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Abstract
We prove the irreducibility of universal Severi varieties parametrizing irreducible, reduced, nodal

hyperplane sections of primitive K3 surfaces of genus g, with 3 ≤ g ≤ 11, g 6= 10.

Introduction

F. Severi was one of the first algebraic geometers who stressed the importance, for moduli and enumerative
problems, of studying the families Vd,g of irreducible, nodal, plane curves of degree d and geometric genus
g (see e.g. [29, Anhang F]). In particular he proved that the varieties Vd,g all have the expected dimension
3d + g − 1 (equal to the dimension of the linear system of all curves of degree d minus the number of
nodes) and asserted, but did not succeed to prove, that they are irreducible, a result due to J. Harris in
[16]. For this reason, the Vd,g’s have been called Severi varieties.

The notion of Severi variety can be extended to families of nodal curves on any surface, and analogous
irreducibility problems naturally arise. These are in general hard questions, even for rational surfaces.
For instance, irreducibility is known to hold for Hirzebruch surfaces [32] and for rational curves on Del
Pezzo’s surfaces [31], with one notable (and understood) exception for Del Pezzo’s surfaces of degree 1.
On the other hand, for surfaces with positive canonical bundle, Severi varieties have in general a quite
unpredictable behaviour: examples are given in [6] of surfaces with reducible Severi varieties, and even
with components of Severi varieties of dimension different from the expected one.

In this note we concentrate on Severi varieties on K3 surfaces, which, as in the planar case, are quite
interesting in relation with modular and enumerative problems. Here one can consider universal Severi
varieties parametrizing irreducible, reduced, nodal curves on primitive K3 surfaces, i.e. those polarised
by an indivisible, ample line bundle of genus g. Conjecturally, all these varieties should be irreducible (see
§1.3). This however seems, at the moment, to be quite hard to prove. Our result is Theorem 2.1 asserting
the irreducibility in the range 3 ≤ g ≤ 11, g 6= 10. This partially affirmatively answers a question posed
by the second author in [13] and it is, as far as we know, the first irreducibility result for Severi varieties
of K3 surfaces. In a nutshell, the proof relies on two facts. First, in the asserted range, the hyperplane
sections with a given number δ of nodes of the K3’s in question, embedded in Pg as surfaces of degree
2g − 2, fill up the whole component of nodal degenerate canonical curves with δ nodes in the Hilbert
scheme (see Proposition 2.6 or [14]). Secondly, using a degeneration technique due to Pinkham [24], we
prove that all components of a certain flag Hilbert scheme pass through some cone points, where, on the
other hand, we are able to prove smoothness of the flag Hilbert scheme, which is then irreducible at those
points. Both ideas are inspired by [9, 11].

In §1 we recall general facts about K3 surfaces (see §1.1); some basics about Severi varieties on them,
like existence and dimensions (see §1.2); about universal Severi varieties, recently considered in [14] (see
§1.3), and related moduli problems (see §1.4). Statement and proof of Theorem 2.1 are in §2. We take a
Hilbert schematic viewpoint, which we set up in §2.1. We recall then Pinkham’s technique of degeneration
to cones in §2.2, and the use of graph curves to compute cohomology of normal bundles in §2.3. Applying
this machinery, the proof, presented in §2.4, turns out to be quite simple.
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1 K3 surfaces and their Severi varieties

1.1 Generalities

A K3 surface X is a smooth complex projective surface with Ω2
X

∼= OX and h1(X,OX) = 0. A primitive
K3 surface of genus g is a pair (X,L), where X is a K3 surface, and L is an indivisible, nef line bundle
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on X, such that |L| is without fixed component and L2 = 2g − 2 (hence g ≥ 1). Given such a pair, |L|
is base point free, and the morphism ϕ|L| determined by this linear system is birational if and only if
L2 > 0 and |L| does not contain any hyperelliptic curve (hence g ≥ 3). In the latter case, the image
of ϕ|L| is a surface of degree 2g − 2 in Pg, with canonical singularities, and whose general hyperplane
section is a canonical curve of genus g (see [27]).

For all g ≥ 2, we can consider the moduli stack Bg of primitive K3 surfaces of genus g, which is
smooth, of dimension 19 (see [1, 23]). For (X,L) very general in Bg, the Picard group of X is generated
by the class of L, and L is very ample if g ≥ 3.

1.2 Severi varieties

Given a K3 surface (X,L) of genus g and two integers k and h, consider

Vk,h(X,L) := {C ∈ |kL| irreducible and nodal with g(C) = h} ,

where g(C) is the geometric genus of C, i.e. the genus of its normalization, so that C has g − h nodes.
Vk,h(X,L), called the (k, h)–Severi variety of (X,L) (or simply Severi variety if there is no danger of
confusion). It is a functorially defined, locally closed subscheme of the projective space |kL| of dimension
1 + k2(g − 1) =: pa(k), which is the arithmetic genus of the curves in |kL|. We will drop the index k if
k = 1 and we may drop the indication of the pair (X,L) if there is no danger of confusion.

