us prove (25) by induction on l. We may assume that ∆ does not contain any

multiple of Eα or Eα + KS , as otherwise (l − 1)Eα + Eβ − Eγ would be numerically
equivalent to an effective divisor. Since ∆ · Eα = 0, we have

(26) ∆′2 6 −2 for every effective subdivisor ∆′ of ∆

by (18). Pick a (−2)-curve R 6 ∆. Since |2Eα| is an elliptic pencil and R · Eα = 0, it
follows that R must be part of a fiber of the elliptic fibration defined by |2Eα|, whence
2Eα −R > 0. Set ∆′ := ∆−R. If ∆′ > 0, then, using (26), we find

−2 = ∆2 = ∆′2 +R2 + 2∆′ ·R 6 −4 + 2∆′ ·R,

whence ∆′ ·R > 1. Hence, there exists a (−2)-curve R′ 6 ∆′ such that R′ ·R > 1; more
precisely, we have R′ · R = 1, since otherwise (R + R′)2 > 0, contradicting (26). Since
R′ · (2Eα − R) = −1, we must have 2Eα − R − R′ > 0. Repeating the procedure, if
necessary, eventually yields (25). �
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Proof of Proposition 8.2. By Lemmas 3.1 and 3.5(v), the result will follow if we prove
that for any (S,H) ∈ E◦2k+2,2 and k > 2, we have

(27) h1(TS(−H)) + h1(TS(−(H +KS)) =
{

0, if k > 3,
4, if k = 2.

(Indeed, when k = 2, since (S,H) and (S,H+KS) are both general in E◦6,2 we have that
h1(TS(−H)) and h1(TS(−(H +KS)) are equal, and (27) implies they are both equal to
2.)

We apply Lemma 5.2 with H = kE1 + E2 + E3, F1 = E1 and F2 = E2, and (9).
As H − 2F1 ∼ (k − 2)E1 + E2 + E3 is big and nef, we have h1(H − 2F1) = h1(H −

2F1 +KS) = 0. We have H− 2F2 ∼ kE1 +E3−E2, so that h1(H− 2F2) = 0 by Lemma
8.3 and h1(H−2F2 +KS) = 0 by the same lemma applied with E3 replaced by E3 +KS .
Hence α = 0 by Lemma 8.3.

As H− 2F1− 2F2 ∼ (k− 2)E1 +E3−E2, Lemma 8.3 (possibly applied again with E3
replaced by E3+KS) and (14) yield that β = h0(4F1+4F2−H)+h0(4F1+4F2−H+KS).
We have 4F1 + 4F2 − H ∼ (4 − k)E1 + 3E2 − E3. As E2 · (4F1 + 4F2 − H) = 3 − k,
we see that β = 0 if k > 4. Moreover, β = 0 if k = 3 by Lemma 8.3. If k = 2, we
claim that β = 4. Indeed, as (4F1 + 4F2 −H)2 = 2, the claim follows if we prove that
h1(D) = 0 for D ≡ 2E1 + 3E2 − E3. If, by contradiction, h1(D) > 0, there is by [25]
an effective divisor ∆ such that ∆2 = −2 and ∆ · D 6 −2. Then (D − ∆)2 > 4 and
(D −∆) · (E1 + 2E2) 6 D · (E1 + 2E2) = 4. Since (E1 + 2E2)2 = 4, the Hodge index
theorem yields D − ∆ ≡ E1 + 2E2, whence ∆ ≡ E1 + E2 − E3, contradicting Lemma
8.3. We have therefore proved that β = 4 when k = 2.

By Lemma 5.2, we have h1(T
S̃

(−H̃)) = 0 if k > 3 and h1(T
S̃

(−H̃)) = 4 if k = 2, and
(27) follows from (9). �

The next key ingredient in the proof of Proposition 8.1 is the identification of a
suitable sublocus of nodal Enriques surfaces.

Proposition 8.4. The closed subset E ′2k+2,2 ⊂ E◦2k+2,2 parametrizing (S,H) such that
S contains a smooth rational curve Γ with Γ · E1 = 0 and Γ · E2 = Γ · E3 = 1 (possibly
after rearranging indices when k = 1) is irreducible of codimension one. Moreover, for
general (S,H) in E ′2k+2,2, we have Γ ∩ E2 ∩ E3 = ∅.

Again, to prove this we need an auxiliary result:

Lemma 8.5. There exists an Enriques surface S containing three nef, primitive isotropic
divisors E1, E2 and E3 and smooth rational curves Γ and Γ′ such that

(i) 2E1 ∼ Γ + Γ′, with Γ · Γ′ = 2, and the latter intersection is transversal;
(ii) E2 ·E3 = 1, Γ ·E2 = Γ′ ·E2 = Γ ·E3 = Γ′ ·E3 = 1 (whence E1 ·E2 = E1 ·E3 = 1);
(iii) the elliptic pencils |2E2| and |2E3| have no reducible fibers.
(iv) |E1 + E2 + E3| is ample and maps S birationally onto a sextic surface.

