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Abstract. Let KCk
g be the moduli stack of pairs (S, C) with S a K3 surface and C ⊆ S

a genus g curve with divisibility k in Pic(S). In this article we study the forgetful map
ck

g : (S, C) 7→ C from KCk
g to Mg for k > 1. First we compute by geometric means the

dimension of its general fibre. This turns out to be interesting only when S is a complete
intersection or a section of a Mukai variety. In the former case we find the existence of
interesting Fano varieties extending C in its canonical embedding. In the latter case this is
related to delicate modular properties of the Mukai varieties. Next we investigate whether
ck

g dominates the locus inMg of k-spin curves with the appropriate number of independent
sections. We are able to do this only when S is a complete intersection, and obtain in these
cases some classification results for spin curves.

1 – Introduction

We are interested in the forgetful maps ckg : KCkg →Mg with k > 1 and g = 1 + (g1 − 1)k2 for
some integer g1 > 1, in the following notation (valid also in case k = 1):
— Kkg is the moduli stack of polarised K3 surfaces of genus g and index k, i.e., pairs (S,L) such

that S is a smooth K3 surface and L is an ample, globally generated line bundle on S with
L2 = 2g − 2, such that L = kL1 with L1 a primitive line bundle on S; note that (S,L1) is a
membre of K1

g1
, which we usually denote by Kprim

g1
;

— KCkg is the moduli stack of pairs (S,C) with C a smooth curve on S and (S,OS(C)) ∈ Kkg ;
—Mg is the moduli space of curves of genus g.
Specifically our goal is to describe the general fibre and the image of the maps ckg .

In the primitive case k = 1 the situation is rather well understood and should be well-known
by now, so we don’t dwell on this here (the interested reader may consult, e.g., [8, §2] to find
the relevant references), and concentrate on the case k > 1.

If C is a smooth curve of genus g > 11 and Clifford index Cliff(C) > 2 lying on a K3 surface,
it follows from work of Wahl [30], Arbarello–Bruno–Sernesi [2], and eventually the authors and
Sernesi [8] that the fibre of the map

cg : [S,C] ∈
∐
k KC

k
g 7−→ [C] ∈Mg

(which is the aggregation of the maps ckg for all k such that there exists g1 > 1 with g =
1 + (g1 − 1)k2) is essentially a linear space, of dimension ν = cork(ΦC) − 1 (where ΦC is the
Gauss–Wahl map of C, see [8] for background and references), and there exists an arithmetically
Gorenstein normal variety X ⊆ Pg+ν of dimension ν+ 2 with ωX = OX(−ν), having as a linear
section the curve C in its canonical embedding, as well as all K3 surfaces S containing C,
embedded by the linear system |C|S ; we call such an X the universal extension of C. (Recall
that an r-extension (or simply extension, if r = 1) of a projectively embedded variety V ⊆ PN

is a variety X ⊆ PN+r having V as a linear section; an extension is said to be trivial if it is a
cone; again, see [8] for background and references).
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We call K3 curve of index k (and genus g) a curve C which is in the image of the map ckg .
For general such curves with k > 1 the corank of the Gauss–Wahl map has been computed by
cohomological methods in [9], with some exceptions for g1 = 2 documented in a corrigendum.
In this article we compute by geometric considerations the dimension of the general fibre of the
maps ckg , k > 1, thus concluding the task begun in [7] with the case g1 = 2.

It turns out to be interesting only for low values of g1, for which the K3 surfaces are either
complete intersections or sections of more general homogeneous varieties found by Mukai and
thence called Mukai varieties (see Section 4). Indeed, it follows from Prokhorov’s bound on the
genus of Gorenstein Fano threefolds [29] that the maps ckg are generically injective if g > 37, see
[8, Cor. 2.10].

(1.1) Proposition. Let k > 1 and g1 > 1 be integers, and set g = 1 + (g1 − 1)k2. Let [C] be
very general in the image of ckg .
(1.1.1) We have Cliff(C) > 2 and g(C) > 11 unless we are in one of the following cases:
— g1 = 2 and k 6 3;
— g1 = 3 and k = 2.
(1.1.2) We have g(C) > 37 unless we are in one of the following cases:

g1 2 3 4 5 6 7 8 9 10
k 6 6 4 3 3 2 2 2 2 2

Part (1.1.1) follows from Lemma (2.2) and it tells us that except for the exceptional cases
(g1, k) ∈ {(2, 2), (2, 3), (3, 2)} the general theory of [30, 2, 8] applies. In the exceptional cases
we have been able to analyze the situation by hand in [7]; we obtain a little more information
here. Part (1.1.2) follows from a direct computation, and tells us the values of (g1, k) for which
it is possible that ckg has positive dimensional general fibre. We now give a brief summary of
the results we obtain in these cases.

(1.2) Complete intersections (Section 3). For g1 ∈ {3, 4, 5} the general membre C of the
image of ckg , with g = 1 + (g1− 1)k2, has a model as a complete intersection in Pg1 . This allows
for a direct description of the fibre (gkg )−1(C); in particular we can compute its dimension, which
gives cork(ΦC), thus recovering the values obtained in [9].

In all cases, we provide a description of the universal extensionX as a complete intersection in
a weighted projective space, embedded by a suitable divisor in Pic(X) of the anticanonical class.
In fact this also works in the exceptional cases of (1.1.1), in which cases we obtain interesting
examples showing the sharpness of Lvovski’s main theorem in [22]. This construction has been
inspired by the corresponding one in case g1 = 2, which has been communicated to us by Totaro
(see [7, (4.8)]).

(1.3) Mukai models (Section 4). For g1 ∈ {6, 7, 8, 9, 10} the general membre C of the image
of ckg , with g = 1 + (g1 − 1)k2, has a model as a complete intersection in a Mukai homogeneous
variety Mg1 . For g1 6= 6 in this range, we show by geometric considerations that the maps ckg
are generically injective for all k > 1. For g1 = 6 and k = 2 the dimension of the general fibre is
1, see (4.5). On our way we obtain results about the related question whether all models of C
are conjugate under the action of G = Aut(Mg1), see Conjecture (4.3) and summary of results
in (4.4).

We also show that in cases (a) k = 1 and g1 > 6, and (b) k = 2 and g1 = 6, the Mukai
variety is the universal extension of the general membre of im(ckg); this was certainly a natural
thing to guess, but as far as we know this had not been proved yet.
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A more detailed but still synthetic descprition of our results about Mukai varieties and their
sections is given in subsection 4.1.

Our study (in Section 5) of the image of the maps ckg on the other hand is based on the
following observation.

(1.4) K3 curves of index k and k-spin curves. For g = 1+k2(g1−1), the map ckg factorizes
through

(S,C) ∈ KCkg 7−→ (C, OS( 1
kC)

∣∣
C

) ∈ S
1
k ,g1
g ,

where
— S

1
k ,g1
g is the moduli stack of k-spin curves of genus g having at least g1 + 1 independent

sections, i.e., pairs (C, θ) with C a smooth genus g curve and θ a line bundle on C such that
kθ = KC and h0(θ) > g1 + 1.

A line bundle L such that 2L = KC is called a theta-characteristic (hence the notation). More-
over we denote by
— T

1
k ,g1
g the image of S

1
k ,g1
g inMg by the (finite) forgetful map (C,L) 7→ C,

so that

(1.4.1) im(ckg) ⊆ T
1
k ,g1
g .

The question underlying our study in Section 5 is whether equality holds in (1.4.1).
For k = 2 there is an expected codimension for T

1
2 ,g1
g inMg, viz.

(
g1+1

2
)
; more precisely, the

following holds.

(1.5) Theorem ([28] and [17, Cor. 1.11]). Let (C, θ) ∈ S
1
2 ,g1
g be such that h0(θ) = g1 + 1. Then

for any deformation (Ct, θt) of (C, θ) one has h0(θt) ≡ h0(θ) mod 2, and the codimension c of
S

1
2 ,g1
g in S

1
2
g at (C, θ) is c 6

(
g1+1

2
)
.

However several examples are known of superabundant components of S
1
2 ,g1
g , see e.g., [13].

Here we observe that K3 curves of index 2 provide infinitely many such examples.

(1.6) Observation. We have the following remarkable formula:

dim(KC2
g)− expdim(T

1
2 ,g1
g ) = (19 + g)− (3g − 3) +

(
g1+1

2
)

= 1
2 (g1 − 7)(g1 − 8).(1.6.1)

Since for g1 > 7 the map c2g is generically injective (Corollary (4.16)), this formula implies that
the image of c2g lies in a superabundant component of S

1
2 ,g1
g as soon as g1 > 9.

Moreover this difference equals the dimension of the general fibre of c2g for 3 6 g1 6 6 (see
Section 3 and paragraph (4.5)). For 3 6 g1 6 5 the closure of im(c2g) is an irreducible component
of T

1
2 ,g1
g (Proposition (5.3)) which thus has the expected dimension.
This makes the question whether the closure of im(c2g) is an irreducible component of T

1
2 ,g1
g

for g1 = 6, 7, 8 rather intriguing.
In the complete intersection cases, we can prove equality in (1.4.1) (see Proposition (5.3)

below), and then it is possible to check that T
1
2 ,g1
g has a component of the expected dimension.
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(1.7) Classification of K3-like spin curves (Section 5). We make a thorough analysis of
the components of S

1
2 ,g1
g in the cases g1 = 3 and g1 = 4 (Theorems (5.10) and (5.12)), and give

some partial information for g1 = 5 (see Proposition (5.14)). In the absence of an estimate for
the codimension of T

1
k ,g1
g inMg for k > 3, the cases k > 3 are more complicated, and we give

only some partial answers for k = 3 and 3 6 g1 6 4 (see Section 5.2).
This turns out to be unexpectedly involved, and is the occasion of discovering several inter-

esting families of curves on rational normal scrolls in Pg1 for g1 = 3, 4, 5.

Thanks. ThD thanks Laurent Manivel for his answers to the many questions he was asked
about homogeneous varieties, and more generally for his interest and positive influence on this
project. Additional thanks to Marian Aprodu for his help with the proof of Lemma (4.12).

2 – Preliminaries

(2.1) Notation. When the context is clear, we use the shorthand hn(k) for h0(Pn,OPn(k)).

(2.2) Lemma. Let (S,L1) ∈ Kprim
g1

be very general, so that Pic(S) = Z〈L1〉. For smooth
C ∈ |kL1|, k > 1, we have Cliff(C) = (2g1 − 2)(k − 1)− 2.

Proof. Let C be a smooth membre of |kL1|; it has genus g = 1 + k2(g1 − 1). By [16], the
Clifford index of C is either b g−1

2 c or it is computed by the restriction of a line bundle on S.
Since Pic(S) = Z〈L1〉, we have to consider those lL1 ∈ Pic(S) such that h0( lL1|C) > 2 and
h0(KC − lL1|C) > 2, which amounts to the condition that 1 6 l < k. One computes

Cliff( lL1|C) = deg( lL1|C)− 2(h0( lL1|C)− 1) = (2g1 − 2)l(k − l)− 2,

the minimal value of which for integral l ∈ [1, k − 1] is (2g1 − 2)(k − 1) − 2, indeed less than
b g−1

2 c. 2

In this article we use freely the notion of ribbon over a curve and its relation with the
Gauss–Wahl map; we refer to [8, §4] and [7, §1.2] for the necessary background.

(2.3) Proposition. Let C be a curve with Cliff(C) > 2. For any v ∈ ker(TΦC) seen as a ribbon
over C ⊆ Pg−1, there exists at most one surface extension S ⊆ Pg up to projectivities (i.e., the
integral of v, if it exists, is unique).

