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1 Moving a divisor away from some points

Theorem 1 (see [Sha94, p. 158]). For any divisor D on a smooth projective surface
S ⊂ P

n, and for any points x1, . . . , xm ∈ S, there exists a divisor D′ such that D′ ∼ D
and xi 6∈ Supp(D′) for i = 1, . . . ,m.

Proof. First we can choose a hyperplane H ⊂ P
n that does not contain any of the xi: The

space of hyperplanes in P
n is again a P

n, and the condition “passing through a point”
defines a P

n−1 ⊂ P
n.

We can also assume that D is a hypersurface: the general case follows by moving each
component of D.
We proceed by induction on m: we assume x1, . . . , xm−1 6∈ D, and xm ∈ D. We want to
move D away from xm, without meeting again one of the other xi.
Let U = A

n ∩ S = S \ H be the complement of H, and let g be a local equation of D at
xm. We can write g = f1/f2 with f1, f2 ∈ C[U ] and f2(xm) 6= 0, so replacing g by f1 we
can assume that g is regular on U .
Then if (g) = (g)0 − (g)∞ is the principal divisor defined by g, we have (g)∞ ⊂ H, and
(g)0 = D + R where R is effective. Thus D ∼ D − (g) = (g)∞ − R.
We are done if we can show that the support of R does not contain any of the xi. For
i = 1, . . . ,m− 1 we choose gi ∈ C[U ] such that gi(xi) 6= 0, and gi ≡ 0 on the algebraic set
D ∪ {x1, · · · , xi−1, xi+1, · · · , xm−1}.
We replace g by g +

∑
aig

2
i , with ai 6= −g(xi)/gi(xi)

2. With this condition we obtain that
R does not contain any xi, i = 1, . . . ,m − 1.
On the other hand g +

∑
aig

2
i is still a local equation of D: each gi is a multiple of g in

the local ring Oxm , hence we have gi = gui with ui regular at xm. Then

g +
∑

aig
2
i = g +

∑
aig

2u2
i = g(1 +

∑
aigu2

i )

and 1 +
∑

aigu2
i , which is a local equation of R at xm, is invertible in Oxm : Thus xm 6∈

R.

2 A principal divisor on a curve has degree 0

Theorem 2 (see [Sha94, p. 168] for an alternative proof). Let f : C → P
1 be a morphism

from a smooth projective curve to the projective line. Then the divisor (f) = (f)0 − (f)∞
has degree 0; in other words f has as many zeros as poles, when counted with multiplicities.

Proof. I give a simple proof over C, using the residue theorem. The proof in [Sha94]
works on any algebraically closed field, but involves some not so elementary commutative
algebra...
First recall that if g is a meromorphic function in a neighborhood of 0 ∈ C, we can write
g(z) = znh(z) for some n ∈ Z and h holomorphic at 0 with h(0) 6= 0. So we have

g′(z)

g(z)
=

n

z
+

h′(z)

h(z)
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and we remark that the residue of g′

g
at 0 is n.

Now consider C as a Riemann surface, and for each zero or pole pi of f take Bi a small
neighborhood of pi diffeomorphic to a disk, with Bi all disjoint. We denote S the comple-
ment of the Bi in C, and ω = df/f , which is an holomorphic 1-form on S. In particular
dω = 0 on S.
On the one hand, by Stokes Theorem

∫
δS

ω =

∫
S

dω = 0.

On the other hand by the previous remark

∫
δS

ω = −
∑∫

δBi

ω = deg(f),

hence the result.

3 Local intersection

Definition 3.1. If D1,D2 are two effective divisors on a smooth projective surface S,
with no common component through a point p ∈ S, and if f1, f2 are the respective local
equations at p, we say that the number

(D1 · D2)p = dimOp/(f1, f2)

is the local intersection number of D1 and D2 at p.

3.1 Transverse intersections

First we want to check that this definition correspond to the intuitive notion of intersection
in the case of two transverse curves. We need the notion of local parameters.

