PROPER ANALYTIC EMBEDDING OF $\mathbb{C P}^{1}$ MINUS A CANTOR SET INTO \mathbb{C}^{2}

S.Yu. Orevkov

In this note we construct a proper embedding of $\mathbb{C P}^{1} \backslash K \rightarrow \mathbb{C}^{2}$ where K is a Cantor set. This answers affirmatively to a question asked to me by Burglind Jöricke.

Such a curve is constructed as a limit of algebraic curves A_{n} obtained from each other by a birational transformation $F_{n}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. For some exhaustion of \mathbb{C}^{2} by nested bidisks $B_{1} \subset B_{2} \subset \ldots$ the topological type of $A_{n} \cap B_{n}$ does not change under further transformations.

Let us fix any complex numbers a_{1}, a_{2}, \ldots whose absolute values are strictly increasing and tend to infinity. Let us define inductively a sequence of birational mappings $F_{n}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by setting F_{0} to be the identity mapping and by setting $F_{n}=f_{n} \circ F_{n-1}$ where

$$
f_{n}(x, y)=\left\{\begin{array}{ll}
\left(x, y+g_{n}(x)\right), & n \text { odd, } \\
\left(x+g_{n}(y), y\right), & n \text { even, }
\end{array} \quad g_{n}(t)=\frac{\varepsilon_{n}}{t-a_{n}}, \quad 0<\varepsilon_{n} \ll \varepsilon_{n-1}\right.
$$

Let us denote the one-point compactifications of \mathbb{C} and \mathbb{C}^{2} by $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and $\overline{\mathbb{C}}^{2}=\mathbb{C}^{2} \cup\{\infty\}$ respectively. Let $\gamma_{n}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}^{2}$ be defined by $\gamma_{n}(z)=F_{n}(z, 0)$. Then, for a suitable choice of the small parameters ε_{n}, the limit of γ_{n} is a continuous mapping (let us denote it by $\gamma: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}^{2}$) such that $K=\gamma^{-1}(\infty)$ is a Cantor set and the restriction of γ to $\overline{\mathbb{C}} \backslash K$ is a proper embedding of of the open Riemann surface $\overline{\mathbb{C}} \backslash K$ into \mathbb{C}^{2}.

Let us describe more precisely the choice of the parameters ε_{n}, and this will explain why γ satisfies the required properties. Let us fix positive numbers R_{n} such that $\left|a_{n}\right|<R_{n}<\left|a_{n+1}\right|$. Let $A_{n}=F_{n}(\overline{\mathbb{C}}), D_{n}=\left\{z \in \mathbb{C}:|z|<R_{n}\right\}$. Let us denote the projection $\left(z_{1}, z_{2}\right) \mapsto z_{i}$ by $\operatorname{pr}_{i}: \mathbb{C}^{2} \rightarrow \mathbb{C}, i=1,2$ and let us set $C_{n}^{(i)}=\operatorname{pr}_{i}^{-1}\left(D_{n}\right), B_{n}=C_{n}^{(1)} \cap C_{n}^{(2)}=D_{n} \times D_{n}$, and $C_{n}=C_{n}^{(1)} \cup C_{n}^{(2)}$. Then $B_{1} \subset B_{2} \subset \ldots$ and $\bigcup_{n} B_{n}=\mathbb{C}^{2}$. We define ε_{n} inductively so that they satisfy:
(1) $A_{n} \subset C_{n}$;
(2) $A_{n} \cap\left(C_{n}^{(i)} \backslash B_{n}\right), i=1,2$, has a finite number of connected components each being mapped biholomorphically onto $\mathbb{C} \backslash D_{n}$ by the projection pr_{i};
(3) For any fixed n, all the curves $A_{p} \cap B_{n}$ for $p \geq n$, are isotopic to each other in B_{n} and they \mathcal{C}^{∞}-smoothly converge to an analytic curve which is also isotopic to all of them;
(4) $\lim _{n \rightarrow \infty} d_{n}=0$ where d_{n} is the maximum of the diameters (with respect to some fixed metric on $\overline{\mathbb{C}})$ of the connected components of $F_{n}^{-1}\left(A_{n} \backslash B_{n}\right)$.

Let us call a boundary component of $A_{n} \cap B_{n}$ horizontal if it is contained in $\left(\partial D_{n}\right) \times D_{n}$ and vertical if it is contained in $D_{n} \times\left(\partial D_{n}\right)$ (it follows from the condition (1) that there are no other components). If the parameters ε_{n} are chosen as is described, then, up to a small perturbation, $A_{2 n+1} \cap B_{2 n+1}$ is obtained from $A_{2 n} \cap B_{2 n}$ by attaching an annulus to each vertical boundary component and by attaching a pair of pants (an annulus with a hole) to each horizontal one. So each vertical component at the $2 n$-th step provides a single vertical components at the next step, but each horizontal component provides one horizontal and one vertical component at the next step. When passing from $A_{2 n+1} \cap B_{2 n+1}$ to $A_{2 n+2} \cap B_{2 n+2}$, the roles of vertical and horizontal boundary components are exchanged.

Inst. Math., UFR MIG, Univ. Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France

Steklov Math. Inst., Gubkina 6, Moscou, Russia
E-mail address: orevkov@math.ups-tlse.fr

