
NUMERICAL CHARACTERISATION OF QUADRICS

THOMAS DEDIEU AND ANDREAS HÖRING

Abstract. Let X be a Fano manifold such that −KX ·C ≥ dimX for every
rational curve C ⊂ X. We prove that X is a projective space or a quadric.

1. Introduction

Let X be a Fano manifold, i.e. a complex projective manifold with ample an-
ticanonical divisor −KX . If the Picard number of X is at least two, Mori theory
shows the existence of at least two non-trivial morphisms ϕi : X → Yi which en-
code some interesting information on the geometry of X. On the contrary, when
the Picard number equals one Mori theory does not yield any information, and
one is thus led to studying X in terms of the positivity of the anticanonical bun-
dle. A well-known example of such a characterisation is the following theorem of
Kobayashi–Ochiai.

1.1. Theorem [KO73]. Let X be a projective manifold of dimension n. Suppose
that −KX ∼ dH with H an ample divisor on X.

a) Then one has d ≤ n+ 1 and equality holds if and only if X ' Pn.
b) If d = n, then X ' Qn.

The divisibility of −KX in the Picard group is a rather restrictive condition, so it
is natural to ask for similar characterisations under (a priori) weaker assumptions.
Based on Kebekus’ study of singular rational curves [Keb02b], Cho, Miyaoka and
Shepherd-Barron proved a generalisation of the first part of Theorem 1.1:

1.2. Theorem [CMSB02, Keb02a]. Let X be a Fano manifold of dimension n.
Suppose that

−KX · C ≥ n+ 1 for all rational curves C ⊂ X.

Then X ' Pn.

The aim of this paper is to prove the following, which is a similar generalisation
for the second part of Theorem 1.1:

1.3. Theorem. Let X be a Fano manifold of dimension n. Suppose that

−KX · C ≥ n for all rational curves C ⊂ X.

Then X ' Pn or X ' Qn.
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This statement already appeared in a paper of Miyaoka [Miy04, Thm.0.1], but
the proof there is incomplete (cf. Remark 5.2 for instance). In this paper we borrow
some ideas and tools fromMiyaoka’s, yet give a proof based on a completely different
strategy. Note also that Hwang gave a proof under the additional assumption that
the general VMRT (see below) is smooth [Hwa13, Thm.1.11], a property that does
not hold for every Fano manifold [CD15, Thm.1.10].

In the proof of Theorem 1.3, we have to assume n ≥ 4; for n ≤ 3 the statement
follows directly from classification results.

The assumption that X is Fano assures that ρ(X) = 1 because of the Ionescu–
Wiśniewski inequality [Ion86, Thm.0.4], [Wiś91, Thm.1.1] (see §4.1). It is possible
to remove this assumption: the Ionescu–Wiśniewski inequality together with [HN13,
Thm.1.3] enable one to deal with the case ρ(X) > 1, and one gets the following.

1.4. Corollary. Let X be a projective manifold of dimension n containing a ra-
tional curve. If

−KX · C ≥ n for all rational curves C ⊂ X,

then X is a projective space, a hyperquadric, or a projective bundle over a curve.

(Note that under the assumptions of Corollary 1.4, if ρ(X) = 1 then X is Fano.)

Outline of the proof. In the situation of Theorem 1.3 let K be a family of minimal
rational curves on X. By Mori’s bend-and-break lemma a minimal curve [l] ∈ K
satisfies −KX · l ≤ n+ 1 and if equality holds then X ' Pn by [CMSB02]. By our
assumption we are thus left to deal with the case −KX · l = n. Then, for a general
point x ∈ X the normalisation Kx of the space parametrising curves in K passing
through x has dimension n− 2, and by [Keb02b, Thm.3.4] there exists a morphism

τx : Kx → P(ΩX,x)

which maps a general curve [l] ∈ Kx to its tangent direction T⊥l,x at the point x.
By [HM04, Thm.1] this map is birational onto its image Vx, the variety of minimal
rational tangents (VMRT) at x. We denote by V ⊂ P(ΩX) the total VMRT, i.e.
the closure of the locus covered by the VMRTs Vx for x ∈ X general. To prove
Theorem 1.3, we compute the cohomology class of the total VMRT V ⊂ P(ΩX) in
terms of the tautological class ζ and π∗KX , where π : P(ΩX)→ X is the projection
map. This computation is based on the construction, on the manifold X, of a family
W◦ of smooth rational curves such that for every [C] ∈ W◦ one has

TX |C ' OP1(2)⊕n;

it lifts to a family of curves on P(ΩX) by associating to a curve C ⊂ X the image
C̃ of the morphism C → P(ΩX) defined by the invertible quotient

ΩX |C → ΩC .

The main technical statement of this paper is:

1.5. Proposition. Let X 6' Pn be a Fano manifold of dimension n ≥ 4, and
suppose that

−KX · C ≥ n for all rational curves C ⊂ X.
Then, in the above notation, one has V · C̃ = 0 for all [C] ∈ W◦.
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Once we have shown this statement a similar intersection computation involv-
ing a general minimal rational curve l yields that the VMRT Vx ⊂ P(ΩX,x) is a
hypersurface of degree at most two. We then conclude with some earlier results of
Araujo, Hwang, and Mok [Ara06, Hwa07, Mok08].

Acknowledgements. We warmly thank Stéphane Druel for his numerous com-
ments during this project. We also thank the anonymous referee for his careful
reading and useful remarks. This work was partially supported by the A.N.R.
project CLASS1.

2. Notation and conventions

We work over the field C of complex numbers. Throughout the paper, Qn desig-
nates a smooth quadric hypersurface in Pn+1 for any positive integer n. Topological
notions refer to the Zariski topology.

We use the modern notation for projective spaces, as introduced by
Grothendieck: if E is a locally free sheaf on a scheme X, we let P(E) be
Proj (Sym E). If L is a line in a vector space V , L⊥ designates the corresponding
point in P(V ∨). The symbols ≡ and ∼Q refer to numerical and Q-linear equivalence
respectively.

A variety is an integral scheme of finite type over C, a manifold is a smooth
variety. A fibration is a proper surjective morphism with connected fibres ϕ : X →
Y such that X and Y are normal and dimX > dimY > 0.

