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A PIECEWISE DETERMINISTIC MODEL FOR A PREY-PREDATOR
COMMUNITY

BY MANON COSTA1

Institut de Mathématiques de Toulouse

We are interested in prey–predator communities where the predator pop-
ulation evolves much faster than the prey’s (e.g., insect-tree communities).
We introduce a piecewise deterministic model for these prey–predator com-
munities that arises as a limit of a microscopic model when the number of
predators goes to infinity. We prove that the process has a unique invari-
ant probability measure and that it is exponentially ergodic. Further on, we
rescale the predator dynamics in order to model predators of smaller size.
This slow–fast system converges to a community process in which the prey
dynamics is averaged on the predator equilibria. This averaged process admits
an invariant probability measure which can be computed explicitly. We use
numerical simulations to study the convergence of the invariant probability
measures of the rescaled processes.

1. Introduction. Prey–predator communities represent elementary blocks of
complex ecological communities and their dynamics has been widely studied. The
coupled dynamics of the prey and predator populations are often described as a
coupled system of differential equations. The most famous of them was introduced
by Lotka [34] and Volterra [45] in the 1920s. There exist also stochastic models for
these prey–predator communities as coupled birth and death processes (see Costa
et al. [17]) or as stochastic perturbations of deterministic systems (e.g., Rudnicki
and Pichór [43]).

In this paper, we are interested in prey–predator communities in which the
predator dynamics is much faster than the prey one. Such communities are com-
mon in the wild, especially if we consider the interaction between trees and insects
(see Robinson et al. [42] for the study of Aspen canopy and its arthropod com-
munity or Ludwig et al. [35] for the interaction between spruce budworm and
the forest). In these communities, the number of predators is much larger than
the prey number and the predator mass is smaller than the prey one. As a conse-
quence, the reproduction and death events will be more frequent in the predator
population than in the prey population. Such slow–fast scales have been studied
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in some Lotka–Volterra systems, mainly in the case of periodic solutions (e.g.,
[41]). In the following, we study two successive scaling (large predator population
and small predator mass) of a microscopic model of the prey–predator community
and introduce new stochastic processes for slow–fast prey–predator systems which
corresponds to these scalings limits. In particular, one interest of our work is that
these processes never assume that the prey population size is infinite, as it is the
case for models based on ordinary differential equations.

We introduce a hybrid model for the demographic dynamics of the community
where the prey population evolves according to a birth and death process while the
dynamics of predators is driven by a differential equation. The community has a
deterministic dynamics between the jumps of the prey population. This piecewise
deterministic process arises as limit of a prey–predator birth and death process,
when the number of predators tends to infinity while the prey number remains
finite. Such piecewise deterministic Markov processes (PDMP in short) were in-
troduced by Davis in 1984 [22, 23]. They are used to model different biological
phenomena. As an example, the dynamics of chemostats has been described as
a piecewise deterministic model [11, 15, 20, 29]. Chemostats, in which bacteria
evolve in an environment with controlled resources, correspond to the opposite
setting where the prey population (the resources) evolves faster than their preda-
tors (the bacteria). Other examples can be found in neuroscience, to model the
dynamics of electric potentials in neurons (see Austin [5]) or in molecular biol-
ogy, where piecewise deterministic processes appear as various limits of individual
based models of gene regulatory networks when the different interactions happen
on different time scales (see Crudu et al. [19]).

In this paper, we study the long time behavior of the prey–predator commu-
nity process. A vast literature concerns the long time behavior of continuous time
Markov processes. In the setting of piecewise deterministic processes, general re-
sults have been obtained by Dufour and Costa on the relationships between the
stationary behavior of the process and a sampled chain (see [18, 25]). We focus
on the theory of Harris-recurrent processes (see Meyn and Tweedie [39, 40] and
references therein) that relies on Foster–Lyapunov inequalities. These inequalities
satisfied by the infinitesimal generator of the process, ensure that the populations
do not explode in some sense. Combined with irreducibility properties, they ensure
the existence of a unique invariant probability measure and that the semi-group of
the process converges at exponential rate to this measure. The irreducibility of the
process is nontrivial because the randomness only derives from the jumps of the
slow component. Our proof relies on a fine analysis of the trajectories of the pro-
cess.

