SEVERI VARIETIES ON BLOW-UPS OF THE SYMMETRIC SQUARE OF AN ELLIPTIC CURVE

CIRO CILIBERTO, THOMAS DEDIEU, CONCETTINA GALATI, AND ANDREAS LEOPOLD KNUTSEN

Abstract

We prove that certain Severi varieties of nodal curves of positive genus on general blow-ups of the twofold symmetric product of a general elliptic curve are nonempty and smooth of the expected dimension. This result, besides its intrinsic value, is an important preliminary step for the proof of nonemptiness of Severi varieties on general Enriques surfaces in [10].

1. Introduction

Let S be a smooth, projective complex surface and $\xi \in \operatorname{Num}(S)$. Let

$$
p_{a}(\xi)=\frac{1}{2} \xi \cdot\left(\xi+K_{S}\right)+1
$$

be the arithmetic genus of ξ. If L is a line bundle or divisor on S with class ξ in $\operatorname{Num}(S)$ we set $p_{a}(L)=p_{a}(\xi)$. We denote by $V^{\xi}(S)$ the locus in the Hilbert scheme of S parametrizing the curves C on S such that the class of $\mathcal{O}_{S}(C)$ in $\operatorname{Num}(S)$ coincides with ξ. Assume that L is a line bundle or divisor on S with class ξ in $\operatorname{Num}(S)$ and that $p_{a}(L) \geqslant 0$. For any integer δ satisfying $0 \leqslant \delta \leqslant p_{a}(\xi)$ we denote by $V_{\delta}^{\xi}(S)$ the Severi variety parametrizing irreducible δ-nodal curves contained in $V^{\xi}(S)$. This is a possibly empty locally closed set in $V^{\xi}(S)$.

Let V be an irreducible component of $V^{\xi}(S)$ and, for any δ such that $0 \leqslant \delta \leqslant p_{a}(\xi)$, let V_{δ} be an irreducible component of $V \cap V_{\delta}^{\xi}(S)$. It is well known that

$$
\begin{equation*}
\operatorname{dim}\left(V_{\delta}\right) \geqslant \operatorname{dim}(V)-\delta, \tag{1}
\end{equation*}
$$

where the right hand side is called the expected dimension of V_{δ}. Moreover if the equality holds in (1), then, for all $0 \leqslant \delta^{\prime} \leqslant \delta$, the closure of the intersection of $V_{\delta^{\prime}}^{\xi}(S)$ with V contains V_{δ}, and any of its components whose closure contains V_{δ} has the expected dimension $\operatorname{dim}(V)-\delta^{\prime}$ (see [25, Thm. 6.3]).

Severi varieties were introduced by Severi in Anhang F of [26], where he proved that all Severi varieties of irreducible δ-nodal curves of degree d in \mathbb{P}^{2} are nonempty and smooth of the expected dimension. Severi also claimed irreducibility of such varieties, but his proof contains a gap. The irreducibility was proved by Harris [17] more than 60 years later.

Severi varieties on other surfaces have received much attention in recent years, especially in connection with enumerative formulas computing their degrees.

[^0]Nonemptiness is known to hold for all Severi varieties associated to big and nef classes on Del Pezzo surfaces (as well as rational surfaces under certain assumptions) by [16, Thms. 3-4] and for Hirzebruch surfaces, a result implicitly contained in [27, §3]. In both cases of Del Pezzo and Hirzebruch surfaces, all Severi varieties are smooth of the expected dimensions, cf., e.g. [27, Lemma 2.9] or [7, p. 45]. Moreover, all Severi varieties of Hirzebruch surfaces are irreducible [31], and Severi varieties parametrizing rational curves on Del Pezzo surfaces of degrees $\geqslant 2$ are irreducible as well [30]; the same holds true for general Del Pezzo surfaces of degree one, except for the Severi variety parametrizing rational curves in the anticanonical class [29, Cor. 6.4].

On a general primitively polarized $K 3$ surface (S, ξ), all Severi varieties $V_{\delta}^{n \xi}(S)$, where $0 \leqslant \delta \leqslant p_{a}(n \xi)$, are nonempty by a result of Mumford [23] if $n=1$ and of Chen [5] for all n; moreover, all components are always smooth of the expected dimension $p_{a}(n \xi)-\delta$ $[28,7]$. The irreduciblity question (for $\delta<p_{a}(n \xi)$) has been the object of much attention, see $[18,19,8,1,13]$, and was recently solved in the case $n=1$ for all $\delta \leqslant p_{a}(\xi)-4$ in the preprint [2].

Similarly, on a general primitively polarized abelian surface (S, ξ), all Severi varieties $V_{\delta}^{n \xi}(S)$, where $0 \leqslant \delta \leqslant p_{a}(n \xi)-2$, are nonempty (by [21] if $n=1$ and [20] in general) and smooth of the expected dimension $p_{a}(n \xi)-\delta$ [22]. Irreducibility does not hold: the various irreducible components in the case $n=1$ have been described by Zahariuc [32].

Very little is known on other surfaces, where problems such as nonemptiness, smoothness, dimension and irreducibility are regarded as very hard. In particular, Severi varieties may have unexpected behaviour: examples are given in [6] of surfaces of general type with reducible Severi varieties, and also with components of dimension different from the expected one.

In this paper we consider the case of blow-ups of a particular type of ruled surface over an elliptic curve.

Let E be a general smooth irreducible projective curve of genus one and set $R:=$ $\operatorname{Sym}^{2}(E)$. Let \widetilde{R} be the blow-up of R at any finite set of general points. Our main result in this paper shows that Severi varieties of a large class of line bundles on \widetilde{R} are well-behaved:

Theorem 1.1. In the above setting, let L be a line bundle on \widetilde{R} verifying condition (\star) (cf. Definition 2.1) and let ξ be the class of L in $\operatorname{Num}(\widetilde{R})$. Let δ be an integer satisfying $0 \leqslant \delta<p_{a}(L)$. Then $V_{\delta}^{\xi}(\widetilde{R})$ is nonempty and smooth with all components of the expected dimension $-L \cdot K_{\widetilde{R}}+p_{a}(L)-\delta-1$.

The statement about smoothness and dimension follows from standard arguments of deformation theory, once non-emptiness has been proved, cf. Proposition 2.2 below. Moreover we remark that, by what we said above, it suffices to prove Theorem 1.1 for the maximal number of nodes, i.e., $\delta=p_{a}(L)-1$. This will follow from Proposition 2.3 below, which treats the special case in which the blown-up points are in a special position. In [10] we will make use of Proposition 2.3 in order to prove nonemptiness of Severi varieties on Enriques surfaces. The question of smoothness and dimension of Severi varieties on Enriques surfaces has been treated in [9].

The irreducibility question for $V_{\delta}^{\xi}(\widetilde{R})$ is not treated in this paper; thus, we pose:
Question 1.2. Are the varieties $V_{\delta}^{\xi}(\widetilde{R})$ from Theorem 1.1 irreducible?

The paper is organised as follows. In $\S 2$ we recall some preliminaries concerning twofold symmetric products of elliptic curves. Section 3 is devoted to recalling a degeneration of the symmetric product of a general elliptic curve studied in [11]. In §4 we construct certain families of curves on some blow-ups of the projective plane that turn out to be useful in the proof of Proposition 2.3, which is proved by degeneration in $\S 5$.

Acknowledgements. The authors acknowledge funding from MIUR Excellence Department Project CUP E83C180 00100006 (CC), project FOSICAV within the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement n. 652782 (CC, ThD), GNSAGA of INDAM (CC, CG), the Trond Mohn Foundation Project "Pure Mathematics in Norway" (ALK, CG) and grant 261756 of the Research Council of Norway (ALK).

