
ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES

C. CILIBERTO AND TH. DEDIEU

Abstract. Let (S,L) be a polarizedK3 surface of genus p > 11 such that Pic(S) = Z[L], and δ a non-negative
integer. We prove that if p > 4δ − 3, then the Severi variety of δ-nodal curves in |L| is irreducible.

1. Introduction

Given a polarized surface (S,L) and an integer δ > 0, the Severi variety V L,δ is the parameter space for
irreducible, δ-nodal curves in the linear system |L| (see § 2.1). This text is dedicated to the proof of the
following result:

Theorem 1. Let (S,L) be a primitively polarized K3 surface of genus p > 11 such that Pic(S) = Z[L], and
δ a non-negative integer such that 4δ − 3 6 p. The Severi variety V L,δ is irreducible.

It had already been proven by Keilen [14] that in the situation of Theorem 1, for all integer k > 1 the
Severi variety V kL,δ is irreducible if

δ <
6(2p− 2) + 8(

11(2p− 2) + 12
)2 · k2 · (2p− 2)2

(
∼p→∞

12
121 · k

2 · p
)
,

and later by Kemeny [15] that the same holds if δ 6 1
6
(
2 + k(p − 1)

)
. Our result is valid only in the case

k = 1, i.e., for curves in the primitive class, but in this case our condition is better. In a slightly different
direction, we have proven some time ago in [6] that the universal families of the V L,δ’s are irreducible for
all δ (δ = p included) if 3 6 p 6 11 and p 6= 10.

Kemeny’s result is based on the observation that for any smooth polarized surface (S,L), the Severi
variety V L,δ is somehow trivially irreducible if L is (3δ − 1)-very ample: Indeed, in this case the curves in
|L| with nodes at p1, . . . , pδ form a dense subset of a projective space of constant dimension for any set of
pairwise distinct points p1, . . . , pδ. Kemeny then applies a numerical criterion for n-very ampleness on K3
surfaces due to Knutsen [16].

The central idea of the present article is close in spirit to Kemeny’s observation, to the effect that provided
dim |L| > 3δ, the curves in |L| with nodes at p1, . . . , pδ should form in nice circumstances a dense subset of
a projective space of constant dimension for a general choice of δ pairwise disjoint points. It is indeed so for
curves in the primitive class of a K3 surface, thanks to a result of Chiantini and the first-named author, see
Proposition 14. One thus gets a distinguished irreducible component of the Severi variety V L,δ which we
call its standard component. For any other irreducible component V , the nodes of the members of V sweep
out a locus of positive codimension hV in the Hilbert scheme S[δ], see Section 3; we call hV the excess of V .

Our applications then rely on the observation that, in the K3 situation of Theorem 1, for all C ∈ V the
preimage of the nodes defines a linear series of type gh2δ on the normalisation of C (see Lemma 20), together
with some recent results in [7] and [17] (Theorems 9 and 8 respectively) which give some control on the
families of linear series that may exist on the normalisations of primitive curves on K3 surfaces. The latter
results hold only for curves in the primitive class, and this is the main obstruction to carry out our approach
in the non-primitive situation.

One may for instance give a two-lines proof of irreducibility in the range p > 5δ − 3, as follows. Assume
by contradiction that there is a non-standard irreducible component V of the Severi variety V L,δ. Then for
all C ∈ V the normalisation of C has a g1

2δ. By [17] this implies dim(V ) = p−δ 6 4δ−2, which is impossible
in the range under consideration.
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2 C. CILIBERTO AND TH. DEDIEU

We obtain the better bound in Theorem 1 by proving the estimate hV > 2 for all non-standard components
of V L,δ. This is done in Section 4 by a careful study of the singularities of curves in the intersection of
the standard component with a hypothetical non-standard component, which we are again able to control
thanks to Brill–Noether theoretic results for singular curves on K3 surfaces.

This work originates from the Oberwolfach Mini-Workshop: Singular Curves on K3 Surfaces and Hyper-
kähler Manifolds. We thank all the participants for the friendly atmosphere and stimulating discussions.

