ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON $K 3$ SURFACES

C. CILIBERTO AND TH. DEDIEU

Abstract

Let (S, L) be a polarized $K 3$ surface of genus $p \geqslant 11$ such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and δ a non-negative integer. We prove that if $p \geqslant 4 \delta-3$, then the Severi variety of δ-nodal curves in $|L|$ is irreducible.

1. Introduction

Given a polarized surface (S, L) and an integer $\delta \geqslant 0$, the Severi variety $V^{L, \delta}$ is the parameter space for irreducible, δ-nodal curves in the linear system $|L|$ (see $\S 2.1$. This text is dedicated to the proof of the following result:

Theorem 1. Let (S, L) be a primitively polarized $K 3$ surface of genus $p \geqslant 11$ such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and δ a non-negative integer such that $4 \delta-3 \leqslant p$. The Severi variety $V^{L, \delta}$ is irreducible.

It had already been proven by Keilen [14] that in the situation of Theorem 1, for all integer $k \geqslant 1$ the Severi variety $V^{k L, \delta}$ is irreducible if

$$
\delta<\frac{6(2 p-2)+8}{(11(2 p-2)+12)^{2}} \cdot k^{2} \cdot(2 p-2)^{2} \quad\left(\sim_{p \rightarrow \infty} \frac{12}{121} \cdot k^{2} \cdot p\right)
$$

and later by Kemeny [15] that the same holds if $\delta \leqslant \frac{1}{6}(2+k(p-1))$. Our result is valid only in the case $k=1$, i.e., for curves in the primitive class, but in this case our condition is better. In a slightly different direction, we have proven some time ago in [6] that the universal families of the $V^{L, \delta}$'s are irreducible for all $\delta(\delta=p$ included $)$ if $3 \leqslant p \leqslant 11$ and $p \neq 10$.

Kemeny's result is based on the observation that for any smooth polarized surface (S, L), the Severi variety $V^{L, \delta}$ is somehow trivially irreducible if L is $(3 \delta-1)$-very ample: Indeed, in this case the curves in $|L|$ with nodes at $p_{1}, \ldots, p_{\delta}$ form a dense subset of a projective space of constant dimension for any set of pairwise distinct points $p_{1}, \ldots, p_{\delta}$. Kemeny then applies a numerical criterion for n-very ampleness on $K 3$ surfaces due to Knutsen [16].

The central idea of the present article is close in spirit to Kemeny's observation, to the effect that provided $\operatorname{dim}|L| \geqslant 3 \delta$, the curves in $|L|$ with nodes at $p_{1}, \ldots, p_{\delta}$ should form in nice circumstances a dense subset of a projective space of constant dimension for a general choice of δ pairwise disjoint points. It is indeed so for curves in the primitive class of a $K 3$ surface, thanks to a result of Chiantini and the first-named author, see Proposition 14 . One thus gets a distinguished irreducible component of the Severi variety $V^{L, \delta}$ which we call its standard component. For any other irreducible component V, the nodes of the members of V sweep out a locus of positive codimension h_{V} in the Hilbert scheme $S^{[\delta]}$, see Section 3 we call h_{V} the excess of V.

Our applications then rely on the observation that, in the $K 3$ situation of Theorem 1, for all $C \in V$ the preimage of the nodes defines a linear series of type $g_{2 \delta}^{h}$ on the normalisation of C (see Lemma 20), together with some recent results in [7] and [17] (Theorems 9 and 8 respectively) which give some control on the families of linear series that may exist on the normalisations of primitive curves on $K 3$ surfaces. The latter results hold only for curves in the primitive class, and this is the main obstruction to carry out our approach in the non-primitive situation.

One may for instance give a two-lines proof of irreducibility in the range $p \geqslant 5 \delta-3$, as follows. Assume by contradiction that there is a non-standard irreducible component V of the Severi variety $V^{L, \delta}$. Then for all $C \in V$ the normalisation of C has a $g_{2 \delta}^{1}$. By [17] this implies $\operatorname{dim}(V)=p-\delta \leqslant 4 \delta-2$, which is impossible in the range under consideration.

We obtain the better bound in Theorem 1 by proving the estimate $h_{V}>2$ for all non-standard components of $V^{L, \delta}$. This is done in Section 4 by a careful study of the singularities of curves in the intersection of the standard component with a hypothetical non-standard component, which we are again able to control thanks to Brill-Noether theoretic results for singular curves on $K 3$ surfaces.

This work originates from the Oberwolfach Mini-Workshop: Singular Curves on K3 Surfaces and Hyperkähler Manifolds. We thank all the participants for the friendly atmosphere and stimulating discussions.

2. Preliminaries

2.1. Severi varieties. We work over \mathbf{C} throughout the text. We denote by \mathcal{K}_{p} the irreducible, 19dimensional stack of primitively polarized $K 3$ surfaces (S, L) of genus $p \geqslant 2$, i.e., S is a compact, complex surface with $h^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $\omega_{S} \cong \mathcal{O}_{S}$, and L a big and nef, primitive line bundle on S with $L^{2}=2 p-2$, hence $\operatorname{dim}(|L|)=p$. The arithmetic genus of the curves $C \in|L|$ is $p_{a}(C)=p$.

In this paper we will often assume that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, which is the case if $(S, L) \in \mathcal{K}_{p}$ is very general, so that L is globally generated and ample, and very ample if $p \geqslant 3$.

For any non-negative integer $g \leqslant p$, we consider the locally closed subset V_{g}^{L} of $|L|$ consisting of curves $C \in|L|$ of geometric genus $p_{g}(C)=g$, i.e., curves C whose normalization has genus g (see [8, § 1.2]). We will set $\delta=p-g$, which is usually called the δ-invariant of the curve.
Proposition 2 (see [8, Proposition 4.5]). Every irreducible component of V_{g}^{L} has dimension g.
For every non-negative integer $\delta \leqslant p$, we will denote by $V^{L, \delta}$ the Severi variety, i.e., the locally closed subset of $|L|$ consisting of curves with δ nodes and no other singularities, whose geometric genus is $g=p-\delta$. The following is classical:
Proposition 3 (see [8, §3-4]). The Severi variety $V^{L, \delta}$, if not empty, is smooth and pure of dimension g. More precisely, if $C \in V^{L, \delta}$, and Δ is the set of nodes of C, then the projective tangent space to $V^{L, \delta}$ at C in $|L|$ is the g-dimensional linear system $|L(-\Delta)|:=\mathbf{P}\left(\mathrm{H}^{0}\left(S, L \otimes \mathcal{I}_{\Delta, S}\right)\right)$ of curves in $|L|$ containing Δ.
It is indeed true that the Severi varieties of a general primitively polarized $K 3$ surface are non-empty.
Proposition 4 (see [3]). If $(S, L) \in \mathcal{K}_{p}$ is general, then $V^{L, \delta}$ is not empty for every non-negative integer $\delta \leqslant p$.