2. The twofold symmetric product of an elliptic curve

Let E be a smooth irreducible projective elliptic curve. Denote by \oplus (and \ominus) the group operation on E and by e_{0} the neutral element. Let $R:=\operatorname{Sym}^{2}(E)$ and $\pi: R \rightarrow E$ be the (Albanese) morphism sending $x+y$ to $x \oplus y$. We denote the fiber of π over a point $e \in E$ by

$$
\left.\mathfrak{f}_{e}:=\pi^{-1}(e)=\left\{x+y \in \operatorname{Sym}^{2}(E) \mid x \oplus y=e \text { (equivalently, } x+y \sim e+e_{0}\right)\right\},
$$

(where \sim denotes linear equivalence), which is the \mathbb{P}^{1} defined by the linear system $\left|e+e_{0}\right|$. We denote the algebraic equivalence class of the fibers by \mathfrak{f}.

For each $e \in E$ we define the curve \mathfrak{s}_{e} (called D_{e} in [4]) as the image of the section $E \rightarrow R$ of the Albanese morphism mapping x to $e+(x \ominus e)$. We let \mathfrak{s} denote the algebraic equivalence class of these sections, which are the ones with minimal self-intersection, namely 1 , cf. [4]. One has

$$
K_{R} \sim-2 \mathfrak{s}_{e_{0}}+\mathfrak{f}_{e_{0}} .
$$

Let $y_{1}, \ldots, y_{n} \in R$ be distinct points and let $\widetilde{R}:=\operatorname{Bl}_{y_{1}, \ldots, y_{n}}(R) \rightarrow R$ denote the blow-up of R at y_{1}, \ldots, y_{n}, with exceptional divisors \mathfrak{e}_{i} over y_{i}. We denote the strict transforms of \mathfrak{s} and \mathfrak{f} on \widetilde{R} by the same symbols.
Definition 2.1. A line bundle or Cartier divisor L on \widetilde{R} is said to verify condition (\star) if it is of the form $L \equiv \alpha \mathfrak{s}+\beta \mathfrak{f}-\sum_{i=1}^{n} \gamma_{i} \mathfrak{e}_{i}$ (where \equiv denotes numerical or, equivalently, algebraic equivalence), with $\alpha, \beta, \gamma_{1}, \ldots, \gamma_{n}$ are integers such that:
(i) $\alpha \geqslant 1, \beta \geqslant 0$;
(ii) $\alpha \geqslant \gamma_{i}$ for $i=1, \ldots, n$;
(iii) $\alpha+\beta \geqslant \sum_{i=1}^{n} \gamma_{i}$;
(iv) $\alpha+2 \beta \geqslant \sum_{i=1}^{n} \gamma_{i}+4$.

Condition (ii) is satisfied if L is nef. Condition (iv) is equivalent to $-L \cdot K_{\widetilde{R}} \geqslant 4$.
The statement about smoothness and dimension in Theorem 1.1 follows from the following more general result, well-known to experts:

Proposition 2.2. Let S be a smooth projective complex surface and $\xi \in \operatorname{Num}(S)$ such that $-\xi \cdot K_{S}>0$. Let δ be an integer satisfying $0 \leqslant \delta \leqslant p_{a}(\xi)$.

If $V_{\delta}^{\xi}(S)$ is nonempty, it is smooth and every component has the expected dimension $-\xi \cdot K_{S}+p_{a}(\xi)-\delta-1$.

Proof. Let X be any curve in $V_{\delta}^{\xi}(S)$ and let $V^{\xi}(S)$ be the Hilbert scheme defined in the introduction. Since

$$
\operatorname{deg}\left(\mathcal{N}_{X / S}\right)=\xi^{2}=\xi \cdot\left(\xi+K_{S}\right)-\xi \cdot K_{S}=2 p_{a}(\xi)-2-\xi \cdot K_{S}>2 p_{a}(\xi)-2,
$$

the normal bundle $\mathcal{N}_{X / S}$ is nonspecial, whence $V^{\xi}(S)$ is smooth at $[X]$ of dimension $h^{0}\left(\mathcal{N}_{X / S}\right)=-\xi \cdot K_{S}+p_{a}(\xi)-1$ (cf., e.g., [24, §4.3]).

Let $\varphi: \widetilde{X} \rightarrow S$ be the composition of the normalization $\widetilde{X} \rightarrow X$ with the inclusion $X \subset S$ and consider the normal sheaf \mathcal{N}_{φ} defined by the short exact sequence

$$
0 \longrightarrow \mathcal{T}_{\tilde{X}} \longrightarrow \varphi^{*} \mathcal{T}_{S} \longrightarrow \mathcal{N}_{\varphi} \longrightarrow 0
$$

The tangent space to $V_{\delta}^{\xi}(S)$ at $[X]$ is isomorphic to $H^{0}\left(\widetilde{X}, \mathcal{N}_{\varphi}\right)$, and \mathcal{N}_{φ} is a line bundle, as X is nodal (cf., e.g., [24, §3.4.3] or [14]). Let g be the geometric genus of X. Since $\operatorname{deg} \mathcal{N}_{\varphi}=-X \cdot K_{S}+2 g-2>2 g-2$ by the above sequence, the line bundle \mathcal{N}_{φ} is nonspecial, and

$$
h^{0}\left(\mathcal{N}_{\varphi}\right)=-\xi \cdot K_{S}+g-1=-\xi \cdot K_{S}+p_{a}(\xi)-\delta-1=\operatorname{dim}\left(V^{\xi}(S)\right)-\delta,
$$

which is the expected dimension of $V_{\delta}^{\xi}(S)$. Thus, $V_{\delta}^{\xi}(S)$ is smooth at $[X]$ and of the expected dimension.

By what we said in the introduction, it suffices to prove Theorem 1.1 for the highest possible δ, that is, for $\delta=p_{a}(L)-1$, in which case the Severi variety in question parametrizes nodal curves of geometric genus one. We will prove the theorem by specializing the points y_{1}, \ldots, y_{n} as we now explain.

Let η be any of the three nonzero 2 -torsion points of E. The map $E \rightarrow R$ defined by mapping e to $e+(e \oplus \eta)$ realizes E as an unramified double cover of its image curve

$$
T:=\{e+(e \oplus \eta) \mid e \in E\} .
$$

We have

$$
\begin{equation*}
T \sim-K_{R}+\mathfrak{f}_{\eta}-\mathfrak{f}_{e_{0}} \sim 2 \mathfrak{s}_{e_{0}}-2 \mathfrak{f}_{e_{0}}+\mathfrak{f}_{\eta} \tag{2}
\end{equation*}
$$

by $[4,(2.10)]$. In particular,

$$
\begin{equation*}
T \nsim-K_{R} \text { and } 2 T \sim-2 K_{R} . \tag{3}
\end{equation*}
$$

We denote the strict transform of T on \widetilde{R} by the same symbol. Suppose that $y_{1}, \ldots, y_{n} \in T$ are general points. Then by (2)-(3) we have

$$
T \sim 2 \mathfrak{s}_{e_{0}}-2 \mathfrak{f}_{e_{0}}+\mathfrak{f}_{\eta}-\mathfrak{e}_{1}-\cdots-\mathfrak{e}_{n} \not \nsim-K_{\widetilde{R}}, \quad 2 T \sim-2 K_{\widetilde{R}}
$$

on \widetilde{R}. In particular,

$$
T \equiv-K_{\widetilde{R}} \equiv 2 \mathfrak{s}-\mathfrak{f}-\mathfrak{e}_{1}-\cdots-\mathfrak{e}_{n} .
$$

As remarked in the introduction, Theorem 1.1 is a consequence of the following result, which we will prove in $\S 5$.

Proposition 2.3. Let E be a general irreducible smooth projective curve of genus one. Let $y_{1}, \ldots, y_{n} \in T$ be general points, with T on $R=\operatorname{Sym}^{2}(E)$ as defined above. Let L be a line bundle on $\widetilde{R}=\mathrm{Bl}_{y_{1}, \ldots, y_{n}}(R)$ verifying condition (\star) with class ξ in $\operatorname{Num}(\widetilde{R})$. Then $V_{p_{a}(L)-1}^{\xi}(\widetilde{R})$ is nonempty and smooth, of the expected dimension $L \cdot T=-L \cdot K_{\widetilde{R}}$.