Further on, we rescale the predator dynamics by dividing the coefficients of the
predator differential equation by a small parameter ε. This scaling derives from the
metabolic theory and illustrates the fact that the predator mass goes to 0 while the
prey mass remains constant. The metabolic theory links the mass of individuals
with their metabolic rates. Numerous experimental studies display relationships
between the individual mass and the birth and death rates or the community car-
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rying capacity (see Brown et al. [10], Damuth [21]). Here, we simplify these re-
lationships by assuming that the predator metabolic rates increase as the invert of
their mass. This slow–fast system converges as ε goes to 0 to an averaged process.
In the averaged community, the predator population will always be at an equilib-
rium that depends on the prey number. Therefore, the prey population evolves as
a birth and death process where the predator impact is constant between jumps. In
this case, computations concerning the stationary behavior of the averaged process
are easier because the community is fully described by the discrete dynamics of
the prey population.

This paper is organized as follows. In Section 2, we present the piecewise deter-
ministic process and the main results of this article. We give the first properties of
the piecewise deterministic prey–predator community process and explain how it
derives from an individual based prey–predator community process. In Section 3,
we study the ergodic properties of the prey–predator community process. These
properties derive from a Foster–Lyapunov inequality and the irreducibility of the
continuous time process and of discrete time samples. In Section 4, we rescale the
dynamics of predators and prove the convergence of the slow–fast prey–predator
community to the averaged process. We prove that this averaged community ad-
mits an invariant distribution and study the convergence of the sequence of in-
variant measures of the slow–fast process as ε → 0 with numerical simulations.
Finally, we discuss in Section 5 our results in view of biological and ecological
applications.

2. Model and main results.

2.1. The piecewise deterministic model. We consider a community of prey
individuals and predators in which the predator dynamics is faster than the prey
dynamics. The community is described at any time by a vector Zt = (Nt ,Ht)

where Nt ∈ N is the number of living prey individuals at time t and Ht ∈ R+ is the
density of predators.

We assume that the prey population evolves according to a birth and death pro-
cess. The individual birth rate is denoted by b > 0, the individual death rate by
d ≥ 0. The logistic competition among the prey population is represented by a pa-
rameter c > 0. The predation intensity exerted at time t on each prey individual is
BHt .

The predators density follows a deterministic differential equation whose pa-
rameters depend on the prey population. The individual birth rate at time t is rBNt .
It is proportional to the amount of prey consumed by the predator. The param-
eter r ∈ (0,1) represents the conversion efficiency of prey biomass into predator
biomass. The predator individual death rate D+CHt includes logistic competition
among predators (D ≥ 0, C > 0).

The community dynamics is given by the differential equation

(2.1)
d

dt
Ht = Ht(rBNt − D − CHt),
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coupled with the jump mechanism

P(Nt+s = j |Nt = n,Ht)

= bns + o(s) if j = n + 1, n ≥ 1,

= n(d + cn + BHt)s + o(s) if j = n − 1, n ≥ 2,
(2.2)

= 1 − (b + d + cn + BHt)ns + o(s) if n = j, n ≥ 2,

= 1 − bs + o(s) if n = j = 1,

= 0 otherwise.

Between the jumps of the prey population process N , the dynamics of the predator
density H is deterministic. If the process Zt is at a point (n,h) ∈ N∗ × R+ after
a jump, then the predator dynamics is governed by the flow φn associated with
equation (2.1). More precisely, φn satisfies

(2.3)
d

dt
φn(h, t) = φn(h, t)

(
rBn − D − Cφn(h, t)

)
, φn(h,0) = h.

Then for all t ≥ 0,

(2.4) φn(h, t) = het(rBn−D)

1 + hC
rBn−D

(et(rBn−D) − 1)
.

For h > 0, the solution φn(h, t) remains positive for all t ≥ 0 and converges as
t → ∞ toward an equilibrium h∗

n given by

(2.5) h∗
n = rBn − D

C
∨ 0,

where a ∨ b stands for the maximum of a and b. For sake of simplicity, we intro-
duce the global flow on N∗ ×R+ φ((n,h), t) = (n,φn(h, t)) for (n,h) ∈N∗ ×R+
and t ≥ 0.

In the following, the state space of the prey–predator process is denoted by
E = N∗ × R+; we also define the subset E′ = N∗ × (h∗

1,+∞). A generic point
z ∈ E is a vector (n,h) with n ∈ N∗ and h ∈ R+. The process Zt = (Nt ,Ht)t≥0
belongs to the class of Piecewise Deterministic Markov Processes introduced by
Davis (see [23]). It is a E-valued Markov process whose infinitesimal generator

Af (n,h) = h(rBn − D − Ch)∂2f (n,h) + (f (n + 1, h) − f (n,h)
)
bn

(2.6)
+ (f (n − 1, h) − f (n,h)

)
n(d + cn + Bh)1n≥2

is well defined for functions f : N∗ ×R+ →R bounded measurable, continuously
differentiable with respect to their second variable with bounded derivative. The
domain of the extended generator (2.6) has been characterized by Davis (Theo-
rem 26.14 in [23]).