Definition 3.2 (see [Sha94, p. 98]). Let p ∈ X a smooth point in X projective variety
of dimension n. We say that u1, · · · , un ∈ mp are local parameters at p if one of the
following equivalent conditions holds:

1. The ui form a basis of mp/m
2
p;

2. The varieties V(ui) are smooth and transverse at p;

3. The differentials dpui are linearly independent.

To show the equivalence between this definitions, consider the morphism dp : u ∈ mp →
dpu ∈ TpX

∗. It is clear that m
2
p ⊂ ker(dp), in fact one can prove that there is equality and

dp induces an isomorphism mp/m
2
p
∼= TpX

∗.
One can also prove (Nakayama Lemma) that any choice of local parameters generate the
ideal mp (see [Sha94, p. 99]).
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Now let D1,D2 be two irreducible curves on a smooth projective surface S, and let f1, f2

be their local equations at a point p ∈ S. Then (D1,D2)p = 1 iff f1, f2 are local parameters
at x. Indeed if f1, f2 are local parameters, then dimOp/(f1, f2) = dimOp/mp = 1; and
if f̄ ∈ mp/m

2
p is not a linear combination of f̄1, f̄2, then the functions 1, f are linearly

independent in Op/(f1, f2).

3.2 Order of a zero

Next we show that the notions of local intersection number and multiplicities of a zero are
closely related.

Definition 3.3. Let p ⊂ C a smooth point on a projective curve, and u a local parameter
at p. If f 6≡ 0 is a rational function regular at p, there exists k ∈ N such that f ∈ (uk) but
f 6∈ (uk+1). In other words k = dimOC,p/(f). We call this integer k the order of the

zero of f at p, and we denote it by k = νp(f). If f is an arbitrary rational function on
C, we write f = f1/f2 with f1, f2 regular at p and we define νp(f) = νp(f1) − νp(f2).

Proposition 3.4. Let p ∈ C ⊂ S a smooth point of a curve C in a smooth projective
surface S. Let D be a divisor on S with local equation f at p. Then

(C · D)p = νp(f).

Proof. If g is a local equation of C at p,

(C · D)p = dimOp/(g, f) = dimOC,p/(f) = νp(f).

3.3 Linearity

We can extend Definition 3.1 by linearity to the case of of non effective divisors (but still
without common component). This makes sense because of the following property:

Proposition 3.5. Let D1,D2,D3 be effective divisors. Assume that D1,D2 and D1,D3

do not have a common component. Then (D1 · (D2 + D3))p = (D1 · D2)p + (D1 · D3)p.

Proof. Let f2, f3 be local equations of D2 and D3. We note OD1,p = Op/(f1). We want
to prove

dimOD1,p/(f2.f3) = dimOD1,p/(f2) + dimOD1,p/(f3).

The exact sequence

0 → (f3)/(f2.f3) → OD1,p/(f2.f3) → OD1,p/(f3) → 0

gives dimOD1,p/(f2.f3) = dim((f3)/(f2.f3)) + dimOD1,p/(f3), and multiplication by f3

gives an isomorphism OD1,p/(f2) ∼= (f3)/(f2.f3), hence the result.
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4 Definition of the intersection number

Definition 4.1. Let C ⊂ S be a (possibly reducible, singular) curve in a smooth projective
surface. We say that a divisor D =

∑
aiDi on S is in good position with respect to C

if no component of C is one of the Di, and the support of D does not contain any of the
singular point of C.

Lemma 4.2. Let D1,D2 be two divisors on a smooth projective surface S. Then there
exists a divisor D3 linearly equivalent to D2, such that D3 is in good position with respect
to the support of D1.

Proof. Choose a collection of point pi which contains all singular points of the support of
D1, and such that any component of D1 contains at least one of the pi. Then by Theorem
1 one can find D3 ∼ D2 such that the support of D3 does not contain any of the pi, hence
the result.

We are now in position to make the following definitions.