2. Preliminaries

2.1. Severi varieties. We work over C throughout the text. We denote by Kp the irreducible, 19-
dimensional stack of primitively polarized K3 surfaces (S,L) of genus p > 2, i.e., S is a compact, complex
surface with h1(S,OS) = 0 and ωS ∼= OS , and L a big and nef, primitive line bundle on S with L2 = 2p− 2,
hence dim(|L|) = p. The arithmetic genus of the curves C ∈ |L| is pa(C) = p.

In this paper we will often assume that Pic(S) = Z[L], which is the case if (S,L) ∈ Kp is very general, so
that L is globally generated and ample, and very ample if p > 3.

For any non-negative integer g 6 p, we consider the locally closed subset V L
g of |L| consisting of curves

C ∈ |L| of geometric genus pg(C) = g, i.e., curves C whose normalization has genus g (see [8, § 1.2]). We
will set δ = p− g, which is usually called the δ-invariant of the curve.

Proposition 2 (see [8, Proposition 4.5]). Every irreducible component of V L
g has dimension g.

For every non-negative integer δ 6 p, we will denote by V L,δ the Severi variety, i.e., the locally closed
subset of |L| consisting of curves with δ nodes and no other singularities, whose geometric genus is g = p−δ.
The following is classical:

Proposition 3 (see [8, §3–4]). The Severi variety V L,δ, if not empty, is smooth and pure of dimension g.
More precisely, if C ∈ V L,δ, and ∆ is the set of nodes of C, then the projective tangent space to V L,δ at C
in |L| is the g-dimensional linear system |L(−∆)| := P(H0(S,L⊗ I∆,S)) of curves in |L| containing ∆.

It is indeed true that the Severi varieties of a general primitively polarized K3 surface are non-empty.

Proposition 4 (see [3]). If (S,L) ∈ Kp is general, then V L,δ is not empty for every non-negative integer
δ 6 p.

By Propositions 2 and 3, each irreducible component of V L,δ is dense in a component of V L
g . Xi Chen

[4] has shown that moreover if g > 0, then V L,δ is dense in V L
g for general (S,L) ∈ Kp. We shall need the

following weaker result, in which however the generality assumption is explicit.1

Proposition 5 ([8, Proposition 4.8]). Let (S,L) ∈ Kp be such that Pic(S) = Z[L]. If 2δ < p, then V L,δ is
dense in V L

g .

2.2. Local structure of Severi varieties. The following is a restatement of the well-known fact that the
nodes of a nodal curve on aK3 surface may be smoothed independently. It is a consequence of Proposition 3.

Proposition 6. Let (S,L) ∈ Kp, δ < ε be two non-negative integers, and V be an irreducible component of
V L,ε. Consider a curve C ∈ V , and let {p1, . . . , pε} be the set of its nodes. Then:
(i) the Zariski closure V L,δ of V L,δ contains V ;
(ii) locally around C, V L,δ consists of

(ε
δ

)
analytic sheets Vd, which are in 1 : 1 correspondence with the

subsets d ⊂ {p1, . . . , pε} of order δ, and such that when the general point C ′ of Vd specializes at C, the set
of δ nodes of C ′ specializes at d;
(iii) for each such d, the sheet Vd is smooth at C of dimension p−δ, relatively transverse to all other similar
sheets.2

1Actually, the assumption in [8, Proposition 4.8] is that (S,L) be very general; it is straightforward to check that the condition
Pic(S) = L is indeed sufficient for the proof in [8].

2in the sense that for all d′ of cardinality δ, the sheets Vd and Vd′ intersect exactly along the local sheet Vd∪d′ of V L,|d∪d′| at
C, and their respective tangent spaces at C intersect exactly along the tangent space of Vd∪d′ at C.
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As an immediate consequence, we have:

Corollary 7. Let (S,L) ∈ Kp and let V , V ′ be irreducible components of V L,δ and V L,δ′, with δ 6 δ′. If V ′
intersects the Zariski closure V of V , then V ′ ⊂ V .

2.3. Brill–Noether theory of curves on K3 surfaces. We will use the following results.

Theorem 8 ([17, Theorem 5.3 and Remark 5.6]). Let (S,L) be such that Pic(S) = Z[L], and V ⊂ V L
g a

non-empty reduced scheme. Let k be a positive integer. Assume that for all C ∈ V , there exists a g1
k on the

normalisation C̃ of C. Then one has
dim(V ) + dim

(
G1
k(C̃)

)
6 2k − 2

for general C ∈ V .