We denote by Pt the transition semi-group and by P(n,h) (or Pz) the law of the
process with initial condition z = (n,h) ∈ E.
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REMARK 2.1. In this model, we assume that the prey population cannot be-
come extinct since the death rate is 0 when there is only one prey individual left.
When this assumption is not satisfied, the prey population process can be domi-
nated by a population process without predator which evolves as a logistic birth
and death process. It is thus absorbed in 0 in finite time. The nonextinction assump-
tion for the prey population is biologically relevant for trees-insects communities,
for example, where the tree population rarely disappears thanks to a migration of
trees (e.g., seeds driven by the wind). Here, we chose to replace the migration
probability of new prey individuals by the nonextinction of the prey population.
This choice allows to describe the prey-predator dynamics only with individual
metabolic parameters such as birth and death rates. However, it is possible to in-
clude explicitly a migration at rate m > 0 in the prey population. We therefore
define an alternative process (N(m),H (m)) whose infinitesimal generator is given
by

A(m)f (n,h) = h(rBn − D − Ch)∂2f (n,h)

+ (f (n + 1, h) − f (n,h)
)
(bn + m)(2.7)

+ (f (n − 1, h) − f (n,h)
)
n(d + cn + Bh).

The process (N(m),H (m)) is a piecewise deterministic Markov process taking its
value in E(m) = E ∪ {0} × R+. In the sequel, we will mention when our results
hold for this alternative model including migration and explain the modification
induced by the migration.

2.2. Main results. Our main questions on the prey–predator process are
twofold. First, we are interested in the long time behavior of the process Z.

THEOREM 2.2. The community process (Zt )t≥0 is exponentially ergodic. It
converges toward its unique invariant probability measure π at an exponential
rate. There exist 0 < ρ < 1 and 0 < R < ∞ such that, for all z = (n,h) ∈ E′,∥∥Pt(z, ·) − π

∥∥
TV ≤ Rρt (n + hr−1).

Section 3 is devoted to the proof of the exponential ergodicity of Z. Our theorem
relies on the theory of Harris recurrent processes, whose main results are recalled
in Section 3.1. In the setting of piecewise deterministic processes, these results
have been used to derive ergodic properties of different processes (e.g., an additive
increase multiplicative decrease process [30], a stress release process [33] or a
wealth-employment process [7]). There exists also general results proven by [8]
in the specific case where the deterministic dynamics admits a compact positive
invariant set. The case of the prey–predator process Z = (N,H) is more complex
since the process is in dimension 2 and neither the jump rates nor the deterministic
trajectories are bounded.
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Our second main result concerns a scaling limit of the process Z correspond-
ing to the biological assumption that the predator mass is small. We introduce a
sequence of processes Zε for the rescaled parameters rε = r/ε, Dε = D/ε and
Cε = C/ε. As ε tends to 0, the dynamics of the fast component Hε is acceler-
ated between the jumps of the slow component Nε . Therefore, we expect that in
the slow–fast limit, the prey population only depends on the equilibrium h∗

n of the
predator density. The following theorem is a simplified version of our convergence
result stated in Theorem 4.2.

THEOREM 2.3. Fix T > 0 and assume rB − D > 0. We suppose that the
sequence of initial conditions (Zε

0)0<ε≤1 converges to �Z0 in law, and moreover,
that

sup
0<ε≤1

E
((

Nε
0
)4)

< ∞, sup
0<ε≤1

E
((

Hε
0
)4)

< ∞.

Then the sequence Nε converges in law toward �N in D([0, T ],N) as ε → 0.
The process �N is a pure jump process on N∗ whose infinitesimal generator is

well defined for every measurable and bounded function f :N∗ →R by

(2.8) Lf (n) = (f (n+1)−f (n)
)
bn+ (f (n−1)−f (n)

)
n
(
d +cn+Bh∗

n

)
1n≥2.

The proof of the convergence, stated in Section 4 relies on a compactness-
identification technique. The result proven in Section 4, Theorem 4.2, also states
the convergence in law of the sequence of occupation measures associated with
the fast component Hε (see [31]). The main interest of this result is that in the
limit, the study of the prey-predator community is simplified, since it is entirely
described by the one-dimensional birth and death process �N .