Proof. By [13, Lemma 3.2.1] there exists an Enriques surface S with ten elliptic pencils
|2Fi| and ten smooth rational curves Di, with 1 6 i 6 10, such that

Di · Fj = 1 for i 6= j; Di · Fi = 3; Fi · Fj = 1 for i 6= j; Di ·Dj = 2 for i 6= j.

Moreover, by [13, Rem. p. 747], the elliptic pencils |2Fi| have no reducible fibers,
and by [13, Prop. 3.2.6] the complete linear system |Di + Dj + Dk|, for any distinct
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i, j, k, defines a degree two morphism of S onto a Cayley cubic surface in P3. Thus, by
[12, Thm. 7.2 and (7.7.1)], the surface S can equivalently be realized as the minimal
desingularization of the double cover of P2 branched along a Wirtinger sextic (a sextic
with six double points at the vertices of a complete quadrilateral) and the edges of
its complete quadrilateral. The curves Di, Dj , Dk are the inverse images of the three
diagonals of the quadrilateral, whence they intersect pairwise transversely in two points.

By [14, Lemma 1.6.2] there exists a B ∈ Pic(S) such that 3B ∼ F1 + · · · + F10. Set
Fij := B−Fi−Fj , for i 6= j. Then F 2

ij = 0. We get Di ·B = 4 for all i, whence Di ·Fij = 0
for i 6= j. As (Di + Dj)2 = (Di + Dj) · Fij = 0, we must have (Di + Dj) ≡ qFij for
some q ∈ Q by (18), and dotting both sides with Fi yields q = 2. In particular, Fij is
nef, so that |2Fi,j | is an elliptic pencil. Hence, one necessarily has 2Fi,j ∼ Di +Dj . The
divisors E1 := F45, E2 := F2, E3 := F3, Γ := D4 and Γ′ := D5 satisfy properties (i)–(iii).
Moreover, (iii) implies that both E2 and E3 has positive intersection with any (−2)–
curve, whence E1 +E2 +E3 is ample. By [12, §7] or [14, (5.3.2)], either |E1 +E2 +E3|
or |E1 + E2 + E3 + KS | maps S birationally onto a sextic surface, whence (iv) follows
possibly by replacing any of Ei with Ei +KS . �

Proof of Proposition 8.4. We argue as in [7, §5]. Fix homogeneous coordinates (x0 :
x1 : x2 : x3) on P3 and let T = Z(x0x1x2x3) be the coordinate tetrahedron. We label
by `1, `2, `3, `′1, `′2, `′3 the edges of T , in such a way that `1, `2, `3 are coplanar, and `′i is
skew to `i for all i = 1, 2, 3.

Consider the linear system S of surfaces of degree 6 singular along the edges of T
(called Enriques sextics). They have equations of the form

c3(x0x1x2)2 + c2(x0x1x3)2 + c1(x0x2x3)2 + c0(x1x2x3)2 +Qx0x1x2x3 = 0,

where Q =
∑
i6j qijxixj . This shows that dim(S) = 13 and we may identify S with the

P13 with homogeneous coordinates

q = (c0 : c1 : c2 : c3 : q00 : q01 : q02 : q03 : q11 : q12 : q13 : q22 : q23 : q33).

As in [7, §5] we have a dominant rational map σ2k+2,2 : S 99K E2k+2,2, which assigns
to a general Σ ∈ S the pair (S,H), where ϕ : S → Σ is the normalization and H =
kϕ∗(`1) + ϕ∗(`2) + ϕ∗(`3). Indeed, any (S,H = kE1 + E2 + E3) ∈ E2k+2,2 such that
|E1 + E2 + E3| is ample and birational lies in the image of σ2k+2,2, because the image
Σ of S via the map ϕ := ϕE1+E2+E3 is singular precisely along the edges of T , cf. [15,
Thm. 4.6.3], with `i = ϕ(Ei), after a suitable change of coordinates. Also note that
the image of σ2k+2,2 contains pairs (S,H = kE1 +E2 +E3) satisfying the conditions of
Lemma 8.5, because of property (iv) therein.

The fiber σ−1
2k+2,2(S,H) consists of the orbit of Σ = ϕ(S) via the 3–dimensional group

of projective transformations fixing T .
We denote by F the family of smooth conics F ⊂ P3 such that F does not contain

the vertex `′1 ∩ `′2 ∩ `′3 of T and such that F meets the edges `2, `′2, `3 and `′3 exactly
once and does not meet `1 and `′1.

Claim 8.6. (a) The variety F is irreducible and 4-dimensional.
(b) Each F ∈ F is contained in an 8-dimensional linear system of Enriques sextics.

Proof of the claim. (a) Each F in F spans a plane intersecting the edges of T in six
points. The set of plane conics through four of these six points is a P1, proving (a).
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(b) The linear system S of the Enriques sextics cuts out on each F ∈ F a linear
system of divisors with base locus (containing) T ∩ F and a moving part of degree (at
most) 4, whence of dimension at most 4. Hence F is contained in a linear system SF of
Enriques sextics of dimension at least 8.