Theorem 9 ([7, Theorem 3.1]). Let (S,L) ∈ Kp be such that Pic(S) = Z[L], and C ∈ V L
g ; let δ = p − g.

Let r, d be nonnegative integers. If there exists a grd on the normalization of C, then

δ > α
(
rg − (d− r)(αr + 1)

)
, where α =

⌊
gr + (d− r)(r − 1)

2r(d− r)

⌋
.

Theorem 10 ([18, 11, 1, 10]). Let (S,L) ∈ Kp be such that Pic(S) = Z[L], and C ∈ |L|.The Clifford index
of C, computed with sections of rank one torsion free sheaves on C (see [8, p. 202] or [1]), equals bp−1

2 c.

3. Standard components

3.1. The nodal map. Let (S,L) ∈ Kp. For any positive integer n, we denote by S[n] the Hilbert scheme
of 0-dimensional subschemes of S of length n. Recall that S[n] is smooth of dimension 2n (see [9]).

Consider the morphism
ϕL,δ : V L,δ −→ S[δ],

called the nodal map, which maps a curve C ∈ V L,δ to the scheme ∆ of its nodes, indeed 0-dimensional of
length δ. We set ΦL,δ := Im(ϕL,δ). If V is an irreducible component of V L,δ, we set

ϕV := ϕL,δ|V and ΦV := Im(ϕV ).

Let ∆ be a general point in ΦV . Then ϕ−1
V (∆) is an open subset of the linear system |L(−2∆)| := P(H0(S,L⊗

I2
∆,S)) of curves in |L| singular at ∆. We set

dim(|L(−2∆)|) = p− 3δ + hV ,

which defines the non-negative integer hV , called the excess of V . By Proposition 3, one has
(1) dim(ΦV ) = 2δ − hV .
The following is immediate:

Lemma 11. Let (S,L) ∈ Kp, and let V1, V2 be two distinct irreducible components of V L,δ. Then ΦV1 and
ΦV2 have distinct Zariski closures in S[δ].

3.2. A useful lemma. Let C ∈ |L| be a reduced curve, and consider the conductor ideal A ⊂ OC of
the normalization ν : C̃ → C. There exists a divisor ∆̃ on C̃ such that A = ν∗OC̃(−∆̃), and one has
ωC̃ = ν∗ωC⊗OC̃(−∆̃). It is a classical result that ν∗|L⊗A| = |ωC̃ |, see [8, Lemma 3.1]. The same argument
proves that ν∗|L⊗A⊗2| = |ωC̃(−∆̃)|.

Consider the particular case when C has ordinary cusps p1, . . . , pk and nodes pk+1, . . . , pδ as its only
singularities. Denote by p1, . . . , pk ∈ C̃ the respective preimages of p1, . . . , pk ∈ C by the normalisation ν,
abusing notations, and by p′i and p′′i the two preimages of pi for i = k + 1, . . . , δ. Then A is the product of
the maximal ideals of p1, . . . , pδ, i.e., A = I∆,S ⊗OC with ∆ = {p1, . . . , pδ}, and

∆̃ = 2
∑k

i=1
pi +

∑δ

i=k+1
(p′i + p′′i ).

The previous identity ν∗|L⊗A⊗2| = |ωC̃(−∆̃)| readily implies the following.
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Lemma 12. Let j be the closed immersion C ↪→ S. One has
(j ◦ ν)∗

(
|L(−2∆)|

)
= |ωC̃(−∆̃)|,

and therefore dim
(
|L(−2∆)|

)
= h0(ωC̃(−∆̃)

)
.

3.3. Standard components. Let V be an irreducible component of V L,δ. We call V standard if hV = 0.
If V is standard and ∆ ∈ ΦV is general, then

0 6 dim(ϕ−1
V (∆)) = dim(|L(−2∆)|) = p− 3δ,

hence p > 3δ. Moreover if V is standard, then dim(ΦV ) = 2δ, hence ΦV is dense in S[δ]. We will prove in
Proposition 16 below that if p > 3δ and if Pic(S) = Z[L], then there is a unique standard component of
V L,δ. To do this, we need to recall some basic fact from [5].