Theorem 1.1 Let k ≥ 1 and 0 ≤ h ≤ pa(k). The variety Vk,h, if not empty, is smooth of dimension h.
If (X,L) is general in Bg, then Vk,h is not empty.

The first assertion is classical and standard in deformation theory (see [29] and, more recently, e.g.
[6, 13, 30]). The second part is a consequence of the main theorem in [7] (see also Mumford’s theorem in
[1, pp. 365–367]).

If (X,L) is general, Vk,0 is reducible, consisting of a finite number of points (for the degree of Vk,0,
see [4, 33]). One might instead expect that if (X,L) is general and h ≥ 1, then Vk,h is irreducible. This
is trivially true for h = pa(k) and not difficult for h = pa(k)− 1 (the reader may easily figure out why),
but is complicated as soon as h gets lower. This conjecture, if true, certainly will not be easy to prove.
As a first approximation, one may propose a weaker irreducibility conjecture concerning universal Severi
varieties (see [13]), which we now recall.

1.3 Universal Severi varieties

For any g ≥ 2, k ≥ 1 and 0 ≤ h ≤ pa(k), one can consider a stack V g
k,h (see [14, Proposition 4.8]), called

the universal Severi variety, which is pure and smooth of dimension 19 + h, endowed with a morphism
φg
k,h : V g

k,h → B◦
g , where B◦

g is a suitable dense open substack of Bg. The morphism φg
k,h is smooth on

all components of V g
k,h, and its fibres are described in the following diagram:

V g
k,h ⊃

φg
k,h

��

Vk,h(X,L)

��
B◦

g 3 (X,L)

Thus a point of V g
k,h can be regarded as a pair (X,C) with (X,L) ∈ Bg and C ∈ Vk,h(X,L).

One can conjecture that all universal Severi varieties V g
k,h are irreducible. This does not imply the

irreducibility of the pointwise Severi varieties Vk,h(X,L), even if (X,L) is general in Bg. The conjecture
rather means that the monodromy of the morphism φg

k,h transitively permutes the components of the
fibre Vk,h(X,L), for (X,L) ∈ Bg general. This makes sense even if h = 0, when the pointwise Severi
variety Vk,0(X,L) is certainly reducible.

In addition to its intrinsic interest, this conjecture is motivated by the results in [13], where it is shown
that (a weak version of) it implies the non–existence of rational map f : X 99K X with deg(f) > 1 for a
general K3 surface (X,L) of a given genus g. Very recently a proof of this result, based on quite delicate
degeneration argument, has been proposed by Xi Chen [8].
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1.4 The moduli map

There is a natural moduli map µg
k,h : V g

k,h → Mh, where Mh is the moduli stack of curves of genus
h. The case k = 1, h = g has been much studied. It is related to the behaviour of the Wahl map
wC :

∧2
H0 (C,ωC) → H0

(
C,ω3

C

)
of a smooth curve C of genus g, to extension properties of canonical

curves and to the classification of Fano varieties of the principal series and of Mukai varieties. We
will not dwell recalling all results on this subject, deferring the reader to the current literature (see, in
chronological order, [20, 34, 3, 21, 11, 12, 22, 9, 10, 5]). Only recently the nodal case h < g, k = 1,
received the deserved attention. We recall the following theorem.

Theorem 1.2 Assume 3 ≤ g ≤ 11 and 0 ≤ h ≤ g. For any irreducible component V of V g
h , the moduli

map µg
h|V : V → Mh is dominant, unless g = h = 10.

The case h = g is in the series of papers [20, 21, 22] (see also [5]). The rest is in [14].

Remark 1.3 As stated in [14], the theorem applies only for h ≥ 2. The case h = 0 is trivially true. The
proof in [14] applies to the case h = 1 if 3 ≤ g ≤ 11 and g 6= 10 as well. The case h = 1, g = 10 is not
covered by the original argument (see also [14, last lines of the proof of Theorem 5.5]), but can also be
fixed. We do not dwell on this here.

In the recent paper [15], the moduli map µg
k,h has been studied also for g ≥ 13, any k and h sufficiently

large with respect to g, proving that, as one may expect, µg
k,h is generically finite to its image in these

cases. The remaining cases for g, h, k are very interesting and still widely open.

2 The main theorem

The aim of this paper is to prove the following result, which affirmatively answers the conjecture in §1.3
in some cases.