We use the standard terminology and results on rational curves, as explained in
[Kol96, Ch.II], [Deb01, Ch.2,3,4], and [Hwa01]. Let X be a projective variety. We
remind the reader that following [Kol96, II, Def.2.11], the notation RatCurvesnX
refers to the union of the normalisations of those locally closed subsets of the Chow
variety of X parametrising irreducible rational curves (the superscript n is a re-
minder that we normalised, and has nothing to do with the dimension).

For technical reasons, we have to consider families of rational curves on X
as living alternately in RatCurvesnX and in Hom(P1, X). Our general policy
is to call HomR ⊂ Hom(P1, X) the family corresponding to a normal variety
R ⊂ RatCurvesnX.

3. Preliminaries on conic bundles

In this section, we establish some basic facts about conic bundles over a curve
and compute some intersection numbers which will turn out to be crucial for the
proof of Proposition 1.5. All these statements appear in one form or another in
[Miy04, §2], but we recall them and their proofs for the clarity of exposition.

3.1. Definition. A conic bundle is an equidimensional projective fibration ϕ :
X → Y such that there exists a rank three vector bundle V → Y and an embedding
X ↪→ P(V ) that maps every ϕ-fibre ϕ−1(y) onto a conic (i.e. the zero scheme of a
degree 2 form) in P(Vy). The set

∆ := {y ∈ Y | ϕ−1(y) is not smooth}
is called the discriminant locus of the conic bundle.

1ANR-10-JCJC-0111
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3.2. Lemma. Let S be a smooth surface admitting a projective fibration ϕ : S → T
onto a smooth curve such that the general fibre is P1, and such that −KS is ϕ-nef.
Let F be a reducible ϕ-fibre and suppose that

F = C1 + C2 + F ′,

where the Ci are (−1)-curves and Ci 6⊂ Supp(F ′). Then F ′ =
∑
Ej is a reduced

chain of (−2)-curves and the dual graph of F is as depicted in Figure 1.

Figure 1
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Proof. Write F ′ =
∑k
j=1 ajEj , aj ∈ N, where E1, . . . , Ek are the irreducible com-

ponents of F ′. First note that since −KS · F = 2 and −KS · Ci = 1, the fact that
−KS is ϕ-nef implies −KS ·Ej = 0 for all j. Since Ej is an irreducible component
of a reducible fibre, we have E2

j < 0. Thus we see that each Ej is a (−2)-curve.

We will now proceed by induction on the number of irreducible components of
F ′, the case F ′ = 0 being trivial. Let µ : S → S′ be the blow-down of the (−1)-
curve C2; then by the rigidity lemma [Deb01, Lemma 1.15], there is a morphism
ϕ′ : S′ → T such that ϕ = ϕ′ ◦ µ. Note that S′ is smooth and −KS′ is ϕ′-nef. We
also have

0 = C2 · F = −1 + C2 · (C1 +

k∑
i=1

aiEi),

so C2 meets C1 +
∑k
i=1 aiEi transversally in exactly one point. If C2 · C1 > 0,

then µ∗(C1) has self-intersection 0, yet it is also an irreducible component of the
reducible fibre µ∗(C1 +

∑k
i=1 aiEi), a contradiction. Thus (up to renumbering) we

can suppose that C2 · E1 = 1 and a1 = 1. In particular µ∗(E1) is a (−1)-curve, so

µ∗(C1 +

k∑
i=1

aiEi) = µ∗(C1) + µ∗(E1) + µ∗(

k∑
i=2

aiEi)

satisfies the induction hypothesis. �

In the following we use that for every normal surface one can define an intersec-
tion theory using the Mumford pull-back to the minimal resolution, cf. [Sak84].

3.3. Lemma. Let S be a normal surface admitting a projective fibration ϕ : S → T
onto a smooth curve such that the general fibre is P1 and such that every fibre is
reduced and has at most two irreducible components. Then

a) ϕ is a conic bundle;
b) S has at most Ak-singularities; and
c) if s ∈ Ssing, then s = Fϕ(s),1 ∩ Fϕ(s),2 where Fϕ(s) = Fϕ(s),1 + Fϕ(s),2 is

the decomposition of the fibre over ϕ(s) in its irreducible components. In
particular Fϕ(s) is a reducible conic.
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Proof. If a fibre ϕ−1(t) is irreducible, then ϕ is a P1-bundle over a neighbourhood
of t [Kol96, II, Thm.2.8]. Thus we only have to consider points t ∈ T such that
St := ϕ−1(t) is reducible. Since pa(St) = 0 and St = C1 + C2 is reduced, we see
that St is a union of two P1’s meeting transversally in a point. Since St = ϕ∗t is a
Cartier divisor, this already implies c).

Let ε : Ŝ → S be the canonical modification [Kol13, Thm.1.31] of the singular
points lying on St. Then we have

KŜ ≡ ε
∗KS − E,

with E an effective ε-exceptional Q-divisor whose support is equal to the ε-
exceptional locus. Denote by Ĉi the proper transform of Ci. If KŜ · Ĉi < −1,
then Ĉi deforms in Ŝ [Kol96, II, Thm.1.15]. Yet Ĉi is an irreducible component of
a reducible ϕ ◦ ε-fibre, so this is impossible. So we have

KS · Ci ≥ KŜ · Ĉi ≥ −1

for i = 1, 2. Since KS · (C1 + C2) = −2, this implies that KS · Ci = −1 and
E = 0. Thus S has canonical singularities. Since canonical surface singularities are
Gorenstein we see that −KS is Cartier, ϕ-ample and defines an embedding

S ⊂ P
(
V := ϕ∗(OS(−KS))

)
into a P2-bundle mapping each fibre onto a conic. This proves a).

Let now ε̃ : S̃ → S be the minimal resolution. It is crepant, so the divisor −KS̃

is ϕ ◦ ε̃-nef. Moreover the proper transforms C̃i of the curves Ci are (−1)-curves in
S̃. By Lemma 3.2 this proves b). �

The following fundamental lemma should be seen as an analogue of the basic
fact that a projective bundle over a curve contains at most one curve with negative
self-intersection.

3.4. Lemma [Miy04, Prop.2.4]. Let S be a normal projective surface that is a conic
bundle ϕ : S → T over a smooth curve T , and denote by ∆ the discriminant locus.
Suppose that ϕ has two disjoint sections σ1 and σ2, both contained in the smooth
locus of S. Suppose moreover that for every t ∈ ∆, the fibre Ft has a decomposition
Ft = Ft,1 + Ft,2 such that

(C1) σi · Ft,j = δi,j

(Kronecker’s delta). Assume also that we have

(C2) σ2
1 < 0 and σ2

2 < 0.