We claim that for each F ∈ F , one has dim(SF ) = 8. Consider the restriction
rational map ρF : S 99K S|F , whose indeterminacy locus is SF . Pick any Enriques
sextic Σ containing F and let S be its normalization. We consider by abuse of notation
F as a curve in S. Then ρF factors through the restriction ρS to S and the restriction
ρS,F from S to F , i.e., ρF : S

ρS
99K S|S

ρS,F
99K S|F . The indeterminacy locus of ρS is just

the point [Σ]. Therefore, denoting by SS,F the indeterminacy locus of ρS,F , we have
dim(SF ) = dim(SS,F ) + 1. So we have to prove that dim(SS,F ) = 7.

The restricted linear system S|S is |2(E1 +E2 +E3)|; indeed, it is the sublinear system
of |6(E1 +E2 +E3)| having base locus twice the sum of the pullback of the edges of the
tetrahedron, which is

2
(
E1 + E2 + E3 + (E1 +KS) + (E2 +KS) + (E3 +KS)

)
∼ 4(E1 + E2 + E3).

Hence SS,F is the projectivization of the kernel of the restriction map
H0(OS(2(E1 + E2 + E3)) −→ H0(OF (2(E1 + E2 + E3)),

which is |2(E1 +E2 +E3)−F |. Set D := 2(E1 +E2 +E3)−F . Then D2 = 14. We want
to prove that dim(SS,F ) = dim(|D|) = 7, which amounts to proving that h1(D) = 0.
Assume h1(D) > 0. Then, by [25], there exists an effective divisor ∆ such that ∆2 = −2
and ∆ · D 6 −2. In particular, ∆ · F > 2. Since F is mapped by the morphism
ϕ defined by |E1 + E2 + E3| to a smooth conic, ∆ cannot be contracted by ϕ. Hence,
∆·(E1+E2+E3) > 0. It follows that (D−∆)·(E1+E2+E3) < D·(E1+E2+E3) = 10. But
this contradicts the Hodge index theorem, since (D−∆)2(E1+E2+E3)2 > 16·6 = 96. �

By the claim the incidence variety G := {(F,Σ) ∈ F × S | F ⊂ Σ} is irreducible
of dimension 12. Denote by E ′′2k+2,2 the image of the projection G → S followed by
σ2k+2,2 : S 99K E2k+2,2, which is nonempty by Lemma 8.5, as already remarked. The
projection has finite fibers, since an Enriques surface contains only finitely many conics
with respect to a given polarization, and σ2k+2,2 has three-dimensional fibers, whence
E ′′2k+2,2 is irreducible of dimension nine. It parametrizes by construction all pairs (S,H =
kE1 +E2 +E3) such that E1, E2, E3 are nef, |E1 +E2 +E3| is ample and birational and
S contains a smooth rational curve Γ with Γ · E1 = 0 and Γ · E2 = Γ · E3 = 1 (possibly
after rearranging indices when k = 1). Since it is irreducible, its general element has the
property that also |E1 + E2 + E3 +KS | is birational. Thus, E ′2k+2,2 = E ′′2k+2,2 ∩ E◦2k+2,2
is nonempty, whence irreducible of dimension nine, as stated. The last assertion of the
proposition follows as F ∩ `2 ∩ `3 = ∅ for general F ∈ F . �

We set EC′2k+2,2 := p−1
2k+2,2(E ′2k+2,2) ⊂ EC◦2k+2,2, which is irreducible of codimension

one in EC◦2k+2,2.

Proof of Proposition 8.1. Let (S, kE1 + E2 + E3) ∈ E ′2k+2,2 be general, k > 2. Set
H := kE1 + E2 + E3 + Γ. Then H is big and nef, but not ample, as Γ ·H = 0.

Consider E(I)
2k+3,2, the closure of E(I)

2k+3,2 in the moduli space of pairs (X,L) where X
is a smooth Enriques surface and L is a big and nef line bundle on X. (The existence
of such a moduli space is indicated for instance in [24, §5.1.4] for K3 surfaces and
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the case of Enriques surfaces is analogous; see also [16].) We claim that (S,H) lies in
E(I)

2k+3,2. Indeed, set B := E2 + E3 + Γ. Then B is nef with B2 = 4 and φ(B) = 2 (as
E2 ·B = E3 ·B = 2). Since also E1 ·B = 2, we may write B ∼ E1 +E1,2 for some effective
isotropic primitive E1,2 satisfying E1 ·E1,2 = 2. Thus H ∼ kE1 +B ∼ (k+ 1)E1 +E1,2,
proving the claim.

