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Abstract. We prove that certain Severi varieties of nodal curves of positive genus on
general blow–ups of the twofold symmetric product of a general elliptic curve are non–
empty and smooth of the expected dimension. This result, besides its intrinsic value,
is an important preliminary step for the proof of nonemptiness of Severi varieties on
general Enriques surfaces in [10].

1. Introduction

Let S be a smooth, projective complex surface and ξ ∈ Num(S). Let

pa(ξ) =
1

2
ξ · (ξ +KS) + 1

be the arithmetic genus of ξ. If L is a line bundle or divisor on S with class ξ in
Num(S) we set pa(L) = pa(ξ). We denote by V ξ(S) the locus in the Hilbert scheme of
S parametrizing the curves C on S such that the class of OS(C) in Num(S) coincides
with ξ. Assume that L is a line bundle or divisor on S with class ξ in Num(S) and that

pa(L) > 0. For any integer δ satisfying 0 6 δ 6 pa(ξ) we denote by V ξ
δ (S) the Severi

variety parametrizing irreducible δ–nodal curves contained in V ξ(S). This is a possibly
empty locally closed set in V ξ(S).

Let V be an irreducible component of V ξ(S) and, for any δ such that 0 6 δ 6 pa(ξ),
let Vδ be an irreducible component of V ∩ V ξ

δ (S). It is well known that

(1) dim(Vδ) > dim(V )− δ,

where the right hand side is called the expected dimension of Vδ. Moreover if the equality

holds in (1), then, for all 0 6 δ′ 6 δ, the closure of the intersection of V ξ
δ′(S) with V

contains Vδ, and any of its components whose closure contains Vδ has the expected
dimension dim(V )− δ′ (see [25, Thm. 6.3]).

Severi varieties were introduced by Severi in Anhang F of [26], where he proved that
all Severi varieties of irreducible δ-nodal curves of degree d in P2 are nonempty and
smooth of the expected dimension. Severi also claimed irreducibility of such varieties,
but his proof contains a gap. The irreducibility was proved by Harris [17] more than 60
years later.

Severi varieties on other surfaces have received much attention in recent years, espe-
cially in connection with enumerative formulas computing their degrees.
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Nonemptiness is known to hold for all Severi varieties associated to big and nef classes
on Del Pezzo surfaces (as well as rational surfaces under certain assumptions) by [16,
Thms. 3-4] and for Hirzebruch surfaces, a result implicitly contained in [27, §3]. In
both cases of Del Pezzo and Hirzebruch surfaces, all Severi varieties are smooth of
the expected dimensions, cf., e.g. [27, Lemma 2.9] or [7, p. 45]. Moreover, all Severi
varieties of Hirzebruch surfaces are irreducible [31], and Severi varieties parametrizing
rational curves on Del Pezzo surfaces of degrees > 2 are irreducible as well [30]; the
same holds true for general Del Pezzo surfaces of degree one, except for the Severi
variety parametrizing rational curves in the anticanonical class [29, Cor. 6.4].

On a general primitively polarized K3 surface (S, ξ), all Severi varieties V nξ
δ (S), where

0 6 δ 6 pa(nξ), are nonempty by a result of Mumford [23] if n = 1 and of Chen [5] for
all n; moreover, all components are always smooth of the expected dimension pa(nξ)−δ
[28, 7]. The irreduciblity question (for δ < pa(nξ)) has been the object of much attention,
see [18, 19, 8, 1, 13], and was recently solved in the case n = 1 for all δ 6 pa(ξ) − 4 in
the preprint [2].

Similarly, on a general primitively polarized abelian surface (S, ξ), all Severi varieties

V nξ
δ (S), where 0 6 δ 6 pa(nξ) − 2, are nonempty (by [21] if n = 1 and [20] in general)

and smooth of the expected dimension pa(nξ)− δ [22]. Irreducibility does not hold: the
various irreducible components in the case n = 1 have been described by Zahariuc [32].

Very little is known on other surfaces, where problems such as nonemptiness, smooth-
ness, dimension and irreducibility are regarded as very hard. In particular, Severi vari-
eties may have unexpected behaviour: examples are given in [6] of surfaces of general
type with reducible Severi varieties, and also with components of dimension different
from the expected one.

In this paper we consider the case of blow–ups of a particular type of ruled surface
over an elliptic curve.

Let E be a general smooth irreducible projective curve of genus one and set R :=

Sym2(E). Let R̃ be the blow–up of R at any finite set of general points. Our main

result in this paper shows that Severi varieties of a large class of line bundles on R̃ are
well-behaved:

Theorem 1.1. In the above setting, let L be a line bundle on R̃ verifying condition

(?) (cf. Definition 2.1) and let ξ be the class of L in Num(R̃). Let δ be an integer

satisfying 0 6 δ < pa(L). Then V ξ
δ (R̃) is nonempty and smooth with all components of

the expected dimension −L ·K
R̃

+ pa(L)− δ − 1.

The statement about smoothness and dimension follows from standard arguments of
deformation theory, once non–emptiness has been proved, cf. Proposition 2.2 below.
Moreover we remark that, by what we said above, it suffices to prove Theorem 1.1 for
the maximal number of nodes, i.e., δ = pa(L) − 1. This will follow from Proposition
2.3 below, which treats the special case in which the blown–up points are in a special
position. In [10] we will make use of Proposition 2.3 in order to prove nonemptiness
of Severi varieties on Enriques surfaces. The question of smoothness and dimension of
Severi varieties on Enriques surfaces has been treated in [9].