Proof. It is given in [8, Remark 4.8]. There one finds the additional assumption that g > 11,
but this is useless as far as unicity is concerned (it is needed only to ensure the existence of an
integral).

What is really needed is that C ⊆ Pg−1 is defined by quadratic equations with linear syzygies,
which is ensured by the condition on the Clifford index. Under this assumption, one can indeed
work out Wahl’s deformation construction, and then one sees [8, §4.9] that any two extensions
differ by an element of H0(NC/Pg−1(−2)). The conclusion stems from the fact that the latter
cohomology group is 0 if C ⊆ Pg−1 is defined by quadratic equations with linear syzygies (see
[8, Lemma 3.6]). 2

(2.4) Proposition.
(2.4.1) Let (S,L) be a polarized K3 surface. Then the automorpshisms group of (S,L) is finite.
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(2.4.2) Let S be a projective K3 surface with Pic(S) = Z〈L1〉. Then Aut(S) is trivial if (L1)2 >
2, and isomorphic to Z/2 if (L1)2 = 2.

See [18, Cor. 15.2.12] for (2.4.2), and [18, Chap. 5 Prop. 3.3] for (2.4.1).

3 – Complete intersections
These are the cases g1 = 3, 4, 5.

3.1 – Useful results
(3.1) Theorem. Let Z,Z ′ be two complete intersections in some projective space Pn.
(3.1.1) The two polarized schemes (Z,O(1)) and (Z ′,O(1)) are isomorphic if and only if they
are conjugate under the action of PGL(n+ 1) on Pn.
(3.1.2) If Z is non-degenerate and smooth (resp. general), then Aut(Z,O(1)) is finite (resp.
trivial) unless Z is a quadric hypersurface (resp. unless it is either a quadric hypersurface or
the complete intersection of two quadrics).

To be noted that Aut(Z,O(1)) is the stabilizer of Z in PGL(n + 1). For (3.1.1), see [4,
Prop. 2.1]. Part (3.1.2) in the smooth case is [5, Thm. 1.6], and in the general case it is [6,
Thm.1.3].

3.2 – Fibres and universal extensions
(3.2) g1 = 3: dimension of the general fibre. Let k ∈ N \ {0}, and consider the forgetful
map ckg : KCk1+2k2 →M1+2k2 , g = 1 + 2k2. Its image contains IC(4, k) as a dense subset (the
locus of smooth complete intersection curves of type (4, k) in P3).

Consider a general curve [C] ∈ IC(4, k). Up to the action of PGL(4), there is a unique1

incarnation of C as a complete intersection in P3, which we call C as well. The linear system
of quartics containing C has dimension

h0(IC(4))− 1 = h3(4− k)

and dominates the fibre of ckg over C. In fact, the quotient of this linear system by the stabilizer
of C in PGL(4) is birational to this fibre. When k > 1 this stabilizer is trivial, and when k = 1
it is the affine group Aff(3) which has dimension 4 (and indeed h3(3)− 4 = 16, the dimension of
the general fibre of c13 which is dominant). We thus find the values indicated in the table below
for the dimension of the general fibre of ckg .

g1 = 3
k 2 3 4 > 5
g 9 19 33 > 51

dim(fibre) 10 4 1 0

When k > 3 we have g > 11 and Cliff > 2 so we may apply the theory in [8], and this tells us
the value of cork(ΦC) for the general [C] ∈ IC(4, k), as well as the number of times C may be
extended in its canonical embedding. When k 6 2 however there is little we can do but observe
the coincidence in dimension with

∑
l>1 h

0(N(−l)), for C does not enjoy property N2 (even in
its canonical embedding).

1unique indeed if we consider C as a curve with a k-spin structure, but in fact a finite number if we only take
it as a naked curve

5



(3.3) g1 = 3: universal extensions. We now describe the universal extensions of canonical
curves in the image of ckg for 2 6 k 6 4 (when k > 4 the universal extension is the unique
quartic surface S ⊆ P3 containing C, re-immersed in Pg by the linear system |OS(k)|). They
are similar to the extensions found by Totaro (private communication) in the case g1 = 2 (see
[7, (4.8)] and (3.7) below). The case k = 2 is somewhat exceptional, as h0(NC/P9(−2)) = 1
hence there is no universal extension guaranteed by [8] (see also Remark (3.4)); still it works
out as the others.
— k = 4: the universal extension is P3, in its anticanonical embedding v4(P3) ⊆ P34; it may
also be presented as a quartic hypersurface X4,4 ⊆ P(14, 4) in its anticanonical embedding, in
P34 by |O(4)| (|O(4)| embeds P(14, 4) in P35 as the cone over the 4-Veronese v4(P3) ⊆ P34).
— k = 3: the universal extension has dimension 6, embedded in P23 with index 4; it is again a
quartic X4,3, this time in P(14, 34); the anticanonical of X4,3 is O(12), correspondingly the em-
bedding with index 4 is given by (weighted) cubics (and indeed h0(OX4,3(3)) = 24). Specifically
the equation is as follows. Assume C ⊆ P4 is the complete intersection of the quartic (f = 0)
and the cubic (g = 0). Then X4,3 is defined by

f(x) + x · y = f(x0, . . . , x3) + x0y0 + · · ·+ x3y3 = 0,

where the xi’s and yi’s are the homogeneous coordinates of weight 1 and 3 respectively. Indeed
the general quartic surface in P3 containing C has an equation of the form f + (a0x0 + · · · +
a3x3)g = 0, hence can be obtained by cutting X4,3 by the 4 cubic equations

y0 − a0g(x) = · · · = y3 − a3g(x) = 0.

One gets C by cutting by the fifth cubic g(x) = 0.
— k = 2: we can package together all the quartic surfaces containing a complete intersec-
tion curve of type (2, 4) as a (weighted) quartic hypersurface X4,2 in P(14, 210). This has
anticanonical O(20), hence may be embedded with index 10 by (weighted) quadrics; one has
h0(OX4,2(2)) = 20, so one ends up with X4,2 ⊆ P19 as required. Take C the complete intersec-
tion of the quartic (f = 0) and the quadric (g = 0). Then the equation of X4,2 is

f(x) +
(
xixj

)
06i6j63 · y = f(x) + x2

0y0 + x0x1y1 + · · ·+ x2
3y10 = 0.

The general quartic homogeneous polynomial vanishing along C is of the form f + qg for some
quadratic form q(x) = a0x

2
0 + · · · + a10x

2
3, and one gets the corresponding surface in P3 by

cutting by the 10 degree 2 equations

y0 − a0g(x) = · · · = y10 − a10g(x) = 0.

(3.4) Remark. The case k = 2 above provides interesting insight into Lvovski’s main theorem
in [22]. He proves that if X ⊆ Pn is a smooth, non-degenerate variety which is not a quadric,
then X cannot be extended non-trivially more than α(X) times if α(X) < n, with α(X) =
h0(NX/Pn(−1))− n− 1.

Consider a smooth complete intersection curve C ⊆ P3 of type (2, 4), in its canonical em-
bedding in P8. The construction above proves that C is extendable 11 times, to the 12-fold
X4,2 ⊆ P19, whereas

α(C) = cork(ΦC) = 10.

Thus C ⊆ P8 is extendable strictly more than α(C) times; indeed the assumption “α(C) < 8”
of Lvovski’s theorem does not hold. Note moreover that C ⊆ P8 is not a complete intersection.
This shows (a) that the condition “α(X) < n” is stronger than “X ⊆ Pn is not a complete
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intersection”, and (b) that one may not replace the assumption “α(X) < n” by “X ⊆ Pn is not
a complete intersection” in Lvovski’s theorem.

On the other hand it follows from Lvovski’s theorem that the two Fano’s X4,4 ⊆ P34 and
X4,3 ⊆ P23 constructed in (3.3) are not extendable.

The other complete intersection cases are similar, so we will give less details.

(3.5) g1 = 4. Let k ∈ N \ {0}, and consider the forgetful map ckg : KCk1+3k2 → M1+3k2 ,
g = 1 + 3k2. Its image contains IC(2, 3, k) as a dense subset (the locus of smooth complete
intersection curves of type (2, 3, k) in P4).

g1 = 4
k 2 3 > 4
g 13 28 > 49

dim(fibre) 6 1 0
threefold cubic quadric no

For k = 2 we consider complete intersection curves C of type (2, 2, 3) in P4. Then h0(IC(2)) =
2 and h0(IC(3)) = 11; there is a P1 of quadrics containing C, and for each of these the P10 of
cubics containing C cuts out a P5 of K3’s complete intersection of type (2, 3). Eventually the
fibre (c213)−1(C) has dimension 6. The universal extension is a weighted complete intersection
of type (2, 3), X(2,3),2 ⊆ P(15, 26); it has anticanonical O(6 ·2), hence it is embedded with index
6 in P19 by the linear system of weighted quadrics. The equations of X(2,3),2 are as follows: let
f = g = g′ = 0 be the equations of C, with deg(f) = 3 and deg(g) = deg(g′) = 2; then X(2,3),2
may be defined by the equations{

g(x) + y5 = 0
f(x) + x0 · y0 + · · ·+ x4 · y4 = 0.

with the xi’s and yi’s of weights 1 and 2 respectively. A complete intersection K3 in P4

containing C is the intersection of a quadric of the form g + a6g
′ = 0 and a cubic of the

form f + (a0x0 + · · · + a4x4)g′, which is obtained by cutting X(2,3),2 by 6 quadric equations
y5 − a6g

′ = 0, etc.
For k = 3, a smooth complete intersection C of type (2, 3, 3) is contained in a unique quadric,

and there is a pencil of cubics containing C and independent of the quadric, hence a pencil of
K3 surfaces containing C. The universal extension is a 3-fold, namely the quadric in P4, in its
anticanonical embedding v3(X2) ⊆ P29. This may also be presented in a uniform fashion with
the other extensions: a quadric in P4 is also a complete intersection X(2,3),3 of type (2, 3) in
P(15, 3).

It follows from Lvovski’s theorem that X(2,3),2 ⊆ P19 and X(2,3),3 ⊆ P29 are not extendable.

(3.6) g1 = 5. In this case we consider complete intersection curves of type (23, k) in P5.

g1 = 5
k 2 > 3
g 17 > 37

dim(fibre) 3 0

For k = 2 the curve C is a complete intersection of type (24) in P5. The K3 surfaces
extending it correspond to the planes in the 3-space P(H0(IC(2))), the family of which is
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a P3. The universal extension is a Fano 5-fold X(23),2 complete intersection of type (23) in
P(16, 23), with anticanonical O(3 · 2) and embedded by quadrics in P20. For C with equations
g0 = g1 = g2 = g3 = 0, where gi are forms of degree 2 for 0 6 i 6 3, we may take for X(23),2 the
equations 

g0(x) + y0 = 0
g1(x) + y1 = 0
g2(x) + y2 = 0,

with the xi’s and yi’s of weights 1 and 2 respectively. Lvovski’s theorem implies that X(23),2 ⊆
P20 is not extendable.

For k > 3 there is a unique net of quadrics containing C, hence C is extendable only once.

(3.7) Remark. The case of sextic double planes (g1 = 2, which we studied in details in [7]) is
closely analogous to that of quartics in P3, as indeed a sextic double plane is a sextic hypersurface
in P(13, 3) so in both cases we deal with hypersurfaces. For g1 = 2, the dimension of the general
fibre of ckg is given in the table below (see [7]).

g1 = 2
k 2 3 4 5 6 > 6
g 5 10 17 26 37

dim(fibre) 15 10 6 3 1 0

For k 6 6 we can package together the K3 surfaces extending a curve C in the image of ckg as a
Fano (2 + ν)-fold of index ν in Pg+ν , where ν = dim((ckg)−1(C)), which is the image of a sextic
hypersurface in X6,k ⊆ P(13, 3, kν) (with equation similar to that given in (3.3)) by the linear
system of weighted k-ics.