Let ε : Ŝ → S be the minimal resolution. Let σ be a ϕ-section, and σ̂ ⊂ Ŝ its proper
transform. Then the following holds:

a) If (σ̂)2 < 0, then σ = σ1 or σ = σ2.
b) If (σ̂)2 = 0 then σ is disjoint from σ1 ∪ σ2.

3.5. Remarks. 1. In the situation above all the fibres are reduced, since there
exists a section that is contained in the smooth locus.

2. The two inequalities (C2) are satisfied if there exists a birational morphism
S → S′ onto a projective surface S′ that contracts σ1 and σ2. More generally, the
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Hodge index theorem implies that (C2) holds if there exists a nef and big divisor
H on S such that H · σ1 = H · σ2 = 0.

Proof. Preparation: contraction to a smooth ruled surface. Lemma 3.3 applies to
the surface S. It follows that S has an Akt-singularity (kt ≥ 0) in Ft,1 ∩ Ft,2 for
every t ∈ ∆, and no further singularity. In particular, the dual graph of (ϕ◦ε)−1(t)
is as described in Figure 1 for every t ∈ ∆.

We consider the birational morphism

µ̂ : Ŝ → S[

defined as the composition, for every t ∈ ∆, of the blow-down of the proper trans-
form F̂t,1 of Ft,1 and of all the kt (−2)-curves contained in (ϕ ◦ ε)−1(t). Since µ̂
is a composition of blow-down of (−1)-curves, the surface S[ is smooth. By the
rigidity lemma [Deb01, Lemma 1.15], there is a morphism ϕ[ : S[ → T . All its
fibres are irreducible rational curves, so it is a P1-bundle by [Kol96, II, Thm.2.8].
Again by the rigidity lemma, µ̂ factors through ε, i.e. there is a birational morphism
µ : S → S[ such that µ̂ = µ ◦ ε; it is the contraction of all the curves Ft,1, t ∈ ∆.

Since σ1 meets Ft,1 in a smooth point of S, the proper transforms σ̂1 and F̂t,1
meet in the same point. Thus (the successive images of) σ̂1 meets the exceptional
divisor of all the blow-downs of (−1)-curves composing µ̂, and since the section
σ[1 := µ̂(σ̂1) is smooth, all the intersections are transversal. Vice versa we can
say that Ŝ is obtained from S[ by blowing up points on (the successive proper
transforms of) σ[1.

By the symmetry condition (C1) the curve σ2 is disjoint from the µ-exceptional
locus, so if we set σ[2 := µ(σ2), then we have (σ[2)2 = (σ2)2 < 0. Thus, in the
notation of [Har77, V,Ch.2], ϕ[ : S[ → T is a ruled surface with invariant −e :=
(σ[2)2 > 0. In particular the Mori cone NE(S[) is generated by a general ϕ[-fibre F
and σ[2. Since σ[1 · σ[2 = 0 and σ[1 · F = 1, we have

(3.5.1) σ[1 ≡ σ[2 + eF.

Conclusion. Let now σ ⊂ S be a section that is distinct from both σ1 and σ2. Then
σ[ := µ(σ) is distinct from both σ[1 and σ[2. Since σ[ 6= σ[2 we have

(3.5.2) σ[ ≡ σ[2 + cF

for some c ≥ e [Har77, V, Prop.2.20]. Since σ[ 6= σ[1 we have

(3.5.3) σ[ · σ[1 ≥
∑
t∈∆

τt,

where τt is the intersection multiplicity of σ[ and σ[1 at the point Ft ∩ σ[1. Denote
by σ̂ ⊂ Ŝ the proper transform of σ ⊂ S, which is also the proper transform of
σ[ ⊂ S[. By our description of µ̂ as a sequence of blow-ups in σ[1 we obtain

(σ̂)2 = (σ[)2 −
∑
t∈∆

min(τt, kt + 1) ≥ (σ[)2 −
∑
t∈∆

τt.

By (3.5.3) this implies

(σ̂)2 ≥ (σ[)2 − σ[ · σ[1 = σ[ · (σ[ − σ[1).
6



Plugging in (3.5.1) and (3.5.2) we obtain

(3.5.4) (σ̂)2 ≥ c− e ≥ 0.

This shows statement a).

Suppose now that (σ̂)2 = 0. Then by (3.5.4) we have c = e, hence σ[ · σ[2 = 0.
Being distinct, the two curves σ[ and σ[2 are therefore disjoint, and so are their
proper transforms σ̂ and σ̂2. Note now that ε is an isomorphism in a neighbourhood
of σ̂2, so σ = ε(σ̂) is disjoint from σ2 = ε(σ̂2). In order to see that σ and σ1 are
disjoint, we repeat the same argument but contract those fibre components which
meet σ2. This proves statement b). �

4. The main construction

4.1. Set-up. For the whole section, we letX 6' Pn be a Fano manifold of dimension
n ≥ 4, and suppose that

(4.1.1) −KX · C ≥ n for all rational curves C ⊂ X;

this is the situation of Proposition 1.5. It then follows from the Ionescu–Wiśniewski
inequality that the Picard number ρ(X) equals 1, see [Miy04, Lemma 4.1].

Recall that a family of minimal rational curves is an irreducible component K of
RatCurvesn(X) such that the curves in K dominate X, and for x ∈ X general the
algebraic set K[x ⊂ K parametrising curves passing through x is proper. We will
use the following simple observation:

4.2. Lemma. In the situation of Proposition 1.5, let l ⊂ X be a rational curve such
that −KX · l = n. Then any irreducible component K of RatCurvesnX containing
[l] is a family of minimal rational curves.

Proof. Condition (4.1.1) implies the properness of K [Kol96, II, (2.14)]. On the
other hand, we know by [Kol96, IV, Cor.2.6.2] that the curves parametrised by K
dominate X. �

4.3. Minimal rational curves and VMRTs. Since X is Fano, it contains a
rational curve l [Mor79, Thm.6]. Since X 6' Pn, there exists a rational curve with
−KX · l = n by [CMSB02], and by Lemma 4.2 there exists a family of minimal
rational curves containing the point [l] ∈ RatCurvesn(X). We fix once and for all
such a family, which we call K.

For x ∈ X general, denote by Kx the normalisation of the algebraic set K[x ⊂ K
parametrising curves passing through x. Every member of K[x is a free curve (this
follows from the argument of [Kol96, II, proof of Thm.3.11]), so Kx is smooth and
has dimension n− 2 ≥ 2 [Kol96, II, (1.7) and (2.16)].