By Propositions 2 and 3, each irreducible component of $V^{L, \delta}$ is dense in a component of V_{g}^{L}. Xi Chen [4] has shown that moreover if $g>0$, then $V^{L, \delta}$ is dense in V_{g}^{L} for general $(S, L) \in \mathcal{K}_{p}$. We shall need the following weaker result, in which however the generality assumption is explicit. ${ }^{1}$
Proposition 5 ([8], Proposition 4.8]). Let $(S, L) \in \mathcal{K}_{p}$ be such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$. If $2 \delta<p$, then $V^{L, \delta}$ is dense in V_{g}^{L}.
2.2. Local structure of Severi varieties. The following is a restatement of the well-known fact that the nodes of a nodal curve on a $K 3$ surface may be smoothed independently. It is a consequence of Proposition 3 ,

Proposition 6. Let $(S, L) \in \mathcal{K}_{p}, \delta<\varepsilon$ be two non-negative integers, and V be an irreducible component of $V^{L, \varepsilon}$. Consider a curve $C \in V$, and let $\left\{p_{1}, \ldots, p_{\varepsilon}\right\}$ be the set of its nodes. Then:
(i) the Zariski closure $\bar{V}^{L, \delta}$ of $V^{L, \delta}$ contains V;
(ii) locally around $C, \bar{V}^{L, \delta}$ consists of $\binom{\varepsilon}{\delta}$ analytic sheets $\mathcal{V}_{\mathfrak{d}}$, which are in $1: 1$ correspondence with the subsets $\mathfrak{d} \subset\left\{p_{1}, \ldots, p_{\varepsilon}\right\}$ of order δ, and such that when the general point C^{\prime} of $\mathcal{V}_{\mathfrak{o}}$ specializes at C, the set of δ nodes of C^{\prime} specializes at \mathfrak{d};
(iii) for each such \mathfrak{d}, the sheet $\mathcal{V}_{\mathfrak{d}}$ is smooth at C of dimension $p-\delta$, relatively transverse to all other similar sheets. 2

[^0]As an immediate consequence, we have:
Corollary 7. Let $(S, L) \in \mathcal{K}_{p}$ and let V, V^{\prime} be irreducible components of $V^{L, \delta}$ and $V^{L, \delta^{\prime}}$, with $\delta \leqslant \delta^{\prime}$. If V^{\prime} intersects the Zariski closure \bar{V} of V, then $V^{\prime} \subset \bar{V}$.
2.3. Brill-Noether theory of curves on K3 surfaces. We will use the following results.

Theorem 8 ([17], Theorem 5.3 and Remark 5.6]). Let (S, L) be such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and $V \subset V_{g}^{L} a$ non-empty reduced scheme. Let k be a positive integer. Assume that for all $C \in V$, there exists a g_{k}^{1} on the normalisation \tilde{C} of C. Then one has

$$
\operatorname{dim}(V)+\operatorname{dim}\left(G_{k}^{1}(\tilde{C})\right) \leqslant 2 k-2
$$

for general $C \in V$.
Theorem 9 ([7] Theorem 3.1]). Let $(S, L) \in \mathcal{K}_{p}$ be such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and $C \in V_{g}^{L}$; let $\delta=p-g$. Let r, d be nonnegative integers. If there exists a g_{d}^{r} on the normalization of C, then

$$
\delta \geqslant \alpha(r g-(d-r)(\alpha r+1)), \quad \text { where } \quad \alpha=\left\lfloor\frac{g r+(d-r)(r-1)}{2 r(d-r)}\right\rfloor .
$$

Theorem 10 ([18, 11, 1, 10]). Let $(S, L) \in \mathcal{K}_{p}$ be such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and $C \in|L|$. The Clifford index of C, computed with sections of rank one torsion free sheaves on C (see [8, p. 202] or [1]), equals $\left\lfloor\frac{p-1}{2}\right\rfloor$.

3. Standard components

3.1. The nodal map. Let $(S, L) \in \mathcal{K}_{p}$. For any positive integer n, we denote by $S^{[n]}$ the Hilbert scheme of 0 -dimensional subschemes of S of length n. Recall that $S^{[n]}$ is smooth of dimension $2 n$ (see 9$]$).

Consider the morphism

$$
\varphi_{L, \delta}: V^{L, \delta} \longrightarrow S^{[\delta]},
$$

called the nodal map, which maps a curve $C \in V^{L, \delta}$ to the scheme Δ of its nodes, indeed 0 -dimensional of length δ. We set $\Phi_{L, \delta}:=\operatorname{Im}\left(\varphi_{L, \delta}\right)$. If V is an irreducible component of $V^{L, \delta}$, we set

$$
\varphi_{V}:=\left.\varphi_{L, \delta}\right|_{V} \text { and } \Phi_{V}:=\operatorname{Im}\left(\varphi_{V}\right)
$$

Let Δ be a general point in Φ_{V}. Then $\varphi_{V}^{-1}(\Delta)$ is an open subset of the linear system $|L(-2 \Delta)|:=\mathbf{P}\left(\mathrm{H}^{0}(S, L \otimes\right.$ $\left.\mathcal{I}_{\Delta, S}^{2}\right)$) of curves in $|L|$ singular at Δ. We set

$$
\operatorname{dim}(|L(-2 \Delta)|)=p-3 \delta+h_{V},
$$

which defines the non-negative integer h_{V}, called the excess of V. By Proposition 3, one has

$$
\begin{equation*}
\operatorname{dim}\left(\Phi_{V}\right)=2 \delta-h_{V} \tag{1}
\end{equation*}
$$

The following is immediate:
Lemma 11. Let $(S, L) \in \mathcal{K}_{p}$, and let V_{1}, V_{2} be two distinct irreducible components of $V^{L, \delta}$. Then $\Phi_{V_{1}}$ and $\Phi_{V_{2}}$ have distinct Zariski closures in $S^{[\delta]}$.
3.2. A useful lemma. Let $C \in|L|$ be a reduced curve, and consider the conductor ideal $A \subset \mathcal{O}_{C}$ of the normalization $\nu_{\tilde{\Delta}}: \tilde{C} \rightarrow C$. There exists a divisor $\tilde{\Delta}$ on \tilde{C} such that $A=\nu_{*} \mathcal{O}_{\tilde{C}}(-\tilde{\Delta})$, and one has $\omega_{\tilde{C}}=\nu^{*} \omega_{C} \otimes \mathcal{O}_{\tilde{C}}(-\tilde{\Delta})$. It is a classical result that $\nu^{*}|L \otimes A|=\left|\omega_{\tilde{C}}\right|$, see [8, Lemma 3.1]. The same argument proves that $\nu^{*}\left|L \otimes A^{\otimes 2}\right|=\left|\omega_{\tilde{C}}(-\tilde{\Delta})\right|$.