The irreducibility question for V ξ
δ (R̃) is not treated in this paper; thus, we pose:

Question 1.2. Are the varieties V ξ
δ (R̃) from Theorem 1.1 irreducible?
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The paper is organised as follows. In §2 we recall some preliminaries concerning
twofold symmetric products of elliptic curves. Section 3 is devoted to recalling a degen-
eration of the symmetric product of a general elliptic curve studied in [11]. In §4 we
construct certain families of curves on some blow–ups of the projective plane that turn
out to be useful in the proof of Proposition 2.3, which is proved by degeneration in §5.
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ment Project CUP E83C180 00100006 (CC), project FOSICAV within the EU Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant agree-
ment n. 652782 (CC, ThD), GNSAGA of INDAM (CC, CG), the Trond Mohn Foun-
dation Project “Pure Mathematics in Norway” (ALK, CG) and grant 261756 of the
Research Council of Norway (ALK).

2. The twofold symmetric product of an elliptic curve

Let E be a smooth irreducible projective elliptic curve. Denote by ⊕ (and 	) the
group operation on E and by e0 the neutral element. Let R := Sym2(E) and π : R→ E
be the (Albanese) morphism sending x + y to x ⊕ y. We denote the fiber of π over a
point e ∈ E by

fe := π−1(e) = {x+ y ∈ Sym2(E) | x⊕ y = e (equivalently, x+ y ∼ e+ e0)},

(where ∼ denotes linear equivalence), which is the P1 defined by the linear system |e+e0|.
We denote the algebraic equivalence class of the fibers by f.

For each e ∈ E we define the curve se (called De in [4]) as the image of the section
E → R of the Albanese morphism mapping x to e+(x	e). We let s denote the algebraic
equivalence class of these sections, which are the ones with minimal self-intersection,
namely 1, cf. [4]. One has

KR ∼ −2se0 + fe0 .

Let y1, . . . , yn ∈ R be distinct points and let R̃ := Bly1,...,yn(R) → R denote the
blow–up of R at y1, . . . , yn, with exceptional divisors ei over yi. We denote the strict

transforms of s and f on R̃ by the same symbols.

Definition 2.1. A line bundle or Cartier divisor L on R̃ is said to verify condition (?)
if it is of the form L ≡ αs+ βf−

∑n
i=1 γiei (where ≡ denotes numerical or, equivalently,

algebraic equivalence), with α, β, γ1, . . . , γn are integers such that:
(i) α > 1, β > 0;
(ii) α > γi for i = 1, . . . , n;
(iii) α+ β >

∑n
i=1 γi;

(iv) α+ 2β >
∑n

i=1 γi + 4.

Condition (ii) is satisfied if L is nef. Condition (iv) is equivalent to −L ·K
R̃
> 4.

The statement about smoothness and dimension in Theorem 1.1 follows from the
following more general result, well–known to experts:

Proposition 2.2. Let S be a smooth projective complex surface and ξ ∈ Num(S) such
that −ξ ·KS > 0. Let δ be an integer satisfying 0 6 δ 6 pa(ξ).

If V ξ
δ (S) is nonempty, it is smooth and every component has the expected dimension

−ξ ·KS + pa(ξ)− δ − 1.
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Proof. Let X be any curve in V ξ
δ (S) and let V ξ(S) be the Hilbert scheme defined in the

introduction. Since

deg(NX/S) = ξ2 = ξ · (ξ +KS)− ξ ·KS = 2pa(ξ)− 2− ξ ·KS > 2pa(ξ)− 2,

the normal bundle NX/S is nonspecial, whence V ξ(S) is smooth at [X] of dimension

h0(NX/S) = −ξ ·KS + pa(ξ)− 1 (cf., e.g., [24, §4.3]).

Let ϕ : X̃ → S be the composition of the normalization X̃ → X with the inclusion
X ⊂ S and consider the normal sheaf Nϕ defined by the short exact sequence

0 // T
X̃

// ϕ∗TS // Nϕ // 0.

The tangent space to V ξ
δ (S) at [X] is isomorphic to H0(X̃,Nϕ), and Nϕ is a line bundle,

as X is nodal (cf., e.g., [24, §3.4.3] or [14]). Let g be the geometric genus of X. Since
degNϕ = −X · KS + 2g − 2 > 2g − 2 by the above sequence, the line bundle Nϕ is
nonspecial, and

h0(Nϕ) = −ξ ·KS + g − 1 = −ξ ·KS + pa(ξ)− δ − 1 = dim(V ξ(S))− δ,

which is the expected dimension of V ξ
δ (S). Thus, V ξ

δ (S) is smooth at [X] and of the
expected dimension. �

By what we said in the introduction, it suffices to prove Theorem 1.1 for the high-
est possible δ, that is, for δ = pa(L) − 1, in which case the Severi variety in question
parametrizes nodal curves of geometric genus one. We will prove the theorem by spe-
cializing the points y1, . . . , yn as we now explain.

Let η be any of the three nonzero 2-torsion points of E. The map E → R defined by
mapping e to e+ (e⊕ η) realizes E as an unramified double cover of its image curve

T := {e+ (e⊕ η) | e ∈ E}.