By results of Kebekus, a general curve [l] ∈ K[x is smooth [Keb02b, Thm.3.3],
and the tangent map

τx : Kx → P(ΩX,x)

which to a general curve [l] associates its tangent direction T⊥l,x at the point x is a
finite morphism [Keb02b, Thm.3.4]. Its image Vx is called the variety of minimal
rational tangents (VMRT) at x. The map τx is birational by [HM04, Thm.1], so
the normalisation of Vx is Kx, which is smooth (this is [HM04, Cor.1]). Also, one
can associate to a general point v ∈ Vx a unique minimal curve [l] ∈ Kx. We denote
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by V ⊂ P(ΩX) the total VMRT, i.e. the closure of the locus covered by the VMRTs
Vx for x ∈ X general. Since Kx has dimension n−2, the total VMRT V is a divisor
in P(ΩX).

For a general [l] ∈ K, one has

(4.3.1) TX |l ' OP1(2)⊕OP1(1)⊕n−2 ⊕OP1

[Kol96, IV, Cor.2.9]. We call a minimal rational curve [l] ∈ K standard if l is smooth
and the bundle TX |l has the same splitting type as in (4.3.1).

4.4. Smoothing pairs of minimal curves. For a general point x1 ∈ X the curves
parametrised by Kx1

cover a divisor Dx1
⊂ X [Kol96, IV, Prop.2.5]. This divisor is

ample because ρ(X) = 1, so for x2 ∈ X and [l2] ∈ Kx2
the curve l2 intersects Dx1

.
Thus for a general point x2 ∈ X we can find a chain of two standard minimal curves
l1∪ l2 connecting the points x1 and x2. By [Kol96, II, Ex.7.6.4.1] the union l1∪ l2 is
dominated by a transverse union P1∪P1. Since both rational curves are free we can
smooth the tree P1 ∪P1 keeping the point x1 fixed [Kol96, II, Thm.7.6.1]. Since x1

is general in X this defines a family of rational curves dominating X, and we denote
byW the normalisation of the irreducible component of Chow(X) containing these
rational curves.

4.5. Since a general member [C] of the family W is free and −KX · C = 2n, we
have dimW = 3n − 3. We pick an arbitrary irreducible component of the subset
of W parametrising cycles containing x1, and let Wx1

be its normalisation; then
we have dimWx1

= 2n − 2. Let Ux1
be the normalisation of the universal family

of cycles over Wx1
. The evaluation map evx1

: Ux1
→ X is surjective: its image

is irreducible, and it contains both the divisor Dx1 (because it is contained in the
image of the restriction of evx1 to those members of Wx1 that contain a minimal
curve through x1) and the point x2 which is general in X (in particular x2 6∈ Dx1

).
Next, we choose an arbitrary irreducible component of the subset of W

parametrising cycles passing through x1 and x2, and let Wx1,x2
be its normali-

sation, Ux1,x2
the normalisation of the universal family over Wx1,x2

. We denote
by

q : Ux1,x2
→Wx1,x2

, ev : Ux1,x2
→ X

the natural maps. It follows from the considerations above thatWx1,x2
is non-empty

of dimension n− 1.
By construction, a general curve [C] ∈ Wx1,x2 is smooth at xi, i ∈ {1, 2}, so the

preimage ev−1(xi) contains a unique divisor σi that surjects onto Wx1,x2
. Since ev

is finite on the q-fibres and Wx1,x2
is normal, we obtain that the degree one map

σi → Wx1,x2
is an isomorphism. We call the divisors σi the distinguished sections

of q. We denote by ∆ ⊂ Wx1,x2 the locus parametrising non-integral cycles.

Let loc1
x1

be the locus covered by all the minimal rational curves of X passing
through x1. It is itself a divisor, but may be bigger than Dx1

since in general there
are finitely many families of minimal curves. From now on we choose a general
point x2 ∈ X such that x2 6∈ loc1

x1
(which implies x1 6∈ loc1

x2
).

4.6. Lemma. In the situation of Proposition 1.5 and using the notation introduced
above, let C be a non-integral cycle corresponding to a point [C] ∈ ∆. Then C =
l1 + l2, with the li minimal rational curves such that xi ∈ lj if and only if i = j.
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Remark. Note that we do not claim that the curves li belong to the family K.
However by construction of the family W as smoothings of pairs l1 ∪ l2 in K there
exists an irreducible component ∆K ⊂ ∆ such that li ∈ K when [l1 + l2] ∈ ∆K.

Proof. We can write C =
∑
aili where the ai are positive integers and li integral

curves. By [Kol96, II, Prop.2.2] all the irreducible components li are rational curves.
We can suppose that up to renumbering one has x1 ∈ l1. If a1 ≥ 2, then −KX ·C =
2n and −KX · l1 ≥ n implies that C = 2l1 and l1 is a minimal rational curve. Yet
this contradicts the assumption x2 6∈ loc1

x1
. Thus we have a1 = 1 and since C is

not integral there exists a second irreducible component l2. Again −KX · C = 2n
and −KX · li ≥ n implies C = l1 + l2 and the li are minimal rational curves by
Lemma 4.2. The last property now follows by observing that x2 6∈ loc1

x1
implies

that x1 6∈ loc1
x2
. �

By [Kol96, II, Thm.2.8], the fibration q : Ux1,x2
→ Wx1,x2

is a P1-bundle over
the open set Wx1,x2

\ ∆. Although Lemma 4.6 essentially says that the singular
fibres are reducible conics, it is a priori not clear that q is a conic bundle (cf.
Definition 3.1). This becomes true after we make a base change to a smooth curve.

4.7. Lemma. In the situation of Proposition 1.5 and using the notation introduced
above, let Z ⊂ Wx1,x2 be a curve such that a general point of Z parametrises
an irreducible curve. Then there exists a finite morphism T → Z such that the
normalisation S of the fibre product Ux1,x2

×Wx1,x2
T has a conic bundle structure

ϕ : S → T that satisfies the conditions of Lemma 3.4.