Let Y ⊂ PN be an irreducible, n-dimensional, non-degenerate, projective variety. Let H be the linear
system cut out on Y by the hyperplanes of PN , i.e.,

H = P(Im(r)) where r : H0(PN ,OPN (1))→ H0(Y,OY ⊗OPN (1))
is the restriction map. Let k be a non-negative integer. The variety Y is said to be k-weakly defective if
given p0, . . . , pk ∈ Y general points, the general element of H(−2p0 − . . .− 2pk) has a positive dimensional
singular locus, where H(−2p0 − . . .− 2pk) denotes the linear system of divisors in H singular at p0, . . . , pk.

Proposition 13 ([5, Theorem 1.4]). Let Y ⊂ PN be an irreducible, n-dimensional, non-degenerate, projec-
tive variety. Let k be a non-negative integer such that N > (n + 1)(k + 1). If Y is not k-weakly defective,
then given p0, ..., pk general points on Y , one has:
(i) dim(H(−2p0 − ...− 2pk)) = N − (n+ 1)(k + 1);
(ii) the general divisor H ∈ H(−2p0 − ... − 2pk) has ordinary double points at p0, ..., pk, i.e., double points
with tangent cone of maximal rank n, and no other singularity.

In [5, Theorem 1.3] one finds the classification of k-weakly defective surfaces. After an inspection which
we leave to the reader, one sees that:

Proposition 14. Let (S,L) ∈ Kp be such that Pic(S) = Z[L], and assume p > 3. Consider S embedded in
Pp via the morphism determined by |L|. Then S is not k-weakly defective for any non-negative integer k.

We can therefore apply Proposition 13 and conclude that:

Proposition 15. Maintain the assumptions of Proposition 14, and let δ be a non-negative integer such that
3δ 6 p. Then given ∆ ∈ S[δ] general, one has dim(|L(−2∆)|) = p − 3δ and the general curve in |L(−2∆)|
has nodes at ∆ and no other singularities.

As a consequence we have:

Proposition 16. Under the assumptions of Proposition 15, there is a unique standard component V L,δ
st of

V L,δ, which is the unique irreducible component V of V L,δ such that ϕV : V → S[δ] is dominant.

Proof. Proposition 15 implies that there is a standard component V of V L,δ such that ϕV : V → S[δ] is
dominant. By Lemma 11, it is the unique standard component. �

4. A lower bound on the excess

This section is entirely devoted to the proof of the following:

Proposition 17. Let p > 11 and δ > 1, (p, δ) 6= (12, 4), be integers such that 3δ 6 p. We consider
(S,L) ∈ Kp such that Pic(S) = Z[L]. For all non-standard component V of V L,δ, one has hV > 3.

Let V be a non-standard component of V L,δ as above. One has hV > 0 by definition, and we shall proceed
by contradiction to show that hV may neither equal 1 nor 2.
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4.1. Proof that hV 6= 1. In the setup of Proposition 17, we assume by contradiction that hV = 1. Then
the closure of ΦV is an irreducible divisor in S[δ]. Let ∆ ∈ ΦV be a general point. It can be seen as the limit
of a general 1-dimensional family {∆t}t∈D, where D is a complex disk, and ∆t is general in S[δ] for t 6= 0.
In particular, we may assume dim(ϕ−1

L,δ(∆t)) = p− 3δ for t ∈ D− {0}. We define the limit L∆ of ϕ−1
L,δ(∆t)

as t→ 0 as the fibre over 0 ∈ D of the closure of
⋃
t6=0
(
ϕ−1
L,δ(∆t)

)
inside |L| ×D. Then:

(i) L∆ is a (p− 3δ)-dimensional sublinear system of |L(−2∆)|;
(ii) L∆ is contained in V ∩ V L,δ

st ;
(iii) since V L,δ is smooth, by (ii) the general curve in L∆ does not belong to V L,δ, i.e., it has singularities
worse than only nodes at the points of ∆;
(iv) as ∆ moves in a suitable dense open subset U of ΦV , the union

⋃
∆∈U L∆ describes a locally closed

subset of dimension
dim(ΦV ) + (p− 3δ) = (2δ − 1) + (p− 3δ) = g − 1,

which is dense in an irreducible component W of V ∩ V L,δ
st , where g = p− δ as usual.