Definition 4.3. 1. If C1, C2 are two curves such that C2 is in good position with respect
to C1, then we defines

C1 · C2 =
∑

p∈C1∩C2

(C1 · C2)p.

2. If D1 =
∑

a1,iD1,i, D2 =
∑

a2,iD2,i are divisors such that D2 is in good position
with respect to each D1,i, then we extend the previous definition by linearity:

D1 · D2 =
∑

p∈D1,i∩D2,j

a1,ia2,j(D1,i · D2,j)p.

3. if D1 and D2 are arbitrary divisors, we choose D3 ∼ D2 such that D3 is in good posi-
tion with respect to D1, and we use the previous definition to define the intersection

number of D1 and D2:
D1 · D2 = D1 · D3.

The last definition is well defined by the following result.

Theorem 3. Let D1,D2,D3 be divisors on a smooth projective surface S. Assume that
D2 ∼ D3 and D2 and D3 are in good position with respect to D1. Then

D1 · D2 = D1 · D3.

Proof. By assumption D2 − D3 = (f) is a principal divisor, and we want to show that
D1 · (f) = 0. By linearity we can assume that D1 is an irreducible curve C.
If p ∈ C ∩ (f), and fα is a local equation of C at p, we have

(C.(f))p = dimOS,p/(fα, f) = dimOC,p/(f).

Since by assumption C is smooth at each p ∈ C ∩ (f), we have dimOC,p/(f) = νp(f), and
so we want to prove that the divisor (f) =

∑
νp(f)p on C has degree 0. This is precisely

the content of Theorem 2 if C is smooth; if C is singular we apply the same argument to
the desingularization of C.
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5 Pull-back, exceptional divisor

Proposition 5.1 (see [Sha94, p. 252]). Let f : X → Y be a birational morphism between
surfaces. Then:

1. If D1,D2 are divisors on Y , we have f∗D1 · f
∗D2 = D1 · D2.

2. If D is a divisor on Y , and E is a divisor on X all components of which are contracted
by f , then E · f∗D = 0.

Proof. Move divisors!

Some numerology related to the blow-up map:

Proposition 5.2. Let π : S′ → S be the blow-up of a point p on a surface S. We denote
by E the exceptional divisor. Let C ⊂ S be a curve with multiplicity k at p. Then
π∗C = C ′ + k.E.

Proof. Let x, y be local parameters at p. The curve C admit locally an equation of the form
P (x, y)+ monomials of degree > k = 0, with P homogeneous of degree k. In the blow-up
chart (x′, y′) = (x, y/x), the equation of π∗C is 0 = P (x′, x′y′)+ · · · = x′k(P (1, y′)+ · · · ) =
0. Since x′ = 0 is a local equation of E, we have the result.

The curve C ′ is the strict transform of C, we have C ′ = π−1(C \ {x})

Corollary 5.3 (voir [S, p. 253]). Let π : S′ → S be the blow-up of a point p on a surface
S. We denote by E the exceptional divisor. Then:

1. E2 = E · E = −1;

2. If C ⊂ S is a curve with multiplicity k at p, and if C ′ is the strict transform of C,
then C ′ · E = k;

3. If C1, C2 are curves with multiplicities k1, k2 at p, then C ′

1 · C
′

2 = C1 · C2 − k1k2;

4. In particular, if p is a smooth point of C, then C ′2 = C2 − 1.

Proof. 1. Consider C with equation y = 0, then in the chart (x′, y′) the curves C ′ and
E have local equation y′ = 0 and x′ = 0 respectively. Hence we have E ·C ′ = 1. We
have 0 = π∗C · E = C ′.E + E2 = 1 + E2, hence E2 = −1.

2. We have 0 = π∗C · E = (C ′ + k.E) · E = C ′ · E − k.

3. We have C1 ·C2 = π∗C1 ·π
∗C2 = (C ′

1+k1E)·(C ′

2+k2E) = C ′

1 ·C
′

2+k1k2+k1k2−k1k2.
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6 Birational maps between surfaces

The aim of this section is to prove that any birational map between smooth surfaces is a
sequence of blow-ups and inverses of blow-ups.