We have

(2) T ∼ −KR + fη − fe0 ∼ 2se0 − 2fe0 + fη,

by [4, (2.10)]. In particular,

(3) T 6∼ −KR and 2T ∼ −2KR.

We denote the strict transform of T on R̃ by the same symbol. Suppose that
y1, . . . , yn ∈ T are general points. Then by (2)–(3) we have

T ∼ 2se0 − 2fe0 + fη − e1 − · · · − en 6∼ −KR̃
, 2T ∼ −2K

R̃

on R̃. In particular,

T ≡ −K
R̃
≡ 2s− f− e1 − · · · − en.

As remarked in the introduction, Theorem 1.1 is a consequence of the following result,
which we will prove in §5.

Proposition 2.3. Let E be a general irreducible smooth projective curve of genus one.
Let y1, . . . , yn ∈ T be general points, with T on R = Sym2(E) as defined above. Let L

be a line bundle on R̃ = Bly1,...,yn(R) verifying condition (?) with class ξ in Num(R̃).

Then V ξ
pa(L)−1(R̃) is nonempty and smooth, of the expected dimension L · T = −L ·K

R̃
.
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3. A degeneration of the twofold symmetric product of a general
elliptic curve

Let E be a smooth irreducible projective elliptic curve. We recall a degeneration of
R = Sym2(E) from [11], to which we refer the reader for details.

Let X → D be a flat projective family of curves over the unit disk D, with X smooth,
such that the fiber X0 over 0 ∈ D is an irreducible rational 1-nodal curve and all other
fibers Xt, t ∈ D \ {0}, are smooth irreducible elliptic curves. Let p : Y → D be the
relative 2-symmetric product. Then, for t 6= 0, the fiber Yt = p−1(t) ' Sym2(Xt) is
smooth, whereas the special fiber Y0 = p−1(0) = Sym2(X0) is irreducible, but singular.
The singular locus of Y0 consists of the curve

XP := {x+ P | x ∈ X0},

where P is the node of X0.
Let ν : P1 ' X̃0 → X0 be the normalization, with P1 and P2 the preimages of P

(with the notation of [11, p. 328], this is the case g = 1 with P = P1). Then ν induces
a birational morphism

(4) Sym2(ν) : P2 ' Sym2(X̃0) −→ Sym2(X0) = Y0.

Under the isomorphism on the left the diagonal in Sym2(X̃0) corresponds to a smooth

conic Γ in P2 that is mapped by Sym2(ν) to the diagonal ∆0 of Y0 and, for each x ∈ X̃0,
the curve

{x+Q | Q ∈ X̃0} ⊂ Sym2(X̃0)

corresponds to the line in P2 tangent to Γ at the point corresponding to 2x.
The threefold Y has local equations at the point 2P ∈ Y0 given by

z25 − z3z4 = 0, z1z5 + z2z3 = 0, z1z4 + z2z5 = 0, z1z2 + z5 + t = 0,

with (z1, ..., z5, t) ∈ C5×D (cf. [11, p. 329]). In particular, Y is singular only at the point
2P , corresponding to the origin 0. Its special fibre Y0 is locally reducible at 0 = 2P ,
where it consists of three irreducible components S1∪S2∪S3 (named Si1 in [11]), where S1

is the z2z4-plane, S2 is the z1z3-plane and S3 has equations z3 = z21 , z4 = z22 , z5 = −z1z2,
meeting as in [11, Fig. 1]. The singular locus XP = Sing(Y0) of Y0 has a node at the
origin, Y0 has double normal crossing singularities along XP \ 2P and the intersection
curves C1 = S3 ∩ S1 and C2 = S3 ∩ S2 (named Ci1 in [11]) are the two branches of
the curve XP at 0 = 2P . Finally, in these local coordinates, the diagonal ∆0 of Y0
(∆0 = ∆1

0,1 ∪ ∆1
0,2 in [11, Fig. 1]) consists of the z2, z1-axes and it has a node at the

point 2P .

Let µ : Ỹ → Y be the blow–up at the point 2P ∈ Sym2(X0) = Y0 ⊂ Y and denote the

exceptional divisor by E (called E1 in [11]). Then E ' F1 and Ỹ is smooth (see [11, p.

330]). All fibers over t 6= 0 are unchanged. The special fiber Ỹ0 of Ỹ → D is the union

of E and of an irreducible surface S̃, which is the strict transform of Y0. We have

S̃ ∩ E = s0 + e1 + e2,

where e1 and e2 are two fibers of E ' F1 and s0 (called η1 in [11, Fig. 2]) is the section

satisfying s20 = −1. The surface S̃ is singular, with double normal crossings singularities
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along the proper transform X̃P of the curve XP . The proper transform on Ỹ of the

diagonal of Y intersects Ỹ0 along

∆̃0 + s0,

where ∆̃0 is the proper transform of the diagonal ∆0 on Y0.

To normalize S̃ one unfolds along X̃P . The resulting surface W is smooth. Denote

the normalization map by σ : W → S̃. The preimage of X̃P is a pair of curves, which

we call X̃P1 and X̃P2 . Denoting the inverse images on W of the curves e1, e2, s0 on S̃ by

the same symbols, the intersection configuration between the curves e1, e2, s0, X̃P1 , X̃P2

on W looks as follows:

W

s0

e2e1

X̃P2X̃P1

Under the map σ the two curves X̃P1 and X̃P2 are identified: we denote the identi-

fication morphism by ω : X̃P1 ' X̃P2 . Under this morphism, the intersection points of
the above configuration are mapped as follows:

W

s0

e2e1

X̃P2
X̃P1

Definition 3.1. We say that a curve C ⊂ W is ω-compatible if C contains neither

X̃P1 nor X̃P2 and ω maps the 0–dimensional intersection scheme of C with X̃P1 to the

intersection scheme of C with X̃P2 .