Let C be the general curve in W , which belongs to L∆ for some general ∆ ∈ ΦV . By (i) and (iii) above,
C is singular at ∆ but it is not δ-nodal. By Proposition 2 one has pg(C) > g − 1, hence g − 1 6 pg(C) 6 g.
We will show that each of these two possible values leads to a contradiction, thus proving that hV 6= 1.

4.1.1. Case pg(C) = g − 1. Since dim(W ) = g − 1, it follows from Proposition 5 that W is dense in the
closure of a component of V L,δ+1, i.e., C is a (δ + 1)-nodal curve, with only one extra node pδ+1 6∈ ∆. By
Proposition 6, locally around C there is only one smooth branch V of V L,δ containing W and such that
when the general point of C̃ of V specializes at C, then set of δ nodes of C̃ specializes at ∆. This is a
contradiction, because both V and V L,δ

st contain W . Therefore, it is impossible that pg(C) = g − 1.

4.1.2. Case pg(C) = g. Since C is singular at ∆ = p1 + . . .+pδ, it is singular only there, and has only nodes
and (simple) cusps (with local equation x2 = y3); it must have at least one cusp by (iii).

Claim 18. C has only one cusp.

Proof of the Claim. Suppose that C has cusps at p1, . . . , pk and nodes at pk+1, . . . , pδ, with k > 1. The
tangent space to the equisingular deformations of C in S is H0(C,L ⊗ I ⊗ OC), where I is the ideal sheaf
associated to the equisingular ideal (see [8, § 3]) I =

∏δ
i=1 Ipi , where:

• Ipi = (x, y2), if the local equation of C around pi is x2 = y3, for i = 1, . . . , k;
• Ipi is the maximal ideal at pi, for i = k + 1, . . . , δ.

Let ν : C̃ → C be the normalization. We abuse notation and denote by p1, . . . , pk their counterimages by
ν, whereas we denote by p′i and p′′i the two points of C̃ in the preimage of pi by ν, for i = k + 1, . . . , δ. By
pulling back by ν the sections of H0(C,L⊗ I ⊗OC) and dividing by sections vanishing at the fixed divisor
2
∑k
i=1 pi +

∑δ
i=k+1(p′i + p′′i ) (see [8, §3.3]), we find an isomorphism

ν∗ : H0(C,L⊗ I ⊗OC) ∼= H0(C̃, ωC̃(−p1 − . . .− pk)),
hence
(2) h0(C̃, ωC̃(−p1 − . . .− pk)) = h0(C,L⊗ I ⊗OC) > dim(W ) = g − 1.

This implies that the points p1, . . . , pk are all identified by the canonical map of C̃, which is possible only if
either k = 1, or k = 2 and dim(|p1 + p2|) = 1. We now prove that C̃ may not be hyperelliptic, hence the
latter case does not occur.

By Theorem 8, if C̃ is hyperelliptic then dim(W ) = g − 1 6 2. This contradicts our assumptions that
3δ 6 p and p > 11: indeed, as g = p− δ they imply that g > 3. Hence the only possibility left is that k = 1,
which proves the claim. �

Note moreover that since k = 1, equality holds in (2).
Let NC/S

∼= L|C be the normal bundle of C in S. We have the exact sequence

0→ N ′C/S → NC/S → T 1
C
∼= O2

p1 ⊕
⊕δ
i=2Opi → 0
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where N ′C/S is the equisingular normal sheaf of C in S, and one has N ′C/S ∼= NC/S ⊗ I. So H0(C,N ′C/S) =
H0(C,L⊗ I ⊗OC) is the tangent space to the equisingular deformations of C in S.

We have h0(C,NC/S) = p and, as we saw, h0(C,N ′C/S) = g − 1 = p− δ − 1. Thus the map

(3) H0(C,NC/S)→ T 1
C

is surjective, and H1(C,N ′C/S) ∼= H1(C,NC/S) ∼= C. Moreover the obstruction space to deformations of C
in S, contained in H1(C,NC/S), is zero as is well-known (see, e.g., [8, § 4.2]). This implies that, locally
around C, V L,δ is the product of the equigeneric deformation spaces inside the versal deformation spaces
of the singularities of C. By looking at the versal deformation space of a cusp (see, e.g., [12, p. 98]), we
deduce that V L,δ has a double point at C with a single cuspidal sheet. This is a contradiction, because we
assumed that both V and V L,δ

st contain C. This contradiction proves that pg(C) = g cannot occur.
In conclusion we have proved that if hV = 1 then pg(C) equals either g−1 or g, but both these possibilities

lead to contradictions, hence hV 6= 1.