For k 6 2 this linear system is hyperelliptic, i.e., it gives a 2 : 1 map. For k = 3, we have
cork(ΦC) = 10 and h0(NC/P9(−2)) = 1, and X6,3 is an example similar to that in Remark (3.4),
which shows the sharpness of Lvovski’s theorem. For k 6 4 the Fano (2 + ν)-fold X6,k ⊆ Pg+ν

is not extendable, by Lvovski’s theorem. For k = 6 in fact X6,6 is merely P(13, 6) itself in its
anticanonical embedding.

4 – Curves on Mukai varieties
In this section we consider the cases g1 = 6, 7, 8, 9, 10.

4.1 – Introduction and a conjecture
(4.1) For g1 = 7, 8, 9, 10, there exists a variety Mg1 ⊆ P(Ug1), homogeneous for some simple
algebraic group G of which Ug1 is an irreducible representation, such that the general prime K3
surface of genus g1 is a linear section of Mg1 [23, Cor. 0.3]. These groups, representations and
homogeneous varieties are recalled in the table below.

g Gg dim(G) Ug dim(Ug) Mg dim(Mg) kg
7 Spin10 45 ∆+ 16 S10 10 4
8 SL6 35 ∧2C6 15 G(2, 6) 8 3
9 Sp6 21 ∧〈3〉C6 14 LG(3, 6) 6 2
10 G2 14 g2 14 G2/P2 5 2
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Notation: we set n(g) = dim(Ug)−1. We will sometimes drop the subscript g in order to lighten
the notation.

We will not use directly all the information in this table, so the reader unfamiliar with
representation theory may safely read only those columns giving dimensions.

Two smooth surface linear sections of Mg1 are projectively equivalent if and only if one is
image from the other by an automorphism coming from G [23, Thm. 0.2]. The proof of the
latter statement may be adapted to prove the same result for smooth linear sections of higher
dimension, but it breaks down in the case of curve linear sections of Mg1 .

In the present article we use ribbons to transport the results proved by Mukai for surface
sections of Mg1 to curve sections, see (4.3) and (4.4) below.

A curve in the image of ckg is a complete intersection C of type (1m−2, k) in Mg1 (m =
dim(Mg1)), hence for k > 1 there is a unique surface linear section of Mg1 containing C. The
description of the fibre (ckg)−1(C) depends on the truth of the Conjecture (4.3) below. Before
we state it, let us describe the analogous results for g1 = 6.

(4.2) For g1 = 6 there is the Mukai–Fano threefold V ⊆ P6 which is a linear section of
G(2, 5) ⊆ P9 in its Plücker embedding; it has index 2 and degree 5. The generic prime K3
surface of genus 6 is a section of V by a quadric in P6; one has Aut(V ) ∼= PGL(2), and two
smooth quadric sections of V are projectively isomorphic if and only if one is image from the
other by an automorphism of V [23, Thm. 4.1].

Smooth surface linear sections of V all are Del Pezzo surfaces of degree 5, in particular they
are all isomorphic. Moreover, a general genus 6 curve C in its canonical embedding is a quadric
section of the Del Pezzo surface of degree 5 in P5, and therefore has a 6-dimensional family
of models as a complete intersection of type (1, 2) on V ; since Aut(V ) is only 3-dimensional,
this shows that in general two isomorphic smooth complete intersections of type (1, 2) are not
conjugate under the action of Aut(V ).

(4.3) Conjecture. Let g1 = 7, 8, 9, 10, and m = dim(Mg1). For all k > 1, two smooth complete
intersection curves of type (1m−2, k) in Mg1 are projectively isomorphic if and only if they are
conjugate under the action of Gg1 . For all k > 2, two smooth complete intersection curves of
type (2, k) in V ⊆ P6 are projectively isomorphic if and only if they are conjugate under the
action of Aut(V ).

(4.4) Statement of results. We prove a weak form of Conjecture (4.3) for g1 = 7, 8, 9, 10, see
Corollary (4.13) and Proposition (4.14). If k = 1, a direct analysis of the representations Ug1

carried out in [12] shows that a general canonical curve C has only finitely many models as a
linear section of Mg1 up to the action of G, see (4.7); we show (Corollary (4.13)) that there is
in fact only one such model if C is general.2

If k > 2, we show (Proposition (4.14) and Remark (4.18)) that a general complete intersection
curve of type (1m−2, k) has only finitely many models on Mg1 up to the action of G. From this
we can deduce (Corollary (4.16) and Remark (4.18)) that the moduli map ckg is birational, and
a general complete intersection curve C of type (1m−2, k) on Mg has cork(ΦC) = 1. Thus the
canonical model of C can be extended only once, to a K3 surface wich is the reembedding by
k-ics of a linear section of Mg1 .

On our way, we show that the Mukai variety in P(Ug1) is the universal extension of its
smooth curve linear sections, see Proposition (4.9). In particular it is not extendable, as was
already observed in [9].

2After finishing this article, we have found out that for g1 = 7, 8, 9 this had already been proven by Mukai
himself [24].
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(4.5) When g1 = 6, we cannot apply the same arguments because canonical curves of genus 6
do not satisfy property N2. However for k = 2 the situation is pretty well understood.

A curve C corresponding to a general point in the image of c221 is a complete intersection
of type (2, 2) in V . The canonical model of C in P20 is a linear section of V anticanonically
embedded in P22. This implies by [25, Prop. 6] and [3, Prop. 5.4] that the fibre (c221)−1(C)
has dimension at least 1. In fact, it is proven in [9] that cork(ΦC) = 2, hence the dimension
of the fibre is exactly 1. Thus V ⊆ P22 is the universal extension of C; in particular it is not
extendable.

4.2 – Useful results
In the statements below, we use the notation of (4.1).

(4.6) Theorem [12]. Let g = 7, 8, 9, 10, and let kg = 4, 3, 2, 2 for g = 7, 8, 9, 10, respectively.
Let P ⊆ Ug be a generic vector subspace such that

(?) min
(
codimUg

(P ),dim(P )
)
> kg.

Then the stabilizer of P under the action of G is trivial.

(By the stabilizer of P under the action of G, we mean the subgroup of those γ ∈ G such that
γ.P = P ; we do not ask that γ acts as the identity on P ). The situation when (?) is an equality
is analyzed in detail in [12].

Following Mukai’s arguments in [23], this implies that a general linear section of the Mukai
variety Mg of positive dimension and codimension k > kg has only trivial automorphisms, see
[12, Thm. 1].

(4.7) Theorem (4.6) implies that for a general canonical curve C of genus g = 7, 8, 9 (resp. a
general canonical of genus 10 lying on a K3 surface), up to the action of G there are finitely
many linear sections of Mg isomorphic to C. Consider the rational map

cMg
: G(g − 1,P(Ug))/G 99KMg

mapping the orbit of a general (g − 1)-dimensional subspace Λ ⊆ P(Ug) to the modulus of the
curve Λ ∩Mg. It is dominant if g 6= 10 by [23, Thm. 6.1], and dominant onto a divisor inM10
if g = 10 by [11]. By Theorem (4.6), the source has dimension

dim
(
G(g − 1,P(Ug))

)
− dim(G),

and a direct computation shows that this equals dim(Mg) if g 6= 10, resp. dim(M10) − 1 if
g = 10. This implies that cMg

is generically finite, which proves that for general C there are
finitely many linear sections of Mg isomorphic to C, up to the action of G.

(4.8) Lines through a point in a Mukai variety. The results in this paragraph follow
from [21, Thm. 4.8]. Let g = 7, 8, 9, 10, and Mg be a Mukai variety. For all x ∈ Mg, the
variety of lines contained in Mg and passing through x is itself a homogeneous variety which we
shall denote by M ′g. We give below a description of M ′g, but the only fact we shall use is that
dim(M ′g) = dim(Mg)− 4.

g Mg dim(Mg) M ′g dim(M ′g)
7 S10 10 G(2, 5) 6
8 G(2, 6) 8 P1 ×P3 4
9 LG(3, 6) 6 P2 2
10 G2/P2 5 P1 1
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In [21, Thm. 4.8] there is a recipe in terms of Dynkin diagrams to findM ′g. The homogeneous
varities we consider are of the form G/P , with G a complex Lie group with semisimple Lie
algebra, and P a maximal parabolic subgroup; the diagrams below encode the group G, and the
coloured vertex encodes the subgroup P . For these matters we refer to [14, §23.3]. The recipe
for finding M ′g is that one should cancel the coloured vertex, and colour those vertices that were
adjacent to the cancelled vertex.

g = 7, S10: gives G(2, 5): in its Plücker embedding.

g = 8, G(2, 6): gives P1 ×P3: as a Segre variety.

g = 9, LG(3, 6): gives P2: embedded as a Veronese surface in P5, as
the double edge indicates.

g = 10, G2/P2: gives P1: embedded as a rational normal cubic, as the triple
edge indicates, contained in a hyperplane in P4 given by the contact structure on the adjoint
variety G2/P2.

There exist projective constructions of the Mukai varieties explaining this correspondence in
another way, which are instances of the general construction given in [20].

4.3 – Results and proofs
Let g1 ∈ {7, 8, 9, 10}.

(4.9) Proposition. Let [C] ∈ Mg1 be a general point if g1 6= 10, (resp. a general point in
im(c110) if g1 = 10) and consider C in its canonical embedding.
(4.9.1) For all e ∈ ker(TΦC), the ribbon Ce ⊆ Pg1 is integrable to a unique surface (which is a
K3 for general e).
(4.9.2) The Mukai variety Mg1 is its universal extension.

The generality condition on [C] may be explicited as the requirement that C is a smooth
linear section of the Mukai variety Mg1 , see Corollary (4.11).

Proof of (4.9.1). In this paragraph, we show the first part of the proposition. If g1 6 9,
by [23, Thm. 6.1] the general curve of genus g1 lies on a K3, so the map c1g1

: KC1
g1
→ Mg1

is dominant, and its generic fibre has dimension 22 − 2g1; on the other hand, we know that
cork(ΦC) = 23− 2g1 by [10, Cor. 4.4]. If g1 = 10, by [11] im(c110) is a divisor inM10, and the
general fibre of c110 has dimension 3 = cork(ΦC) − 1. The upshot is that in both cases there is
a family of surface extensions of C of the same dimension as the moduli space P(ker(TΦC)) of
ribbons on C.