3. A DEGENERATION OF THE TWOFOLD SYMMETRIC PRODUCT OF A GENERAL ELLIPTIC CURVE

Let E be a smooth irreducible projective elliptic curve. We recall a degeneration of $R=\operatorname{Sym}^{2}(E)$ from [11], to which we refer the reader for details.

Let $\mathcal{X} \rightarrow \mathbb{D}$ be a flat projective family of curves over the unit disk \mathbb{D}, with \mathcal{X} smooth, such that the fiber X_{0} over $0 \in \mathbb{D}$ is an irreducible rational 1-nodal curve and all other fibers $X_{t}, t \in \mathbb{D} \backslash\{0\}$, are smooth irreducible elliptic curves. Let $p: \mathcal{Y} \rightarrow \mathbb{D}$ be the relative 2-symmetric product. Then, for $t \neq 0$, the fiber $Y_{t}=p^{-1}(t) \simeq \operatorname{Sym}^{2}\left(X_{t}\right)$ is smooth, whereas the special fiber $Y_{0}=p^{-1}(0)=\operatorname{Sym}^{2}\left(X_{0}\right)$ is irreducible, but singular. The singular locus of Y_{0} consists of the curve

$$
X_{P}:=\left\{x+P \mid x \in X_{0}\right\}
$$

where P is the node of X_{0}.
Let $\nu: \mathbb{P}^{1} \simeq \widetilde{X}_{0} \rightarrow X_{0}$ be the normalization, with P_{1} and P_{2} the preimages of P (with the notation of [11, p. 328], this is the case $g=1$ with $P=P_{1}$). Then ν induces a birational morphism

$$
\begin{equation*}
\operatorname{Sym}^{2}(\nu): \mathbb{P}^{2} \simeq \operatorname{Sym}^{2}\left(\widetilde{X}_{0}\right) \longrightarrow \operatorname{Sym}^{2}\left(X_{0}\right)=Y_{0} . \tag{4}
\end{equation*}
$$

Under the isomorphism on the left the diagonal in $\operatorname{Sym}^{2}\left(\widetilde{X}_{0}\right)$ corresponds to a smooth conic Γ in \mathbb{P}^{2} that is mapped by $\operatorname{Sym}^{2}(\nu)$ to the diagonal Δ_{0} of Y_{0} and, for each $x \in \widetilde{X}_{0}$, the curve

$$
\left\{x+Q \mid Q \in \widetilde{X}_{0}\right\} \subset \operatorname{Sym}^{2}\left(\widetilde{X}_{0}\right)
$$

corresponds to the line in \mathbb{P}^{2} tangent to Γ at the point corresponding to $2 x$.
The threefold \mathcal{Y} has local equations at the point $2 P \in Y_{0}$ given by

$$
z_{5}^{2}-z_{3} z_{4}=0, \quad z_{1} z_{5}+z_{2} z_{3}=0, \quad z_{1} z_{4}+z_{2} z_{5}=0, \quad z_{1} z_{2}+z_{5}+t=0
$$

with $\left(z_{1}, \ldots, z_{5}, t\right) \in \mathbb{C}^{5} \times \mathbb{D}$ (cf. [11, p. 329]). In particular, \mathcal{Y} is singular only at the point $2 P$, corresponding to the origin $\underline{0}$. Its special fibre Y_{0} is locally reducible at $\underline{0}=2 P$, where it consists of three irreducible components $S^{1} \cup S^{2} \cup S^{3}$ (named S_{1}^{i} in [11]), where S^{1} is the $z_{2} z_{4}$-plane, S^{2} is the $z_{1} z_{3}$-plane and S^{3} has equations $z_{3}=z_{1}^{2}, z_{4}=z_{2}^{2}, z_{5}=-z_{1} z_{2}$, meeting as in [11, Fig. 1]. The singular locus $X_{P}=\operatorname{Sing}\left(Y_{0}\right)$ of Y_{0} has a node at the origin, Y_{0} has double normal crossing singularities along $X_{P} \backslash 2 P$ and the intersection curves $C^{1}=S^{3} \cap S^{1}$ and $C^{2}=S^{3} \cap S^{2}$ (named C_{1}^{i} in [11]) are the two branches of the curve X_{P} at $\underline{0}=2 P$. Finally, in these local coordinates, the diagonal Δ_{0} of Y_{0} ($\Delta_{0}=\Delta_{0,1}^{1} \cup \Delta_{0,2}^{1}$ in [11, Fig. 1]) consists of the z_{2}, z_{1}-axes and it has a node at the point $2 P$.

Let $\mu: \widetilde{\mathcal{Y}} \rightarrow \mathcal{Y}$ be the blow-up at the point $2 P \in \operatorname{Sym}^{2}\left(X_{0}\right)=Y_{0} \subset \mathcal{Y}$ and denote the exceptional divisor by \mathcal{E} (called E_{1} in [11]). Then $\mathcal{E} \simeq \mathbb{F}_{1}$ and $\widetilde{\mathcal{Y}}$ is smooth (see [11, p. 330]). All fibers over $t \neq 0$ are unchanged. The special fiber \widetilde{Y}_{0} of $\widetilde{\mathcal{Y}} \rightarrow \mathbb{D}$ is the union of \mathcal{E} and of an irreducible surface \widetilde{S}, which is the strict transform of Y_{0}. We have

$$
\widetilde{S} \cap \mathcal{E}=s_{0}+e_{1}+e_{2},
$$

where e_{1} and e_{2} are two fibers of $\mathcal{E} \simeq \mathbb{F}_{1}$ and s_{0} (called η_{1} in [11, Fig. 2]) is the section satisfying $s_{0}^{2}=-1$. The surface \widetilde{S} is singular, with double normal crossings singularities
along the proper transform \widetilde{X}_{P} of the curve X_{P}. The proper transform on $\widetilde{\mathcal{Y}}$ of the diagonal of \mathcal{Y} intersects \widetilde{Y}_{0} along

$$
\widetilde{\Delta}_{0}+s_{0}
$$

where $\widetilde{\Delta}_{0}$ is the proper transform of the diagonal Δ_{0} on Y_{0}.
To normalize \widetilde{S} one unfolds along \widetilde{X}_{P}. The resulting surface W is smooth. Denote the normalization map by $\sigma: W \rightarrow \widetilde{S}$. The preimage of \widetilde{X}_{P} is a pair of curves, which we call $\widetilde{X}_{P_{1}}$ and $\widetilde{X}_{P_{2}}$. Denoting the inverse images on W of the curves e_{1}, e_{2}, s_{0} on \widetilde{S} by the same symbols, the intersection configuration between the curves $e_{1}, e_{2}, s_{0}, \widetilde{X}_{P_{1}}, \widetilde{X}_{P_{2}}$ on W looks as follows:

Under the map σ the two curves $\widetilde{X}_{P_{1}}$ and $\widetilde{X}_{P_{2}}$ are identified: we denote the identification morphism by $\omega: \widetilde{X}_{P_{1}} \simeq \widetilde{X}_{P_{2}}$. Under this morphism, the intersection points of the above configuration are mapped as follows:

Definition 3.1. We say that a curve $C \subset W$ is ω-compatible if C contains neither $\widetilde{X}_{P_{1}}$ nor $\widetilde{X}_{P_{2}}$ and ω maps the 0-dimensional intersection scheme of C with $\widetilde{X}_{P_{1}}$ to the intersection scheme of C with $\widetilde{X}_{P_{2}}$.

If the curve C is ω-compatible then $\sigma(C)$ is a Cartier divisor on \widetilde{S}. Conversely any curve on \widetilde{S} that is a Cartier divisor and does not contain the singular curve of \widetilde{S} is the image by σ of an ω-compatible curve on W.

