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In this note we construct a proper embedding of CP1 \ K → C2 where K is
a Cantor set. This answers affirmatively to a question asked to me by Burglind
Jöricke.

Such a curve is constructed as a limit of algebraic curves An obtained from each
other by a birational transformation Fn : C2 → C2. For some exhaustion of C2

by nested bidisks B1 ⊂ B2 ⊂ . . . the topological type of An ∩ Bn does not change
under further transformations.

Let us fix any complex numbers a1, a2, . . . whose absolute values are strictly
increasing and tend to infinity. Let us define inductively a sequence of birational
mappings Fn : C2 → C2 by setting F0 to be the identity mapping and by setting
Fn = fn ◦ Fn−1 where

fn(x, y) =
{ (

x, y + gn(x)
)
, n odd,(

x + gn(y), y
)
, n even,

gn(t) =
εn

t− an
, 0 < εn � εn−1.

Let us denote the one-point compactifications of C and C2 by C̄ = C ∪ {∞} and
C̄2 = C2∪{∞} respectively. Let γn : C̄ → C̄2 be defined by γn(z) = Fn(z, 0). Then,
for a suitable choice of the small parameters εn, the limit of γn is a continuous
mapping (let us denote it by γ : C̄ → C̄2) such that K = γ−1(∞) is a Cantor set
and the restriction of γ to C̄ \ K is a proper embedding of of the open Riemann
surface C̄ \K into C2.

Let us describe more precisely the choice of the parameters εn, and this will
explain why γ satisfies the required properties. Let us fix positive numbers Rn

such that |an| < Rn < |an+1|. Let An = Fn(C̄), Dn = {z ∈ C : |z| < Rn}. Let
us denote the projection (z1, z2) 7→ zi by pri : C2 → C, i = 1, 2 and let us set
C

(i)
n = pr−1

i (Dn), Bn = C
(1)
n ∩ C

(2)
n = Dn × Dn, and Cn = C

(1)
n ∪ C

(2)
n . Then

B1 ⊂ B2 ⊂ . . . and
⋃

n Bn = C2. We define εn inductively so that they satisfy:

(1) An ⊂ Cn;
(2) An∩ (C(i)

n \Bn), i = 1, 2, has a finite number of connected components each
being mapped biholomorphically onto C \Dn by the projection pri;

(3) For any fixed n, all the curves Ap ∩Bn for p ≥ n, are isotopic to each other
in Bn and they C∞-smoothly converge to an analytic curve which is also
isotopic to all of them;

(4) limn→∞ dn = 0 where dn is the maximum of the diameters (with respect to
some fixed metric on C̄) of the connected components of F−1

n (An \Bn).
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Let us call a boundary component of An ∩ Bn horizontal if it is contained in
(∂Dn) × Dn and vertical if it is contained in Dn × (∂Dn) (it follows from the
condition (1) that there are no other components). If the parameters εn are chosen
as is described, then, up to a small perturbation, A2n+1 ∩ B2n+1 is obtained from
A2n ∩ B2n by attaching an annulus to each vertical boundary component and by
attaching a pair of pants (an annulus with a hole) to each horizontal one. So each
vertical component at the 2n-th step provides a single vertical components at the
next step, but each horizontal component provides one horizontal and one vertical
component at the next step. When passing from A2n+1 ∩B2n+1 to A2n+2 ∩B2n+2,
the roles of vertical and horizontal boundary components are exchanged.
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