Consider the particular case when C has ordinary cusps p_{1}, \ldots, p_{k} and nodes $p_{k+1}, \ldots, p_{\delta}$ as its only singularities. Denote by $p_{1}, \ldots, p_{k} \in \tilde{C}$ the respective preimages of $p_{1}, \ldots, p_{k} \in C$ by the normalisation ν, abusing notations, and by p_{i}^{\prime} and $p_{i}^{\prime \prime}$ the two preimages of p_{i} for $i=k+1, \ldots, \delta$. Then A is the product of the maximal ideals of $p_{1}, \ldots, p_{\delta}$, i.e., $A=\mathcal{I}_{\Delta, S} \otimes \mathcal{O}_{C}$ with $\Delta=\left\{p_{1}, \ldots, p_{\delta}\right\}$, and

$$
\tilde{\Delta}=2 \sum_{i=1}^{k} p_{i}+\sum_{i=k+1}^{\delta}\left(p_{i}^{\prime}+p_{i}^{\prime \prime}\right) .
$$

The previous identity $\nu^{*}\left|L \otimes A^{\otimes 2}\right|=\left|\omega_{\tilde{C}}(-\tilde{\Delta})\right|$ readily implies the following.

Lemma 12. Let j be the closed immersion $C \hookrightarrow S$. One has

$$
(j \circ \nu)^{*}(|L(-2 \Delta)|)=\left|\omega_{\tilde{C}}(-\tilde{\Delta})\right|
$$

and therefore $\operatorname{dim}(|L(-2 \Delta)|)=h^{0}\left(\omega_{\tilde{C}}(-\tilde{\Delta})\right)$.
3.3. Standard components. Let V be an irreducible component of $V^{L, \delta}$. We call V standard if $h_{V}=0$. If V is standard and $\Delta \in \Phi_{V}$ is general, then

$$
0 \leqslant \operatorname{dim}\left(\varphi_{V}^{-1}(\Delta)\right)=\operatorname{dim}(|L(-2 \Delta)|)=p-3 \delta
$$

hence $p \geqslant 3 \delta$. Moreover if V is standard, then $\operatorname{dim}\left(\Phi_{V}\right)=2 \delta$, hence Φ_{V} is dense in $S^{[\delta]}$. We will prove in Proposition 16 below that if $p \geqslant 3 \delta$ and if $\operatorname{Pic}(S)=\mathbf{Z}[L]$, then there is a unique standard component of $V^{L, \delta}$. To do this, we need to recall some basic fact from [5].

Let $Y \subset \mathbf{P}^{N}$ be an irreducible, n-dimensional, non-degenerate, projective variety. Let \mathcal{H} be the linear system cut out on Y by the hyperplanes of \mathbf{P}^{N}, i.e.,

$$
\mathcal{H}=\mathbf{P}(\operatorname{Im}(r)) \quad \text { where } \quad r: \mathrm{H}^{0}\left(\mathbf{P}^{N}, \mathcal{O}_{\mathbf{P}^{N}}(1)\right) \rightarrow \mathrm{H}^{0}\left(Y, \mathcal{O}_{Y} \otimes \mathcal{O}_{\mathbf{P}^{N}}(1)\right)
$$

is the restriction map. Let k be a non-negative integer. The variety Y is said to be k-weakly defective if given $p_{0}, \ldots, p_{k} \in Y$ general points, the general element of $\mathcal{H}\left(-2 p_{0}-\ldots-2 p_{k}\right)$ has a positive dimensional singular locus, where $\mathcal{H}\left(-2 p_{0}-\ldots-2 p_{k}\right)$ denotes the linear system of divisors in \mathcal{H} singular at p_{0}, \ldots, p_{k}.

Proposition 13 ([5], Theorem 1.4]). Let $Y \subset \mathbf{P}^{N}$ be an irreducible, n-dimensional, non-degenerate, projective variety. Let k be a non-negative integer such that $N \geqslant(n+1)(k+1)$. If Y is not k-weakly defective, then given p_{0}, \ldots, p_{k} general points on Y, one has:
(i) $\operatorname{dim}\left(\mathcal{H}\left(-2 p_{0}-\ldots-2 p_{k}\right)\right)=N-(n+1)(k+1)$;
(ii) the general divisor $H \in \mathcal{H}\left(-2 p_{0}-\ldots-2 p_{k}\right)$ has ordinary double points at p_{0}, \ldots, p_{k}, i.e., double points with tangent cone of maximal rank n, and no other singularity.

In [5. Theorem 1.3] one finds the classification of k-weakly defective surfaces. After an inspection which we leave to the reader, one sees that:

Proposition 14. Let $(S, L) \in \mathcal{K}_{p}$ be such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and assume $p \geqslant 3$. Consider S embedded in \mathbf{P}^{p} via the morphism determined by $|L|$. Then S is not k-weakly defective for any non-negative integer k.

We can therefore apply Proposition 13 and conclude that:
Proposition 15. Maintain the assumptions of Proposition 14, and let δ be a non-negative integer such that $3 \delta \leqslant p$. Then given $\Delta \in S^{[\delta]}$ general, one has $\operatorname{dim}(|L(-2 \Delta)|)=p-3 \delta$ and the general curve in $|L(-2 \Delta)|$ has nodes at Δ and no other singularities.

As a consequence we have:
Proposition 16. Under the assumptions of Proposition 15, there is a unique standard component $V_{\mathrm{st}}^{L, \delta}$ of $V^{L, \delta}$, which is the unique irreducible component V of $V^{L, \delta}$ such that $\varphi_{V}: V \rightarrow S^{[\delta]}$ is dominant.