One sees that the curves s_{0}, e_{1}, e_{2} are (-1)-curves on W (see [11, p. 331-332]). Contracting them we obtain a morphism $\phi: W \rightarrow \mathbb{P}^{2} \simeq \operatorname{Sym}^{2}\left(\widetilde{X}_{0}\right)$ such that

$$
\phi\left(s_{0}\right)=P_{1}+P_{2}, \quad \phi\left(e_{1}\right)=2 P_{1}, \quad \phi\left(e_{2}\right)=2 P_{2}
$$

and

$$
\phi\left(\widetilde{X}_{P_{i}}\right)=X_{P_{i}}:=\left\{P_{i}+Q \mid Q \in \widetilde{X}_{0}\right\}
$$

fitting in a commutative diagram

(see [11, p. 332]). This is shown in the next picture:

Figure A
Remark 3.2. The morphism $\omega: \widetilde{X}_{P_{1}} \rightarrow \widetilde{X}_{P_{2}}$ is geometrically interpreted in the following way (see [11]). Via ϕ the curves $\widetilde{X}_{P_{1}}$ and $\widetilde{X}_{P_{2}}$ map isomorphically to the two lines on the plane \mathbb{P}^{2} in red in Figure A joining the point $P_{1}+P_{2}$ with the points $2 P_{1}$ and $2 P_{2}$ respectively. In \mathbb{P}^{2} we have the conic Γ (mapped by $\operatorname{Sym}^{2}(\nu)$ to the diagonal Δ_{0} of $\left.Y_{0}\right)$, which is tangent to these lines at the points $2 P_{1}$ and $2 P_{2}$. The map ω associates two points if and only if their images in the plane lie on a tangent line to Γ. (The two points $P_{1}+Q$ and $P_{2}+Q$ of \mathbb{P}^{2} lie on the tangent line to Γ at the point $2 Q$ and are the intersection points of this tangent line with the two lines joining $2 P_{1}$ with $P_{1}+P_{2}$ and $2 P_{2}$ with $P_{1}+P_{2}$, namely $\phi\left(\widetilde{X}_{P_{1}}\right)$ and $\phi\left(\widetilde{X}_{P_{2}}\right)$.)

The Picard group of W is generated by h, e_{1}, e_{2}, s_{0}, where h is the pullback by ϕ of a line. In particular,

$$
\begin{equation*}
\widetilde{X}_{P_{i}} \sim h-s_{0}-e_{i}, \quad i=1,2 . \tag{5}
\end{equation*}
$$

One has

$$
-K_{W}=3 h-e_{1}-e_{2}-s_{0} .
$$

Let us look at what happens to the classes of \mathfrak{s} and \mathfrak{f} under the degeneration of R to \widetilde{Y}_{0}. This is described in $[11, \S 2]$ together with the more general description of the degeneration of line bundles on R under the degeneration of R to \widetilde{Y}_{0}, which we are now going to recall.

Let h^{\prime} be an ω-compatible member of $|h|$ on W (cf. Definition 3.1), not containing any of e_{1}, e_{2} or s_{0}. There is a one-dimensional irreducible family of such curves whose general member is the strict transform on W of a general tangent line to the conic Γ of \mathbb{P}^{2} mapped

have $\sigma\left(h^{\prime}\right) \cap \mathcal{E}=\emptyset$, so that $\sigma\left(h^{\prime}\right) \subset \widetilde{S}$ determines a Cartier divisor on \widetilde{Y}_{0}. The class of \mathfrak{s} on R degenerates to the class of $\sigma\left(h^{\prime}\right)$.

The class $h-s_{0}$ on W satisfies $\left(h-s_{0}\right) \cdot s_{0}=1$ and $\left(h-s_{0}\right) \cdot e_{i}=\left(h-s_{0}\right) \cdot \widetilde{X}_{P_{i}}=0$, $i=1,2$. Thus the general member F of the pencil $\left|h-s_{0}\right|$ is ω-compatible and $\sigma(F)$ intersects \mathcal{E} in one point along s_{0}. Therefore, the union of $\sigma(F)$ with the fiber of \mathcal{E} over the intersection point on s_{0} is a Cartier divisor on \widetilde{Y}_{0}, which turns out to be the limit of \mathfrak{f}.

Let $C \equiv a \mathfrak{s}+b \mathfrak{f}$ on R, with $a, b \geqslant 0$, and let C_{0} be its limit on \widetilde{Y}_{0}. Assume that it neither contains any of e_{1}, e_{2}, s_{0} nor the double curve of \widetilde{S}. We may write $C_{0}=C_{\widetilde{S}} \cup C_{\mathcal{E}}$ with $C_{\widetilde{S}} \subset \widetilde{S}$ and $C_{\mathcal{E}} \subset \mathcal{E}$. Then $C_{\widetilde{S}} \cap C_{\mathcal{E}} \subset s_{0}$ and $C_{\mathcal{E}}$ is a union of fibers of \mathcal{E}. We have $C_{\widetilde{S}}=\sigma\left(C_{W}\right)$, with C_{W} a ω-compatible curve satisfying

$$
C_{W} \sim a h+b\left(h-s_{0}\right)=(a+b) h-b s_{0} .
$$

This is because the transform of the limit of \mathfrak{s} is numerically equivalent to h on W and the transform of the limit of \mathfrak{f} is equivalent to $\left(h-s_{0}\right)$. This means that $\phi\left(C_{W}\right) \subset \mathbb{P}^{2}$ is a plane curve of degree $a+b$ with a point of multiplicity b at $P_{1}+P_{2}$, with intersection points with $X_{P_{1}}$ and $X_{P_{2}}$ satisfying the suitable "gluing conditions" given by ω.

Conversely, we have:
Lemma 3.3. Let $a, b \geqslant 0$ and $C_{W} \in\left|(a+b) h-b s_{0}\right|$ be an ω-compatible curve not containing any of e_{1}, e_{2}, s_{0} and intersecting s_{0} in distinct points. Let $C_{\mathcal{E}}$ denote the union of fibers on $\mathcal{E} \simeq \mathbb{F}_{1}$ such that $C_{\mathcal{E}} \cap s_{0}=C_{W} \cap s_{0}$. Then $\sigma\left(C_{W}\right) \cup C_{\mathcal{E}}$ is the flat limit of a curve algebraically equivalent to $a \mathfrak{s}+b \mathfrak{f}$.
Proof. Since $C_{W} \cdot \widetilde{X}_{P_{i}}=a$, the locus of ω-compatible curves in $\left|C_{W}\right|$ has dimension

$$
\operatorname{dim}\left|C_{W}\right|-a=\frac{1}{2}\left(a^{2}+3 a+2 a b+2 b\right)-a=\frac{1}{2}\left(a^{2}+a+2 a b+2 b\right),
$$

which equals the dimension of the Hilbert scheme of curves algebraically equivalent to $a \mathfrak{s}+b \mathfrak{f}$. The result follows from the discussion prior to the lemma.

Let us now go back to the degeneration $\mathcal{X} \rightarrow \mathbb{D}$ of a general elliptic curve E to a rational nodal curve X_{0} we considered at the beginning of this section. This can be viewed as a degeneration of the group E to \mathbb{C}^{*}, where (keeping the notation introduced at the beginning of this section) $\mathbb{C}^{*}=\mathbb{P}^{1} \backslash\left\{P_{1}, P_{2}\right\}$. Since \mathbb{C}^{*} has a unique non-trivial point of order 2, i.e., -1 , we see that in the degeneration $\mathcal{X} \rightarrow \mathbb{D}$ one of the three non-trivial points of order 2 of the general fibre degenerates to -1 , so it is fixed by the monodromy of the family $\mathcal{X} \rightarrow \mathbb{D}$. (The other two non-trivial points of order 2 must degenerate to the node of X_{0}.) This implies that we have a divisor \mathcal{T} on $\widetilde{\mathcal{Y}}$ such that the fiber T_{t} for $t \neq 0$ is a curve $T \subset R$ like the one we considered in $\S 2$. Since $T \equiv 2 \mathfrak{s}-\mathfrak{f}$, the proper transform T_{W} on W of the limit of the curve T is such that