4.2. Proof that hV 6= 2. Still in the setup of Proposition 17, we now assume by contradiction that hV = 2.
Then dim(ΦV ) = 2δ − 2. Let ∆ ∈ ΦV be a general point. Again ∆ can be seen as the limit of general 1-
dimensional families {∆t}t∈D, where D is a disk, and ∆t is general in S[δ] for t 6= 0. We consider the closure
L∆ of the union of all (p − 3δ)-dimensional sublinear systems limt→0

(
ϕ−1
L,δ(∆t)

)
⊂ |L(−2∆)| as {∆t}t∈D

varies among all families as above. Similarly to the case hV = 1, we have:
(i) L∆ is contained in V ∩ V L,δ

st and dim(L∆) = p− 3δ + ε, with 0 6 ε 6 1 ;
(ii) the general curve in L∆ is singular at ∆ but has singularities worse than only nodes at the points of ∆;
(iii) as ∆ moves in a suitable dense open subset U of ΦV , the union

⋃
∆∈U L∆ describes a locally closed

subset of dimension
dim(ΦV ) + dim(L∆) = g − 2 + ε,

which is dense in an irreducible component W of V ∩ V L,δ
st .

If ε = 1, then dim(W ) = g − 1 and the discussion goes as in the case hV = 1. So we assume ε = 0, hence
dim(W ) = g − 2. Let C be the general curve in W . By Proposition 2, we have g − 2 6 pg(C) 6 g. We will
prove that this cannot happen, thus proving that hV 6= 2. The proof parallels the one for hV 6= 1.

4.2.1. Case pg(C) = g−2. By Proposition 5, C is a (δ+2)-nodal curve, with two extra nodes pδ+1, pδ+2 6∈ ∆
and W is dense in the closure of a component of V L,δ+2. By Proposition 6, locally around C there is only
one smooth branch V of V L,δ containing W and such that when the general point of C ′ of V specializes at
C, then set of δ nodes of C ′ specializes at ∆. This is a contradiction, because both V and V L,δ

st contain W .
Hence pg(C) = g − 2 cannot happen.

4.2.2. Case pg(C) = g − 1. In this case we have the two following disjoint possibilities for C:
(a) C has precisely one more singularity p0 besides the ones in ∆;
(b) C has no singularities besides the ones in ∆, either an ordinary tacnode or a ramphoid cusp (with local
equation x2 = y4+ε, ε = 0 or 1 respectively) at one of the points of ∆, and nodes or ordinary cusps at the
other points of ∆.
Subcase (a). The points p0, . . . , pδ are either nodes or cusps. Arguing as for Claim 18, we see that at most
one of these points can be a cusp.

If C is (δ + 1)-nodal, then W sits in an irreducible component of V L,δ+1, and we get a contradiction as
in the proof of case pg(C) = g − 1 for hV = 1.

If C is δ-nodal and 1-cuspidal, then again the map (3) is surjective and the deformation space of C is locally
the product of the versal deformation spaces at p0, . . . , pδ. We then have the two following possibilities.

If p0 is a node, thenW sits in a (g−1)-dimensional irreducible varietyW ′ parametrizing curves which are
(δ− 1)-nodal and 1-cuspidal, such that when the general member of W ′ tends to C, its singularities tend to
∆. Moreover the map (3) is surjective for the general member of W ′. Then W ′ should be contained in both
V and V L,δ

st . On the other hand, as usual by now, V L,δ should be unibranched along W ′, a contradiction.
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If p0 is the cusp, then W sits in a (g − 1)-dimensional irreducible component W ′ of V L,δ+1, such that
when the general member of W ′ tends to C, its singularities tend to p0, . . . , pδ. By Corollary 7, W ′ should
be contained in both V and V L,δ

st , leading again to a contradiction.

Subcase (b). Suppose the tacnode or ramphoid cusp is located at p1, that p2, . . . , pk are cusps, and
pk+1, . . . , pδ are nodes: one has 1 6 k 6 δ, and k = 1 (resp. δ) means that there is no cusp (resp. no
node). If C has local equation x2 = y4+ε around p1, then the equisingular ideal Ip1 at p1 is (x, y3+ε) (see [8,
§3]). As usual set I =

∏δ
i=1 Ipi and let I be the corresponding ideal sheaf.