Theorem 2.1 For 3 ≤ g ≤ 11, g 6= 10 and 0 ≤ h ≤ g, the universal Severi variety V g
h is irreducible.

By adopting a Hilbert schematic viewpoint and inspired by [11], we find a flag Hilbert scheme Fg,h,
with a rational map Fg,h 99K V g

h dominating all components of V g
h , and we prove that Fg,h is irreducible

(see Theorem 2.2). To show this, we exhibit smooth points of Fg,h which are contained in all irreducible
components of Fg,h (see §2.4).

2.1 The Hilbert schematic viewpoint

For any g ≥ 3, we let Bg be the component of the Hilbert scheme of surfaces in Pg whose general point
parametrizes a primitive K3 surface of genus g. An open subset of Bg is a PGL(g + 1,C)-bundle over
the open subset of Bg corresponding to pairs (X,L) with very ample L. The variety Bg is therefore
irreducible of dimension g2 + 2g + 19.

Let Cg be the component of the Hilbert scheme of curves in Pg whose general point parametrizes a
degenerate canonical curve of genus g, i.e. a smooth canonical curve of genus g lying in a hyperplane of
Pg. An open subset of Cg is a |OPg (1)| × PGL(g,C)–bundle over the open subset of Mg parametrizing
non–hyperelliptic curves, so Cg is irreducible of dimension g2 + 4g − 4.

Let Fg be the component of the flag Hilbert scheme of Pg (see [17, 28]) whose general point is a pair
(X,C) with X ∈ Bg general and C ∈ Cg a general hyperplane section of X. An open subset of Fg is a
Pg–bundle over an open subset of Bg. As such it is irreducible of dimension g2 + 3g + 19.

Let 0 ≤ h ≤ g. We denote by Cg,h the Zariski closure of the locally closed, functorially defined, subset
of Cg formed by irreducible, nodal, genus h curves. It comes with a moduli map cg,h : Cg,h 99K Mh, which
is dominant. Up to projective transformations, the fibre over a curve C ∈ Mh is a dense open subset
of Symδ

(
Sym2(C)

)
, with δ = g − h, and is therefore irreducible. So Cg,h is irreducible, of dimension

g2 + 4g − 4− δ.
We let Fg,h be the inverse image of Cg,h under the projection Fg → Cg. We have a natural dominant

map mg,h : Fg,h 99K V g
h . Any irreducible component F of Fg,h dominates Bg via the restriction of the

projection Fg → Bg (see §§1.2 and 1.3), and has dimension

dim (F) = dim (Fg,h) = g2 + 3g + 19− δ,
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where again δ = g − h. We let pg,h : Fg,h → Cg,h be the natural projection and we use the shorter
notation pg for pg,g.

Because of the existence of the dominant map mg,h, the following implies Theorem 2.1.

Theorem 2.2 Let 3 ≤ g ≤ 11, g 6= 10, and 0 ≤ h ≤ g. Then Fg,h is irreducible.

For the proof, we need to recall a few facts, collected in the next two subsections.

2.2 Degenerations to cones

The following lemma relies on a well known construction of Pinkham [24, (7.7)], and is based on the fact
that smooth K3 surfaces are projectively Cohen–Macaulay, see [19, 27].

Lemma 2.3 Let (X,C) ∈ Fg,h with X a smooth K3 surface. Let XC be the cone over C from a point
v in Pg off the hyperplane in which C sits. Then one can flatly degenerate (X,C) to (XC , C) inside the
fibre FC of pg,h over C.

Proof. Let H be the hyperplane containing C. Choose homogeneous coordinates (x0 : . . . :xg) such that
v = (1: 0 : . . . : 0) and H is given by x0 = 0. Consider the projective transformation ωt, t 6= 0, such that
ωt(x0 : . . . : xg) = (tx0 : x1 : . . . : xg). Set Xt = ωt(X). Then (Xt, C) ∈ FC for all t 6= 0. Since X is
projectively Cohen–Macaulay, XC , with its reduced structure, is the flat limit of Xt when t tends to 0.
�

The fibre FC of pg,h equals the fibre of pg, whose tangent space at the point (X,C) is isomorphic
to H0(X,NX/Pg (−1)) (see e.g. [28, §4.5.2]). The next lemma computes this space at a cone point
(XC , C) (the proof is the same as in [24, Theorem 5.1], and relies on the fact that C is projectively
Cohen–Macaulay, see [25, 18, 26]).

Lemma 2.4 Let C be a reduced and irreducible, not necessarily smooth, degenerate canonical curve in
Pg, of arithmetic genus g. Let XC be the cone over C from a point in Pg off the hyperplane in which C
sits. For all i ≥ 0, one has

H0
(
XC , NXC/Pg

(
− i)) ∼=

⊕
k≥i

H0
(
C,NC/Pg−1(−k)

)
. (2.1)

Next we need to bound from above the dimensions of the cohomology spaces appearing in the right–
hand–side of (2.1). We use semi–continuity, and a special type of canonical curves for which they can be
computed.