$$
T_{W} \sim 2 h-\left(h-s_{0}\right) \sim h+s_{0}
$$

(remember that the pull-back on W of the limit of \mathfrak{s} and \mathfrak{f} are h and $h-s_{0}$ respectively). More precisely, since T has zero intersection with the diagonal of R, the image of T_{W} in \mathbb{P}^{2} via $\phi: W \rightarrow \mathbb{P}^{2}$ must intersect the conic Γ, which is mapped by $\operatorname{Sym}^{2}(\nu)$ to the diagonal of Y_{0} (see (4)), only in points of Γ that are blown up by ϕ, i.e., in the points corresponding to $2 P_{1}$ and $2 P_{2}$ (see Figure A). This implies that

$$
T_{W}=h_{0}+e_{1}+e_{2}+s_{0}
$$

where h_{0} is the strict transform by ϕ of the line in \mathbb{P}^{2} through $2 P_{1}$ and $2 P_{2}$.
Since T_{W} contains s_{0}, the divisor \mathcal{T} contains \mathcal{E}. By subtracting \mathcal{E} from \mathcal{T}, the resulting irreducible effective divisor $\mathcal{T}-\mathcal{E}$ intersects the central fibre in a curve that consists of two components: one component on \widetilde{S}, which is $\sigma\left(h_{0}\right)$, and another component sitting on \mathcal{E} that is the pull-back on $\mathcal{E} \simeq \mathbb{F}_{1}$ of the unique line of \mathbb{P}^{2} passing through the two points in which h_{0} intersects e_{1} and e_{2}. However, what will be important for us in what follows is that $\sigma\left(h_{0}\right)$ is in the limit of T.

4. A useful family of rational curves on some blow-ups of the plane

In this section we prove some results on certain line bundles on some blow-ups of the surface W introduced in the previous section. They will be useful in the proof of Proposition 2.3 in $\S 5$. We go on keeping the notation and convention we introduced in the previous section.

Let $y_{1}, \ldots, y_{n} \in h_{0}$ be general points. Choose sections of $p: \widetilde{\mathcal{Y}} \rightarrow \mathbb{D}$ passing through $\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right) \in \sigma\left(h_{0}\right)$ and through general points $y_{1}^{t}, \ldots, y_{n}^{t} \in T_{t}$ on a general fiber Y_{t}. Blowing up $\widetilde{\mathcal{Y}}$ along these sections, we obtain a smooth threefold \mathcal{Y}^{\prime} with a morphism $p^{\prime}: \mathcal{Y}^{\prime} \rightarrow \mathbb{D}$ with general fiber the blow-up of $Y_{t}=\operatorname{Sym}^{2}\left(X_{t}\right)$ at n general points of T_{t} and special fiber $Y^{\prime}:=S^{\prime} \cup \mathcal{E}$, where $S^{\prime}=\mathrm{Bl}_{\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right)}(\widetilde{S})$, and there is a normalization morphism $\sigma^{\prime}: W^{\prime} \rightarrow S^{\prime}$, where $W^{\prime}=\mathrm{Bl}_{y_{1}, \ldots, y_{n}}(W)$. Let $e_{y_{i}}$ denote the exceptional divisor in W^{\prime} over y_{i}, for $i=1, \ldots, n$. We denote the strict transforms of $e_{1}, e_{2}, s_{0}, \widetilde{X}_{P_{1}}, \widetilde{X}_{P_{2}}, h_{0}$ on W^{\prime} by the same symbols. Note that (5) still holds; furthermore

$$
h_{0} \sim h-e_{1}-e_{2}-e_{y_{1}}-\cdots-e_{y_{n}}
$$

and

$$
\begin{equation*}
-K_{W^{\prime}}=3 h-e_{1}-e_{2}-s_{0}-e_{y_{1}}-\cdots-e_{y_{n}} \sim h_{0}+e_{1}+e_{2}+\widetilde{X}_{P_{1}}+\widetilde{X}_{P_{2}}+s_{0} \tag{6}
\end{equation*}
$$

Moreover, the pull-back on W^{\prime} of the limit of T on S^{\prime} contains h_{0}.
We next fix a general point $x_{1} \in \widetilde{X}_{P_{1}}$ and set $x_{2}=\omega\left(x_{2}\right) \in \widetilde{X}_{P_{2}}$. The following picture summarizes the situation:

We introduce the following notation. For a line bundle M on W^{\prime}, we denote by V_{M} the locus of curves C in $|M|$ on W^{\prime} such that

- C is irreducible and rational,
- C intersects $\widetilde{X}_{P_{i}}$ only at $x_{i}, i=1,2$, and it is unibranch there.

We denote by V_{M}^{*} the open sublocus of V_{M} of curves C with the further property that

- C intersects s_{0} transversely,
- C is smooth at $x_{i}, i=1,2$,
- C is nodal.

Lemma 4.1. Assume $V_{M} \neq \emptyset$.
(i) If $M \cdot\left(h+s_{0}-e_{y_{1}}-\cdots-e_{y_{n}}\right) \geqslant 1$, then for each component V of V_{M} one has $\operatorname{dim}(V)=-K_{W^{\prime}} \cdot M-1-M \cdot \widetilde{X}_{P_{1}}-M \cdot \widetilde{X}_{P_{2}}=M \cdot\left(h+s_{0}-e_{y_{1}}-\cdots-e_{y_{n}}\right)-1$.
(ii) If $M \cdot\left(h+s_{0}-e_{y_{1}}-\cdots-e_{y_{n}}\right) \geqslant 4$, then $V_{M}^{*} \neq \emptyset$.

Proof. The result follows from [3, $\S 2]$, as outlined in [12, Thm. (1.4)].
Proposition 4.2. Let $\alpha, \beta, \gamma_{1}, \ldots, \gamma_{n}$ be non-negative integers verifying conditions (i)(iv) in Definition 2.1. Set $M=(\alpha+\beta) h-\beta s_{0}-\sum \gamma_{i} e_{y_{i}}$. Then V_{M}^{*} is non-empty with all components of dimension $\alpha+2 \beta-\sum \gamma_{i}-1$.

In the proof of Proposition 4.2 we will need the following:
Lemma 4.3. Given three lines $\ell_{1}, \ell_{2}, \ell_{3}$ in the plane \mathbb{P} not passing through the same point, we set $y_{i j}=\ell_{i} \cap \ell_{j}$ for $1 \leqslant i<j \leqslant 3$. Fix integers $d>m \geqslant 0, n \geqslant 0$, $m_{1}, \ldots, m_{n} \geqslant 1$, such that

$$
d \geqslant \sum_{i=1}^{n} m_{i} \quad \text { and } \quad d \geqslant m+m_{i}, \quad i=1, \ldots, n
$$

Then there is a reduced and irreducible rational curve γ in \mathbb{P} of degree d with the following properties:

- γ has a point of multiplicity m at y_{12},
- the pull-back on the normalization of γ of the g_{d-m}^{1} cut out by the lines through y_{12} has two total ramification points mapping to generic points $x_{1} \in \ell_{1}$ and $x_{2} \in \ell_{2}$ respectively (in particular different from y_{12}, y_{13}, y_{23}),
- γ has n points of multiplicities m_{1}, \ldots, m_{n} that are pairwise distinct points on ℓ_{3} (in particular different from y_{13} and y_{23}).

Proof. Set $\delta=d-m$. The assertion is trivial if $\delta=1$. So we assume $\delta \geqslant 2$. Consider a morphism $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree δ with two points of total ramification, that is a g_{δ}^{1} with no base points. Fix a general effective divisor D of degree m on \mathbb{P}^{1}, so that $g_{\delta}^{1}+D$ is a g_{d}^{1}. Fix n general points P_{1}, \ldots, P_{n} of \mathbb{P}^{1}, and consider the fibres

$$
f^{-1}\left(P_{i}\right)=P_{i 1}+\cdots+P_{i \delta}, \quad i=1, \ldots, n .
$$

Consider then the divisor

$$
E=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} P_{i j}+F
$$

where F is a general effective divisor of degree $d-\sum_{i=1}^{n} m_{i}$ on \mathbb{P}^{1}. The divisor E has no common point with the general divisor of $g_{\delta}^{1}+D$. Hence E and $g_{\delta}^{1}+D$ span a g_{d}^{2} with no base points. Moreover, this g_{d}^{2} is birational. Indeed, if g_{d}^{2} were composed with a g_{ν}^{1}, then, by the generality of the divisor D, the g_{δ}^{1} would have base points, a contradiction.