Proof. Let ν : Z̃ → Z be the normalisation, and let N be the normalisation of
Ux1,x2

×Wx1,x2
Z̃, fN : N → X the morphism induced by ev : Ux1,x2

→ X. Since all
the curves pass through x1 and x2 there exists a curve Z1 ⊂ N (resp. Z2 ⊂ N) that
is contracted by fN onto the point x1 (resp. x2). Since ev is finite on the q-fibres,
the curves Z1 and Z2 are multisections of N → Z̃. If Z̃i is the normalisation of
Zi, then the fibration (N ×Z̃ Z̃i) → Z̃i has a section given by c 7→ (c, c). Thus
there exists a finite base change T → Z̃ such that the normalisation ϕ : S → T
of the fibre product (Ux1,x2 ×Wx1,x2

T ) → T has a natural morphism f : S → X
induced by ev : Ux1,x2 → X and contracts two ϕ-sections σ1 and σ2 on x1 and x2

respectively.
Since Z 6⊂ ∆, the general ϕ-fibre is P1. Moreover by Lemma 4.6 all the ϕ-fibres

are reduced and have at most two irreducible components. By Lemma 3.3 this
implies that ϕ is a conic bundle and if s ∈ Ssing, then Fϕ(s) is a reducible conic
and the two irreducible components meet in s. Thus we have σi ⊂ Ssm, where
Ssm denotes the smooth locus, since otherwise both irreducible components would
pass through xi, thereby contradicting the property that x2 6∈ loc1

x1
. For the same

reason we can decompose any reducible ϕ-fibre Ft by defining Ft,i as the unique
component meeting the section σi. Since σi · F = 1 for a general ϕ-fibre we see
that (C1) holds. Condition (C2) holds with H the pull-back of an ample divisor on
X. �

From this one deduces with Lemma 3.4 the following statement, in the spirit of
the bend-and-break lemma [Deb01, Prop.3.2].
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4.8. Lemma. The restriction of the evaluation map ev : Ux1,x2
→ X to the

complement of σ1 ∪ σ2 is quasi-finite. In particular ev is generically finite onto its
image.

Proof. We argue by contradiction. Since ev is finite on the q-fibres there exists
a curve Z ⊂ Wx1,x2

such that the natural map from the surface q−1(Z) onto
ev(q−1(Z)) contracts three disjoint curves σ1, σ2 and σ onto the points x1, x2 and
x := ev(σ).

If Z 6⊂ ∆, then by Lemma 4.7 we can suppose, possibly up to a finite base change,
that q−1(Z)→ Z satisfies the conditions (C1) of Lemma 3.4. After a further base
change we can assume that σ is a section. Since σ is contracted by ev we have
σ2 < 0. By Lemma 3.4,a), this implies σ = σ1 or σ = σ2, a contradiction.

If Z ⊂ ∆, then all the fibres over Z are unions of two minimal rational curves.
Thus the normalisation of q−1(Z) is a union of two P1-bundles mapping onto Z and
by construction they contain three curves which are mapped onto points. However
a ruled surface contains at most one contractible curve, a contradiction. �

4.9. Since dimUx1,x2
= dimX, one deduces from Lemma 4.8 above that the cycles

[C] ∈ W passing through x1, x2 cover the manifold X. By [Deb01, 4.10] this implies
that a general member [C] ∈ Wx1,x2

is a 2-free rational curve [Deb01, Defn.4.5].
Since −KX · C = 2n, this forces

(4.9.1) f∗TX ' OP1(2)⊕n,

where f : P1 → C ⊂ X is the normalisation of C. As a consequence, one sees from
[Kol96, II, Thm.3.14.3] that a general member [C] ∈ W is a smooth rational curve
in X.

Let Hom◦W ⊂ Hom(P1, X) be the irreducible open set parametrising morphisms
f : P1 → X such that the image C := f(P1) is smooth, the associated cycle
[C] ∈ Chow(X) is a point in W, and f∗TX has the splitting type (4.9.1). By
what precedes, the image of Hom◦W in W under the natural map Hom(P1, X) →
Chow(X) is a dense open set W◦ ⊂ W.

4.10. Denote by π : P(ΩX)→ X the projection map. We define an injective map

i : Hom◦W ↪→ Hom(P1,P(ΩX))

by mapping f : P1 → X to the morphism f̃ : P1 → P(ΩX) corresponding to the
invertible quotient f∗ΩX → ΩP1 . Correspondingly, for [C] ∈ W◦ with normalisation
f , we call [C̃] the member of Chow(P(ΩX)) corresponding to the lifting f̃ .

We let Hom∼W be the image of i. Note that it parametrises a family of ra-
tional curves that dominates P(ΩX), but it is not an irreducible component of
Hom(P1,P(ΩX)). Indeed, Hom∼W is contained in a (much bigger) irreducible
component defined by morphisms corresponding to arbitrary quotients f∗ΩX �
OP1(−2).

The following property is well-known to experts. Since Hom∼W is not an open set
of the space Hom(P1,P(ΩX)), we have to adapt the proof of [Kol96, II,Prop.3.7].

4.11. Lemma. In the situation of Proposition 1.5, let V0 ⊂ V be a dense, Zariski
open set in the total VMRT V, and let C̃ := f̃(P1) be a rational curve parametrised
by a general point of Hom∼W . Then one has

(V ∩ C̃) ⊂ (V0 ∩ C̃).
10



Proof. Set Z := V \ V0. A point z ∈ P(ΩX) is z = (v⊥z , x), where Cvz ⊂ TX,x is a
tangent direction in X at x = π(z). So for all p ∈ P1, z = (v⊥z , x) ∈ P(ΩX), the
morphisms [f̃ ] ∈ Hom∼W mapping p to z correspond to morphisms f : P1 → X in
Hom◦W mapping p to x with tangent direction Cvz. Since f has the splitting type
(4.9.1), the set of these morphisms has dimension exactly n. It follows that

Hom∼W,Z :=
{

[f̃ ] ∈ Hom∼W | f̃(P1) ∩ Z 6= ∅
}

=
⋃
z∈Z

⋃
p∈P1

{
[f̃ ] ∈ Hom∼W |f̃(p) = z

}
has dimension at most dimZ + 1 + n.

Now V ⊂ P(ΩX) is a divisor, and Z has codimension at least one in V, so Z
has dimension at most 2n − 3, and the set Hom∼W,Z above has dimension at most
3n− 2. Since Hom◦W has dimension 3n and Hom◦W → Hom∼W is injective, a general
point [f̃ ] ∈ Hom∼W is not in Hom∼W,Z . �

We need one more technical statement:

4.12. Lemma. In the situation of Proposition 1.5 and using the notation intro-
duced above, let [f ] ∈ Hom◦W be a general point. Then for every x ∈ f(P1) we have
f(P1) 6⊂ loc1

x.