2.3. Pathwise construction and first properties. Following Fournier and
Méléard [28], we construct a trajectory of the prey–predator process Z as a so-
lution of a stochastic differential equation driven by Poisson point processes.
Let Q1(ds, du) and Q2(ds, du) be two independent Poisson point measures on
R+ × R+ with intensity ds du the product of Lebesgue measures. We define for
any initial condition (n,h) ∈ E the coupled dynamics

Nt = n +
∫ t

0

∫
R+

1u≤bNs−Q1(ds, du)

−
∫ t

0

∫
R+

1u≤Ns−(d+cNs−+BHs−)1Ns−≥2Q2(ds, du),(2.9)

d

dt
Ht = Ht(rBNt − D − CHt), H0 = h.

A unique solution of these equations exists as long as the number of individuals
remains finite.
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THEOREM 2.4. Under the assumption that there exists p ≥ 1 such that

E
(
(N0)

p)< ∞ and E
(
(H0)

p)< ∞,

(i) For all T > 0

E
(

sup
t∈[0,T ]

(Nt)
p
)

< ∞ and E
(

sup
t∈[0,T ]

(Ht)
p
)

< ∞,

(ii) If p ≥ 1, there exists a unique solution (Zt )t≥0 ∈ D(R+,E) of (2.9). Its
infinitesimal generator is given by (2.6) for any bounded measurable functions f

with f (n, ·) ∈ C1
b(R+) for all n ∈ N∗.

Moreover, the process Zt is a Feller process in the sense that for any g : E →R

continuous and bounded, the function z �→ Ez(g(Zt )) is continuous and bounded
on E, ∀t ≥ 0.

(iii) If p ≥ 2, for all bounded measurable functions f with f (n, ·) ∈ C1
b(R+)

for all n ∈ N∗ and for all z ∈N∗ ×R+,

M
f
t = f (Zt) − f (z) −

∫ t

0
Af (Zs) ds,

is a L2-martingale starting at 0 with quadratic variation〈
Mf 〉

t =
∫ t

0

(
f (Ns + 1,Hs) − f (Ns,Hs)

)2
bNs

+ (f (Ns − 1,Hs) − f (Ns,Hs)
)2

Ns(d + cNs + BHs)ds.

PROOF. (i) Let us remark that the process (Nt , t ≥ 0) is stochastically dom-
inated by a pure birth process (Ñt , t ≥ 0) that jumps from n to n + 1 at rate bn.
From Theorem 3.1 in [28], we know that for all T > 0 E(supt∈[0,T ](Ñt )

p) < ∞,
and thus E(supt∈[0,T ](Nt)

p) < ∞.
Concerning the predator density, we notice that for all (n,h) ∈ N∗ × R+ the

solution φn(h, t) of (2.3) satisfies

(2.10) ∀t ≥ 0 0 < φn(h, t) ≤ h ∨ h∗
n.

Since h∗
n ≤ rBn/C, we obtain that for all t ≥ 0

Ht ≤ H0 ∨ rB

C
sup

s∈[0,t]
Ns.

Then

E
(

sup
t∈[0,T ]

(Ht )
p
)

≤ E
(
(H0)

p)+ rB

C
E
(

sup
t∈[0,T ]

(Nt)
p
)

< ∞.

The fact that the infinitesimal generator is given by (2.6) and the proof of (iii)
can be easily adapted from [28].
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It remains to prove that Zt is a Feller process. We adapt the method introduced
by Davis [23]. The prey–predator community process differs from Davis’ set-
ting since the jump rates of the prey population are not bounded. However, we
overcome this difficulty using the moment properties given in (i). We denote by
(T1, T2, . . .) the sequence of jump times of the prey population. It is always well
defined since the jump rate admits a positive lower bound b. Let g ∈ Cb(E) and
ψ ∈ Cb(E ×R+). We define the application Gψ on E ×R+ by

Gψ(z, t) = Ez

(
g(Zt)1t≤T1 + ψ(ZT1, t − T1)1t>T1

)
.

Let e1 = (1,0) be the first vector of the canonical basis on E and let us define a
function � on E ×R+ by �(z, t) = ∫ t

0 θ(φ(z, s)) ds with

(2.11) θ(z) = θ(n,h) = n(b + d + cn + Bh).