Let γ be the image of \mathbb{P}^{1} via the g_{d}^{2}. This is a rational plane curve of degree d, with a point of multiplicity m at a point y_{12} of \mathbb{P}^{2}. Moreover there are two lines ℓ_{1}, ℓ_{2} passing through y_{12}, that each intersects γ at one point apart from y_{12}, call it x_{1} and x_{2} respectively, where the g_{δ}^{1} has total ramification. Finally there is a third line ℓ_{3} that pulls back to \mathbb{P}^{1} to the divisor E. By the choices we made, this line does not pass through x_{1} and x_{2} and the divisors $\sum_{j=1}^{m_{i}} P_{i j}$, for $i=1, \ldots, n$, are contracted by the g_{d}^{2} to n distinct points on ℓ_{3} that have multiplicities m_{1}, \ldots, m_{n}. The genericity of x_{1}, x_{2} can be achieved by acting with projective transformations of the plane fixing the lines $\ell_{1}, \ell_{2}, \ell_{3}$, which keep the points of multiplicities m_{1}, \ldots, m_{n} pairwise distinct.

Proof of Proposition 4.2. Let $d=\alpha+\beta, m_{i}=\gamma_{i}$ and $m=\beta$. Consider the plane \mathbb{P} containing the curve γ constructed in Lemma 4.3. Let us blow up the points y_{12}, y_{13}, y_{23} and the n points of multiplicities m_{1}, \ldots, m_{n} on γ along ℓ_{3}.

We will consider the family \mathcal{W} of the surfaces W^{\prime} as above where the points y_{1}, \ldots, y_{n} are no longer general but simply pairwise distinct. We call $b>0$ the dimension of the parameter space of this family. There is a line bundle \mathcal{M} on \mathcal{W} that restricts on each member of \mathcal{W} to the line bundle M as in the statement of the proposition. Accordingly we can consider the families $\mathcal{V}_{\mathcal{M}}$ and $\mathcal{V}_{\mathcal{M}}^{*}$ of all varieties V_{M} and V_{M}^{*} as before.

The blow-up at the beginning of the proof can be interpreted as a member W_{0}^{\prime} of \mathcal{W} with $\omega\left(x_{1}\right)=x_{2}$, since there is a unique irreducible conic Γ tangent to the lines ℓ_{1}, ℓ_{2} at y_{13} and y_{23} respectively, and tangent also to the line joining the two points x_{1} and x_{2} (cf. Remark 3.2). We denote by M_{0} the restriction of \mathcal{M} to W_{0}^{\prime}.

Lemma 4.3 implies that $V_{M_{0}}$ is non-empty, which by Lemma 4.1 implies in turn that $V_{M_{0}}^{*}$ is non-empty, with all components of the expected dimension $\alpha+2 \beta-\sum \gamma_{i}-1$. This yields that $\mathcal{V}_{\mathcal{M}}^{*}$ is non-empty. Then its dimension is at least the expected dimension which is $\alpha+2 \beta-\sum \gamma_{i}-1+b$ that is strictly larger than the dimension of $V_{M_{0}}^{*}$. This implies that for W^{\prime} general in \mathcal{W} the variety V_{M}^{*} is non-empty of the expected dimension $\alpha+2 \beta-\sum \gamma_{i}-1$, as wanted.

5. Proof of Proposition 2.3

Let us go back to R and $\widetilde{R}=\operatorname{Bl}_{y_{1}, \ldots, y_{n}}(R)$, where y_{1}, \ldots, y_{n} are general points on T, with exceptional divisors \mathfrak{e}_{i} over y_{i}, for $i=1, \ldots, n$.

Proof of Proposition 2.3. As we already noted, condition (iv) in Definition 2.1 of (\star) is equivalent to $-K_{\widetilde{R}} \cdot L \geqslant 4$. Hence, as remarked for Theorem 1.1 in the introduction, the statements about dimension and smoothness follow from Proposition 2.2 once nonemptiness is proved. So it remains to prove nonemptiness.

We prove the result by degeneration of \widetilde{R} to Y^{\prime}, as indicated in $\S 4$, from which we keep the notation.

On the surface W^{\prime} consider

$$
L_{0} \sim \alpha h+\beta\left(h-s_{0}\right)-\sum \gamma_{i} e_{y_{i}} .
$$

Denote by $\left\{L_{0}\right\}_{W^{\prime}} \subset\left|L_{0}\right|$ the sublocus of ω-compatible curves.
Claim 5.0.1. $\operatorname{dim}\left(\left\{L_{0}\right\}_{W^{\prime}}\right)=\operatorname{dim}\left(\left|L_{0}\right|\right)-\alpha=\frac{1}{2}\left(\alpha^{2}+\alpha-\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha+1)$.
Proof of claim. By Proposition 4.2, the linear system $\left|L_{0}\right|$ contains an irreducible curve. Since $h^{1}\left(\mathcal{O}_{W^{\prime}}\right)=0$, it therefore follows that

$$
\begin{equation*}
h^{1}\left(-L_{0}\right)=h^{1}\left(L_{0}+K_{W^{\prime}}\right)=0 \tag{7}
\end{equation*}
$$

Set $A:=h_{0}+e_{1}+e_{2}+\widetilde{X}_{P_{1}}+\widetilde{X}_{P_{2}}+s_{0}$. Then A is a reduced cycle of rational curves, thus of arithmetic genus one, and it is anticanonical by (6). Since $L_{0} \cdot A \geqslant 4$ by condition (iv) of (\star), it follows in particular that $\left|L_{0}+A\right|$ contains a reduced, connected member. It therefore follows that

$$
\begin{equation*}
h^{1}\left(-L_{0}-A\right)=h^{1}\left(L_{0}\right)=0 \text { and } h^{0}\left(-L_{0}-A\right)=h^{2}\left(L_{0}\right)=0 . \tag{8}
\end{equation*}
$$

In particular, using Riemann-Roch on W^{\prime}, one computes that

$$
\operatorname{dim}\left(\left|L_{0}\right|\right)=\frac{1}{2}\left(\alpha^{2}+3 \alpha-\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha+1)
$$

thus proving the right hand equality of the claim.
We have left to prove that $\left\{L_{0}\right\}_{W^{\prime}}$ has codimension α in $\left|L_{0}\right|$.
To this end, let $Z_{1} \in \operatorname{Sym}^{\alpha}\left(\widetilde{X}_{P_{1}}\right)$ be general, and set $Z_{2}:=\omega\left(Z_{1}\right) \in \operatorname{Sym}^{\alpha}\left(\widetilde{X}_{P_{2}}\right)$. From the two restriction sequences

$$
0 \longrightarrow L_{0}+\left.K_{W^{\prime}} \longrightarrow L_{0} \longrightarrow L_{0}\right|_{A} \longrightarrow 0
$$

and

$$
0 \longrightarrow L_{0}+\left.K_{W^{\prime}} \longrightarrow L_{0} \otimes \mathcal{J}_{Z_{1} \cup Z_{2}} \longrightarrow L_{0}\right|_{A}\left(-Z_{1}-Z_{2}\right) \longrightarrow 0
$$

together with (7), we see that

$$
\operatorname{codim}\left(\left|L_{0} \otimes \mathcal{J}_{Z_{1} \cup Z_{2}}\right|,\left|L_{0}\right| \mid\right)=\operatorname{codim}\left(\left|L_{0}\right|_{A}\left(-Z_{1}-Z_{2}\right)\left|,\left|L_{0}\right|\right)\right.
$$

A standard computation involving restriction sequences to the various components of A shows that the latter codimension is 2α. Therefore,

$$
\operatorname{dim}\left(\left|L_{0} \otimes \mathcal{J}_{Z_{1} \cup Z_{2}}\right|\right)=\operatorname{dim}\left(\left|L_{0}\right|\right)-2 \alpha
$$

(This equality can also be obtained applying [12, Thm. (1.4.0)].) Varying $Z_{1} \in$ $\operatorname{Sym}^{\alpha}\left(\widetilde{X}_{P_{1}}\right)$, we obtain the whole of $\left\{L_{0}\right\}_{W^{\prime}}$. Thus,

$$
\operatorname{dim}\left(\left\{L_{0}\right\}_{W^{\prime}}\right)=\operatorname{dim}\left(\left|L_{0} \otimes \mathcal{J}_{Z_{1} \cup Z_{2}}\right|\right)+\operatorname{dim}\left(\operatorname{Sym}^{\alpha}\left(\widetilde{X}_{P_{1}}\right)\right)=\operatorname{dim}\left(\left|L_{0}\right|\right)-\alpha,
$$

finishing the proof of the claim.