Proof. Fix two general points x1, x2 ∈ X. A general morphism [f ] ∈ Hom◦W passing
through x1 and x2 is 2-free and up to reparametrisation we have f(0) = x1, f(∞) =
x2. Set g := f |{0,∞}, then f is free over g [Kol96, II, Defn.3.1]. Suppose now
that such a curve has the property f(P1) ⊂ loc1

x0
for some x0 ∈ f(P1). Thus

x1, x2 ∈ loc1
x0
, hence by symmetry x0 ∈ (loc1

x1
∩ loc1

x2
). Yet the intersection

loc1
x1
∩ loc1

x2

has codimension two in X. By [Kol96, II, Prop.3.7] a general deformation of f over
g is disjoint from this set. �

4.13. Proof of Proposition 1.5. Arguing by contradiction, we suppose that
V ·C̃ > 0 (C̃ is not contained in V for the general [C] ∈ W◦). Applying Lemma 4.11
with

V0 := {v⊥ ∈ V | Cv = Tl,π(v) where [l] ∈ K is standard},
we see that for a general point [C] ∈ W there exists a point x1 ∈ C and a standard
curve [l] ∈ Kx1

such that

(4.13.1) TC,x1
= Tl,x1

.

We shall now reformulate the property (4.13.1) in terms of the universal family
Ux1,x2

, with x2 a point chosen in C \ loc1
x1

thanks to Lemma 4.12. Consider the
blow-up ε : X̃ → X at the point x1, with exceptional divisor E1. There is a rational
map ẽv : Ux1,x2

99K X̃ such that ε ◦ ẽv = ev (on the locus where ẽv is defined);
since the general member of Wx1,x2 is smooth at x1, this map ẽv is well-defined
in a general point of σ1, and restricts to a rational map σ1 99K E1. The latter is
dominant and therefore generically finite, because the general member of Wx1,x2

is 2-free. In particular we may assume it is finite in a neighbourhood of the point
C ∩ σ1.

We then consider the proper transform l̃ of l under ε, and let Γ be an irreducible
component of ẽv−1(l̃) passing through C ∩ σ1. It is a curve that is mapped to a

11



curve inWx1,x2
by q. Also, applying the same construction to the divisor Dx1

⊂ X,
one gets a prime divisor G ⊂ Ux1,x2 mapping surjectively onto Dx1 and Wx1,x2

respectively.
In general the curve Γ could be contained in the locus where q|G or ev|G are

not étale. However the standard rational curves [l] ∈ K such that a corresponding
curve Γ is not contained in these ramification loci form a non-empty Zariski open
set in K. Hence their tangent directions define a non-empty Zariski open set in V.
Applying Lemma 4.11 a second time we can thus replace C by a general curve C ′
such that [C ′] ∈ W◦ ∩Wx1,x2 and hence l by a general [l′] ∈ Kx1 such that there
exists a curve Γ′ ⊂ G such that q(Γ′) is a curve, ev(Γ′) = l′, and both maps q|G
and ev|G are étale at the general point x ∈ Γ′. By construction the point C ′ ∩ σ1

lies on Γ′. This is a contradiction to Proposition 4.14 below. �

4.14. Proposition [Miy04, Lemma 3.9]. In the situation of Proposition 1.5, let
x1, x2 ∈ X be general points, and [l] a general member of Kx1

. Consider an irre-
ducible curve Γ ⊂ Ux1,x2

such that ev(Γ) = l and q(Γ) is a curve, and assume there
exists a prime divisor G ⊂ Ux1,x2 mapped onto Dx1 by ev and containing Γ, such
that both maps q|G and ev|G are étale at a general point of Γ. Then Γ ∩ σ1 does
not contain any point C ∩ σ1 with [C] ∈ W◦ ∩Wx1,x2

.

We give the proof for the sake of completeness.

Proof. Since [l] is general in Kx1
, we have

TX |l ' OP1(2)⊕OP1(1)n−2 ⊕OP1 ,

and Kx1
is smooth with tangent space H0(l, N+

l/X ⊗ Ol(−x1)) at [l], where E+

denotes the ample part of a vector bundle E → P1, i.e. its ample subbundle of
maximal rank.

Let x ∈ Γ be a general point, and set y = ev(x) ∈ l. For some analytic neigh-
bourhood V ⊂ Kx1 of [l], we have an evaluation map

P1 × V −→ Dx1

which is étale at (y, [l]), and the tangent space to Dx1
at y is thus

TDx1
,y = Tl,y ⊕

(
N+
l/X ⊗Ol(−x1)

)
y

= TX |+l,y.

Since ev|G is étale in x, we obtain that the tangent map

dxev : TUx1,x2
,x → ev∗(TX,ev(x))

maps TG,x isomorphically into the ample part i.e. we have

(4.14.1) dxev(TG,x) ' ev∗(TX |+l,ev(x)).

We argue by contradiction and suppose that there exists [C] ∈ W◦∩Wx1,x2
such

that (C ∩ σ1) ∈ (Γ ∩ σ1). Since Γ maps onto l it is not contained in the divisor
σ1. Since the smooth rational curve C is 2-free, there exists by semicontinuity a
neighbourhood U of [C] ∈ Wx1,x2 parametrising 2-free smooth rational curves. For
a 2-free rational curve, the evaluation morphism ev is smooth in the complement
of the distinguished divisors σi [Kol96, II, Prop.3.5.1]. Thus if we denote by R ⊂
Ux1,x2

the ramification divisor of ev, σ1 is the unique irreducible component of R
12



containing the point C ∩ σ1. Thus Γ is not contained in the ramification divisor of
ev.

Since q(Γ) is a curve, there exists by Lemma 4.7 a finite base change T →
q(Γ) with T a smooth curve, such that the normalisation S of the fibre product
T ×Wx1,x2

Ux1,x2
is a surface with a conic bundle structure ϕ : S → T satisfying

the conditions of Lemma 3.4. After a further base change we may suppose that
there exists a ϕ-section Γ1 that maps onto Γ. Note that since we obtained S by
a base change from Ux1,x2 , the ramification divisor of the map µ : S → Ux1,x2 is
contained in the ϕ-fibres, i.e. its image by ϕ has dimension 0. In particular Γ1 is
not contained in this ramification locus.