If the curve C is ω–compatible then σ(C) is a Cartier divisor on S̃. Conversely any

curve on S̃ that is a Cartier divisor and does not contain the singular curve of S̃ is the
image by σ of an ω–compatible curve on W .

One sees that the curves s0, e1, e2 are (−1)–curves on W (see [11, p. 331–332]).

Contracting them we obtain a morphism φ : W → P2 ' Sym2(X̃0) such that

φ(s0) = P1 + P2, φ(e1) = 2P1, φ(e2) = 2P2

and

φ(X̃Pi) = XPi := {Pi +Q | Q ∈ X̃0},
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fitting in a commutative diagram

W
σ //

φ
��

S̃ ⊂ S̃ ∪ E = Ỹ0

µ|
Ỹ0

��

⊂ Ỹ

µ

��

P2

Sym2(ν)

// Y0

p|Y0
��

⊂ Y

p

��

{0} ⊂ D

(see [11, p. 332]). This is shown in the next picture:

W

s0

e2e1

X̃P2
X̃P1

φ

P2

P1 + P2

2P22P1

Figure A

Remark 3.2. The morphism ω : X̃P1 → X̃P2 is geometrically interpreted in the follow-

ing way (see [11]). Via φ the curves X̃P1 and X̃P2 map isomorphically to the two lines
on the plane P2 in red in Figure A joining the point P1 + P2 with the points 2P1 and
2P2 respectively. In P2 we have the conic Γ (mapped by Sym2(ν) to the diagonal ∆0 of
Y0), which is tangent to these lines at the points 2P1 and 2P2. The map ω associates
two points if and only if their images in the plane lie on a tangent line to Γ. (The two
points P1 +Q and P2 +Q of P2 lie on the tangent line to Γ at the point 2Q and are the
intersection points of this tangent line with the two lines joining 2P1 with P1 + P2 and

2P2 with P1 + P2, namely φ(X̃P1) and φ(X̃P2).)

The Picard group of W is generated by h, e1, e2, s0, where h is the pullback by φ of a
line. In particular,

(5) X̃Pi ∼ h− s0 − ei, i = 1, 2.

One has
−KW = 3h− e1 − e2 − s0.

Let us look at what happens to the classes of s and f under the degeneration of R

to Ỹ0. This is described in [11, §2] together with the more general description of the

degeneration of line bundles on R under the degeneration of R to Ỹ0, which we are now
going to recall.

Let h′ be an ω-compatible member of |h| on W (cf. Definition 3.1), not containing any
of e1, e2 or s0. There is a one-dimensional irreducible family of such curves whose general
member is the strict transform onW of a general tangent line to the conic Γ of P2 mapped
to the diagonal of Y0 by Sym2(ν) (cf. Remark 3.2). Since h · e1 = h · e2 = h · s0 = 0, we
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have σ(h′)∩ E = ∅, so that σ(h′) ⊂ S̃ determines a Cartier divisor on Ỹ0. The class of s
on R degenerates to the class of σ(h′).

The class h− s0 on W satisfies (h− s0) · s0 = 1 and (h− s0) · ei = (h− s0) · X̃Pi = 0,
i = 1, 2. Thus the general member F of the pencil |h − s0| is ω-compatible and σ(F )
intersects E in one point along s0. Therefore, the union of σ(F ) with the fiber of E over

the intersection point on s0 is a Cartier divisor on Ỹ0, which turns out to be the limit
of f.

Let C ≡ as + bf on R, with a, b > 0, and let C0 be its limit on Ỹ0. Assume that it

neither contains any of e1, e2, s0 nor the double curve of S̃. We may write C0 = C
S̃
∪CE

with C
S̃
⊂ S̃ and CE ⊂ E . Then C

S̃
∩CE ⊂ s0 and CE is a union of fibers of E . We have

C
S̃

= σ(CW ), with CW a ω-compatible curve satisfying

CW ∼ ah+ b(h− s0) = (a+ b)h− bs0.
This is because the transform of the limit of s is numerically equivalent to h on W and
the transform of the limit of f is equivalent to (h− s0). This means that φ(CW ) ⊂ P2 is
a plane curve of degree a+ b with a point of multiplicity b at P1 +P2, with intersection
points with XP1 and XP2 satisfying the suitable “gluing conditions” given by ω.

Conversely, we have:

Lemma 3.3. Let a, b > 0 and CW ∈ |(a + b)h − bs0| be an ω-compatible curve not
containing any of e1, e2, s0 and intersecting s0 in distinct points. Let CE denote the
union of fibers on E ' F1 such that CE ∩ s0 = CW ∩ s0. Then σ(CW ) ∪ CE is the flat
limit of a curve algebraically equivalent to as + bf.