Denote by EC(I)
2k+3,2 the partial compactification of EC(I)

2k+3,2 parametrizing triples
(S,H,C), where (S,H) lies in E(I)

2k+3,2 and C ∈ |H| has at most nodes as singulari-
ties. Denote by c

(I)
2k+3,2 : EC(I)

2k+3,2 → M2k+3 the extension of c(I)
2k+3,2. Pick a general

(S,OS(C), C) ∈ EC′2k+2,2 and consider C ′ := C ∪ Γ. Then (S,OS(C ′), C ′) ∈ EC(I)
2k+3,2.

By Proposition 8.2, the fiber c−1
2k+2,2(C) is finite for k > 3. Since Γ does not move on

any Enriques surface, also the fiber (c(I)
2k+3,2)−1(C ′) is finite. Hence, c(I)

2k+3,2 is generically
finite for k > 3, that is, g > 9, and so is χ(I)

g,2.
Assume now k = 2, that is, g = 7. Then (S, 2(E1 + E2 + E3)) is extendable to the

classical Enriques–Fano threefold (Y,OY (1)) in P13 by Lemma 4.5. Let D ∈ |E2 +E3| be
general. Then Lemma 4.4 implies that (S, 2E1 +E2 +E3) is extendable to an Enriques–
Fano threefold (Y ′,L) and the members in |L| are in one-to-one-correspondence to the
members in |OY (1) ⊗ JD|. Since the hyperplane sections S′ of Y such that OS′(1) ∼
2(E′1 + E′2 + E′3) with (S′, 2E′1 + E′2 + E′3) ∈ E ′6,2 (possibly after rearranging the E′is)
form a hypersurface in |OY (1)| by Proposition 8.4, the members in |L| yielding elements
in E ′6,2 form a subset N of codimension at most one in |L|. Hence, a general pencil
in |L| contains a general element in N . By the proof of Proposition 4.2, two general
members of the pencil are not isomorphic. This means that we may find a pencil
|OY (1) ⊗ JC∪D| of hyperplane sections of Y containing S such that (S,OS(C), C) is
general in EC′6,2 and two general surfaces in the pencil are not isomorphic, that is, we
have a finite rational map a : |OY (1) ⊗ JC∪D| 99K c◦6,2−1(C). We also have a rational

map b :
(
c

(I)
7,2

)−1
(C ′) 99K c◦6,2−1(C), forgetting Γ, which is finite, as Γ does not move

on any Enriques surface. Accepting for a moment that the hypotheses of Lemma 7.1
are satisfied (for X = Y , L = OY (1), S0 = S, Γ0 = Γ, M ∼ OS(2E1 + E2 + E3) and
N ∼ OS(E2 +E3)), we obtain that b restricted to a neighborhood of [(S,OS(C ′), C ′)] is
not dominant. Indeed, either (a) of Lemma 7.1 holds, in which case there are elements
in the image of a not containing any deformation of Γ, whence not lying in the image
of b. Else, (b) of Lemma 7.1 holds, in which case Γ deforms to a general surface in the
pencil |OY (1)⊗JC∪D|, but in such a way that the moduli of C ′ = C∪Γ vary, thus again
yielding an element in the image of a outside the image of b. By Proposition 8.2, this
implies that

(
c

(I)
7,2

)−1
(C ′) has a component of dimension 6 1. By semicontinuity of the

dimension of the fibers of a morphism (see [23, Lemme (13.1.1)]), a general fiber of c(I)
7,2

(and of χ(I)
7,2) has dimension 6 1. Lemma 3.5(v) implies that equality holds, as desired.

Finally, we check the hypotheses in Lemma 7.1. The general hyperplane section of Y
is unnodal by Lemma 4.5, whence (i) and (ii) are satisfied. We have that M is globally
generated by [15, Prop. 3.1.6 and Thm. 4.4.1], since M is nef with φ(M) = E1 ·M = 2,
and |N | contains a smooth curve D by [15, Prop. 3.1.6] and [12, Prop. 8.2], as E2
and E3 are nef. The fact that h0(OD(Γ)) = 1 can be verified, using semicontinuity, by
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specializing D to E2 + E3, considering

0 // OE3(Γ− E2) // OD(Γ) // OE2(Γ) // 0

and using that h0(OE2(Γ)) = 1 and h0(OE3(Γ − E2)) = 0 by the last assertion in
Proposition 8.4. �

Corollary 8.7. The maps χ8,2, χ(I)
7,2, χ6,2 and χ(I)

5,2 dominate R0
g.

Proof. The result follows from Lemma 3.5(ii),(v), Propositions 6.6 and 8.1. �

Arguing similarly as above, we prove a result that we will need in the next section.

Lemma 8.8. The map c(II)+

9,2 has some fibers of dimension > 2 whose general element
(S,H = 4E1 + 2E2, C) has the property that E1 and E2 are nef.

Proof. To keep notation consistent with the rest of the section, we switch the roles of
E1 and E2 and write H = 2E1 + 4E2 for pairs (S,H) ∈ E(II)+

9,2 . We define a dense,
open subset E◦9,2 ⊂ E

(II)+

9,2 parametrizing pairs (S,H = 2E1 + 4E2) such that E1 and E2
are nef. In fact, E◦9,2 is non–empty because on the general Enriques surface S there are
smooth irreducible elliptic curves E1, E2, which are therefore nef, with E1 ·E2 = 1. The
openess of E◦9,2 follows from the fact that E1, E2 being nef on S is an open condition in
the moduli space of Enriques surfaces.