Proof. Proposition 15 implies that there is a standard component V of $V^{L, \delta}$ such that $\varphi_{V}: V \rightarrow S^{[\delta]}$ is dominant. By Lemma 11, it is the unique standard component.

4. A LOWER BOUND ON THE EXCESS

This section is entirely devoted to the proof of the following:
Proposition 17. Let $p \geqslant 11$ and $\delta>1,(p, \delta) \neq(12,4)$, be integers such that $3 \delta \leqslant p$. We consider $(S, L) \in \mathcal{K}_{p}$ such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$. For all non-standard component V of $V^{L, \delta}$, one has $h_{V} \geqslant 3$.

Let V be a non-standard component of $V^{L, \delta}$ as above. One has $h_{V}>0$ by definition, and we shall proceed by contradiction to show that h_{V} may neither equal 1 nor 2 .
4.1. Proof that $h_{V} \neq 1$. In the setup of Proposition 17, we assume by contradiction that $h_{V}=1$. Then the closure of Φ_{V} is an irreducible divisor in $S^{[\delta]}$. Let $\Delta \in \Phi_{V}$ be a general point. It can be seen as the limit of a general 1-dimensional family $\left\{\Delta_{t}\right\}_{t \in \mathbf{D}}$, where \mathbf{D} is a complex disk, and Δ_{t} is general in $S^{[\delta]}$ for $t \neq 0$. In particular, we may assume $\operatorname{dim}\left(\varphi_{L, \delta}^{-1}\left(\Delta_{t}\right)\right)=p-3 \delta$ for $t \in \mathbf{D}-\{0\}$. We define the limit \mathcal{L}_{Δ} of $\varphi_{L, \delta}^{-1}\left(\Delta_{t}\right)$ as $t \rightarrow 0$ as the fibre over $0 \in \mathbf{D}$ of the closure of $\bigcup_{t \neq 0}\left(\varphi_{L, \delta}^{-1}\left(\Delta_{t}\right)\right)$ inside $|L| \times \mathbf{D}$. Then:
(i) \mathcal{L}_{Δ} is a $(p-3 \delta)$-dimensional sublinear system of $|L(-2 \Delta)|$;
(ii) \mathcal{L}_{Δ} is contained in $\bar{V} \cap \bar{V}_{\mathrm{st}}^{L, \delta}$;
(iii) since $V^{L, \delta}$ is smooth, by (ii) the general curve in \mathcal{L}_{Δ} does not belong to $V^{L, \delta}$, i.e., it has singularities worse than only nodes at the points of Δ;
(iv) as Δ moves in a suitable dense open subset U of Φ_{V}, the union $\bigcup_{\Delta \in U} \mathcal{L}_{\Delta}$ describes a locally closed subset of dimension

$$
\operatorname{dim}\left(\Phi_{V}\right)+(p-3 \delta)=(2 \delta-1)+(p-3 \delta)=g-1
$$

which is dense in an irreducible component W of $\bar{V} \cap \bar{V}_{\mathrm{st}}^{L, \delta}$, where $g=p-\delta$ as usual.
Let C be the general curve in W, which belongs to \mathcal{L}_{Δ} for some general $\Delta \in \Phi_{V}$. By (i) and (iii) above, C is singular at Δ but it is not δ-nodal. By Proposition 2 one has $p_{g}(C) \geqslant g-1$, hence $g-1 \leqslant p_{g}(C) \leqslant g$. We will show that each of these two possible values leads to a contradiction, thus proving that $h_{V} \neq 1$.
4.1.1. Case $p_{g}(C)=g-1$. Since $\operatorname{dim}(W)=g-1$, it follows from Proposition 5 that W is dense in the closure of a component of $V^{L, \delta+1}$, i.e., C is a $(\delta+1)$-nodal curve, with only one extra node $p_{\delta+1} \notin \Delta$. By Proposition 6, locally around C there is only one smooth branch \mathcal{V} of $\bar{V}^{L, \delta}$ containing W and such that when the general point of \tilde{C} of \mathcal{V} specializes at C, then set of δ nodes of \tilde{C} specializes at Δ. This is a contradiction, because both \bar{V} and $\bar{V}_{\mathrm{st}}^{L, \delta}$ contain W. Therefore, it is impossible that $p_{g}(C)=g-1$.
4.1.2. Case $p_{g}(C)=g$. Since C is singular at $\Delta=p_{1}+\ldots+p_{\delta}$, it is singular only there, and has only nodes and (simple) cusps (with local equation $x^{2}=y^{3}$); it must have at least one cusp by (iii).

Claim 18. C has only one cusp.
Proof of the Claim. Suppose that C has cusps at p_{1}, \ldots, p_{k} and nodes at $p_{k+1}, \ldots, p_{\delta}$, with $k \geqslant 1$. The tangent space to the equisingular deformations of C in S is $\mathrm{H}^{0}\left(C, L \otimes \mathcal{I} \otimes \mathcal{O}_{C}\right)$, where \mathcal{I} is the ideal sheaf associated to the equisingular ideal (see [8, §3]) $I=\prod_{i=1}^{\delta} I_{p_{i}}$, where:

- $I_{p_{i}}=\left(x, y^{2}\right)$, if the local equation of C around p_{i} is $x^{2}=y^{3}$, for $i=1, \ldots, k$;
- $I_{p_{i}}$ is the maximal ideal at p_{i}, for $i=k+1, \ldots, \delta$.