We have
(4) h0(C,N ′C/S) = h0(C,NC/S ⊗ I) > dim(W ) = g − 2.

Now we can look at H0(C,N ′C/S) as defining a linear series of generalized divisors on the singular curve C
(see [13] and [8, §3.4]). Then N ′C/S = NC/S ⊗ I ∼= ωC(−E) where E is the effective generalized divisor on
C defined by the ideal sheaf I and (4) reads
(5) h0(C,ωC(−E)) > g − 2.
The subscheme of C defined by I has length 3 + ε at the tacnode, length 2 at each cusp and length 1 at the
nodes, so that

deg(E) = 3 + ε+ 2(k − 1) + δ − k = δ + k + 1 + ε.

By Riemann–Roch and Serre duality [13, Theorems 1.3 and 1.4], one has
(6) h0(C,ωC(−E)) = h1(C,OC(E)) = h0(C,OC(E))− deg(E) + p− 1 = h0(C,OC(E)) + g − k − 2− ε.
Next we argue as in the proof of [8, Prop. 4.8]. If h1(C,OC(E)) < 2, then by (5) we have g 6 3, which
contradicts our assumptions that 3δ 6 p and δ > 1. If on the other hand h0(C,OC(E)) < 2, then by (5)
and (6) we have

g − 2 6 h1(C,OC(E)) 6 g − k − 1− ε,
hence ε = 0 and k = 1, i.e., the singularities of C are precisely one ordinary tacnode and δ − 1 nodes.
There is then equality in both (4) and (5), hence once more (3) is surjective and the deformation space of
C is locally the product of the versal deformation spaces at p1, . . . , pδ. By looking at the versal deformation
space of a tacnode (see [2, p. 181]) we see that W is contained in V L,δ which should be unibranched along
W , a contradiction.

So one has necessarily that hi(C,OC(E)) > 2, for i = 1, 2. Then, since Cliff(C) = bp−1
2 c by Theorem 10,

one has
p+ 1− h0(C,OC(E))− h1(C,OC(E)) = deg(E)− 2h0(C,OC(E)) + 2 > bp−1

2 c
hence

g − 2 6 h1(C,OC(E)) 6 p+ 1− bp−1
2 c − h

0(C,OC(E)) 6 p− 1− bp−1
2 c = dp−1

2 e.
Plugging in the inequality 3δ 6 p, one finds

(7) 2
3p− 2 6 p− δ − 2 = g − 2 6 dp− 1

2 e 6 p

2
which implies p 6 12, hence p = 11 or 12. Case p = 11 is impossible by (7), since there is no integer between
the two extremes in (7). If p = 12, then (7) implies g = 8, hence δ = 4, which is excluded by assumption.
Hence subcase (b) is impossible. This concludes the proof that pg(C) 6= g − 1.
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4.2.3. Case pg(C) = g. As in the case hV = 1, C is singular only at ∆ = p1 + . . . + pδ, having only nodes
and simple cusps, and it must have at least one cusp.

Claim 19. C has at most two cusps.

Proof of the Claim. The proof goes as the one of Claim 18, from which we keep the notation. If C has cusps
at p1, . . . , pk, we have
(8) h0(C̃, ωC̃(−p1 − . . .− pk)) > dim(W ) = g − 2.

We argue by contradiction and assume k > 3. As in the proof of Claim 18, we see that C̃ is not
hyperelliptic: this would imply by Theorem 8 that g − 2 = dim(W ) 6 2, hence p = 6 and g = 4; but in this
case δ = 2 and since k 6 δ we are out of the range k > 3.

The only other possibility is that C̃ is trigonal, k = 3, and dim(|p1 +p2 +p3|) = 1. In this case, one would
have g−2 = dim(W ) 6 4 by Theorem 8, which together with the inequality p > 3δ implies that p 6 9: This
is in contradiction with our assumptions. It is thus impossible that k > 3, and the Claim is proved. �

By Claim 19, we have only the following two mutually disjoint possibilities:
(a) C has precisely one cusp at p1, and h0(C̃, ωC̃(−p1)) = g − 1 > g − 2 = dim(W );
(b) C has precisely two cusps at p1 and p2, and h0(C̃, ωC̃(−p1 − p2)) = g − 2 = dim(W ).