We set EC◦9,2 := p−1
9,2(E◦9,2) ⊂ EC9,2 and c◦9,2 := c

(II)+

9,2 |EC◦9,2 . To prove the lemma, we
want to find a curve C in im c◦9,2 with dim(c◦9,2)−1(C) > 2.

Claim 8.9. There is an irreducible codimension-one sublocus E ′9,2 ⊂ EC◦9,2 parametrizing
pairs (S,H = 2E1 + 4E2) such that 2E1 ∼ Γ + Γ′, where Γ and Γ′ are smooth rational
curves intersecting transversely in two points and such that Γ · E2 = Γ′ · E2 = 1.

Proof of the Claim. We argue as in the proof of Proposition 8.4, from where we keep
the notation. Consider the map σ

(II)+

9,2 : S 99K E(II)+

9,2 associating to a general Σ ∈ S
the pair (S,H), where ϕ : S → Σ is the normalization and H = 2E1 + 4E2, with
Ei := ϕ∗(`i), i = 1, 2. Let E ′′9,2 denote the image of the projection of the incidence variety
G to S followed by σ(II)+

9,2 , which has (as before) dimension nine. It parametrizes pairs
(S,H = 2E1 + 4E2) ∈ EC◦9,2 such that S contains a smooth rational curve Γ satisfying
Γ ·E1 = 0 and Γ ·E2 = 1 (and a nef, isotropic E3 such that E1 ·E3 = E2 ·E3 = Γ ·E3 = 1
and |E1 +E2 +E3| is birational). Since |2E1| is a pencil, we must have Γ′ := 2E1−Γ > 0.
By Lemma 8.5 there are elements in E ′′9,2 for which Γ′ is a smooth irreducible rational
curve intersecting Γ transversely in two points. (Also note property (iii) in Lemma 8.5
implies that E2 has positive intersection with any (−2)–curve, so that 2E1 + 4E2 is
ample.) We let E ′9,2 be the (open dense) locus of such pairs. �

We have dim(c◦9,2)−1(C) > 1 for any C ∈ im c◦9,2, as χ
(II)+

9,2 is not generically finite by
Corollary 4.3. Assume, by contradiction, that
(28) dim(c◦9,2)−1(C) = 1 for all C ∈ im c◦9,2.

We now argue as in the last part of the proof of Proposition 8.1 (for k = 2). Denote by
EC(II)+

17,4 the partial compactification of EC(II)+

17,4 parametrizing curves with at most nodes
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as singularities and denote by c(II)+

17,4 : EC(II)+

17,4 → M17 the extension of c(II)+

17,4 . Pick a
general (S,OS(C) = 2E1 + 4E2, C) ∈ EC′9,2 and consider C ′ := C ∪Γ∪Γ′ ∈ |4E1 + 4E2|.
Then (S,OS(C ′), C ′) ∈ EC(II)+

17,4 .
Extend (S, 4(E1+E2)) to Prokhorov’s Enriques–Fano threefold (W,L) by Proposition

4.7. As in the last part of the proof of Proposition 8.1, we obtain for general D ∈
|2E1|, a pencil |L ⊗ JC∪D| in W containing S such that (S,OS(C), C) is general in
EC′9,2 and two general surfaces in the pencil are not isomorphic, that is, we have a
finite rational map a : |L ⊗ JC∪D| 99K c◦9,2−1(C). We also have a finite rational map

b :
(
c

(II)+

17,4

)−1
(C ′) 99K c◦9,2−1(C), forgetting Γ ∪ Γ′. By Lemma 7.1 (with X = W ,

S0 = S, Γ0 = Γ or Γ′, M ∼ OS(2E1 + 4E2) and N ∼ OS(2E1)) we obtain, arguing
as in the last part of the proof of Proposition 8.1, that b restricted to a neighborhood
of (S,OS(C ′), C ′) is not dominant. By (28) this implies that (c(II)+

17,4 )−1(C ′) has a zero-
dimensional component. By semicontinuity of the dimension of the fibers of a morphism
(see [23, Lemme (13.1.1)]), the general fiber of c(II)+

17,4 is zero-dimensional. Hence, also
χ

(II)+

17,4 is generically finite, contradicting Corollary 4.3. �

9. The moduli maps on ECg,1, EC(II)
g,2 , EC(II)+

g,2 and EC(II)−
g,2

The aim of this section is to prove Theorem 3 together with the following result,
which concludes the proof of Theorem 2.