Let $\nu: \tilde{C} \rightarrow C$ be the normalization. We abuse notation and denote by p_{1}, \ldots, p_{k} their counterimages by ν, whereas we denote by p_{i}^{\prime} and $p_{i}^{\prime \prime}$ the two points of \tilde{C} in the preimage of p_{i} by ν, for $i=k+1, \ldots, \delta$. By pulling back by ν the sections of $\mathrm{H}^{0}\left(C, L \otimes \mathcal{I} \otimes \mathcal{O}_{C}\right)$ and dividing by sections vanishing at the fixed divisor $2 \sum_{i=1}^{k} p_{i}+\sum_{i=k+1}^{\delta}\left(p_{i}^{\prime}+p_{i}^{\prime \prime}\right)($ see $[8, \S 3.3])$, we find an isomorphism

$$
\nu^{*}: \mathrm{H}^{0}\left(C, L \otimes \mathcal{I} \otimes \mathcal{O}_{C}\right) \cong \mathrm{H}^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}-\ldots-p_{k}\right)\right),
$$

hence

$$
\begin{equation*}
h^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}-\ldots-p_{k}\right)\right)=h^{0}\left(C, L \otimes \mathcal{I} \otimes \mathcal{O}_{C}\right) \geqslant \operatorname{dim}(W)=g-1 \tag{2}
\end{equation*}
$$

This implies that the points p_{1}, \ldots, p_{k} are all identified by the canonical map of \tilde{C}, which is possible only if either $k=1$, or $k=2$ and $\operatorname{dim}\left(\left|p_{1}+p_{2}\right|\right)=1$. We now prove that \tilde{C} may not be hyperelliptic, hence the latter case does not occur.

By Theorem 8, if \tilde{C} is hyperelliptic then $\operatorname{dim}(W)=g-1 \leqslant 2$. This contradicts our assumptions that $3 \delta \leqslant p$ and $p \geqslant 11$: indeed, as $g=p-\delta$ they imply that $g>3$. Hence the only possibility left is that $k=1$, which proves the claim.

Note moreover that since $k=1$, equality holds in (22).
Let $\left.N_{C / S} \cong L\right|_{C}$ be the normal bundle of C in S. We have the exact sequence

$$
0 \rightarrow N_{C / S}^{\prime} \rightarrow N_{C / S} \rightarrow T_{C}^{1} \cong \mathcal{O}_{p_{1}}^{2} \oplus \bigoplus_{i=2}^{\delta} \mathcal{O}_{p_{i}} \rightarrow 0
$$

where $N_{C / S}^{\prime}$ is the equisingular normal sheaf of C in S, and one has $N_{C / S}^{\prime} \cong N_{C / S} \otimes \mathcal{I}$. So $\mathrm{H}^{0}\left(C, N_{C / S}^{\prime}\right)=$ $\mathrm{H}^{0}\left(C, L \otimes \mathcal{I} \otimes \mathcal{O}_{C}\right)$ is the tangent space to the equisingular deformations of C in S.

We have $h^{0}\left(C, N_{C / S}\right)=p$ and, as we saw, $h^{0}\left(C, N_{C / S}^{\prime}\right)=g-1=p-\delta-1$. Thus the map

$$
\begin{equation*}
\mathrm{H}^{0}\left(C, N_{C / S}\right) \rightarrow T_{C}^{1} \tag{3}
\end{equation*}
$$

is surjective, and $\mathrm{H}^{1}\left(C, N_{C / S}^{\prime}\right) \cong \mathrm{H}^{1}\left(C, N_{C / S}\right) \cong \mathbf{C}$. Moreover the obstruction space to deformations of C in S, contained in $\mathrm{H}^{1}\left(C, N_{C / S}\right)$, is zero as is well-known (see, e.g., [8, §4.2]). This implies that, locally around $C, \bar{V}^{L, \delta}$ is the product of the equigeneric deformation spaces inside the versal deformation spaces of the singularities of C. By looking at the versal deformation space of a cusp (see, e.g., [12, p. 98]), we deduce that $\bar{V}^{L, \delta}$ has a double point at C with a single cuspidal sheet. This is a contradiction, because we assumed that both \bar{V} and $\bar{V}_{\mathrm{st}}^{L, \delta}$ contain C. This contradiction proves that $p_{g}(C)=g$ cannot occur.

In conclusion we have proved that if $h_{V}=1$ then $p_{g}(C)$ equals either $g-1$ or g, but both these possibilities lead to contradictions, hence $h_{V} \neq 1$.
4.2. Proof that $h_{V} \neq 2$. Still in the setup of Proposition 17, we now assume by contradiction that $h_{V}=2$. Then $\operatorname{dim}\left(\Phi_{V}\right)=2 \delta-2$. Let $\Delta \in \Phi_{V}$ be a general point. Again Δ can be seen as the limit of general 1dimensional families $\left\{\Delta_{t}\right\}_{t \in \mathbf{D}}$, where \mathbf{D} is a disk, and Δ_{t} is general in $S^{[\delta]}$ for $t \neq 0$. We consider the closure \mathcal{L}_{Δ} of the union of all $(p-3 \delta)$-dimensional sublinear systems $\lim _{t \rightarrow 0}\left(\varphi_{L, \delta}^{-1}\left(\Delta_{t}\right)\right) \subset|L(-2 \Delta)|$ as $\left\{\Delta_{t}\right\}_{t \in \mathbf{D}}$ varies among all families as above. Similarly to the case $h_{V}=1$, we have:
(i) \mathcal{L}_{Δ} is contained in $\bar{V} \cap \bar{V}_{\mathrm{st}}^{L, \delta}$ and $\operatorname{dim}\left(\mathcal{L}_{\Delta}\right)=p-3 \delta+\varepsilon$, with $0 \leqslant \varepsilon \leqslant 1$;
(ii) the general curve in \mathcal{L}_{Δ} is singular at Δ but has singularities worse than only nodes at the points of Δ;
(iii) as Δ moves in a suitable dense open subset U of Φ_{V}, the union $\bigcup_{\Delta \in U} \mathcal{L}_{\Delta}$ describes a locally closed subset of dimension

$$
\operatorname{dim}\left(\Phi_{V}\right)+\operatorname{dim}\left(\mathcal{L}_{\Delta}\right)=g-2+\varepsilon
$$