Moreover C has Clifford index b g1−1
2 c > 2, so it satisfies property N2. It follows that

for every e ∈ ker(TΦC) the corresponding ribbon is integrable to at most one surface, see
Proposition (2.3). By the dimension count above, this implies that the general such ribbon
must indeed be integrable; we shall see in the proof of (4.9.2) that they are in fact all integrable,
which will end the proof of the first part of the proposition. 2

(4.10) Lemma. Let Λ be a (g1−1)-dimensional linear subspace of P(Ug1) such that C = Λ∩Mg1

is a smooth curve. Then there does not exist any g1-dimensional linear space Λ̃ ⊆ P(Ug1)
containing Λ, and such that Λ̃ ∩Mg1 is the cone over C (with vertex a point).
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Proof. Let v ∈ M = Mg1 be a point such that the cone J(v, C) is contained in M . For all
x ∈ C the line 〈v, x〉 is contained in M hence in the projective tangent space TM,v, a Pm,
m = dim(M). Since C spans Λ, it follows that Λ̃ = 〈v, C〉 is a Pg1 contained in TM,v. On the
other hand the lines contained in M and passing through v form a cone Kv over M ′ ⊆ P(TM,v)
(the homogeneous variety indicated in (4.8)) with vertex the point v. Since M ′ has dimension
m− 4, the cone Kv is (m− 3)-dimensional contained in TM,v. Since also Λ̃ is contained in the
m-dimensional TM,v, the intersection Kv ∩ Λ̃ must be at least (g1 − 3)-dimensional, which is in
contradiction with the fact that Λ ∩M is a curve. 2

Proof of (4.9.2). Let Λ be a general Pg1−1 ⊆ P(Ug1), and C = Λ ∩ Mg1 . We denote by
P(Ug1)/Λ the closed subset of G(g1,P(Ug1)) of all linear subspaces of P(Ug1) of dimension g1
containing Λ. We want to prove that the rational map

r : Λ̃ ∈ P(Ug1)/Λ 99K 2CΛ̃∩Mg1
∈ P(ker(TΦC))

is an isomorphism (this is the map which sends Λ̃ to the ribbon of C in the surface Λ̃ ∩Mg1).
This is a projectivity (i.e., it is induced by a linear map at vector space level) between

projective spaces of the same dimension n(g1) − g1 (remember that n(g1) = dim(P(Ug1)), and
the values of cork(ΦC) are given in the proof of (4.9.1)). Therefore it suffices to prove that the
associated linear map between vector spaces has trivial kernel. Since Cliff(C) > 2 the trivial
ribbon over C may only be integrated to the cone over C (Proposition (2.3)). By Lemma (4.10)
there is no Λ̃ cutting out the cone over C in Mg1 , so our map r is indeed injective, hence an
isomorphism. 2

(4.11) Corollary. Let C be a smooth curve linear section of Mg1 . Then (4.9.1) and (4.9.2)
hold for C. In particular, the corank of the Gauss–Wahl map ΦC is the same for all smooth
curve linear sections of Mg1 .

Proof. By Lemma (4.12) below, one has Cliff(C) > 2. Therefore, Lemma (4.10) and the proof
of (4.9.2) show that the map

r : Λ̃ ∈ P(Ug1)/Λ→ 2CΛ̃∩Mg1
∈ P(ker(TΦC))

(in the same notation as in the proof of (4.9.2)) is an injective linear map of projective spaces.
This implies that the universal extension of C is an extension ofMg1 . ButMg1 is not extendable
(because for a general C ′ curve linear section of Mg1 , Mg1 is the universal extension of C ′ by
what we have already proved), therefore the Mukai variety is also the universal extension of C,
and the corank of the Gauss–Wahl map of C equals that of a general curve linear section of
Mg1 . 2

(4.12) Lemma. Let g1 = 7, 8, 9, 10 and C be a smooth linear section of the Mukai variety Mg1 .
Then one has Cliff(C) > 2.

Proof. For g1 = 7, 8, 9, Mukai [24, 26, 27] has proven that a curve of genus g1 is a linear section
of Mg1 if and only if it has no g1

5 , resp. no g2
7 , resp. no g1

6 . On the other hand a curve of genus
g1 < 10 has Clifford index strictly larger than 2 if and only it has no g1

4 . So for g1 = 7, 9, any
smooth curve linear section of Mg1 has Clifford index strictly larger than 2.

For g1 = 8 we use a different argument. By [19] the Mukai variety M8 = G(2, 6) satisfies
the property N2. Then we find by applying repeatedly Green’s hyperplane sections theorem
[15, Thm.3.b.7] that C enjoys property N2 as well. In turn this implies by the Green–Lazarsfeld
theorem [15, Appendix] that Cliff(C) > 2.
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For g1 = 10, it is proven in [11, Rmk. 2.7] that any smooth curve linear section of M10 has
Clifford index strictly larger than 2. 2

(4.13) Corollary. Two smooth curve linear sections of Mg1 are isomorphic if and only if they
are conjugate under the action of G.

Proof. Let C and C ′ be two distinct general curve linear sections of Mg1 , and assume that they
are isomorphic (being canonical curves, they are isomorphic as abstract curves if and only if
they are isomorphic as polarized varieties).

By (4.9.2) (Corollary (4.11)) we may choose two K3 surfaces S and S′ sections of Mg1

containing C and C ′ respectively, and such that the two ribbons 2CS and 2C ′S′ are isomorphic.
By unicity of the integral of this ribbon, there exists an isomorphism of polarized surfaces
φ : (S,C) ∼= (S′, C ′) taking C to C ′. By [23, Thm. 0.2] there exists γ ∈ G inducing φ, and in
particular γ.C = C ′. 2

(4.14) Proposition. Let C be a general complete intersection of type (1ν , 2) in Mg1 , ν =
n(g1) − g1. There are at most finitely many curves C ′ complete intersection of the same kind,
projectively isomorphic to C but not conjugate to it modulo G.

Proof. We argue by contradiction and assume that for general C as above there exists a positive
dimensional family of curves C ′ projectively isomorphic to it but not G-conjugate.

We claim that a fortiori the same holds for all (even singular) complete intersection curves of
type (1ν , 2) in M = Mg1 . Indeed, as C moves in the family of such complete intersections, the
dimension of the family of curves inM projectively isomorphic to C (resp. of the stabilizer of C in
G) is upper semi-continuous, so that the family of curves isomorphic to C gets bigger whereas
that of curves conjugate to C gets smaller. The second of these semi-continuity statements
follows from the fact that there is a universal family of stabilizers over the family of complete
intersection curves in M , which we shall denote by IC(1ν , 2;M). For the former, we have to
consider the rational map from complete intersections in M to the moduli space Mg, g =
1 + 4(g1 − 1); one may resolve its indeterminacy locus by suitably blowing-up IC(1ν , 2;M); the
obtained morphism gives us the semi-continuity we want.

In particular the assumption we made by contradiction holds for C = 2C1, a very general
ribbon over a curve linear section C1 of M , which is indeed a complete intersection of type
(1ν , 2) inM for which the quadratic equation is a square. Our contradiction assumption implies
that there exists another ribbon C ′, projectively isomorphic but not G-conjugate to C (we need
to assume that the general complete intersection C has infinitely many projectively isomorphic
but not conjugate copies to reach this conclusion, to avoid that finitely many such copies all
degenerate to the same one with multiplicity, as C degenerates to a ribbon).

The ribbon C ′ is incarnated on a copy C ′1 of C1, which is a curve linear section of M as
well. Both C and C ′ are integrable to surfaces S and S′ respectively, both linear sections of M .
By the unicity of the extension (see (2.3)), there is a projectivity ω such that ω(S) = S′ and
ω(C) = C ′. By [23, Thm. 0.2], S and S′ are conjugate under the action of G, so there exists
γ ∈ G such that γ.S = S′. The very generality of C implies that of S, so we may assume that
S has no non-trivial projective automorphisms by Proposition (2.4.2). This implies that ω = γ,
hence γ.C = C ′, a contradiction. 2

(4.15) Remark. The rational map from IC(1ν , 2;M) to Mg considered in the proof is inde-
terminate on the locus corresponding to ribbons 2C1, but this indeterminacy may be generically
resolved at a general point of the ribbons locus by a single blow-up along this locus: a general
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point in the exceptional divisor lying over a ribbon 2C1 is mapped to a double cover of C1
branched over a bicanonical divisor, as one sees by stable reduction.

(4.16) Corollary. Let k = 2 and g = 4g1 − 3. For general [C] ∈ im(c2g), one has

dim
(
(c2g)−1(C)

)
= cork(ΦC)− 1 = 0.

Proof. Being a general member of the image of c2g, the curve C has a model as a complete
intersection of type (1ν , 2) in Mg1 . Such a curve spans a Pg1 in P(Ug1), so there is a unique
surface S linear section of Mg1 containing it. For γ ∈ G, the surface spanned by γ.C is γ.S, and
the two pairs (S,C) and (γ.S, γ.C) give the same point in the fibre of c2g over C.

By Proposition (4.14) C has finitely many models as a complete intersection in Mg1 , up
to the action of G. Therefore the fibre (c2g)−1(C) has dimension 0. By Proposition (1.1), the
results of [8] apply to C, hence dim

(
(c2g)−1(C)

)
= cork(ΦC) − 1 (and in fact the fibre consists

of a single point). 2

(4.17) Corollary. The stabilizer of a general complete intersection curve of type (1ν , 2) in Mg1

under the action of G is finite.

Proof. There is a dominant rational map

IC(1ν , 2;M)/G 99K im(c2g),

and by Proposition (4.14) it is generically finite. Therefore its source and target have the
same dimension. By Corollary (4.16) the dimension of the target equals that of KC2

g. A direct
computation shows that

dim(KC2
g) = dim

(
IC(1ν , 2;M)

)
− dim(G),

and the assertion follows. 2

(4.18) Remark. The statements (4.14), (4.16), and (4.17) generalize mutatis mutandis to
general complete intersection curves of type (1ν , k) for all k > 2. To do so, one ought to replace
in the proofs the ribbons 2C1 by “higher order ribbons” kC1, cut out by ν linear equations and
one k-th power of a linear equation, and note that 2C1 ⊆ kC1.

We conclude by noting that we cannot directly reproduce the argument of Corollary (4.13) to
prove that « two very general complete intersection curves of type (1ν , 2) in Mg1 are isomorphic
if and only if they are conjugate under the action of G », because of the possibility that two
non isomorphic curves C and C ′ in Pg1 may give the same canonical curve after reimmersion
in Pg; in other words the problem is that the canonical class may have distinct square roots.

4.4 – Maximal variation
(4.19) Proposition. Let g1 = 7, 8, 9 (resp. g1 = 10), and C be a general genus g1 curve (resp.
a curve of genus 10 general among those that lie on a K3 surface). Let S be a polarized K3
surface having C as a hyperplane section. There are only finitely many members C ′ ∈ |OS(C)|
that are isomorphic to C.

As in Proposition (4.9), the generality condition on C may be replaced by the condition that
C is a smooth linear section of the Mukai variety Mg1 , see Corollary (4.11).
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Proof. By Proposition (4.9) there exists a universal family of surface extensions of C defined over
P
(
ker(TΦC)

)
and a rational map s : P

(
ker(TΦC)

)
99K Kcan

g1
, which sends a (non-trivial) ribbon

over C to the modulus of its unique K3 integral. We may thus apply [8, Prop. 8.4] and conclude
that s|U is finite, with U the dense open subset on which s is well-defined. In particular the
ribbons 2C ′S of the various copies C ′ of C in |OS(C)| are only finitely many (in other words:
the first infinitesimal neighbourhoods of C ′ in S fall into finitely many isomorphism classes).

On the other hand, arguing exactly as in [8, Cor. 8.6] we conclude that for all ribbon Ce over
C the copies C ′ of C in |OS(C)| such that 2C ′S = Ce are finitely many, and this ends the proof.

Before we close this proof, we emphasize that we have all the necessary assumptions for the
arguments of [8, Prop. 8.4] and [8, Cor. 8.6] to apply without any single change. There the
assumption that “g > 11 and Cliff(C) > 2” is made only to ensure that every ribbon over C is
integrable to a unique surface, and this in the present situation is granted by Proposition (4.9).
2

(4.20) Remark. In fact, if S is general then C and C ′ have the same ribbon in S only if they
are the same curve. Indeed if C and C ′ have the same ribbon, then by Proposition (2.3) there
exists a projective automorphism of S mapping C to C ′. By [12, Thm. 1] the automorphism
group of S is trivial, hence C = C ′.

(4.21) Corollary. Let (S,L) be a general primitively polarized K3 surface of genus g1 =
7, 8, 9, 10. Then for general C ∈ |L|, there are only finitely many members C ′ ∈ |L| such
that C and C ′ are isomorphic.