Proof. Since CW · X̃Pi = a, the locus of ω-compatible curves in |CW | has dimension

dim |CW | − a =
1

2

(
a2 + 3a+ 2ab+ 2b

)
− a =

1

2

(
a2 + a+ 2ab+ 2b

)
,

which equals the dimension of the Hilbert scheme of curves algebraically equivalent to
as + bf. The result follows from the discussion prior to the lemma. �

Let us now go back to the degeneration X → D of a general elliptic curve E to a
rational nodal curve X0 we considered at the beginning of this section. This can be
viewed as a degeneration of the group E to C∗, where (keeping the notation introduced
at the beginning of this section) C∗ = P1 \ {P1, P2}. Since C∗ has a unique non–trivial
point of order 2, i.e., −1, we see that in the degeneration X → D one of the three
non–trivial points of order 2 of the general fibre degenerates to −1, so it is fixed by the
monodromy of the family X → D. (The other two non–trivial points of order 2 must

degenerate to the node of X0.) This implies that we have a divisor T on Ỹ such that
the fiber Tt for t 6= 0 is a curve T ⊂ R like the one we considered in §2. Since T ≡ 2s− f,
the proper transform TW on W of the limit of the curve T is such that

TW ∼ 2h− (h− s0) ∼ h+ s0

(remember that the pull–back on W of the limit of s and f are h and h−s0 respectively).
More precisely, since T has zero intersection with the diagonal of R, the image of TW
in P2 via φ : W → P2 must intersect the conic Γ, which is mapped by Sym2(ν) to the
diagonal of Y0 (see (4)), only in points of Γ that are blown up by φ, i.e., in the points
corresponding to 2P1 and 2P2 (see Figure A). This implies that

TW = h0 + e1 + e2 + s0,
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where h0 is the strict transform by φ of the line in P2 through 2P1 and 2P2.
Since TW contains s0, the divisor T contains E . By subtracting E from T , the resulting

irreducible effective divisor T − E intersects the central fibre in a curve that consists of
two components: one component on S̃, which is σ(h0), and another component sitting
on E that is the pull–back on E ' F1 of the unique line of P2 passing through the two
points in which h0 intersects e1 and e2. However, what will be important for us in what
follows is that σ(h0) is in the limit of T .

4. A useful family of rational curves on some blow–ups of the plane

In this section we prove some results on certain line bundles on some blow–ups of
the surface W introduced in the previous section. They will be useful in the proof of
Proposition 2.3 in §5. We go on keeping the notation and convention we introduced in
the previous section.

Let y1, . . . , yn ∈ h0 be general points. Choose sections of p : Ỹ → D passing through
σ(y1), . . . , σ(yn) ∈ σ(h0) and through general points yt1, . . . , y

t
n ∈ Tt on a general fiber Yt.

Blowing up Ỹ along these sections, we obtain a smooth threefold Y ′ with a morphism
p′ : Y ′ → D with general fiber the blow–up of Yt = Sym2(Xt) at n general points

of Tt and special fiber Y ′ := S′ ∪ E , where S′ = Blσ(y1),...,σ(yn)(S̃), and there is a
normalization morphism σ′ : W ′ → S′, where W ′ = Bly1,...,yn(W ). Let eyi denote the
exceptional divisor in W ′ over yi, for i = 1, . . . , n. We denote the strict transforms of

e1, e2, s0, X̃P1 , X̃P2 , h0 on W ′ by the same symbols. Note that (5) still holds; furthermore

h0 ∼ h− e1 − e2 − ey1 − · · · − eyn
and

(6) −KW ′ = 3h− e1 − e2 − s0 − ey1 − · · · − eyn ∼ h0 + e1 + e2 + X̃P1 + X̃P2 + s0.

Moreover, the pull–back on W ′ of the limit of T on S′ contains h0.

We next fix a general point x1 ∈ X̃P1 and set x2 = ω(x2) ∈ X̃P2 . The following
picture summarizes the situation:

W ′

s0

e2e1

X̃P2
∼ h− s0 − e2X̃P1

∼ h− s0 − e1

h ∼ h− e1 − e2 − ey1
− · · · − eyn

ey1
ey2

ey3
eyn

x2 = ω(x1)x1

We introduce the following notation. For a line bundle M on W ′, we denote by VM
the locus of curves C in |M | on W ′ such that

• C is irreducible and rational,

• C intersects X̃Pi only at xi, i = 1, 2, and it is unibranch there.
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We denote by V ∗M the open sublocus of VM of curves C with the further property that

• C intersects s0 transversely,
• C is smooth at xi, i = 1, 2,
• C is nodal.

Lemma 4.1. Assume VM 6= ∅.
(i) If M · (h+ s0 − ey1 − · · · − eyn) > 1, then for each component V of VM one has

dim(V ) = −KW ′ ·M − 1−M · X̃P1 −M · X̃P2 = M · (h+ s0 − ey1 − · · · − eyn)− 1.

(ii) If M · (h+ s0 − ey1 − · · · − eyn) > 4, then V ∗M 6= ∅.

Proof. The result follows from [3, §2], as outlined in [12, Thm. (1.4)]. �

Proposition 4.2. Let α, β, γ1, . . . , γn be non–negative integers verifying conditions (i)–
(iv) in Definition 2.1. Set M = (α+ β)h− βs0 −

∑
γieyi. Then V ∗M is non–empty with

all components of dimension α+ 2β −
∑
γi − 1.

In the proof of Proposition 4.2 we will need the following:

Lemma 4.3. Given three lines `1, `2, `3 in the plane P not passing through the same
point, we set yij = `i ∩ `j for 1 6 i < j 6 3. Fix integers d > m > 0, n > 0,
m1, . . . ,mn > 1, such that

d >
n∑
i=1

mi and d > m+mi, i = 1, . . . , n.