which is dense in an irreducible component W of $\bar{V} \cap \bar{V}_{\mathrm{st}}^{L, \delta}$.
If $\varepsilon=1$, then $\operatorname{dim}(W)=g-1$ and the discussion goes as in the case $h_{V}=1$. So we assume $\varepsilon=0$, hence $\operatorname{dim}(W)=g-2$. Let C be the general curve in W. By Proposition 2 , we have $g-2 \leqslant p_{g}(C) \leqslant g$. We will prove that this cannot happen, thus proving that $h_{V} \neq 2$. The proof parallels the one for $h_{V} \neq 1$.
4.2.1. Case $p_{g}(C)=g-2$. By Proposition 5, C is a $(\delta+2)$-nodal curve, with two extra nodes $p_{\delta+1}, p_{\delta+2} \notin \Delta$ and W is dense in the closure of a component of $V^{L, \delta+2}$. By Proposition 6, locally around C there is only one smooth branch \mathcal{V} of $\bar{V}^{L, \delta}$ containing W and such that when the general point of C^{\prime} of \mathcal{V} specializes at C, then set of δ nodes of C^{\prime} specializes at Δ. This is a contradiction, because both \bar{V} and $\bar{V}_{\mathrm{st}}^{L, \delta}$ contain W. Hence $p_{g}(C)=g-2$ cannot happen.
4.2.2. Case $p_{g}(C)=g-1$. In this case we have the two following disjoint possibilities for C :
(a) C has precisely one more singularity p_{0} besides the ones in Δ;
(b) C has no singularities besides the ones in Δ, either an ordinary tacnode or a ramphoid cusp (with local equation $x^{2}=y^{4+\varepsilon}, \varepsilon=0$ or 1 respectively) at one of the points of Δ, and nodes or ordinary cusps at the other points of Δ.
Subcase (a). The points $p_{0}, \ldots, p_{\delta}$ are either nodes or cusps. Arguing as for Claim 18, we see that at most one of these points can be a cusp.

If C is $(\delta+1)$-nodal, then W sits in an irreducible component of $\bar{V}^{L, \delta+1}$, and we get a contradiction as in the proof of case $p_{g}(C)=g-1$ for $h_{V}=1$.

If C is δ-nodal and 1-cuspidal, then again the map (3) is surjective and the deformation space of C is locally the product of the versal deformation spaces at $p_{0}, \ldots, p_{\delta}$. We then have the two following possibilities.

If p_{0} is a node, then W sits in a $(g-1)$-dimensional irreducible variety W^{\prime} parametrizing curves which are ($\delta-1$)-nodal and 1-cuspidal, such that when the general member of W^{\prime} tends to C, its singularities tend to Δ. Moreover the map (3) is surjective for the general member of W^{\prime}. Then W^{\prime} should be contained in both \bar{V} and $\bar{V}_{\mathrm{st}}^{L, \delta}$. On the other hand, as usual by now, $\bar{V}^{L, \delta}$ should be unibranched along W^{\prime}, a contradiction.

If p_{0} is the cusp, then W sits in a $(g-1)$-dimensional irreducible component W^{\prime} of $\bar{V}^{L, \delta+1}$, such that when the general member of W^{\prime} tends to C, its singularities tend to $p_{0}, \ldots, p_{\delta}$. By Corollary $7, W^{\prime}$ should be contained in both \bar{V} and $\bar{V}_{\mathrm{st}}^{L, \delta}$, leading again to a contradiction.

Subcase (b). Suppose the tacnode or ramphoid cusp is located at p_{1}, that p_{2}, \ldots, p_{k} are cusps, and $p_{k+1}, \ldots, p_{\delta}$ are nodes: one has $1 \leqslant k \leqslant \delta$, and $k=1$ (resp. δ) means that there is no cusp (resp. no node). If C has local equation $x^{2}=y^{4+\varepsilon}$ around p_{1}, then the equisingular ideal $I_{p_{1}}$ at p_{1} is $\left(x, y^{3+\varepsilon}\right)$ (see [8, $\S 3])$. As usual set $I=\prod_{i=1}^{\delta} I_{p_{i}}$ and let \mathcal{I} be the corresponding ideal sheaf.

We have

$$
\begin{equation*}
h^{0}\left(C, N_{C / S}^{\prime}\right)=h^{0}\left(C, N_{C / S} \otimes \mathcal{I}\right) \geqslant \operatorname{dim}(W)=g-2 . \tag{4}
\end{equation*}
$$

Now we can look at $\mathrm{H}^{0}\left(C, N_{C / S}^{\prime}\right)$ as defining a linear series of generalized divisors on the singular curve C (see [13] and [8, §3.4]). Then $N_{C / S}^{\prime}=N_{C / S} \otimes \mathcal{I} \cong \omega_{C}(-E)$ where E is the effective generalized divisor on C defined by the ideal sheaf \mathcal{I} and (4) reads

$$
\begin{equation*}
h^{0}\left(C, \omega_{C}(-E)\right) \geqslant g-2 . \tag{5}
\end{equation*}
$$

The subscheme of C defined by \mathcal{I} has length $3+\varepsilon$ at the tacnode, length 2 at each cusp and length 1 at the nodes, so that

$$
\operatorname{deg}(E)=3+\varepsilon+2(k-1)+\delta-k=\delta+k+1+\varepsilon .
$$

By Riemann-Roch and Serre duality [13, Theorems 1.3 and 1.4], one has
(6) $h^{0}\left(C, \omega_{C}(-E)\right)=h^{1}\left(C, \mathcal{O}_{C}(E)\right)=h^{0}\left(C, \mathcal{O}_{C}(E)\right)-\operatorname{deg}(E)+p-1=h^{0}\left(C, \mathcal{O}_{C}(E)\right)+g-k-2-\varepsilon$.

Next we argue as in the proof of [8, Prop. 4.8]. If $h^{1}\left(C, \mathcal{O}_{C}(E)\right)<2$, then by (5) we have $g \leqslant 3$, which contradicts our assumptions that $3 \delta \leqslant p$ and $\delta>1$. If on the other hand $h^{0}\left(C, \mathcal{O}_{C}(E)\right)<2$, then by (5) and (6) we have

$$
g-2 \leqslant h^{1}\left(C, \mathcal{O}_{C}(E)\right) \leqslant g-k-1-\varepsilon,
$$

hence $\varepsilon=0$ and $k=1$, i.e., the singularities of C are precisely one ordinary tacnode and $\delta-1$ nodes. There is then equality in both (4) and (5), hence once more (3) is surjective and the deformation space of C is locally the product of the versal deformation spaces at $p_{1}, \ldots, p_{\delta}$. By looking at the versal deformation space of a tacnode (see [2, p. 181]) we see that W is contained in $\bar{V}^{L, \delta}$ which should be unibranched along W, a contradiction.