Proof. The generality assumptions ensure that C is liable to Proposition (4.19). 2

(4.22) Problem. If C is a general curve of genus g1 6 6, then it is not true that the integral
of a ribbon over C is unique, so both the arguments given in [8] to prove [8, Prop. 8.4] and [8,
Cor. 8.6] break down, and it is not clear to us whether Proposition (4.19) holds in this case.

5 – Theta-characteristics, spin curves, etc.

In this section we will discuss some properties of S
1
k ,g1
g , of T

1
k ,g1
g and of im(ckg).

(5.1) Sextic double planes. First we consider K3 surfaces which are double cover of the
projective plane branched along a smooth sextic curve. In relation with these surfaces we can
consider K2

5. The image of c25 is the hyperelliptic locus inM5, and this equals T
1
2 ,2

5 . Indeed if
(C,L) ∈ S

1
2 ,2
5 , |L| gives a special g2

4 on C and by Clifford’s Theorem C is hyperelliptic.
The image of c310 is the locus of plane sextics inM10, which coincides with T

1
3 ,2

10 . In fact a
cubic root θ of the canonical bundle K with h0(θ) = 3 is such that |θ| = g2

6 .
For k > 4 it is more complicated to understand S

1
k ,2
1+k2 , T

1
k ,2

1+k2 and whether the equality holds
in (1.4.1).

(5.2) Complete intersections. Next we consider the cases g1 = 3, 4, 5, in which the general
polarised K3 surface (S,L1) with L1 a primitive line bundle with (L1)2 = 2g1− 2 is a complete
intersection. In this case we face the following question.
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(5.2.1) Question. Let g1 = 3, 4, 5. Is it true that for any k > 2 the moduli space S
1
k ,g1
g is

irreducible and that the general member of S
1
k ,g1
g is a complete intersection of type (4, k) in P3

if g1 = 3, of type (2, 3, k) in P4 if g1 = 4, and of type (2, 2, 2, k) in P5 if g1 = 5?
It is worth noticing that for k = 2 we have

g1 3 4 5
dim(KC2

g)− expdim(T
1
2 ,g1
g ) 10 6 3

dim(fibre of c2g) 10 6 3

where the values on the first line are computed with (1.6.1), and those on the second line are
obtained as in Section 3 for g1 = 3.

In the rest of this section we discuss Question (5.2.1). First we give a definition. We say
that an irreducible component S of S

1
k ,g1
g is birational if for (C, θ) ∈ S general the linear series

|θ| determines a birational map. There are three levels of problems related to Question (5.2.1):
(a) prove that S

1
k ,g1
g is irreducible, and its general element is a complete intersection of type

(4, k) in P3 if g1 = 3, of type (2, 3, k) in P4 if g1 = 4, and of type (2, 2, 2, k) in P5 if g1 = 5;
(b) prove that S

1
k ,g1
g has only one birational irreducible component and its general element is a

complete intersection of type (4, k) in P3 if g1 = 3, of type (2, 3, k) in P4 if g1 = 4, and of type
(2, 2, 2, k) in P5 if g1 = 5;
(c) prove that the closure of the family of complete intersections of type (4, k) in P3 if g1 = 3, of
type (2, 3, k) in P4 if g1 = 4, and of type (2, 2, 2, k) in P5 if g1 = 5, is an irreducible component
of S

1
k ,g1
g .
A justification for restricting our attention to the birational components is that there are

in general several non-birational components, and we do not care entering the corresponding
botanic. We provide examples in (5.5), (5.6) and (5.7) below.

Also, one could try to characterize the birational components by some Brill–Noether theoretic
property. We will see examples of this in Propositions (5.14), (5.16), (5.17) and (5.20).

We now answer affirmatively to problem (c) above:

(5.3) Proposition. For 3 6 g1 6 5 and for any integer k > 2 the closure of the family of
complete intersections of type (4, k) in P3 if g1 = 3, of type (2, 3, k) in P4 if g1 = 4, and of type
(2, 2, 2, k) in P5 if g1 = 5, is an irreducible component of S

1
k ,g1
g .

Proof. Let S be an irreducible component of S
1
k ,g1
g containing the family of complete intersections

of type (4, k) in P3 if g1 = 3, of type (2, 3, k) in P4 if g1 = 4, and of type (2, 2, 2, k) in P5 if
g1 = 5. We have to prove that if (C, θ) ∈ S is general, it corresponds to a complete intersection
of the same type in Pg1 . Note that the linear series |θ| has dimension g1, it is very ample, and
maps C to a smooth curve in Pg1 . Since a complete intersection is projectively normal, then
also C is projectively normal in Pg1 . Moreover kθ = KC . By Gherardelli’s Theorem (see [1, p.
147]), this settles the case g1 = 3.

Next we treat the case g1 = 4. Let C ′ be a smooth complete intersection of type (2, 3, k) in
P4. For any positive integer h we have, by semicontinuity and by projective normality,

h0(OP4(h))− h0(IC(h)) = h0(OC(h)) 6 h0(OC′(h)) = h0(OP4(h))− h0(IC′(h))

hence h0(IC(h)) > h0(IC′(h)). On the other hand, by semicontinuity, we have h0(IC(h)) 6
h0(IC′(h)) so that equality holds. This immediately implies that C, as well as C ′, is a complete
intersection of type (2, 3, k).
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The case g1 = 5 is similar and we mostly leave it to the reader. In this case we find a net of
quadrics containing C. The base locus of this net is a complete intersection surface of type (23)
because it so happens for complete intersection curves, of which C is a deformation. 2

It is useful, in order to compute the number of moduli of non-birational components of S
1
k ,g1
g ,

to record the following well known lemma.

(5.4) Lemma. The following loci inMg have the indicated dimensions:
— k-gonal locusM1

g,k: 2g + 2k − 5;
— locus of k-elliptic curves, i.e., k : 1 covers of elliptic curves: 2g − 2;
— k : 1 covers of a genus h > 1 curve: 2g − (2k − 3)h+ 2k − 5.

Proof. A k : 1 cover of genus g of P1 amounts to the datum of 2g − 2 + 2k branch points, and
these have 2g − 2 + 2k − 3 moduli.

A k : 1 cover of genus g of an elliptic curve E amounts to the datum of 2g−2 branch points,
and these have 2g − 2− 1 moduli. There is one additional modulus for the choice of E.

A k : 1 cover of genus g of a genus h curve C amounts to the datum of 2g − 2 − k(2h − 2)
branch points, and each points gives a modulus. To this we have to add the dimension 3h − 3
ofMh. 2

(5.5) Hyperelliptic curves. Let (C, l) be a genus g hyperelliptic curve. By this we mean that
l is the g1

2 on C. Then KC = (g− 1)l. If g ≡ 1 mod r, then θ = g−1
r l is such that rθ = KC , and

one has h0(θ) = g−1
r + 1. We thus get a locus

Hg, g−1
r
⊆ S

1
r ,

g−1
r

g

of dimension 2g − 1. By Clifford’s Theorem, all points in Hg, g−1
r

correspond to hyperelliptic
curves.

More generally, assume there exist non-negative integers a, b, h such that b(2a+ h) = g − 1,
and h 6 2g+ 2. Then we can choose h distinct Weierstrass points p1, . . . , ph of C, and consider
the linear series θ = al+p1 + · · ·+ph. Then 2bθ = KC and h0(θ) = a+ 1. In this way we obtain
a locus

Hhg,a ⊆ S
1

2b ,a
g = S

2a+h
2g−2 ,a
g

of dimension 2g − 1.

(5.6) Bielliptic curves. Let us fix an integer k > 2 and an integer g1 > 1 + 2
k−1 . Set, as

usual, g = 1 + k2(g1 − 1). A bielliptic canonical curve C of genus g in Pg−1 sits on a cone S
with vertex a point p over an elliptic normal curve E of degree g − 1 spanning a hyperplane of
Pg−1, and it is cut out on S by a quadric hypersurface not passing through p. The bielliptic
involution γ1

2 is cut out on C by the rulings of S. The linear series gg−2
2g−2 cut out on C by the

hyperplanes through p is composed with the bielliptic involution γ1
2 , being the pull-back on C

of the complete hyperplane series gg−2
g−1 on E. The latter series is certainly divisible by k, any of

its k-tuple divisors is a gk(g1−1)−1
k(g1−1) on E, its pull-back θ on C is such that (C, θ) ∈ S

1
k ,k(g1−1)−1
g ,

and k(g1 − 1)− 1 > g1 by the hypothesis g1 > 1 + 2
k−1 . In this way we get a locus

Eg,k ⊆ S
1
k ,k(g1−1)−1
g

of dimension 2g − 2. As we will see later in the case k = 2, Eg,k sometimes is a component of
S

1
k ,k(g1−1)−1
g , and sometimes not.
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(5.7) Double covers of genus 2 curves. Again we fix integers k > 2 and g1 > 1 + 3
k−1 and

set g = 1 + k2(g1 − 1). Fix in Pg a line L and a subspace Π of dimension g − 3 skew with L.
Consider in Π a linearly normal, smooth genus two curve Γ of degree g− 1. Consider the g1

2 on
Γ as a 2 : 1 morphism f : Γ→ L. For each point p ∈ Γ consider the line 〈p, f(p)〉, and take the
union S of all such lines when p varies in Γ. Then S is a scroll of genus 2 and degree g+1, having
L as a double directix line. Take the intersection curve C of S with a quadric intersecting L in
two general points q1, q2, off the four rulings issuing from q1, q2. The curve C is smooth, does
not intersect L, and it is easy to see that it has genus g, hence it is a canonical curve with a 2 : 1
morphism onto the genus 2 curve Γ, and the genus 2 involution γ1

2 is cut out on C by the rulings
of S. The base point free linear series gg−3

2g−2 cut out on C by the hyperplanes containing L is
composed with the genus 2 involution γ1

2 , being the pull-back on C of the complete hyperplane
series gg−3

g−1 on Γ. This series is certainly divisible by k, any of its k-tuple divisors is a gk(g1−1)−2
k(g1−1)

on Γ, its pull back θ on C is such that (C, θ) ∈ S
1
k ,k(g1−1)−2
g , and k(g1 − 1) − 2 > g1. In this

way we get a locus
Dg,k ⊆ S

1
k ,k(g1−1)−2
g

of dimension 2g − 3.

(5.8) Curves on quadrics in P3. Fix an integer k > 3. We shall now consider irreducible
curves of degree 4k and geometric genus 1 + 2k2 that lie on a quadric in P3, and study the
possibility that the pull-back of the hyperplane bundle is a k-th root of the canonical bundle on
the normalization.

We look at the case k = 3 and we consider irreducible curves of type (6, 6) on a smooth
quadric S = P1 × P1. These curves must have exactly 6 nodes, or equivalent singularities, to
have genus 19. Let us assume they have only nodes. For such a curve Γ the adjoint system
KS + Γ has bidegree (4, 4), so we find a 3-rd root of the canonical bundle on the normalization
C when the 6 nodes lie on a plane conic section D of S, and are the complete intersection of Γ
and D. Let us check that the curves in question exist indeed.

Fix an irreducible conic D on S and 6 general points p1, . . . , p6 on it. Consider the linear
system L of curves of type (6, 6) singular at p1, . . . , p6. One has

dim(L) > 48− 3 · 6 = 30.