Since the rational curve C is smooth and 2-free, the universal family Ux1,x2
is

smooth in a neighbourhood of C ∩ σ1. Thus σ1 is a Cartier divisor in a neighbour-
hood of C ∩ σ1, and we can use the projection formula to see that

Γ1 · µ∗σ1 = µ∗(Γ1) · σ1 > 0.

In particular Γ1 is not disjoint from the distinguished sections in the conic bundle
S → T . Let now ε : Ŝ → S be the minimal resolution of singularities, and Γ̂1 the
proper transform of Γ1. Since the distinguished sections are in the smooth locus of
S, the section Γ̂1 is not disjoint from the distinguished sections of Ŝ → T . We shall
now show that

(Γ̂1)2 ≤ 0,

which is a contradiction to Lemma 3.4.

Denote by f : Γ̂1 → l the restriction of ev ◦ µ ◦ ε : Ŝ → X. Since Γ̂1 is not in the
ramification locus of µ◦ ε and Γ is not in the ramification divisor of ev, the tangent
map

TŜ |Γ̂1
→ f∗TX |l

is generically injective. Since Γ̂1 is a ϕ ◦ ε-section, we have an isomorphism

(4.14.2) TŜ/T |Γ̂1
' NΓ̂1/Ŝ

.

Since l has the standard splitting type (4.3.1) we have a (unique) trivial quotient
f∗TX |l � OΓ̂1

, and thanks to (4.14.2) we are done if we prove that the natural
map

TŜ/T |Γ̂1
↪→ TŜ |Γ̂1

→ f∗TX |l � OΓ̂1

is not zero. It is sufficient to check this property for a general point in Γ̂1, and since
Γ̂1 → Γ is generically étale, it is sufficient to check that for a general x ∈ Γ, the
natural map

TUx1,x2
/Wx1,x2

,x → ev∗(TX,ev(x))

does not have its image into the ample part ev∗(TX |+l,ev(x)). Yet if TUx1,x2/Wx1,x2 ,x

maps into the ample part, the decomposition TUx1,x2
,x = TUx1,x2/Wx1,x2 ,x

⊕ TG,x
(given by the fact that q|G is étale in x) combined with (4.14.1) implies that the
tangent map

dxev : TUx1,x2
,x → ev∗(TX,ev(x))

cannot be surjective. Since Γ is not contained in the ramification locus of ev this
is impossible. �
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5. Proof of the main theorem

5.1. Proof of Theorem 1.3. If X ' Pn we are done, so suppose that this is
not the case. Then consider the family of minimal rational curves K constructed
in Section 4 and the associated total VMRT V. Denote by d ∈ N the degree of a
general VMRT Vx ⊂ P(ΩX,x).

Step 1. Using the family W◦. In this step we prove that

(5.1.1) V ∼Q d(ζ − 1

n
π∗KX),

where ζ is the tautological divisor class on P(ΩX). Note that P(ΩX) has Picard
number two, so we can always write

V ∼Q aζ + b
−1

n
π∗KX

with a, b ∈ Q. Let nowW◦ be the family of rational curves constructed in Section 4,
and let C̃ be the lifting of a curve C ∈ W◦. By Proposition 1.5 we have V · C̃ = 0.
Since by the definition of C̃ one has ζ · C̃ = −2 and − 1

nπ
∗KX · C̃ = 2, it follows

that a = b. Since Vx = V|P(ΩX,x) ∼Q dζ|P(ΩX,x), we have a = b = d. This proves
(5.1.1).

Step 2. Bounding the degree d. Denote by K◦ ⊂ K the open set parametrising
smooth standard rational curves in K. We define an injective map

j : K◦ ↪→ RatCurvesn(P(ΩX))

by mapping a curve l to the image l̃ of the morphism s : l → P(ΩX) de-
fined by the invertible quotient ΩX |l → Ωl. We denote by K̃◦ the image of
j. Let us start by showing that K̃◦ is dense in an irreducible component of
RatCurvesn(P(ΩX)). Since l is standard, the relative Euler sequence restricted
to l̃ implies that H0(l̃, TP(ΩX)/X |l̃) = 0. Then, using the exact sequence

0→ TP(ΩX)/X |l̃ → TP(ΩX)|l̃ → (π∗TX)|l̃ ' TX |l → 0

we obtain that the Zariski tangent space of Hom(P1,P(ΩX)) at a point correspond-
ing to the rational curve l̃ has dimension at most h0(l, TX |l) = 2n. Thus we can
use [Kol96, II, Thm.2.15] to see that RatCurvesn(P(ΩX)) has dimension at most
2n− 3 at the point [l̃], which is exactly the dimension of K̃◦.

By construction the lifted curves l̃ are contained in V. Thus the open set K̃0 ⊂
RatCurvesn(P(ΩX)) is actually an open set in RatCurvesn(V). Since V ⊂ P(ΩX) is
a hypersurface, the algebraic set V has lci singularities. Thus we can apply [Kol96,
II, Thm.1.3, Thm.2.15] and obtain

2n− 3 = dim K̃0 ≥ degω−1
V |l̃ + (2n− 2)− 3.

We thus have degω−1
V |l̃ ≤ 2.

Now by construction we have − 1
nπ
∗KX · l̃ = 1 and ζ · l̃ = −2. Since KP(ΩX) =

2π∗KX − nζ, the adjunction formula and (5.1.1) yield

2 ≥ degω−1
V |l̃ = −(KP(ΩX) + V) · l̃ = d.

Step 3. Conclusion. If d = 1 or d = 2 but Vx is reducible, we obtain a contradiction
to [Hwa07, Thm.1.5] (cf. also [Ara06, Thm.3.1]). If d = 2 and Vx is irreducible, Vx
is normal [Har77, II,Ex.6.5(a)], and therefore isomorphic to its normalisation Kx
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which is smooth (see §4.3). It is thus a smooth quadric and we conclude by [Mok08,
Main Thm.]. �

5.2. Remark. Let us explain the difference of our proof with Miyaoka’s approach:
in the notation of Section 4, he considers the family Wx1,x2

. As we have seen
above the evaluation map ev : Ux1,x2

→ X is generically finite and his goal is to
prove that ev is birational. He therefore analyses the preimage ev−1(l1 ∪ l2), where
the li ⊂ X are general minimal curves passing through xi respectively such that
[l1 ∪ l2] ∈ Wx1,x2

. If Γ ⊂ ev−1(l1 ∪ l2) is an irreducible curve mapping onto l1
one can make a case distinction: if q(Γ) is a curve that is not contained in the
discriminant locus ∆ ⊂ Wx1,x2

(Case C in [Miy04, p.227]) Miyaoka makes a very
interesting observation which we stated as Proposition 4.14. However the analysis
of the ‘trivial’ case (Case A in [Miy04, p.227]) where q(Γ) is a point is not correct:
it is not clear that q(Γ) = [l1 ∪ l2], because there might be another curve in Wx1,x2

which is of the form l1 ∪ l′2 with l2 6= l′2. This possibility is an obvious obstruction
to the birationality of ev and invalidates [Miy04, Cor.3.11(2), Cor.3.13(1)]. The
following example shows that this possibility does indeed occur in certain cases.