So one has necessarily that $h^{i}\left(C, \mathcal{O}_{C}(E)\right) \geqslant 2$, for $i=1,2$. Then, since Cliff $(C)=\left\lfloor\frac{p-1}{2}\right\rfloor$ by Theorem 10 , one has

$$
p+1-h^{0}\left(C, \mathcal{O}_{C}(E)\right)-h^{1}\left(C, \mathcal{O}_{C}(E)\right)=\operatorname{deg}(E)-2 h^{0}\left(C, \mathcal{O}_{C}(E)\right)+2 \geqslant\left\lfloor\frac{p-1}{2}\right\rfloor
$$

hence

$$
g-2 \leqslant h^{1}\left(C, \mathcal{O}_{C}(E)\right) \leqslant p+1-\left\lfloor\frac{p-1}{2}\right\rfloor-h^{0}\left(C, \mathcal{O}_{C}(E)\right) \leqslant p-1-\left\lfloor\frac{p-1}{2}\right\rfloor=\left\lceil\frac{p-1}{2}\right\rceil .
$$

Plugging in the inequality $3 \delta \leqslant p$, one finds

$$
\begin{equation*}
\frac{2}{3} p-2 \leqslant p-\delta-2=g-2 \leqslant\left\lceil\frac{p-1}{2}\right\rceil \leqslant \frac{p}{2} \tag{7}
\end{equation*}
$$

which implies $p \leqslant 12$, hence $p=11$ or 12 . Case $p=11$ is impossible by (7), since there is no integer between the two extremes in (7). If $p=12$, then (7) implies $g=8$, hence $\delta=4$, which is excluded by assumption. Hence subcase (b) is impossible. This concludes the proof that $p_{g}(C) \neq g-1$.
4.2.3. Case $p_{g}(C)=g$. As in the case $h_{V}=1, C$ is singular only at $\Delta=p_{1}+\ldots+p_{\delta}$, having only nodes and simple cusps, and it must have at least one cusp.

Claim 19. C has at most two cusps.
Proof of the Claim. The proof goes as the one of Claim 18, from which we keep the notation. If C has cusps at p_{1}, \ldots, p_{k}, we have

$$
\begin{equation*}
h^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}-\ldots-p_{k}\right)\right) \geqslant \operatorname{dim}(W)=g-2 . \tag{8}
\end{equation*}
$$

We argue by contradiction and assume $k \geqslant 3$. As in the proof of Claim 18, we see that \tilde{C} is not hyperelliptic: this would imply by Theorem 8 that $g-2=\operatorname{dim}(W) \leqslant 2$, hence $p=6$ and $g=4$; but in this case $\delta=2$ and since $k \leqslant \delta$ we are out of the range $k \geqslant 3$.

The only other possibility is that \tilde{C} is trigonal, $k=3$, and $\operatorname{dim}\left(\left|p_{1}+p_{2}+p_{3}\right|\right)=1$. In this case, one would have $g-2=\operatorname{dim}(W) \leqslant 4$ by Theorem 8 , which together with the inequality $p \geqslant 3 \delta$ implies that $p \leqslant 9$: This is in contradiction with our assumptions. It is thus impossible that $k \geqslant 3$, and the Claim is proved.

By Claim 19, we have only the following two mutually disjoint possibilities:
(a) C has precisely one cusp at p_{1}, and $h^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}\right)\right)=g-1>g-2=\operatorname{dim}(W)$;
(b) C has precisely two cusps at p_{1} and p_{2}, and $h^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}-p_{2}\right)\right)=g-2=\operatorname{dim}(W)$.

Subcase (a). We have $h^{0}\left(C, N_{C / S}^{\prime}\right)=h^{0}\left(\tilde{C}, \omega_{\tilde{C}}\left(-p_{1}\right)\right)=g-1$, hence the map (3) is surjective. This implies as in the case $h_{V}=1$ and $p_{g}=g$ that W is contained in a subvariety W^{\prime} of dimension $g-1$ contained in $\bar{V}^{L, \delta}$, whose general point corresponds to a curve which has $\delta-1$ nodes and one cusp, and, as in the proof of case $h_{V}=1, \bar{V}^{L, \delta}$ is unibranched locally at any point of W^{\prime} corresponding to such a curve for which the map (3) is surjective. This contradicts the fact that W is an irreducible component of $\bar{V} \cap \bar{V}_{\mathrm{st}}^{L, \delta}$.
Subcase (b). In this case W is dense in the equisingular deformation locus of C and again the map (3) is surjective. This again implies that $\bar{V}^{L, \delta}$ is unibranched locally around C, which leads to a contradiction.

This concludes the proof that $h_{V} \neq 2$, hence also the proof of Proposition 17 .

5. Proof of Irreducibility if $p>4 \delta-4$

In this section we conclude the proof of Theorem 1. So let (S, L) be a primitively polarized $K 3$ surface of genus $p \geqslant 11$ such that $\operatorname{Pic}(S)=\mathbf{Z}[L]$, and δ be a non-negative integer such that $4 \delta-3 \leqslant p$.

These assumptions imply that $p \geqslant 3 \delta$, so that the notion of standard component makes sense, and the Severi variety $V^{L, \delta}$ has a unique standard component by Proposition 16 . We assume by contradiction that $V^{L, \delta}$ is not irreducible: this means that there exists a non-standard component V of the Severi variety $V^{L, \delta}$, and we shall see this contradicts the inequality $p>4 \delta-4$.

Let $h=h_{V}$. If $\delta \leqslant 1$, then Theorem 1 is trivial; else we're in the range of application of Proposition 17 (note that the case $(p, \delta)=(12,4)$ is excluded by the hypothesis $p \geqslant 4 \delta-3$), hence $h \geqslant 3$.

Consider a general member $C \in V$, and let $\Delta=\left\{p_{1}, \ldots, p_{\delta}\right\}$ be the set of its nodes. Let $\nu: \tilde{C} \rightarrow C$ be the normalization map, and for all $i=1, \ldots, \delta, p_{i}^{\prime}$ and $p_{i}^{\prime \prime}$ the two antecedents of p_{i} by ν. We consider the divisor $\tilde{\Delta}=\sum_{i=1}^{\delta}\left(p_{i}^{\prime}+p_{i}^{\prime \prime}\right)$ on \tilde{C}.
Lemma 20. The complete linear series $|\tilde{\Delta}|$ is a $g_{2 \delta}^{h}$.
Proof. One has $h^{1}(\tilde{\Delta})=p-3 \delta+h$ by Lemma 12, and then the result follows from the Riemann-Roch formula.