Proposition 9.1. (i) A general fiber of χ(II)+

5,2 has dimension six; in particular χ(II)+

5,2
dominates R0,nb

5 .
(ii) A general fiber of χ(II)−

5,2 is four-dimensional; in particular χ(II)−
5,2 dominates D0

5.
(iii) A general fiber of χ(II)

7,2 has dimension 3.
(iv) A general fiber of χ(II)+

9,2 has dimension 2.
(v) A general fiber of χ(II)−

9,2 has dimension 1.
(vi) The moduli maps χg,2 are generically finite on all irreducible components of ECg,2

for all odd g > 11.

To prove the mentioned results, recall that for (S,H) in E(II)
g,2 , E(II)+

g,2 or E(II)−
g,2 (note

that E(II)
g,2 occurs for g ≡ 3 mod 4, and E(II)+

g,2 and E(II)−
g,2 occur for g ≡ 1 mod 4) we have

H ≡ kE1+2E2, g = 2k+1, k > 2, whereas for (S,H) ∈ Eg,1, we haveH ∼ (g−1)E1+E2.
Assume that E1 and E2 are nef and consider the double cover g : S̃ → P := P1 × P1

defined by |Ẽ1 + Ẽ2|, as in the beginning of §5.
We denote any line bundle on P by the obvious notation OP (a, b), its restriction to

any effective divisor D ⊂ P by OD(a, b), and for any sheaf F on P , we set F(a, b) :=
F ⊗OP (a, b). Recall that the branch divisor of g is a smooth curve R ∈ |OP (4, 4)|.

Lemma 9.2. For any k, l > 1 we have h1(T
S̃

(−kẼ1−lẼ2)) = h1(ΩP (logR)(k−2, l−2)).
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Proof. By [17, Lemma 3.16] we have g∗TS̃ ' TP (−2,−2) ⊕ TP 〈R〉, where TP 〈R〉 :=
ΩP (logR)∨ or is equivalently defined as in (7). We therefore have

h1(T
S̃

(−kẼ1 − lẼ2)) = h1(T
S̃
⊗ g∗OP (−k,−l)) = h1(OP (−k,−l)⊗ g∗TS̃)

= h1(OP (−k,−l)⊗ TP (−2,−2)) + h1(OP (−k,−l)⊗ TP 〈R〉)
= h1(OP (−k,−l − 2)) + h1(OP (−k − 2,−l)) + h1(TP 〈R〉(−k,−l))
= h1(ΩP (logR)(k − 2, l − 2)).

�

The next lemma is the main ingredient in the proof of Proposition 9.1.

Lemma 9.3. For any (S,H) such that H ≡ kE1+2E2 with E1 and E2 nef and E1 ·E2 =
1, we have

h1(TS(−H)) + h1(TS(−(H +KS))) =


10, if k = 2 (g = 5)
6, if k = 3 (g = 7)
3, if k = 4 (g = 9)
0, if k > 5 (g > 11).

Proof. We will compute h1(T
S̃

(−H̃)) using Lemma 9.2 and use (9). We have

(29) 0 // ΩP (k − 2, 0) // ΩP (logR)(k − 2, 0) // OR(k − 2, 0) // 0,

cf., e.g., [17, 2.3a]. Since ΩP (k − 2, 0) ' OP (k − 4, 0)⊕OP (k − 2,−2), we get

h2(ΩP (k − 2, 0)) = 0 and h1(ΩP (k − 2, 0)) =
{

2, if k = 2
k − 1, if k > 2.

We compute h1(OR(k−2, 0)) = h0(OR(4−k, 2)) = h0(OP (4−k, 2)) = max{0, 15−3k}.
Hence, from Lemma 9.2 and (29), we obtain

(30) h1(T
S̃

(−H̃)
)

= h1(ΩP (logR)(k − 2, 0)
)

= max{0, 15− 3k}+ cork(∂),

with ∂ the coboundary map H0(OR(k − 2, 0))→ H1(ΩP (k − 2, 0)) of (29).
When k = 2, whence g = 5, we have

∂ : C ' H0(OR) −→ H1(ΩP ) ' C2,

which is injective, its image being the 1-dimensional subspace of H1,1(P ) generated by
the class of R. Thus, cork(∂) = 1 and the lemma follows from (30) and (9).

Similarly, by (30) and (9) the lemma follows when k > 2 if we prove the surjectivity
of ∂. It suffices to prove that its restriction to the image of the multiplication map

H0(OP (k − 2, 0))⊗H0(OR) −→ H0(OR(k − 2, 0))

is surjective. This restriction is the composed map

(31) H0(OP (k−2, 0))⊗H0(OR) φ1−→ H0(OP (k−2, 0))⊗H1(ΩP ) φ2−→ H1(ΩP (k−2, 0)),

where φ1 is the tensor product of the identity with the same map H0(OR)→ H1(ΩP ) '
H1,1(P ) as above, and φ2 is defined by cup-product.
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As we saw, the map φ1 is injective, and its image is H0(OP (k− 2, 0))⊗C · [R], where
[R] is the class of R in H1,1(P ) ' H1(ΩP ). By the Künneth formula we have

H1(ΩP (k − 2, 0)) ' pr∗1
(
H0(OP1(k − 2))

)
⊗ pr∗2

(
H1(ΩP1)

)
where pri : P → P1, 1 6 i 6 2, are the two projections. Moreover H0(OP (k − 2, 0)) '
pr∗1

(
H0(OP1(k − 2))

)
. Hence the map

φ2 : pr∗1
(
H0(OP1(k − 2))

)
⊗H1(ΩP ) −→ pr∗1

(
H0(OP1(k − 2))

)
⊗ pr∗2

(
H1(ΩP1)

)
is the tensor product of the identity on the first factor and of the natural map H1(ΩP )→
pr∗2

(
H1(ΩP1)

)
, which maps C · [R] isomorphically to the target pr∗2

(
H1(ΩP1)

)
' C.

