4. Espaces compacts.

Exercice 1 Démontrer de plusieurs façons que le cercle unité $\mathbb{S}^1 \subset \mathbb{R}^2$ est compact.

Exercice 2 Montrer que les sous-groupes compacts du groupe multiplicatif \mathbb{C}^* sont contenus dans \mathbb{U} le sous-groupe des nombres complexes de module 1.

Exercice 3 On considère dans $M_n(\mathbb{R})$ le sous-ensemble $SL(n,\mathbb{R})$ des matrices de déterminant égal à 1. Est-il compact? On note O(n) le sous-ensemble des matrices orthogonales (c'est-à-dire telle que ${}^tA.A = I$); O(n) est-il compact?

Exercice 4 Soit X un espace topologique et $f: X \times [0,1] \to \mathbb{R}$ continue. Montrer que l'application $g: x \in X \to \int_0^1 f(x,y) \, dy$ est continue.

Exercice 5 Soient $K, F \subset \mathbb{R}^n$ des parties non vides, K compact et F fermé. Montrer qu'il existe $a \in K$ et $b \in F$ tel que ||a - b|| = dist(K, F).

Exercice 6 Soit X un espace topologique compact et f_1, f_2, \ldots, f_n, n fonctions continues réelles qui séparent les points de X. Montrer que X est homéomorphe à une partie de \mathbb{R}^n .

Exercice 7 Soit X, Y deux espaces topologiques séparés et (K_n) une suite décroissante de compacts non vides de X. Soit $f: X \to Y$ une application continue. Montrer que $f(\cap_n K_n) = \cap_n f(K_n)$.

Exercice 8 Soit X un espace topologique séparé.

- 1. Soit A et B deux compacts disjoints dans X. Montrer qu'ils possèdent des voisinages ouverts disjoints (commencer par le cas où B est réduit à un point).
- 2. Soit K un compact non vide de X et U un ouvert de X contenant K. Montrer qu'il existe r > 0 tel que pour tout $x \in X$, on ait l'implication :

$$d(x,K) < r \Rightarrow x \in U$$
.

Exercice 9 Montrer que dans un evn, la boule unité fermée est compacte si et seulement si la sphère unité est compacte.

Exercice 10 Soit E un espace normé, X et Y deux sous-ensembles de E. Montrer que

- 1. X + Y est ouvert si X est ouvert;
- 2. X + Y est compact si X et Y sont compacts;
- 3. X + Y est fermé si X est compact et Y fermé.

Que peut-on dire de X + Y si X et Y sont seulement fermés?

Exercice 11 Soit E un espace normé, X et Y deux parties compactes de E. Montrer que la réunion des segments joignant un point $x \in X$ à un point $y \in Y$ est encore compacte.

Exercice 12 Soit K un convexe compact de \mathbb{R}^2 .

- 1. Si K est d'intérieur vide, montrer que K est homéomorphe au segment [0,1].
- 2. Si K n'est pas d'intérieur vide, montrer que K est homéomorphe au disque unité fermé en considérant l'application $p(x) = \inf\{a > 0 \; ; \; \frac{x}{a} \in K\}$; on montrera que 0 est un point intérieur, que $\delta||x|| \leq p(x) \leq C||x||$ puis que p est continue.

Exercice 13 Soit (A_n) une suite décroissante de compacts connexes non vides dans un espace topologique séparé. Montrer que $\cap_n A_n$ est encore un compact connexe non vide.

Exercice 14 Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application continue. Elle est dite *propre* si pour tout compact $K \subset \mathbb{R}^n$, l'image réciproque $f^{-1}(K)$ est compact.

- 1. Montrer que, si f est propre, alors l'image par f de tout fermé de \mathbb{R}^n est un fermé.
- 2. Établir l'équivalence suivante : l'application f est propre si et seulement si elle a la propriété :

$$||f(x)|| \to \infty$$
 quand $||x|| \to \infty$.

Exercice 15 Soit (X,d) un espace métrique compact et $f:X\to X$ une application vérifiant

$$d(f(x), f(y)) < d(x, y)$$
 pour tout $x, y \in X$, $x \neq y$.

Le but ici est de montrer que f a un unique point fixe $p \in X$.

- 1. Justifier que f peut avoir au plus un point fixe.
- 2. Montrer que les ensembles $X_n = f^n(X)$, $n \in \mathbb{N}$, forment une suite décroissante de compacts et que $Y = \bigcap_{n \geqslant 0} X_n$ n'est pas vide.
- 3. Montrer que Y est un ensemble invariant, i.e. f(Y) = Y, et en déduire que le diamètre de cet ensemble est zero
- 4. Conclure que f a un unique point fixe $p \in X$ et que pour tout $x_0 \in X$ la suite $x_n = f^n(x_0) \to p$, lorsque $n \to \infty$.

Exercice 16 Soit $E = \{f : [0,1] \to \mathbb{R} \text{ continue}\}$. On munit E de la métrique $d_{\infty}(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|$. Montrer que la boule unité fermée de E n'est pas compacte (on pourra construire une suite dont aucune sous suite n'est de Cauchy).

Que peut-on dire de la boule unité fermée de l^{∞} (l'espace des suites bornées muni de la norme sup)?