Then there is a reduced and irreducible rational curve γ in P of degree d with the following
properties:

• γ has a point of multiplicity m at y12,
• the pull–back on the normalization of γ of the g1d−m cut out by the lines through
y12 has two total ramification points mapping to generic points x1 ∈ `1 and
x2 ∈ `2 respectively (in particular different from y12, y13, y23),
• γ has n points of multiplicities m1, . . . ,mn that are pairwise distinct points on
`3 (in particular different from y13 and y23).

`1 `2

`3

y13 y23

x1

x2

γ

y12
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Proof. Set δ = d −m. The assertion is trivial if δ = 1. So we assume δ > 2. Consider
a morphism f : P1 → P1 of degree δ with two points of total ramification, that is a g1δ
with no base points. Fix a general effective divisor D of degree m on P1, so that g1δ +D
is a g1d. Fix n general points P1, . . . , Pn of P1, and consider the fibres

f−1(Pi) = Pi1 + · · ·+ Piδ, i = 1, . . . , n.

Consider then the divisor

E =
n∑
i=1

mi∑
j=1

Pij + F

where F is a general effective divisor of degree d−
∑n

i=1mi on P1. The divisor E has no
common point with the general divisor of g1δ +D. Hence E and g1δ +D span a g2d with
no base points. Moreover, this g2d is birational. Indeed, if g2d were composed with a g1ν ,
then, by the generality of the divisor D, the g1δ would have base points, a contradiction.

Let γ be the image of P1 via the g2d. This is a rational plane curve of degree d,
with a point of multiplicity m at a point y12 of P2. Moreover there are two lines `1, `2
passing through y12, that each intersects γ at one point apart from y12, call it x1 and
x2 respectively, where the g1δ has total ramification. Finally there is a third line `3 that
pulls back to P1 to the divisor E. By the choices we made, this line does not pass
through x1 and x2 and the divisors

∑mi
j=1 Pij , for i = 1, . . . , n, are contracted by the g2d

to n distinct points on `3 that have multiplicities m1, . . . ,mn. The genericity of x1, x2
can be achieved by acting with projective transformations of the plane fixing the lines
`1, `2, `3, which keep the points of multiplicities m1, . . . ,mn pairwise distinct. �

Proof of Proposition 4.2. Let d = α + β, mi = γi and m = β. Consider the plane P
containing the curve γ constructed in Lemma 4.3. Let us blow up the points y12, y13, y23
and the n points of multiplicities m1, . . . ,mn on γ along `3.

We will consider the familyW of the surfaces W ′ as above where the points y1, . . . , yn
are no longer general but simply pairwise distinct. We call b > 0 the dimension of the
parameter space of this family. There is a line bundle M on W that restricts on each
member of W to the line bundle M as in the statement of the proposition. Accordingly
we can consider the families VM and V∗M of all varieties VM and V ∗M as before.

The blow–up at the beginning of the proof can be interpreted as a member W ′0 of W
with ω(x1) = x2, since there is a unique irreducible conic Γ tangent to the lines `1, `2 at
y13 and y23 respectively, and tangent also to the line joining the two points x1 and x2
(cf. Remark 3.2). We denote by M0 the restriction of M to W ′0.

Lemma 4.3 implies that VM0 is non–empty, which by Lemma 4.1 implies in turn that
V ∗M0

is non–empty, with all components of the expected dimension α + 2β −
∑
γi − 1.

This yields that V∗M is non–empty. Then its dimension is at least the expected dimension
which is α + 2β −

∑
γi − 1 + b that is strictly larger than the dimension of V ∗M0

. This

implies that for W ′ general inW the variety V ∗M is non–empty of the expected dimension
α+ 2β −

∑
γi − 1, as wanted. �

5. Proof of Proposition 2.3

Let us go back to R and R̃ = Bly1,...,yn(R), where y1, . . . , yn are general points on T ,
with exceptional divisors ei over yi, for i = 1, . . . , n.
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Proof of Proposition 2.3. As we already noted, condition (iv) in Definition 2.1 of (?)
is equivalent to −K

R̃
· L > 4. Hence, as remarked for Theorem 1.1 in the introduc-

tion, the statements about dimension and smoothness follow from Proposition 2.2 once
nonemptiness is proved. So it remains to prove nonemptiness.

We prove the result by degeneration of R̃ to Y ′, as indicated in §4, from which we
keep the notation.

On the surface W ′ consider

L0 ∼ αh+ β(h− s0)−
∑

γieyi .

Denote by {L0}W ′ ⊂ |L0| the sublocus of ω–compatible curves.

Claim 5.0.1. dim({L0}W ′) = dim(|L0|)− α = 1
2

(
α2 + α−

∑
γi −

∑
γ2i
)

+ β(α+ 1).

Proof of claim. By Proposition 4.2, the linear system |L0| contains an irreducible curve.
Since h1(OW ′) = 0, it therefore follows that

(7) h1(−L0) = h1(L0 +KW ′) = 0.

Set A := h0+e1+e2+X̃P1 +X̃P2 +s0. Then A is a reduced cycle of rational curves, thus
of arithmetic genus one, and it is anticanonical by (6). Since L0 · A > 4 by condition
(iv) of (?), it follows in particular that |L0 +A| contains a reduced, connected member.
It therefore follows that

(8) h1(−L0 −A) = h1(L0) = 0 and h0(−L0 −A) = h2(L0) = 0.