Hence φ2 maps the image of φ1 isomorphically onto H1(ΩP (k− 2, 0)), showing that the
composed map (31) is surjective. Thus, ∂ is surjective, which ends the proof. �

Proof of Proposition 9.1. (i)–(ii) By Corollary 3.3 and Lemma 9.3, the sum of the di-
mensions of a general fiber of χ(II)+

5,2 and a general fiber of χ(II)−
5,2 is 10. Hence, assertions

(i) and (ii) follow by Lemma 3.5(iii),(iv).
(iii) This is a consequence of Corollary 3.3 and Lemma 9.3, as both (S,H) and (S,H+

KS) are general elements of E(II)
7,2 .

(iv)–(v) By Lemma 3.1 and Lemma 8.8 there are pairs (S,H = 4E1 + 2E2) ∈ E(II)+

9,2
such that E1 and E2 are nef and h1(TS(−H)) > 2. Similarly, Lemma 3.1 and Corollary
4.3 imply that h1(TS(−(H + KS))) > 1. Hence, equality is attained in both cases by
Lemma 9.3, whence also for general (S,H) ∈ E(II)+

9,2 . Corollary 3.3 yields the result.
(vi) This is an immediate consequence of Corollary 3.3 and Lemma 9.3. �

We next prove Theorem 3. We recall that the moduli spaces Eg,1 are all irreducible
(cf. [7]). By Corollary 3.3, the theorem is a consequence of the following lemma.

Lemma 9.4. For general (S,H) ∈ Eg,1, g > 2, we have h1(TS(−H)) = max{0, 10− g}.

Proof. By (9) and the fact that Eg,1 is irreducible, it suffices to prove that h1(T
S̃

(−H̃)) =
max{0, 20− 2g}.

Consider σ1 ∈ H0(OR(4, 2)) and σ2 ∈ H0(OR(2, 4)) two sections (uniquely defined
up to constants) whose zero schemes Z(σ1) = Z1 and Z(σ2) = Z2 are the ramification
divisors of the 4 : 1 maps R→ P1 defined by the two projections of P to P1. Note that
Z1 ∩ Z2 = ∅. Indeed a point in Z1 ∩ Z2 would be singular for R, a contradiction.

We remark for later use that the scheme Z1 ∈ |OR(4, 2)| = |ωR(2, 0)| has length 24
and consists of the ramification points of the first projection R→ P1, thus of the points
where the fibers in |OP (1, 0)| are tangent to R. On S̃ these fibers become singular
members of |Ẽ1|, that are mapped pairwise onto singular members of |2E1| on S. Thus,
if S is general, Z1 consists of 24 points on distinct elements of |OP (1, 0)|, as it is well-
known that an elliptic pencil on a general Enriques surface has precisely 12 singular
reduced fibres, all nodal, cf., e.g., [20, Thm. 4.8 and Rem. 4.9.1].

For any integer k > 1, consider Hk ∼ kE1 + E2. Note that H = Hg−1.

Claim 9.5. For every k > 1, one has

(32) h1(T
S̃

(−H̃k)) = 18− 2k + h0(OP (k + 2, 1)⊗ JZ1).
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Proof of the Claim. We have an exact sequence (cf., e.g. [17, 2.3c])

0 // ΩP (logR)(k − 2,−1) // ΩP (k + 2, 3) γ
// ωR(k + 2, 3) // 0.

Since ΩP (k + 2, 3) ' OP (k, 3)⊕OP (k + 2, 1), we have h1(ΩP (k + 2, 3)) = 0, whence

(33) h1(T
S̃

(−H̃k)) = h1(ΩP (logR)(k − 2,−1)) = corkH0(γ)
(where the left equality follows from Lemma 9.2). Using the fact that ωR ' OR(2, 2),
we may write H0(γ) as

H0(γ) : H0(OP (k, 3))⊕H0(OP (k + 2, 1)) −→ H0(OR(k + 4, 5)).
Moreover, computing dimensions yields that the domain has dimension 6k+ 10 and the
target has dimension 4k + 28, whence
(34) cork(H0(γ)) = 18− 2k + dim(kerH0(γ)).
We have H0(γ) = γ1 + γ2, where

H0(OP (k, 3)) γ1−→ H0(OR(k + 4, 5)), s
γ17−→ s|R · σ1

H0(OP (k + 2, 1)) γ2−→ H0(OR(k + 4, 5)), t
γ27−→ t|R · σ2.