5.3. Example. Let H ⊂ Pn be a hyperplane and A ⊂ H ⊂ Pn a projective
manifold A of dimension n− 2 and degree 3 ≤ a ≤ n. Let µ : X → Pn be the blow-
up of Pn along A. Then X is a Fano manifold [Miy04, Rem.4.2] and −KX · C ≥ n
for every rational curve C ⊂ X passing through a general point (the µ-fibres are
however rational curves with −KX · C = 1). The general member of a family
of minimal rational curves K is the proper transform of a line that intersects A.
Consider the family W whose general member is the strict transform of a reduced,
connected degree two curve C such that A ∩ C is a finite scheme of length two.
For general points x1, x2 ∈ X the (normalised) universal family Ux1,x2

→Wx1,x2
is

a conic bundle and the evaluation map ev : Ux1,x2
→ X is generically finite. We

claim that ev is not birational.

Proof of the claim. For simplicity of notation we denote by x1, x2 also the corre-
sponding points in Pn. Let l1 ⊂ Pn be a general line through x1 that intersects
A. Since x2 ∈ Pn is general there exists a unique plane Π containing l1 and x2.
Moreover the intersection Π∩A consists of exactly a points, one of them the point
A ∩ l1. For every point x ∈ Π ∩A other than A ∩ l1, there exists a unique line l2,x
through x and x2. By Bezout’s theorem l1∪ l2 is connected, so its proper transform
belongs to Wx1,x2

. Yet this shows that ev−1(l1) contains a− 1 > 1 copies of l1, one
for each point x ∈ Π ∩A \ l1 ∩A. This proves the claim. �

Let us conclude this example by mentioning that the conic bundle Ux1,x2
→

Wx1,x2 does not satisfy the symmetry conditions of Lemma 3.4.

References

[Ara06] Carolina Araujo. Rational curves of minimal degree and characterizations of projective
spaces. Math. Ann., 335(4):937–951, 2006.

[CD15] Cinzia Casagrande and Stéphane Druel. Locally unsplit families of rational curves of
large anticanonical degree on Fano manifolds. IMRN, doi:10.1093/imrn/rnv011, 2015.

[CMSB02] Koji Cho, Yoichi Miyaoka, and N. I. Shepherd-Barron. Characterizations of projec-
tive space and applications to complex symplectic manifolds. In Higher dimensional
birational geometry (Kyoto, 1997), volume 35 of Adv. Stud. Pure Math., pages 1–88.
Math. Soc. Japan, Tokyo, 2002.

15



[Deb01] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-
Verlag, New York, 2001.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

[HM04] Jun-Muk Hwang and Ngaiming Mok. Birationality of the tangent map for minimal
rational curves. Asian J. Math., 8(1):51–63, 2004.

[HN13] Andreas Höring and Carla Novelli. Mori contractions of maximal length. Publ. Res.
Inst. Math. Sci., 49(1):215–228, 2013.

[Hwa01] Jun-Muk Hwang. Geometry of minimal rational curves on Fano manifolds. In School
on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000),
volume 6 of ICTP Lect. Notes, pages 335–393. Abdus Salam Int. Cent. Theoret. Phys.,
Trieste, 2001.

[Hwa07] Jun-Muk Hwang. Deformation of holomorphic maps onto Fano manifolds of second
and fourth Betti numbers 1. Ann. Inst. Fourier (Grenoble), 57(3):815–823, 2007.

[Hwa13] Jun-Muk Hwang. Varieties of minimal rational tangents of codimension 1. Ann. Sci.
Éc. Norm. Supér. (4), 46(4):629–649 (2013), 2013.

[Ion86] Paltin Ionescu. Generalized adjunction and applications. Math. Proc. Cambridge Phi-
los. Soc., 99(3):457–472, 1986.

[Keb02a] Stefan Kebekus. Characterizing the projective space after Cho, Miyaoka and Shepherd-
Barron. In Complex geometry (Göttingen, 2000), pages 147–155. Springer, Berlin,
2002.

[Keb02b] Stefan Kebekus. Families of singular rational curves. J. Algebraic Geom., 11(2):245–
256, 2002.

[KO73] Shoshichi Kobayashi and Takushiro Ochiai. Characterizations of complex projective
spaces and hyperquadrics. J. Math. Kyoto Univ., 13:31–47, 1973.

[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
Springer-Verlag, Berlin, 1996.

[Kol13] János Kollár. Singularities of the minimal model program, volume 200 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collab-
oration of Sándor Kovács.

[Miy04] Yoichi Miyaoka. Numerical characterisations of hyperquadrics. In Complex analysis
in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday,
volume 42 of Adv. Stud. Pure Math., pages 209–235. Math. Soc. Japan, Tokyo, 2004.

[Mok08] Ngaiming Mok. Recognizing certain rational homogeneous manifolds of Picard number
1 from their varieties of minimal rational tangents. In Third International Congress of
Chinese Mathematicians. Part 1, 2, volume 2 of AMS/IP Stud. Adv. Math., 42, pt.
1, pages 41–61. Amer. Math. Soc., Providence, RI, 2008.

[Mor79] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2),
110(3):593–606, 1979.

[Sak84] Fumio Sakai. Weil divisors on normal surfaces. Duke Math. J., 51(4):877–887, 1984.
[Wiś91] Jarosław A. Wiśniewski. On contractions of extremal rays of Fano manifolds. J. Reine

Angew. Math., 417:141–157, 1991.

Thomas Dedieu, Institut de Mathématiques de Toulouse (CNRS UMR 5219), Uni-
versité Paul Sabatier, 31062 Toulouse Cedex 9, France

E-mail address: thomas.dedieu@m4x.org

Andreas Höring, Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351
CNRS, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France

E-mail address: hoering@unice.fr

16