Note that L contains the subsystem L′ consisting of the curves containing D as a fixed compo-
nent, with variable part consisting of curves of type (5, 5) containing p1, . . . , p6. One has

dim(L′) = 35− 6 = 29

(the points p1, . . . , p6 clearly impose independent conditions to curves of type (5, 5)) and the
general curve in L′ has nodes at p1, . . . , p6. Since L′ is strictly contained in L, we see that the
general curve in L is irreducible, has nodes at p1, . . . , p6 and no other singularity, so it is of the
required type. Note that in fact dim(L) = 30. Indeed, with only one condition D splits off the
curves of L and the residual system is just L′, which therefore has codimension 1 in L.

This construction gives us a locus S inside S
1
3 ,3
19 . Let us compute its dimension. The choice

of the plane section D of S depends on 3 parameters. The choice of p1, . . . , p6 on D depends on
6 parameters. The linear system L has dimension 30. The automorphisms of P1 × P1 have 6
dimensions. In conclusion we find dim(S) = 33. Note that one can make the same construction
on a quadric cone, thus getting curves in the closure of S.

It is interesting to compare the dimension of S with the dimension of the image of c319, which
is 34 (see Section 3). Since dim(S) < dim(im(c319)), this suggests the following conjecture.

18



(5.8.1) Conjecture. The locus S is contained in the closure of im(c319).

It would be tempting to see the above example as a particular case of a more general situation.
Namely, for every integer k > 3 one would like to consider irreducible curves of type (2k, 2k) on
P1 × P1, with exactly 2k(k − 2) nodes, so that their genus is 1 + 2k2. For such a curve Γ, in
order to have a k-th root of the canonical bundle on the normalization C, the 2k(k − 2) nodes
should lie on a curve D of type (k− 2, k− 2), and should be the complete of intersection Γ and
D. However, as soon as k > 4, it is not at all clear that irreducible curves of the required type
exist indeed. It is also possible to consider similar examples on rational normal scrolls in P4

and P5 respectively; these pose the same kind of questions, which we don’t answer in this text.

5.1 – Theta-characteristics (the case k = 2)

The case of theta-characteristics is special in that we have an expected dimension for S
1
2 ,g1
g or

equivalently for T
1
2 ,g1
g .

(5.9) g1 = 3 and k = 2. Consider the locus H9,4 ⊆ S
1
2 ,4
9 ⊆ S

1
2 ,3
9 introduced in paragraph (5.5).

The elements in H9,4 are of the type (C, 4l), where (C, l) is a genus 9 hyperelliptic curve. One
has h0(4l) = 5 (odd), hence (C, 4l) cannot be a specialization of some (C1, θ) ∈ S

1
2 ,3
9 with

h0(θ) = 4 (even) by Theorem (1.5) (the invariance of the parity is due to Mumford [28]). Note
that dim(H9,4) = 17, and this agrees with Theorem (1.5) because

17 = dim(H9,4) > dim(M9)− 4(4 + 1)
2 = 14.

Let M be any irreducible component of S
1
2 ,3
9 whose general element (C, θ) is such that

h0(θ) is even. By Clifford’s Theorem, if (C, θ) is general in M , then h0(θ) = 4. Moreover, by
Theorem (1.5) one has

(5.9.1) dim(M) > dim(M9)− 3(3+1)
2 = 18.

Note that the locus H2
9,3 consisting of hyperelliptic curves (see paragraph (5.5)), does not fill

up an irreducible component of S
1
2 ,3
9 because it has only dimension 17 and it is not contained

in H9,4 by the constancy of h0(θ).

(5.10) Theorem. S
1
2 ,3
9 has two irreducible components, one equal to H9,4 and the other whose

general element is a complete intersection curve of type (2, 4) in P3 (see Proposition (5.3)).

Proof. Let M be an irreducible component of S
1
2 ,3
9 containing H9,4. If (C, θ) is general in M ,

by constancy of the parity one has h0(θ) = 5, so M coincides with H9,4 by Clifford’s Theorem.
Let now M be an irreducible component of S

1
2 ,3
9 whose general element (C, θ) has h0(θ) = 4,

so |θ| is a g3
8 . By (5.9.1), C is not hyperelliptic, since dim(M1

9,2) = 17. Let us show that θ
determines an embedding of C in P3.

Let b be the number of base points of |θ|. Then |θ| induces a special g3
8−b hence b < 2 by

Clifford’s Theorem. If b = 1, then the g3
7 must give a birational map since 7 is prime. This is

impossible because by Castelnuovo’s bound a curve of genus 7 in P3 has at most genus 6. Hence
|θ| is base-point-free.
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Now assume that the morphism C → P3 determined by |θ| is not birational. Then it is 2 : 1
onto an elliptic normal quartic curve and C is bielliptic. Then C depends on at most 16 moduli
(see Lemma (5.4)), in contradiction with (5.9.1).

We have thus proved that |θ| determines a birational morphism C → P3 onto a degree 8
curve Γ in P3. Since the maximal geometric genus of a curve of degree 8 in P3 is 9, then Γ is a
Castelnuovo curve, so it is a complete intersection of type (2, 4), proving the assertion. 2

(5.11) g1 = 4 and k = 2. Next we consider S
1
2 ,4
13 . If M is an irreducible component of S

1
2 ,4
13

whose general element (C, θ) has h0(θ) odd, then by Theorem (1.5) one has

(5.11.1) dim(M) > dim(M13)− 4·5
2 = 26.

The locus H13,6 introduced in paragraph (5.5) has dimension 25 and it is contained in S
1
2 ,4
13 ; its

general element (C, θ) has h0(θ) = 7 odd, so we conclude by Theorem (1.5) that H13,6 cannot
fill up an irreducible component of S

1
2 ,4
13 .

There are two more hyperelliptic loci of dimension 25 contained in S
1
2 ,4
13 , namely H2

13,5 and
H4

13,4, see (5.5). For the same reasons as above, H4
13,4 cannot fill up an irreducible component

of S
1
2 ,4
13 .

(5.12) Theorem. S
1
2 ,4
13 has three irreducible components, namely:

(a) one whose general elements correspond to complete intersections of type (2, 2, 3) in P4 (see
Proposition (5.3)), which contains the loci H13,6 and H4

13,4;
(b) H2

13,5;
(c) E13,2 (see paragraph (5.6)).

Proof. Let (C, θ) be general in some irreducible component M of S
1
2 ,4
13 . By Clifford’s Theorem,

we have h0(θ) 6 7, and, as we saw, the case h0(θ) = 7 cannot occur.
Suppose first that h0(θ) > 5; then the only possibility is h0(θ) = 6. The linear system |θ|

cannot be birational by Castelnuovo’s bound, so it determines a 2 : 1 morphism of C to a non-
degenerate, linearly normal curve Γ of degree d 6 6 in P5. If d = 6 then Γ has genus 1 and C is
bi-elliptic. In this way we find the locus E13,2 ⊆ S

1
2 ,5
13 ⊆ S

1
2 ,4
13 . This is an irreducible component

of S
1
2 ,4
13 , because it cannot be contained in an irreducible component of S

1
2 ,4
13 whose general

element (C, θ) has h0(θ) = 5, since the parity of h0(θ) has to be preserved in a component. If
d = 5, then Γ is a rational normal curve, C is hyperelliptic and we find the locus H2

13,5. This is
a component of S

1
2 ,4
13 because it cannot be contained in an irreducible component of S

1
2 ,4
13 whose

general element (C, θ) has h0(θ) = 5, and neither can it be contained in E13,2 which has smaller
dimension.

Next we turn to the case in which the general element (C, θ) in M is such that C is not
hyperelliptic and |θ| is a g4

12. Let b be the number of its base points, so that |θ| induces a g4
12−b.

By Clifford’s Theorem, we have b < 4. If b > 0 then |θ| cannot be birational by Castelnuovo’s
bound. If b = 3, the g4

9 must give a birational map, and this is impossible. If b = 2, we have
a g4

10, which is 2 : 1 onto an elliptic normal quintic. Then C is bi-elliptic. However bielliptic
curves depend on 24 moduli (see Lemma (5.4)), whereas dim(M) > 26 by (5.11.1), so this is
against the generality of (C, θ) in M . Finally, if b = 1, |θ| is a g4

11 hence it gives a birational
map, which is impossible.

So |θ| is a base point free g4
12. First we discuss the case in which this series is not birational.

In this case we have two possibilities:
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(a) either the g4
12 determines a 3 : 1 morphism onto a rational normal quartic,

(b) or the g4
12 determines a 2 : 1 morphism onto a degree 6 curve.

We first show by contradiction that case (a) cannot happen. Indeed, in this case C is
trigonal, we denote by g the g1

3 on C, and we have KC = 8g. The canonical model of C in P12

sits on a rational normal scroll S of degree 11, which is easily seen to be smooth. On S we have
C ∼ 3H − 9F where H is the hyperplane class on S, and F the class of a ruling. Now F |C = g
and H|C = KC = 8g. Hence S should have a hyperplane section consisting of 8 rulings plus a
curve E of degree 3 such that E · C = 0. The curve E is irreducible (because E · F = 1 and it
cannot contain fibres), and one has E2 = −5. It follows that S is an F5, and H ∼ L+ 3F , with
L ∼ E + 5F . Thus C ∼ 3L. The linear system |3L| on F5 has dimension 33, and Aut(F5) has
dimension 10, so the curve C has at most 23 moduli, and therefore cannot be a general element
of M by (5.11.1). This proves that (a) cannot happen.

Next we show that case (b) also cannot happen. In that case in fact the image curve of C
via the g4

12 is linearly normal of degree 6 in P4, so it has genus 2. By Lemma (5.4), genus 13
double covers of genus 2 curves have 23 moduli, so also this possibility is in contradiction with
the generality of C by (5.11.1).

Therefore the only remaining possibility is that |θ| is a birational g4
12. Let Γ be the image of

C via the morphism determined by |θ|. One has

h0(IΓ(2)) > h4(2)− h0(ωC) = 15− 13 = 2.

Assume for a moment that h0(IΓ(2)) = 2. Then, since 3θ = KC + θ is non-special, one has
h0(3θ) = 24 by Riemann–Roch Theorem, hence

h0(IΓ(3)) > h4(3)− h0(3θ) = 35− 24 = 11,

and therefore there exists at least one cubic containing Γ, not a combination of the quadrics
containing Γ. For degree reasons we may conclude that Γ is a complete intersection of type
(2, 2, 3) as asserted.

We are thus left to prove that h0(IΓ(2)) = 2. Assume by contradiction that h0(IΓ(2)) > 2.
Since deg(Γ) > 8, the quadrics containing Γ must have base locus a non-degenerate surface, and
the only possibility is that this is a cubic scroll S and then h0(IΓ(2)) = h0(IS(2)) = 3. Now,
with the same computations as above, we see that h0(IΓ(5)) > 78, whereas h0(IS(5)) = 75, so
there are quintic hypersurfaces containing Γ but not S. Let H be the hyperplane section of S
and set D = 5H − Γ. We have dim(|D|) > 2 and deg(D) = 3. Given this, the possibilities for
D are the following:
(i) D ∼ H;
(ii) S is not a cone and D consists of 3 rulings;
(iii) S is not a cone and D consists of a conic plus the line directix E of S.
We will see that neither one of these cases is possible.