The restrictionH0(OP (k, 3))→ H0(OR(k, 3)) is an isomorphism, as h0(OP (k−4,−1)) =
h1(OP (k−4,−1)) = 0. Hence, γ1 is injective and im γ1 = H0(OR(k+4, 5)⊗JZ1). Since
h0(OP (k − 2,−3)) = 0, the restriction map H0(OP (k + 2, 1)) → H0(OR(k + 2, 1)) is
injective (but not surjective). It follows that γ2 is injective and
(35) kerH0(γ) ' (im γ1 ∩ im γ2) = H0(OP (k + 2, 1)⊗ JZ1).
Thus, (32) follows from (33), (34) and (35). �

Claim 9.6. If 1 6 k 6 g− 1 and (S,H) is general, then h0(OP (k+ 2, 1)⊗JZ1) is even.

Proof of the Claim. By (9) written for Hk, the fact that (S,H) is general (whence also
all (S,Hk) are general) and the fact that Ek+1,1 is irreducible, we have h1(TS(−Hk)) =
h1(TS(−Hk+KS)), so that h1(T

S̃
(−H̃k)) is even. Hence the claim follows from (32). �

Claim 9.7. One has h0(OP (k + 2, 1)⊗ JZ1) = 0 for 1 6 k 6 9 and (S,H) general.

Proof of the Claim. Assume h0(OP (k+2, 1)⊗JZ1) > 0. Then h0(OP (k+2, 1)⊗JZ1) > 2
by Claim 9.6. Write |OP (k+ 2, 1)⊗JZ1 | = M + ∆, where M is the moving part and ∆
the fixed part.

Assume first that ∆ contains an irreducible curve B ∈ |OP (β, 1)|, for some β 6 k+ 2.
Then ∆ = B + F1 + · · · + Fα, where Fi ∈ |OP (1, 0)| and 0 6 α 6 k + 2 − β. Hence M
consists of divisors in |OP (k + 2− α− β, 0)|. Since M has no fixed part, then Z1 ⊂ ∆.
Therefore M = |OP (k+ 2−α−β, 0)| and ∆ is the unique curve in |OP (α+β, 1)⊗JZ1 |.
In particular h0(OP (α + β, 1) ⊗ JZ1) = 1. So Claim 9.6 implies that α + β 6 2. As
Z1 ⊂ R ∈ |OP (4, 4)|, then we must have 24 = deg(Z1) 6 OP (α + β, 1) · OP (4, 4) =
4(α+ β + 1) 6 12, a contradiction.

The remaining case is ∆ = F1 + · · · + Fα where Fi ∈ |OP (1, 0)| and 0 6 α 6 k + 2.
Let Z ′′ be the largest subset of Z1 contained in ∆ and set Z ′ = Z1 − Z ′′. We thus
have M = |OP (k + 2 − α, 1) ⊗ JZ′ | and dim(M) = h0(OP (k + 2, 1) ⊗ JZ1) − 1 > 1
by Claim 9.6. As M is base component free, it contains irreducible members. Hence
deg(Z ′) 6 OP (k + 2− α, 1)2 = 2(k + 2− α). Since deg(Z ′′) 6 α, because the points of
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Z1 lie in different elements of |OP (1, 0)|, we have 2(k+ 2) > 2α+ deg(Z ′) > 2 deg(Z ′′) +
deg(Z ′) > deg(Z1) = 24. Hence k > 10, which proves the claim. �

We can now finish the proof of the lemma. By (32) written for k = g − 1, we have

(36) h1(T
S̃

(−H̃)) = 20− 2g + h0(OP (g + 1, 1)⊗ JZ1).

Assume g 6 10. By Claim 9.7 we have h0(OP (g+ 1, 1)⊗JZ1) = 0, so h1(T
S̃

(−H̃)) =
20− 2g by (36), as wanted.

Assume g > 11. For any n > 0 and F ∈ |OP (1, 0)| such that F ∩ Z1 = ∅, we have

0 −→ OP (n, 1)⊗ JZ1 −→ OP (n+ 1, 1)⊗ JZ1 −→ OP (n+ 1, 1)⊗OF ' OP1(1) −→ 0,

whence h0(OP (n+ 1, 1)⊗JZ1) 6 h0(OP (n, 1)⊗JZ1) + 2. Arguing inductively, we have

h0(OP (g + 1, 1)⊗ JZ1) 6 h0(OP (g − i, 1)⊗ JZ1) + 2(i+ 1)

for every i ∈ {0, . . . , g}. Setting i = g − 11 and applying Claim 9.7 we get

h0(OP (g + 1, 1)⊗ JZ1) 6 h0(OP (11, 1)⊗ JZ1) + 2(g − 11 + 1) = 2g − 20.

Inserting in (36) we get h1(T
S̃

(−H̃)) = 0, as wanted. �
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