In particular, using Riemann-Roch on W ′, one computes that

dim(|L0|) =
1

2

(
α2 + 3α−

∑
γi −

∑
γ2i

)
+ β(α+ 1),

thus proving the right hand equality of the claim.
We have left to prove that {L0}W ′ has codimension α in |L0|.
To this end, let Z1 ∈ Symα(X̃P1) be general, and set Z2 := ω(Z1) ∈ Symα(X̃P2).

From the two restriction sequences

0 // L0 +KW ′ // L0
// L0|A // 0

and

0 // L0 +KW ′ // L0 ⊗ JZ1∪Z2
// L0|A(−Z1 − Z2) // 0 ,

together with (7), we see that

codim
(
|L0 ⊗ JZ1∪Z2 | , |L0| |

)
= codim

(
|L0|A(−Z1 − Z2)| , |L0|

)
.

A standard computation involving restriction sequences to the various components of A
shows that the latter codimension is 2α. Therefore,

dim (|L0 ⊗ JZ1∪Z2 |) = dim(|L0|)− 2α.

(This equality can also be obtained applying [12, Thm. (1.4.0)].) Varying Z1 ∈
Symα(X̃P1), we obtain the whole of {L0}W ′ . Thus,

dim({L0}W ′) = dim (|L0 ⊗ JZ1∪Z2 |) + dim(Symα(X̃P1)) = dim(|L0|)− α,

finishing the proof of the claim. �



SEVERI VARIETIES ON BLOW–UPS OF THE SYMMETRIC SQUARE OF AN ELLIPTIC CURVE 13

Denote by {L0} the locus of curves on Y ′ = S′∪E of the form σ′(C)∪CE , where C is an
element of {L0}W ′ and CE is the union of fibers on E ' F1 such that CE∩S′ = σ′(C)∩s0.
Then there is a one-to-one correspondence between {L0}W ′ and {L0}. Thus, by the last
claim,

(9) dim({L0}) =
1

2

(
α2 + α−

∑
γi −

∑
γ2i

)
+ β(α+ 1).

Note that all members of {L0} are Cartier divisors on Y ′. Moreover, by Lemma 3.3, the
closure of the locus {L0} is (a component of) the limit of the algebraic system {L} on

R̃ of curves of class αs + βf −
∑
γiei. Since the anticanonical divisor on R̃ is effective,

we have h2(L) = h0(K
R̃
− L) = 0, whence Riemann-Roch yields

dim{L} = dim |L|+ 1 = χ(L) + h1(L)

=
1

2
L · (L−K

R̃
) + h1(L)

=
1

2

(
α2 + α−

∑
γi −

∑
γ2i

)
+ β(α+ 1) + h1(L).

By (9) and semicontinuity, we must have h1(L) = 0 and

(10) dim({L0}) = dim({L}).

Let x1 and x2 be as in §4 and pick a general C in a component of V ∗L0
in W ′ (which is

non–empty by Proposition 4.2). Then C intersects s0 transversely at L0 ·s0 = β distinct
points. Denote as above by CE the union of the β fibers on E such that CE ∩ s0 =
σ′(C)∩s0. Then σ′(C)∪CE is a member of {L0}, with an α-tacnode at σ′(x1) = σ′(x2),
and nodal otherwise, stably equivalent to σ′(C). Varying x1, we obtain by Proposition
4.2 a family C of dimension α + 2β −

∑
γi = −L · K

R̃
of such curves, and this is the

expected dimension of V ξ
pa(L)−1(R̃).

Let δ0 be the number of nodes of C, which equals the number of singular points of
σ′(C) on the smooth locus of Y ′. Then

δ0 = pa(L0) =
1

2

(
α2 − 3α+

∑
γi −

∑
γ2i

)
+ β(α− 1) + 1.

Grant for the moment the following1:

Claim 5.0.2. The family of curves in {L0} passing through the δ0 nodes of σ′(C) and
having an (α− 1)–tacnode at σ′(x1) = σ′(x2) has codimension δ0 + α− 1 in {L0}, that
is, it has dimension α+ 2β −

∑
γi = dim C.

Arguing as in [15, Thm. 3.3, Cor. 3.12 and proof of Thm. 1.1]2, we may deform Y ′

to R̃ deforming the α-tacnode of σ′(C) to α − 1 nodes, while preserving the δ0 nodes

1From a deformation-theoretic point of view the claim asserts the smoothness of the equisingular
deformation locus of σ′(C) ∪ CE , which is a dense open subset of C, cf. [15, Lemma 3.4].

2The setting in [15] is slightly different, as the central fibre in the degeneration is a transversal union
of two smooth surfaces, whereas S′ in the present setting is singular. Moreover, the central fiber in the
degeneration in [15] is regular, whence linear and algebraic equivalence coincide, which is not the case
on Y ′. However, the reasoning in [15] is local, so the proof goes through in the present setting as well.
The two hypotheses (1)-(2) in [15, Thm. 3.3] correspond, respectively, to (10) and the statement in
Claim 5.0.2.
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and smoothing the nodes σ′(C)∩CE . Thus σ′(C)∪CE deforms to a curve algebraically
equivalent to L with δ nodes, where

δ = δ0 + α− 1 =
1

2

(
α2 − α+

∑
γi −

∑
γ2i

)
+ β(α− 1).