In case (i), we have Γ ∼ 4H. Then the arithmetic genus of Γ is 15, hence Γ has two
nodes or equivalent singularities because the geometric genus is 13. The adjoint system is
4H + KS ∼ 2H + F , where F is a ruling of S, hence it is possible that the pull-back on C of
a hyperplane section is semi-canonical if the two nodes of Γ lie on a ruling of S. Let us count
the number of moduli for such curves Γ. We have h0(4H) = 35. For each ruling we have 2
parameters for the choice of the nodes of Γ on that ruling, hence 3 parameters in total for the
position of the nodes. Given the nodes we have a linear system of dimension 34− 6 = 28 (and
not larger) of curves in |4H| with the chosen nodes. Finally the automorphism group of S has
at least dimension 6, so the number of moduli is not larger than 3 + 28 − 6 = 25. By (5.11.1)
this contradicts the generality of (C, θ) in M .
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In case (ii) we have

Γ ∼ 5H − 3F = 5E + 7F and KS + Γ ∼ 3E + 4F,

with E the negative curve on S. Then Γ has arithmetic genus 14, so it has only one node (or
one cusp). It is possible that the pull-back on C of a hyperplane section is semi-canonical if the
double point of Γ lies on E. Again, let us count the number of moduli for such curves Γ. We
have h0(5E + 7F ) = 33. The choice of the double point of Γ depends on only 1 parameter (a
point on E). Given the double point we have a linear system of dimension 32− 3 = 29 (and not
larger) of curves in |5E+ 7F | with the chosen double point. Finally the automorphism group of
S has dimension 6, so the number of moduli is 1+29−6 = 24. By (5.11.1) this again contradicts
the generality of (C, θ) in M .

Finally in case (iii) we have Γ ∼ 3(E + 3F ), whose arithmetic genus is 13. So Γ = C is
smooth. We have

KS + C ∼ E + 6F.
Assume that the hyperplane series on C is semi-canonical. This means that

E + 6F |C ∼ 2E + 4F |C hence E|C ∼ 2F |C ,

which is impossible: indeed |2F | cuts out on C a complete g2
6 composed with the g1

3 cut out by
|F |. If E|C ∼ 2F |C , then the six points cut out by E on C would also belong to the union of
two rulings, which is not possible. 2

(5.13) g1 = 5 and k = 2. This case is more complicated than the previous ones and we do not
have complete results. We have here g = 17. If M is an irreducible component of S

1
2 ,5
17 with

general element (C, θ) such that h0(θ) is even then, as usual, we have

(5.13.1) dim(M) > 48− 5·6
2 = 33.

There is the main component (S
1
2 ,5
17 )main, that of complete intersections (2, 2, 2, 2), that has

dimension

dim
(
(S5

17)main) = dim
(
G(4, H0(OP5(2)))

)
− dim

(
PGL(6)

)
= 4 · 17− 35 = 33

equal to the expected one since the general element (C, θ) has h0(θ) = 6.
Let us look for non-birational loci. The interesting hyperelliptic loci we found in Section

(5.5) are H17,8, H2
17,7, H4

17,6, H6
17,5, all of dimension 33. If (C, θ) is in H17,8, one has h0(θ) = 9

which has different parity than 6. So if M is a component of S
1
2 ,5
17 containing H17,8 we have the

estimate

(5.13.2) dim(M) > 48− 6·7
2 = 27.

The same estimate holds for a component M of S
1
2 ,5
17 containing H4

17,6. By contrast, if (C, θ) is
in H2

17,7 or in H6
17,5 then h0(θ) is even, and for a component of S

1
2 ,5
17 containing these loci the

estimate (5.13.1) holds.
Look next at the bielliptic locus E17,2 ⊆ S

1
2 ,7
17 ⊆ S

1
2 ,5
17 (see Section (5.6)). We have dim(E17,2) =

32. If M is an irreducible component of S
1
2 ,5
17 containing E17,2, we have the estimate (5.13.1).

So E17,2 has at least codimension 1 in an irreducible component of S
1
2 ,5
17 containing it.

Finally, look at the locus D17,2 ⊆ S
1
2 ,6
17 ⊆ S

1
2 ,5
17 (see Section (5.7)). We have dim(D17,2) = 33.

If M is an irreducible component of S
1
2 ,5
17 containing D17,2, we have the estimate (5.13.2).
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(5.14) Proposition. Let M be an irreducible component of S
1
2 ,5
17 and let (C, θ) be its general

element. Suppose that C has no g1
4. Then h0(θ) = 6, and |θ| is base point free and birational.

Proof. Let M be an irreducible component of S
1
2 ,5
17 and let (C, θ) be its general element. By

the hypothesis, C is not hyperelliptic. Hence h0(θ) < 9 by Clifford’s Theorem. Moreover, if
h0(θ) > 6, then |θ| is not birational, by Castelnuovo’s bound.

If h0(θ) = 7, since |θ| is not birational, it must determine a 2 : 1 morphism of C onto a
non-degenerate linearly normal curve Γ of degree d 6 8 in P6. Then Γ has genus at most 2,
hence C has a g1

4 , a contradiction.
Similarly, if h0(θ) = 8, |θ| determines a 2 : 1 morphism of C onto a non-degenerate linearly

normal curve Γ of degree d 6 8 in P7. Then Γ has genus at most 1, so that C has a g1
4 a

contradiction again.
So we may assume h0(θ) = 6 and the estimate (5.13.1) holds. We claim that |θ| is birational.

Suppose this is not the case. Let h > 2 be the degree of the map determined by |θ| onto a
non-degenerate curve Γ of degree d in P5. We have

5 6 d 6
16
h

hence 5h 6 16.

Then either h = 3, d = 5, or h = 2 and one has d > 5 since C is not hyperelliptic. In the former
case C would be trigonal, a contradiction. In the latter cases, by Lemma (5.4), C would depend
on at most 32 moduli, contradicting the estimate (5.13.1). This proves that |θ| is birational.

Finally we prove that |θ| is base point free. Let b be the number of base points of |θ|, and
consider the complete, base-point-free, special g5

16−b induced by |θ|. We have b 6 1 because, by
Castelnuovo’s bound, a curve in P5 of degree d 6 14 has genus at most 15. So let us discuss the
case b = 1.

If b = 1 we have a birational, base point free g5
15, which maps C to a curve Γ of degree 15 in

P5. We claim that Γ is contained in at least 6 linearly independent quadrics. Indeed we have

h0(OΓ(2)) 6 h0(ωC(−2p)
)

= 15

where p is the base point of |θ| (the last equality is because C is not hyperelliptic), hence

h0(IΓ(2)) > h5(2)− h0(OΓ(2)) > 21− 15 = 6.

If the quadrics containing Γ have base locus a curve, then there exists a line ` such that Γ + `
is a complete intersection of type (2, 2, 2, 2). Then Γ, and its normalization C, have strictly less
number of moduli than 33, the number of moduli of complete intersections of type (2, 2, 2, 2),
in contradiction with the estimate (5.13.1).

Otherwise the base locus of the quadrics containing Γ is a rational normal quartic scroll. In
fact this base locus cannot be a threefold because the maximum number of quadrics containing
an irreducible, non-degenerate threefold in P5 is 3, and it is achieved by the Segre variety
P1 × P2 of degree 3. So the base locus in question is a surface, and it is a minimal degree
surface S, which in fact has the property that h0(IS(2)) = 6. On the other hand S cannot be
the Veronese surface because there are no curves of odd degree on it.

Finally we discuss the case in which Γ is contained in a rational normal quartic scroll S. If S
is a cone with vertex p, let m be the number of points in which the rulings intersect Γ off p, so
that C has a g1

m. By intersecting Γ with a general hyperplane through p we see that 4m 6 15,
which implies m 6 3, a contradiction.

Next we assume S to be smooth. By Riemann–Roch we have h0(OΓ(5)) 6 59 and h0(OS(5)) =
66 (whether S be an F0 or an F2), so

h0(IΓ(5)) > 252− 59 > 252− 66 = h0(IS(5)).
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Hence there are quintic hypersurfaces containing Γ that do not contain S. They cut out on S
a linear system L of dimension at least 6 of quintic curves D. The curves in L cut out on a
general hyperplane section H of S a linear series gr5 with r 6 5. Hence there are curves in L
containing H. So D ∼ H +R, where R is a line on S, and we have Γ ∼ 5H −D ∼ 4H −R. If
F is a ruling of S, then F · Γ 6 4, hence C has a g1

4 , a contradiction. 2

Unfortunately the discussion whether there is only one component as in the statement of
Proposition (5.14), coinciding with (S5

17)main, is quite intricate and we will not dwell on this
here.

5.2 – The case k = 3

(5.15) g1 = 3 and k = 3. Here we analyze the possibilites for curves in S
1
3 ,3
19 , i.e., pairs (C, θ)

with C of genus 19, h0(θ) > 4, and 3θ ∼ KC , hence deg(θ) = 12. We do not have an expected
dimension for S

1
3 ,3
19 , but we know that

dim
(
im(c319)

)
= dim(KC3

19)− 4 = 34

(see (3.2)).
There are certainly irreducible loci in S

1
3 ,3
19 , whose general element (C, θ) is such that |θ| is

not birational. For example, consider H19,6 which has dimension 37 and its general element
(C, θ) is such that h0(θ) = 7. However we can prove the following:

(5.16) Proposition. If (C, θ) ∈ S
1
3 ,3
19 and C has no g1

6, then |θ| is birational.

(By way of comparison, a general curve complete intersection of type (3, 4) has Clifford index 6
by Lemma (2.2), hence has no g1

7).

Proof. Suppose (C, θ) is such that |θ| is not birational. Since C is not hyperelliptic, by Clifford’s
Theorem we have h0(θ) < 7, which leaves the possibilities 4 6 h0(θ) 6 6.

Suppose that h0(θ) = 4. Let b be the number of base points of |θ|. Since C is non-
hyperelliptic, again by Clifford’s Theorem we have b 6 5. If b = 5, |θ| determines a g3

7 , which
should be birational, a contradiction. If b = 4 we obtain a g3

8 . It may give a double cover of
a curve of degree 4, which has genus at most 1. Then C has a g1

4 , a contradiction. If b = 3
we have a g3

9 . This gives a 3 : 1 map to a rational normal cubic curve, hence C is trigonal, a
contradiction. If b = 2 we have a g3

10, which should give a double cover of a quintic; a quintic
in P3 has genus at most 2, so C has a g1

4 , a contradiction. If b = 1 we have a g3
11, necessarily

birational, a contradiction. If |θ| is a non-birational, base point free g3
12, it gives a double cover

of a sextic curve, or a triple cover of a quartic curve. In both cases we see that C has a g1
6 , a

contradiction again. So the case h0(θ) = 4 is ruled out.
If h0(θ) = 5, with the same notation as above, by Clifford’s Theorem we have b 6 3. If b = 3,

|θ| determines a g4
9 which should be birational, a contradiction. If b = 2, we have a g4

10 which
gives a 2 : 1 map to a quintic, which has genus 1, so C has a g1

4 , a contradiction. If b = 1, we
have a g4

11 which should be birational, a contradiction. If b = 0, then |θ| is a g4
12 which either

determines a 3 : 1 morphism of C to a rational normal quartic, or a 2 : 1 morphism of C to a
genus 2 sextic curve, both cases leading to a contradiction. So also the case h0(θ) = 5 is ruled
out.

The case h0(θ) = 6 can be ruled out with similar arguments, we leave the details to the
reader. 2

Actually we can be more precise:
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(5.17) Proposition. Let (C, θ) ∈ S
1
3 ,3
19 be such that C has no g1

6. Then C is a complete
intersection of type (3, 4) in P3.

Proof. By Proposition (5.16), we have that |θ| is birational. By Castelnuovo’s bound we must
have h0(θ) = 4. Let Γ ⊆ P3 be the image of C via the morphism determined by |θ|. One has
deg(Γ) 6 12. We claim that Γ does not lie on a quadric. In fact, suppose that C lies on a
smooth quadric Q = P1 ×P1. Then it is a curve of type (a, b) with a+ b = deg(Γ) 6 12. This
implies that min{a, b} 6 6, so that C has a g1

6 a contradiction. A similar argument shows that
Γ does not lie on a quadric cone.