Conclusion of the proof of Theorem 1. We maintain the above setup. We first apply Theorem 9; Let $g=$ $p-\delta$ denote the geometric genus of C, and set

$$
\alpha=\left\lfloor\frac{g h+(2 \delta-h)(h-1)}{2 h(2 \delta-h)}\right\rfloor=\left\lfloor\frac{g}{2(2 \delta-h)}+\frac{h-1}{2 h}\right\rfloor ;
$$

the existence of a $g_{2 \delta}^{h}$ on \tilde{C} implies the inequality

$$
\begin{equation*}
\alpha h g+\alpha h(\alpha h+1) \leqslant \delta\left(2 \alpha^{2} h+2 \alpha+1\right) \tag{9}
\end{equation*}
$$

Let us also apply Theorem 8 . The existence of a $g_{2 \delta}^{h}$ on \tilde{C} induces the existence of a family of dimension $2(h-1)$ of $g_{2 \delta}^{1}$'s on \tilde{C}, parametrizing the lines in the $g_{2 \delta}^{h}$, so it holds that

$$
\operatorname{dim}(V)+\operatorname{dim}\left(G_{2 \delta}^{1}(\tilde{C})\right) \geqslant g+2(h-1)
$$

which implies by Theorem 8 that

$$
\begin{equation*}
g \leqslant 2(2 \delta-h) \tag{10}
\end{equation*}
$$

Inequality 10 implies that

$$
\alpha=\left\lfloor\frac{g}{2(2 \delta-h)}+\frac{h-1}{2 h}\right\rfloor \leqslant\left\lfloor 1+\frac{1}{2}\right\rfloor=1 .
$$

Let us now show by contradiction that $\alpha=1$. If $\alpha \leqslant 0$, then

$$
\frac{g h+(2 \delta-h)(h-1)}{2 h(2 \delta-h)}<1 \Longleftrightarrow g<(2 \delta-h)\left(1+\frac{1}{h}\right) \Longleftrightarrow p<\delta\left(3+\frac{2}{h}\right)-h-1 ;
$$

plugging in the inequality $h \geqslant 3$, we get that $\alpha \leqslant 0$ implies $p<\frac{11}{3} \delta-4$, in contradiction with our assumption that $p>4 \delta-4$. Hence $\alpha=1$.

Therefore, (9) gives the inequalities

$$
h g+h(h+1) \leqslant \delta(2 h+3) \Longleftrightarrow p \leqslant \delta\left(3+\frac{3}{h}\right)-h-1 .
$$

Taking into account the fact that $h \geqslant 3$, this implies that $p \leqslant 4 \delta-4$. In conclusion, the existence of a non-standard component of $V^{L, \delta}$ is in contradiction with the inequality $p>4 \delta-4$.

References

[1] E. Ballico, C. Fontanari, L. Tasin, Singular curves on K3 surfaces, Sarajevo J. Math. 6 (19), no. 2, (2010), $165-168$.
[2] L. Caporaso, J. Harris, Parameter spaces for curves on surfaces and enumeration of rational curves, Compositio Mathematica 113, (1998), 155-208.
[3] X. Chen, Rational curves on K3 surfaces, J. Alg. Geom. 8 (2), (1999), 245-278.
[4] X. Chen, Nodal curves on K3 surfaces, prepublication, arXiv:1611.07423.
[5] L. Chiantini, C. Cliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 354 (1) (2001), 151-178.
[6] C. Ciliberto, Th. Dedieu, On universal Severi varieties of low genus K3 surfaces, Math. Z. 271 (2012), 953-960.
[7] C. Ciliberto, A. L. Knutsen, On k-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds, J. Math. Pures Appl. 101 (2014), 473-494.
[8] Th. Dedieu, E. Sernesi, Equigeneric and equisingular families of curves on surfaces, Publ. Mat. 61 (2017), 175-212.
[9] J. Fogarty, Algebraic Families on an Algebraic Surface, Amer. J. of Math. 90 (2) (1968), 511-521.
[10] T. Gomez, Brill-Noether theory on singular curves and torsion-free sheaves on surfaces, Comm. Anal. Geom. 9 (2001), no. 4, 725-756.
[11] M. Green, R. Lazarsfeld, Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357-370.
[12] J. Harris, I. Morrison, Moduli of curves, Graduate Texts in Mathematics, Springer Verlag, 1998.
[13] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), 375-386.
[14] T. Keilen, Irreducibility of equisingular families of curves, Trans. Amer. Math. Soc. 355 (9) (2003), 3485-3512.
[15] M. Kemeny, The Universal Severi Variety of Rational Curves on K3 Surfaces, Bull. Lond. Math. Soc. 45 (1) (2013), 159-174.
[16] A. L. Knutsen, On kth-order embeddings of K3 surfaces and Enriques surfaces, Manuscripta Math. 104 (2001), $211-237$.
[17] A. L. Knutsen, M. Lelli-Chiesa, G. Mongardi, Severi varieties and Brill-Noether theory of curves on abelian surfaces, J. reine angew. Math., Ahead of Print DOI 10.1515 / crelle-2016-0029
[18] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Differential Geometry 23 (1986), 299-307.
[19] E. Sernesi, Deformation of algebraic schemes, Grundlehren der math. Wissensc., 334, Springer Verlag, 2006.

Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy

E-mail address: cilibert@mat.uniroma2.it
Institut de Mathématiques de Toulouse ; UMR5219. Université de Toulouse ; CNRS. UPS IMT, F-31062 Toulouse Cedex 9, France.

E-mail address: thomas.dedieu@math.univ-toulouse.fr

[^1]
[^0]: ${ }^{1}$ Actually, the assumption in [8, Proposition 4.8] is that (S, L) be very general; it is straightforward to check that the condition $\operatorname{Pic}(S)=L$ is indeed sufficient for the proof in [8].
 $2_{\text {in }}$ the sense that for all \mathfrak{d}^{\prime} of cardinality δ, the sheets $\mathcal{V}_{\mathfrak{d}}$ and $\mathcal{V}_{\mathfrak{d}^{\prime}}$ intersect exactly along the local sheet $V_{\mathfrak{d} \cup \mathfrak{d}^{\prime}}$ of $\bar{V}^{L,\left|\mathfrak{d} \cup \mathfrak{d}^{\prime}\right|}$ at C, and their respective tangent spaces at C intersect exactly along the tangent space of $V_{\mathfrak{d} \cup \mathfrak{o}^{\prime}}$ at C.

[^1]: The authors were members of project FOSICAV, which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 652782. The first author has been supported by the Italian MIUR Project PRIN 2010-2011 "Geometria delle varietà algebriche" and by GNSAGA of INdAM; he also acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