One computes

pa(L) =
1

2

(
L2 + L ·K

R̃

)
+ 1 = δ + 1.

This shows that C has geometric genus one, as wanted.
We have left to prove the claim.

Proof of Claim 5.0.2. Let F be the family of curves in {L0}W ′ passing through the δ0
nodes of C and being tangent to X̃Pi at xi with order α− 1, for i = 1, 2. The statement
of the claim is equivalent to dimF = α+ 2β −

∑
γi.

Denoting by N the scheme of the δ0 nodes of C and by Zi = (α−1)xi the subscheme on

X̃i, whence on W ′, we have that F is the locus of ω-compatible curves in |L0⊗JN∪Z1∪Z2 |,
which has codimension one, as L0 · X̃i = α. Thus,

dim(F) = dim(|L0 ⊗ JN∪Z1∪Z2 |)− 1.

To compute this, let q : W ′′ →W ′ denote the blow–up of W ′ at N and denote the total
exceptional divisor by E. Denote the inverse images of Zi by the same names. Then

(11) dim(F) = dim (|(q∗L0 − E)⊗ JZ1∪Z2 |)− 1.

Let C̃ be the strict transform of C on W ′′, which is a smooth rational curve. Then

C̃ ∼ q∗L0 − 2E. We therefore have a short exact sequence

0 −→ OW ′′(E) −→ (q∗L0 − E)⊗ JZ1∪Z2 −→ OC̃(q∗L0 − E)(−(α− 1)(x1 + x2)) −→ 0,

whence, from (11) we have

dim(F) = h0((q∗L0 − E)⊗ JZ1∪Z2)− 2

= h0(O
C̃

(q∗L0 − E)(−(α− 1)(x1 + x2)))− 1

= deg(O
C̃

(q∗L0 − E)(−(α− 1)(x1 + x2)))

= (q∗L0 − 2E)(q∗L0 − E)− 2(α− 1)

= L2
0 − 2δ0 − 2α+ 2

= α+ 2β −
∑

γi,

as desired. �

The proof of Proposition 2.3 is now complete. �

References

[1] E. Ballico, On the irreducibility of the Severi variety of nodal curves in a smooth surface, Arch.
Math. (Basel), 113(5) 483–487, 2019.

[2] A. Bruno, M. Lelli Chiesa, Irreducibility of Severi varieties on K3 surfaces, preprint
arxiv:2112.09398v1.

[3] L. Caporaso, J. Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), 345–392.
[4] F. Catanese, C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with

pg = q = 1, J. Algebraic Geom. 2 (1993), 389–411.
[5] X. Chen, Rational curves on K3 surfaces, J. Algebraic Geom. 8 (1999), 245–278.
[6] L. Chiantini, C. Ciliberto, On the Severi varieties of surfaces in P3, J. Alg. Geom. 8 (1999), 67–83.



SEVERI VARIETIES ON BLOW–UPS OF THE SYMMETRIC SQUARE OF AN ELLIPTIC CURVE 15

[7] L. Chiantini, E. Sernesi, Nodal curves on surfaces of general type, Math. Ann. 307 (1997), 41–56.
[8] C. Ciliberto, Th. Dedieu, On the irreducibility of Severi varieties on K3 surfaces, Proc. Amer.

Math. Soc. 147 (2019), 4233–4244.
[9] C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen, A note on Severi varieties of nodal curves on

Enriques surfaces, in ”Birational Geometry and Moduli Spaces”, Springer INdAM Series 39, 29–36
(2018).

[10] C. Ciliberto, T. Dedieu, C. Galati, A. L. Knutsen, Nonemptiness of Severi varieties on Enriques
surfaces, arXiv:2109.10735.

[11] C. Ciliberto, A. Kouvidakis, On the symmetric product of a curve with general moduli, Geom.
Dedicata 78 (1999), 327–343.

[12] Th. Dedieu, Geometry of logarithmic Severi varieties at a general point, https://hal.

archives-ouvertes.fr/hal-02913705.
[13] Th. Dedieu, Comment on: On the irreducibility of the Severi variety of nodal curves in a smooth

surface, by E. Ballico, Arch. Math. (Basel) 114 (2) (2020), 171–174.
[14] Th. Dedieu, E. Sernesi, Equigeneric and equisingular families of curves on surfaces, Publ. Mat. 61

(2017), 175–212.
[15] C. Galati, A. L. Knutsen, On the existence of curves with Ak-singularities on K3 surfaces, Math.

Res. Lett. 21 (2014), 1069–1109.
[16] G.-M. Greuel, C. Lossen, E. Shustin, Geometry of families of nodal curves on the blown-up projective

plane, Trans. Amer. Math. Soc. 350 (1998), 251–274.
[17] J. Harris, On the Severi problem, Invent. Math. 84 (1986), 445–461.
[18] Th. Keilen, Irreducibility of equisingular families of curves, Trans. Amer. Math. Soc. 355 (9) (2003),

3485–3512.
[19] M. Kemeny, The Universal Severi Variety of Rational Curves on K3 Surfaces, Bull. Lond. Math.

Soc. 45 (1) (2013), 159–174.
[20] A. L. Knutsen, M. Lelli-Chiesa, Genus two curves on abelian surfaces, arXiv:1901.07603, to appear
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