The first result applies to any rational map between surfaces, and admit generalisations
in higher dimensions, even if the proof is harder:

Theorem 4 (see [Sha94, p. 254]). Let S be a smooth projective surface, and f : S 99K

Y ⊂ P
n be a rational map. Then there exists a sequence of blow-ups π : V → S that solves

the base locus of f . In other words in the diagram

V
π f̄

S
f

Y

f̄ is a morphism.

Proof. Around a point p ∈ S the map f has the form q ∈ S 99K [f0(q) : · · · : fn(q)] ∈ Y ⊂
P

n, with fi ∈ Op without common factor.
The point p is a base point of f if fi(p) = 0 for all i. Remark that the base locus of f
does not contain a curve through p (since then the fi would admit a local equation of this
curve as a common factor): thus f is regular outside a finite number of points.
Consider now H the strict transform by f of a hyperplane section of Y . The curve H
satisfies H2 ≥ 0, and if p is a base point of f then p ∈ H. After blowing-up the point p,
the strict transform H ′ of H satisfies H ′ · H ′ < H · H. By induction on H2, we conclude
that after a finite number of such blow-ups, we get rid of all the base points.

The next result is specific to birational morphisms between surfaces:

Theorem 5 (see [Sha94, p. 256]). Let S, S′ be two smooth projective surfaces, and f : S →
S′ be a birational morphism. Then f is a finite sequence of blow-ups.

For the proof we need the following lemma.

Lemma 6.1 (see [Sha94, p. 256 and 119]). Let f : X 99K Y be a birational map between
smooth surfaces. If y ∈ Y is a base point of f−1, then there exists a curve C ⊂ X such
that f(C) = {y}.

Proof of the lemma. Assume first that f is a morphism (hence f is surjective). We can
work on affine charts, and write locally around y

f−1 : z ∈ Y 99K (t1, · · · , tn) = (g1(z), · · · , gn(z)) ∈ X ⊂ A
n.

One of the gi must be non regular at y: we write gi = u/v with v(y) = 0, and we can
assume that u and v does not have a common factor. We have ti = gi ◦ f = u◦f

v◦f
. Consider
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C = V(v ◦ f). We have y ∈ f(C) ⊂ V(v), furthermore the identity ti.v ◦ f = u ◦ f implies
f(C) ⊂ V(u). Thus f(C) ⊂ V(v) ∩ V(u), which is locally equal to y (if it was a curve
this would contradict u, v without common factor).

For the general case we consider the closure Z ⊂ X×Y of the graph of the map f . Denote
by p : Z → X and q : Z → Y the two projections. We have f−1 = p ◦ q−1, so y is a base
point of q−1. By the previous argument, there exists a curve D ⊂ Z such that q(D) = y.
Then C = p(D) is the curve we were looking for. Indeed if p(D) = x was a point, then we
would have D ⊂ (x, y) ∈ X × Y : contradiction.

Proof of the theorem. If y ∈ S′ is a base point of f−1, consider π : V → S′ the blow-up
of y. We have to show that h = π−1 ◦ f is still a morphism. If not, there exists x ∈ S
a base point of h. Then on the one hand f(x) = y and f is not locally invertible at x;
on the other hand there exists a curve in V that is contracted on x by h−1. This curve
must be the exceptional divisor E associated with π. Take p and q two distinct points
of E where h−1 is regular, and C, C ′ two germs of smooth curves transverse to E in p
and q respectively. Then π(C) and π(C ′) are two transverse germs of smooth curves at
y, images by f of two germs of curves at x. Thus the differential Dxf has rank 2, which
contradicts the fact that f is not locally invertible at x.

The two previous theorem together give the following result.

Theorem 6 (Zariski). Let S, S′ be smooth projective surfaces, and f : S → S′ be a bira-
tional map. Then there exists a third surface V and two sequences of blow-ups π : V → S
and σ : V → S′ such that the following diagram commutes:

V
π σ

S
f

S′
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