Denote by $\left\{L_{0}\right\}$ the locus of curves on $Y^{\prime}=S^{\prime} \cup \mathcal{E}$ of the form $\sigma^{\prime}(C) \cup C_{\mathcal{E}}$, where C is an element of $\left\{L_{0}\right\}_{W^{\prime}}$ and $C_{\mathcal{E}}$ is the union of fibers on $\mathcal{E} \simeq \mathbb{F}_{1}$ such that $C_{\mathcal{E}} \cap S^{\prime}=\sigma^{\prime}(C) \cap s_{0}$. Then there is a one-to-one correspondence between $\left\{L_{0}\right\}_{W^{\prime}}$ and $\left\{L_{0}\right\}$. Thus, by the last claim,

$$
\begin{equation*}
\operatorname{dim}\left(\left\{L_{0}\right\}\right)=\frac{1}{2}\left(\alpha^{2}+\alpha-\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha+1) \tag{9}
\end{equation*}
$$

Note that all members of $\left\{L_{0}\right\}$ are Cartier divisors on Y^{\prime}. Moreover, by Lemma 3.3, the closure of the locus $\left\{L_{0}\right\}$ is (a component of) the limit of the algebraic system $\{L\}$ on \widetilde{R} of curves of class $\alpha \mathfrak{s}+\beta \mathfrak{f}-\sum \gamma_{i} \mathfrak{e}_{i}$. Since the anticanonical divisor on \widetilde{R} is effective, we have $h^{2}(L)=h^{0}\left(K_{\widetilde{R}}-L\right)=0$, whence Riemann-Roch yields

$$
\begin{aligned}
\operatorname{dim}\{L\} & =\operatorname{dim}|L|+1=\chi(L)+h^{1}(L) \\
& =\frac{1}{2} L \cdot\left(L-K_{\widetilde{R}}\right)+h^{1}(L) \\
& =\frac{1}{2}\left(\alpha^{2}+\alpha-\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha+1)+h^{1}(L) .
\end{aligned}
$$

By (9) and semicontinuity, we must have $h^{1}(L)=0$ and

$$
\begin{equation*}
\operatorname{dim}\left(\left\{L_{0}\right\}\right)=\operatorname{dim}(\{L\}) \tag{10}
\end{equation*}
$$

Let x_{1} and x_{2} be as in $\S 4$ and pick a general C in a component of $V_{L_{0}}^{*}$ in W^{\prime} (which is non-empty by Proposition 4.2). Then C intersects s_{0} transversely at $L_{0} \cdot s_{0}=\beta$ distinct points. Denote as above by $C_{\mathcal{E}}$ the union of the β fibers on \mathcal{E} such that $C_{\mathcal{E}} \cap s_{0}=$ $\sigma^{\prime}(C) \cap s_{0}$. Then $\sigma^{\prime}(C) \cup C_{\mathcal{E}}$ is a member of $\left\{L_{0}\right\}$, with an α-tacnode at $\sigma^{\prime}\left(x_{1}\right)=\sigma^{\prime}\left(x_{2}\right)$, and nodal otherwise, stably equivalent to $\sigma^{\prime}(C)$. Varying x_{1}, we obtain by Proposition 4.2 a family \mathcal{C} of dimension $\alpha+2 \beta-\sum \gamma_{i}=-L \cdot K_{\widetilde{R}}$ of such curves, and this is the expected dimension of $V_{p_{a}(L)-1}^{\xi}(\widetilde{R})$.

Let δ_{0} be the number of nodes of C, which equals the number of singular points of $\sigma^{\prime}(C)$ on the smooth locus of Y^{\prime}. Then

$$
\delta_{0}=p_{a}\left(L_{0}\right)=\frac{1}{2}\left(\alpha^{2}-3 \alpha+\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha-1)+1 .
$$

Grant for the moment the following ${ }^{1}$:
Claim 5.0.2. The family of curves in $\left\{L_{0}\right\}$ passing through the δ_{0} nodes of $\sigma^{\prime}(C)$ and having an $(\alpha-1)$-tacnode at $\sigma^{\prime}\left(x_{1}\right)=\sigma^{\prime}\left(x_{2}\right)$ has codimension $\delta_{0}+\alpha-1$ in $\left\{L_{0}\right\}$, that is, it has dimension $\alpha+2 \beta-\sum \gamma_{i}=\operatorname{dim} \mathcal{C}$.

Arguing as in [15, Thm. 3.3, Cor. 3.12 and proof of Thm. 1.1] ${ }^{2}$, we may deform Y^{\prime} to \widetilde{R} deforming the α-tacnode of $\sigma^{\prime}(C)$ to $\alpha-1$ nodes, while preserving the δ_{0} nodes

[^1]and smoothing the nodes $\sigma^{\prime}(C) \cap C_{\mathcal{E}}$. Thus $\sigma^{\prime}(C) \cup C_{\mathcal{E}}$ deforms to a curve algebraically equivalent to L with δ nodes, where
$$
\delta=\delta_{0}+\alpha-1=\frac{1}{2}\left(\alpha^{2}-\alpha+\sum \gamma_{i}-\sum \gamma_{i}^{2}\right)+\beta(\alpha-1)
$$

One computes

$$
p_{a}(L)=\frac{1}{2}\left(L^{2}+L \cdot K_{\widetilde{R}}\right)+1=\delta+1 .
$$

This shows that C has geometric genus one, as wanted.
We have left to prove the claim.
Proof of Claim 5.0.2. Let \mathcal{F} be the family of curves in $\left\{L_{0}\right\}_{W^{\prime}}$ passing through the δ_{0} nodes of C and being tangent to $\widetilde{X}_{P_{i}}$ at x_{i} with order $\alpha-1$, for $i=1,2$. The statement of the claim is equivalent to $\operatorname{dim} \mathcal{F}=\alpha+2 \beta-\sum \gamma_{i}$.

Denoting by N the scheme of the δ_{0} nodes of C and by $Z_{i}=(\alpha-1) x_{i}$ the subscheme on \widetilde{X}_{i}, whence on W^{\prime}, we have that \mathcal{F} is the locus of ω-compatible curves in $\left|L_{0} \otimes \mathcal{J}_{N \cup Z_{1} \cup Z_{2}}\right|$, which has codimension one, as $L_{0} \cdot \widetilde{X}_{i}=\alpha$. Thus,

$$
\operatorname{dim}(\mathcal{F})=\operatorname{dim}\left(\left|L_{0} \otimes \mathcal{J}_{N \cup Z_{1} \cup Z_{2}}\right|\right)-1
$$

To compute this, let $q: W^{\prime \prime} \rightarrow W^{\prime}$ denote the blow-up of W^{\prime} at N and denote the total exceptional divisor by E. Denote the inverse images of Z_{i} by the same names. Then

$$
\begin{equation*}
\operatorname{dim}(\mathcal{F})=\operatorname{dim}\left(\left|\left(q^{*} L_{0}-E\right) \otimes \mathcal{J}_{Z_{1} \cup Z_{2}}\right|\right)-1 \tag{11}
\end{equation*}
$$