Suppose next that |θ| has b > 0 base points. By Castelnuovo’s bound, one has b = 1, so
there is only one base point p. We have h0(IΓ(3)) > h3(3)− h0(OΓ(3)) and

h0(OΓ(3)) 6 h0(OC(3)) = h0(3θ − 3p) < h0(KC) = 19.

Then h0(IΓ(3)) > 2. Hence Γ is contained in two distinct cubics X and Y , with no common
component. This is a contradiction because we would have 11 = deg(Γ) 6 9. This proves that
|θ| is base point free.

Then we have
h0(OΓ(3)) 6 h0(OC(3θ)) = h0(KC) = 19.

Hence
h0(IΓ(3)) > h3(3)− 19 = 1,

so there is an irreducible cubic X containing Γ. Similarly, we see that h0(IΓ(4)) > 5, so there
is some quartic surface Y containing C which does not contain the cubic X. Then Γ is the
complete intersection of X and Y , as desired. 2

(5.18) Remark. The hypothesis that C has no g1
6 in Proposition (5.17) is to exclude that |θ| is

non-birational and that, if |θ| is birational, the curve Γ lies on a quadric. On the other hand we
do know that there are points (C, θ) ∈ S

1
3 ,3
19 corresponding to curves on a quadric. One example

is the locus S considered in paragraph (5.8) although, if we believe in Conjecture (5.8.1), it
should not give a new irreducible component of S

1
3 ,3
19 .

Another example of points (C, θ) ∈ S
1
3 ,3
19 , with |θ| birational, corresponding to curves on a

quadric, is the following. Consider a smooth quadric S = P1 ×P1 in P3. Consider on S curves
Γ of type (5, 6) with one single double point q (a node or a simple cusp), and such that the
5-secant ruling through q intersects Γ, off q, in a divisor of the type 3p. Let ν : C → Γ be the
normalization. Since the arithmetic genus of Γ is 20, then C has genus 19. Consider the line
bundle θ = ν∗(OΓ(1)) �OC(p), where we abuse notation and see p as a point of C. One checks
that 3θ = KC , so (C, θ) ∈ S

1
3 ,3
19 . Here |θ| has the base point p. One sees that the number of

moduli on which the construction of these curves depend is 32. As in (5.8.1), one may conjecture
that these curves are limits of complete intersections.

(5.19) g1 = 4 and k = 3. Here we analyze the possibilites for elements (C, θ) in S
1
3 ,4
28 , with C

of geometric genus 28, h0(θ) > 5, and 3θ ∼ KC , hence deg(θ) = 18. We focus on the case when
|θ| defines a birational map. Then we must have 5 6 h0(θ) 6 6 by Castelnuovo’s bound.
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(5.20) Proposition. Assume (C, θ) in S
1
3 ,4
28 is such that |θ| is base point free, defines a bira-

tional map and C has no g1
8. Then C is a complete intersection of type (2, 3, 3) in P4.

(By way of comparison, a general curve complete intersection of type (3, 4) has Clifford index
10 by Lemma (2.2), hence has no g1

11).

Proof. First we assume h0(θ) = 6. The maximum genus of non-degenerate curves of degree 18
in P5 is 28, so |θ| embeds C in P5 as a smooth Castelnuovo curve. These curves are classified
(see [1, p. 122–123]), and they are of two types, namely:
(a) C ⊆ P5 is the 2-Veronese image of a smooth plane curve of degree 9;
(b) C is a smooth element of |5H − 2F | on a rational normal scroll S, with H the hyperplane
section and F a ruling of S.

In either case C has a g1
d with d 6 8, so we can exclude these cases.

Assume next that h0(θ) = 5 and let Γ be the image of C via |θ|. We have h0(OΓ(2)) 6
h0(2θ) = h1(θ) = 14 by Riemann–Roch, hence h0(IΓ(2)) > 1, thus C sits on an irreducible
quadric Q. Next h0(OΓ(3)) 6 h0(KC) = 28, hence h0(IΓ(3)) > 7, thus C sits on at least two
cubics X and X ′ that do not contain Q. If Q,X and X ′ intersect in a curve, by degree reasons
this curve is Γ, which is a complete intersection of type (2, 3, 3) as desired.

So we have to discuss the case in which Q,X and X ′ intersect along an irreducible surface
S containing Γ. Since X ′ is independent of Q and X, we see that deg(S) 6 5.

Assume first deg(S) = 5. In this case S is the complete intersection of a quadric and a cubic
off a plane Π. This is an arithmetically Cohen–Macaulay surface whose Hilbert–Burch matrix
is of the type

(5.20.1)
(

1 1 2
1 1 2

)
(the numbers at the entries stand for the degrees of the corresponding forms) and its general
hyperplane section D is a curve with arithmetic genus 2. By adjunction, the hyperplanes
containing Π cut out on S, off the intersection scheme of S with Π, a pencil P which is adjoint
to the hyperplane section of S, so the curves in P have degree 2. If the general curve in P is
reducible, then S is a scroll. Otherwise the general curve in P is an irreducible conic and S is
rational.

We compute h0(OΓ(4)) 6 h0(KC +θ) = 45, hence h0(IΓ(4)) > 25. From the matrix (5.20.1)
we deduce that h0(IS(4)) = 23, so there are quartics containing Γ and not S. If S is a scroll,
its genus is the geometric genus of D, which is at most 2. This implies that C has a g1

8 , so this
case is not possible. If the general conic of P is irreducible, the pull-back on C of the linear
series cut out by these conics on Γ is a g1

d, with d 6 8, so that we can rule out this case too.
Assume next deg(S) = 4. Since Γ is linearly normal, it cannot sit on a non-linearly normal

surface, so S is the complete intersection of two quadrics and it has only isolated singularities.
So S can be either a cone over an elliptic normal quartic curve in P3 or a del Pezzo surface.

If S is a cone, with vertex p, let m be the number of intersection points of Γ with a ruling, off
p. By taking a general hyperplane section of Γ through p, we see that 4m 6 18 so that m 6 4,
which implies that C has a g1

8 , and we can rule out this case.
Suppose S is a del Pezzo surface. Thus S is Gorenstein andKS = OS(−1). Moreover S is rep-

resented on P2 by a linear system of cubics passing simply through five points p1, . . . , p5, which
can be proper or infinitely near. With computations usual by now, we find that h0(IΓ(6)) > 129,
whereas h0(IS(6)) = 125, so there are sextic hypersurfaces containing Γ and not S. We let
ν : S̃ → S be the minimal desingularization of S and, abusing notation, we denote by Γ
its proper transform on S̃. We set H = ν∗(OS(1)), and notice that KS̃ = −H. We have
6H ∼ Γ + D, with dim(|D|) > 3. Moreover, Γ + KS̃ ∼ 5H − D. Since the pull-back of H on
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C is θ and 3θ = KC , we have that the pull-back to C of the divisors in |2H −D| verifying the
adjoint conditions with respect to Γ is the 0 divisor (off the pull-back of singular points). Thus
we have 2H ∼ D + E, where E is effective and H · E = 2, so the curves in |E| correspond to
curves of degree 2 on S. There are two possibilities for the linear system |E|:
(a) |E| has dimension 1 and it corresponds to a linear system of conics on S plus possibly a fixed
part consisting of (−2)-curves: we may then suppose that the movable part of |E| is represented
in P2 by the pencil of lines through one of the points p1, . . . , p5;
(b) h0(E) = 1 and E = E1 + E2 + Z, where E1, E2 are two (−1)-curves, either distinct or not,
and Z is a (possibly empty) union of (−2)-curves.

In case (a), |D| is represented on P2 by a linear system of curves of degree 5 with multiplicity
1 at one of the points p1, . . . , p5 and 2 at the others. Since Γ ∼ 6H −D, then Γ is represented
on P2 by a curve of degree 13 with multiplicity at least 5 at one of the points p1, . . . , p5, and
this implies that C has a g1

8 , a contradiction.
In case (b) we can either have E1 = E2 or E1 6= E2. Assume that E1 = E2. Then we may

suppose that E1 is the (−1)-curve corresponding to one of the points p1, . . . , p5. Then |D| is
represented on P2 by a linear system of curves of degree 6 with a point of multiplicity 4 and four
points of multiplicity 2. Then Γ is represented on P2 by a curve of degree 12 with a point of
multiplicity 2 and 4 points of multiplicity 4. Again this implies that C has a g1

8 , a contradiction.
The case in which E1 and E2 are distinct is similar, and also leads to an impossibility, we leave
the details to the reader.

Finally we assume deg(S) = 3, so that S is a rational normal scroll. If S is smooth, then S
is isomorphic to P2 blown-up at a point p. Suppose that Γ is represented on P2 by a curve of
degree d with a point of multiplicity m at p. We have

18 = deg(Γ) = 2d−m

hence d−m 6 18− d. Since C has no g1
8 we must have d > 10. But then d−m 6 8. Since C

has a g1
d−m we can rule out this case.

If S is a cone with vertex p, we let m be the number of intersection points of the rulings
with Γ off p, so that C has a g1

m. By intersecting Γ with a general hyperplane through p, we see
that 3m 6 18, so m 6 6, and we can rule out this case too. 2

(5.21) Remark. The hypothesis that |θ| is base point free and C has no g1
8 in Proposition

(5.20) helps to rule out several cases which in fact can occur. We point out here some of these
possibilities.
(a) As seen in the proof of Proposition (5.20), the 2-Veronese image C in P5 of a smooth plane
curve of degree 6, is such that (C,OC(1)) ∈ S

1
3 ,4
28 . This gives a locus in S

1
3 ,4
28 of dimension 46.

(b) Again, we saw in the proof of Proposition (5.20) that the smooth Castelnuovo curves C in
|5H − 2F | on a rational normal scroll S in P5, with H the hyperplane section and F a ruling of
S are such that (C,OC(1)) ∈ S

1
3 ,4
28 . This gives a locus in S

1
3 ,4
28 of dimension 47.

(c) This is an example of elements (C, θ) ∈ S
1
3 ,4
28 , with h0(θ) = 5 and |θ| with a base point.

Consider a smooth cubic rational normal scroll S in P4. We denote by E the (−1)-curve on S
and F a ruling. Consider a curve Γ in |10F + 7E| which has an ordinary triple point in a point
p of E, two distinct nodes p1, p2 along a ruling F0 of S not passing through p, and such that
F0 cuts out on Γ, off p1 and p2, a divisor of type 3q. The arithmetic genus of Γ is 33, so its
geometric genus is 28. If ν : C → Γ is the normalization, one sees that θ = ν∗(OΓ(1)) �OC(q)
(where we abuse notation and denote by q its pre-image on C) is such that 3θ = KC .
(d) This is an example of elements (C, θ) ∈ S

1
3 ,4
28 , with h0(θ) = 5 and |θ| with no base point.

Consider a del Pezzo quartic surface S in P4 which is the image of the linear system of cubics in
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P2 with simple base points at general points p1, . . . , p5. Consider the linear system L of plane
curves of degree 13 with multiplicity 5 at p1, with multiplicity 4 at p2, . . . , p5 and with 4 nodes
located along a line L passing through p1. The image of a general curve of L is a 4-nodal curve
of geometric genus 28 and degree 18, with the 4 nodes located along a conic E on S. The adjoint
linear system of L consists of curves of degree 10, having multiplicity 4 at p1, 3 at p2, . . . , p5
and passing through the 4 nodes. The line L cuts out the zero divisor off the singular points of
the general curve Γ ∈ L. So the canonical system is cut out by curves of degree 9 with points
of multiplicity 3 at p1, . . . , p5, which maps to the the triple of the hyperplane system of S.
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