Subcase (a). We have h0(C,N ′C/S) = h0(C̃, ωC̃(−p1)) = g − 1, hence the map (3) is surjective. This implies
as in the case hV = 1 and pg = g that W is contained in a subvariety W ′ of dimension g − 1 contained in
V L,δ, whose general point corresponds to a curve which has δ − 1 nodes and one cusp, and, as in the proof
of case hV = 1, V L,δ is unibranched locally at any point of W ′ corresponding to such a curve for which the
map (3) is surjective. This contradicts the fact that W is an irreducible component of V ∩ V L,δ

st .
Subcase (b). In this case W is dense in the equisingular deformation locus of C and again the map (3) is
surjective. This again implies that V L,δ is unibranched locally around C, which leads to a contradiction.

This concludes the proof that hV 6= 2, hence also the proof of Proposition 17.

5. Proof of Irreducibility if p > 4δ − 4

In this section we conclude the proof of Theorem 1. So let (S,L) be a primitively polarized K3 surface
of genus p > 11 such that Pic(S) = Z[L], and δ be a non-negative integer such that 4δ − 3 6 p.

These assumptions imply that p > 3δ, so that the notion of standard component makes sense, and the
Severi variety V L,δ has a unique standard component by Proposition 16. We assume by contradiction that
V L,δ is not irreducible: this means that there exists a non-standard component V of the Severi variety V L,δ,
and we shall see this contradicts the inequality p > 4δ − 4.

Let h = hV . If δ 6 1, then Theorem 1 is trivial; else we’re in the range of application of Proposition 17
(note that the case (p, δ) = (12, 4) is excluded by the hypothesis p > 4δ − 3), hence h > 3.

Consider a general member C ∈ V , and let ∆ = {p1, . . . , pδ} be the set of its nodes. Let ν : C̃ → C be
the normalization map, and for all i = 1, . . . , δ, p′i and p′′i the two antecedents of pi by ν. We consider the
divisor ∆̃ =

∑δ
i=1(p′i + p′′i ) on C̃.

Lemma 20. The complete linear series |∆̃| is a gh2δ.

Proof. One has h1(∆̃) = p − 3δ + h by Lemma 12, and then the result follows from the Riemann–Roch
formula. �

Conclusion of the proof of Theorem 1. We maintain the above setup. We first apply Theorem 9: Let g =
p− δ denote the geometric genus of C, and set

α =
⌊
gh+ (2δ − h)(h− 1)

2h(2δ − h)

⌋
=
⌊

g

2(2δ − h) + h− 1
2h

⌋
;
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the existence of a gh2δ on C̃ implies the inequality
αhg + αh(αh+ 1) 6 δ(2α2h+ 2α+ 1).(9)

Let us also apply Theorem 8: The existence of a gh2δ on C̃ induces the existence of a family of dimension
2(h− 1) of g1

2δ’s on C̃, parametrizing the lines in the gh2δ, so it holds that
dim(V ) + dim

(
G1

2δ(C̃)
)
> g + 2(h− 1),

which implies by Theorem 8 that
g 6 2(2δ − h).(10)

Inequality (10) implies that

α =
⌊

g

2(2δ − h) + h− 1
2h

⌋
6
⌊
1 + 1

2

⌋
= 1.

Let us now show by contradiction that α = 1. If α 6 0, then
gh+ (2δ − h)(h− 1)

2h(2δ − h) < 1 ⇐⇒ g < (2δ − h)(1 + 1
h

) ⇐⇒ p < δ(3 + 2
h

)− h− 1;

plugging in the inequality h > 3, we get that α 6 0 implies p < 11
3 δ−4, in contradiction with our assumption

that p > 4δ − 4. Hence α = 1.
Therefore, (9) gives the inequalities

hg + h(h+ 1) 6 δ(2h+ 3) ⇐⇒ p 6 δ(3 + 3
h

)− h− 1.

Taking into account the fact that h > 3, this implies that p 6 4δ − 4. In conclusion, the existence of a
non-standard component of V L,δ is in contradiction with the inequality p > 4δ − 4. �
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