Let \widetilde{C} be the strict transform of C on $W^{\prime \prime}$, which is a smooth rational curve. Then $\widetilde{C} \sim q^{*} L_{0}-2 E$. We therefore have a short exact sequence
$0 \longrightarrow \mathcal{O}_{W^{\prime \prime}}(E) \longrightarrow\left(q^{*} L_{0}-E\right) \otimes \mathcal{J}_{Z_{1} \cup Z_{2}} \longrightarrow \mathcal{O}_{\widetilde{C}}\left(q^{*} L_{0}-E\right)\left(-(\alpha-1)\left(x_{1}+x_{2}\right)\right) \longrightarrow 0$, whence, from (11) we have

$$
\begin{aligned}
\operatorname{dim}(\mathcal{F}) & =h^{0}\left(\left(q^{*} L_{0}-E\right) \otimes \mathcal{J}_{Z_{1} \cup Z_{2}}\right)-2 \\
& =h^{0}\left(\mathcal{O}_{\widetilde{C}}\left(q^{*} L_{0}-E\right)\left(-(\alpha-1)\left(x_{1}+x_{2}\right)\right)\right)-1 \\
& =\operatorname{deg}\left(\mathcal{O}_{\widetilde{C}}\left(q^{*} L_{0}-E\right)\left(-(\alpha-1)\left(x_{1}+x_{2}\right)\right)\right) \\
& =\left(q^{*} L_{0}-2 E\right)\left(q^{*} L_{0}-E\right)-2(\alpha-1) \\
& =L_{0}^{2}-2 \delta_{0}-2 \alpha+2 \\
& =\alpha+2 \beta-\sum \gamma_{i},
\end{aligned}
$$

as desired.
The proof of Proposition 2.3 is now complete.

References

[1] E. Ballico, On the irreducibility of the Severi variety of nodal curves in a smooth surface, Arch. Math. (Basel), 113(5) 483-487, 2019.
[2] A. Bruno, M. Lelli Chiesa, Irreducibility of Severi varieties on K3 surfaces, preprint arxiv:2112.09398v1.
[3] L. Caporaso, J. Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), 345-392.
[4] F. Catanese, C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with $p_{g}=q=1$, J. Algebraic Geom. 2 (1993), 389-411.
[5] X. Chen, Rational curves on K3 surfaces, J. Algebraic Geom. 8 (1999), 245-278.
[6] L. Chiantini, C. Ciliberto, On the Severi varieties of surfaces in \mathbb{P}^{3}, J. Alg. Geom. 8 (1999), 67-83.
[7] L. Chiantini, E. Sernesi, Nodal curves on surfaces of general type, Math. Ann. 307 (1997), 41-56.
[8] C. Ciliberto, Th. Dedieu, On the irreducibility of Severi varieties on K3 surfaces, Proc. Amer. Math. Soc. 147 (2019), 4233-4244.
[9] C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen, A note on Severi varieties of nodal curves on Enriques surfaces, in "Birational Geometry and Moduli Spaces", Springer INdAM Series 39, 29-36 (2018).
[10] C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen, Nonemptiness of Severi varieties on Enriques surfaces, arXiv:2109.10735.
[11] C. Ciliberto, A. Kouvidakis, On the symmetric product of a curve with general moduli, Geom. Dedicata 78 (1999), 327-343.
[12] Th. Dedieu, Geometry of logarithmic Severi varieties at a general point, https://hal. archives-ouvertes.fr/hal-02913705.
[13] Th. Dedieu, Comment on: On the irreducibility of the Severi variety of nodal curves in a smooth surface, by E. Ballico, Arch. Math. (Basel) 114 (2) (2020), 171-174.
[14] Th. Dedieu, E. Sernesi, Equigeneric and equisingular families of curves on surfaces, Publ. Mat. 61 (2017), 175-212.
[15] C. Galati, A. L. Knutsen, On the existence of curves with A_{k}-singularities on $K 3$ surfaces, Math. Res. Lett. 21 (2014), 1069-1109.
[16] G.-M. Greuel, C. Lossen, E. Shustin, Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998), 251-274.
[17] J. Harris, On the Severi problem, Invent. Math. 84 (1986), 445-461.
[18] Th. Keilen, Irreducibility of equisingular families of curves, Trans. Amer. Math. Soc. 355 (9) (2003), 3485-3512.
[19] M. Kemeny, The Universal Severi Variety of Rational Curves on K3 Surfaces, Bull. Lond. Math. Soc. 45 (1) (2013), 159-174.
[20] A. L. Knutsen, M. Lelli-Chiesa, Genus two curves on abelian surfaces, arXiv:1901.07603, to appear in Ann. Sci. École Norm. Supér.
[21] A. L. Knutsen, M. Lelli-Chiesa, G. Mongardi, Severi Varieties and Brill-Noether theory of curves on abelian surfaces, J. Reine Angew. Math. 749 (2019), 161-200.
[22] H. Lange, E. Sernesi, Severi varieties and branch curves of abelian surfaces of type (1,3), International J. of Math. 13, (2002), 227-244.
[23] S. Mori, S. Mukai, The uniruledness of the moduli space of curves of genus 11, Algebraic geometry (Tokyo/Kyoto, 1982), 334-353, Lecture Notes in Math., 1016, Springer, Berlin, 1983.
[24] E. Sernesi, Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften 334. Springer-Verlag, Berlin, Heidelberg, New York, 2006.
[25] E. Sernesi, A smoothing criterion for families of curves, http://www.mat.uniroma3.it/users/ sernesi/papers.html.
[26] F. Severi, Vorlesungen über Algebraische Geometrie, Johnson Pub. (reprinted, 1968; 1st. ed., Leipzig 1921).
[27] A. Tannenbaum, Families of algebraic curves with nodes, Compositio Math. 41 (1980), 107-126.
[28] A. Tannenbaum, Families of curves with nodes on K3 surfaces, Math. Annalen 260 (1982), 239-253.
[29] D. Testa, The Severi problem for rational curves on del Pezzo surfaces, Ph.D.-Thesis, Massachusetts Institute of Technology, 2005, ProQuest LLC.
[30] D. Testa, The irreducibility of the moduli spaces of rational curves on del Pezzo surfaces, J. Algebraic Geometry 18 (2009), 37-61.
[31] I. Tyomkin, On Severi varieties on Hirzebruch surfaces, Int. Math. Res. Not. IMRN 2007, no. 23, Art. ID rnm109, 31 pp .
[32] A. Zahariuc, The Severi problem for abelian surfaces in the primitive case, J. Math. Pures Appl. (9) 158 (2022), 320-349.

Ciro Ciliberto, Dipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica, 00173 Roma, Italy

Email address: cilibert@mat.uniroma2.it
Thomas Dedieu, Institut de Mathématiques de Toulouse-UMR5219, Université de Toulouse-CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France

Email address: thomas.dedieu@math.univ-toulouse.fr
Concettina Galati, Dipartimento di Matematica e Informatica, Università della Calabria, via P. Bucci, Cubo 31B, 87036 Arcavacata di Rende (CS), Italy

Email address: galati@mat.unical.it
Andreas Leopold Knutsen, Department of Mathematics, University of Bergen, PostBOKS 7800, 5020 Bergen, Norway

Email address: andreas.knutsen@math.uib.no

[^0]: Date: May 2, 2023.
 2010 Mathematics Subject Classification. 14D06,14H10, 14H20.
 Key words and phrases. Severi varieties, nodal curves, degenerations, elliptic ruled surfaces.

[^1]: ${ }^{1}$ From a deformation-theoretic point of view the claim asserts the smoothness of the equisingular deformation locus of $\sigma^{\prime}(C) \cup C_{\mathcal{E}}$, which is a dense open subset of \mathcal{C}, cf. [15, Lemma 3.4].
 ${ }^{2}$ The setting in [15] is slightly different, as the central fibre in the degeneration is a transversal union of two smooth surfaces, whereas S^{\prime} in the present setting is singular. Moreover, the central fiber in the degeneration in [15] is regular, whence linear and algebraic equivalence coincide, which is not the case on Y^{\prime}. However, the reasoning in [15] is local, so the proof goes through in the present setting as well. The two hypotheses (1)-(2) in [15, Thm. 3.3] correspond, respectively, to (10) and the statement in Claim 5.0.2.