2.3 Canonical graph curves

A graph curve of genus g is a stable curve of genus g consisting of 2g− 2 irreducible components of genus
0 (see [2, 11]). A graph curve has 3g − 3 nodes (three nodes for each component), and it is determined
by the dual trivalent graph, consisting of 2g − 2 nodes and 3g − 3 edges. If C is a graph curve and its
dualizing sheaf ωC is very ample, then C can be canonically embedded in Pg−1 as a union of 2g−2 lines,
each meeting three others at distinct points. This is a canonical graph curve.

Proposition 2.5 [11] For 3 ≤ g ≤ 11, g 6= 10, there exists a genus g canonical graph curve Γg in Pg−1,
sitting in the image of pg, such that the dimensions of the spaces of sections of negative twists of the
normal bundle are given in the following table:

h0
(
NΓg/Pg−1(−k)

)
\ g 3 4 5 6 7 8 9 11

k = 1 10 13 15 16 16 15 14 12
k = 2 6 5 3 1 0 0 0 0
k = 3 3 1 0 0 0 0 0 0
k = 4 1 0 0 0 0 0 0 0
k ≥ 5 0 for every g

hence ∑
k≥1

h0
(
Γg, NΓg/Pg−1(−k)

)
= 23− g. (2.2)
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2.4 Proof of the main theorem

Here we prove Theorem 2.2 and therefore also Theorem 2.1. The first step is the following:

Proposition 2.6 Let g and h be two integers such that 3 ≤ g ≤ 11, g 6= 10, and 0 ≤ h ≤ g. Let F be
a component of Fg,h and let (X,C) ∈ F be a general point. Then all components of the fibre FC of pg,h
over C have dimension 23− g, and the restriction of pg,h to F is dominant onto Cg,h.

Proof. Note that X is general in Bg (see §2.1). As we saw, FC equals the fibre of pg, whose tangent
space at (X,C) is isomorphic to H0(X,NX/Pg (−1)). Its dimension does not depend on the hyperplane
section C of X. So this is like computing the tangent space to the fibre of pg at a general point (X, C̄)
of Fg, with C̄ general in Cg by the case h = g of Theorem 1.2.

By degenerating to the cone point (XC̄ , C̄), by Lemma 2.4, and by upper–semi–continuity, we have
h0(X,NX/Pg (−1)) ≤

∑
k≥1 h

0(C̄,NC̄/Pg−1(−k)). By further degenerating to one of the graph curves in

Proposition 2.5, and taking into account (2.2), we have h0(X,NX/Pg (−1)) ≤ 23 − g (this argument has
been extracted from [9, §5.3]). So this is an upper bound for the dimension of FC at (X,C). Since

23− g = dim (F)− dim (Cg,h)

(see §2.1), this equals the dimension of FC at (X,C), and the restriction of pg,h at F is dominant. �
With a similar argument we can finish the:

Proof of Theorem 2.2. Let Fi, 1 ≤ i ≤ 2, be distinct components of Fg,h. Let C ∈ Cg,h be a general
point. By Proposition 2.6, there are points (Xi, C) ∈ Fi, and they can be assumed to be general points
on two distinct components Fi of FC , 1 ≤ i ≤ 2. By Lemma 2.3, both F1 and F2 contain the cone point
(XC , C). We will reach a contradiction by showing that (XC , C) is a smooth point of FC .

Since C is general in Cg,h and Cg,h clearly contains the graph curves Γg of Proposition 2.5, by upper–
semicontinuity h0(XC , NXC/Pg (−1)) is bounded from above by (2.2). This proves the asserted smoothness
of FC at (XC , C), concluding the proof. �

Remark 2.7 (i) Proposition 2.6 gives a quick alternative proof of the part h < g of Theorem 1.2 when
g 6= 10, which is based on the part h = g.
(ii) The argument does not work for g = 10. In fact, if C is any curve in the image of p10 lying on a
smooth K3 surface, one has h0

(
X,NX/Pg (−1)

)
= 14, see [12, Lemma 1.2]. The analogue of Proposition

2.6 in this case is that all components of a general fibre of p10,h have dimension 14. So the image of
pg,h has codimension 1 in Cg,h. Luckily, and as one could expect, Theorem 1.2 ensures that the moduli
map cg,h dominates Mh for 0 ≤ h ≤ 9. However the argument in the final part of the proof of Theorem
2.2 falls short, since we do not know whether the image of p10,h is irreducible, or all of its components
contain a curve C for which the fibre FC can be controlled.
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