The function t �→ 1 − e−�(z,t) is the cumulative distribution function of the first
jump time T1 conditionally on {Z0 = z}. Then

Gψ(z, t) = e−�(z,t)g
(
φ(z, t)

)+ ∫ t

0

∫
E

e−�(z,t)[ψ(φ(z, s) + e1, t − s
)
bn

+ ψ
(
φ(z, s) − e1, t − s

)
n
(
d + cn + Bφn(h, s)

)]
ds.

Let us remark that z �→ Gψ(z, t) is continuous since z �→ φ(z, t) is continuous by
Cauchy–Lipschitz theorem for all t ≥ 0, and the integrand is locally bounded.

We now iterate the kernel Gψ . From Lemma (27.3) in [23], we get that ∀k ∈ N,

Gk+1
ψ (z, t) = Gk

Gψ
(z, t) = Ez

(
g(Zt)1t≤Tk+1 + ψ(ZTk+1, t − Tk+1)1t>Tk+1

)
.

Then ∣∣Gk
ψ(z, t) −Ez

(
g(Zt)

)∣∣≤ Ez

((∣∣g(Zt)
∣∣+ ∣∣ψ(ZTk

, t − Tk)
∣∣)1t>Tk

)
≤ (‖g‖∞ + ‖ψ‖∞

)
Pz(Tk < t).

We deduce from (i) with p = 1, that the sequence of jump times (Tk)k∈N con-
verges almost surely to ∞, hence Pz(Tk < t) −→k→∞ 0. To obtain the continuity
of z �→ Ptg(z), it is sufficient to prove that the probability Pz(Tk < t) converges to
0 uniformly on compact sets of E.

Let K be a compact set of E, and set N+ = sup{n; (n,h) ∈ K} and H+ =
sup{h; (n,h) ∈ K}. We construct a sequence of jump times (Sk)k∈N that stochasti-
cally dominates the sequence of jump times (Tk)k∈N for any initial condition in K .
We start by bounding from above the prey and the predator populations. Similarly
as above, we define a prey pure jump process (Xt)t≥0 starting from N+ and a
deterministic predator population process Yt starting from H+:

Xt = N+ +
∫ t

0

∫
R+

1u≤bXs−Q1(ds, du),

d

dt
Yt = Yt (rBXt − D − CYt), Y0 = H+.
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The difference with point (i) lies in the fact that this coupling bounds from above
every trajectory with initial condition in K : more precisely for any initial condition
z ∈ K , Nt ≤ Xt and Ht ≤ Yt for all t ≥ 0, almost surely.

We introduce a Poisson point process with intensity θ(Xt , Yt ) dt and denote by
(Si)i∈N its sequence of jump times. Since the rate function θ increases, we deduce
that for all z ∈ E and t > 0,

Pz(Tk < t) ≤ P(Sk < t).

The probability P(Sk < t) converges toward 0 as k → ∞, since for all T > 0,
E(sups∈[0,T ] Xs) < ∞ and E(sups∈[0,T ] Ys) < ∞. �

2.4. Derivation from an individual-based model. In this part, we justify that
the model (2.1)–(2.2) derives from a microscopic model for the prey–predator
community. We introduce a scaling parameter K tending to ∞ and consider that
the number of predator is of order K while the prey number remains of order 1. At
each time t ≥ 0, the microscopic community is represented by a vector (NK

t ,HK
t )

where NK
t ∈ N is the prey number and HK

t ∈ N is the number of predators. This
process is a two-type continuous time Markov process whose transition rates are
given for all (n,h) ∈ N2 by

(n,h) → (n + 1, h) at rate nb,

(n − 1, h) at rate n
(
d + cn + BKh

)
1n≥2,

(n,h + 1) at rate hrKBKn,

(n,h − 1) at rate h
(
DK + CKh

)
.

The parameters BK , rK , DK and CK are chosen as follows:

BK = B

K
, rK = Kr, DK = D, CK = C

K
.

The predation and the competition among predators are normalized following [12,
28]. The parameter of conversion efficiency rK is scaled in order to maintain con-
stant the benefit from predation.

We consider the limit as K → ∞ of the rescaled process (NK, HK

K
).

THEOREM 2.5. Assuming that the sequence of initial conditions (NK
0 ,

HK
0

K
)K≥0 satisfies

(2.12) sup
K

E

((
NK

0 + HK
0

K

)3)
< ∞

and converges in law toward (n0, h0) ∈ E, then for all T > 0 the process

(NK, HK

K
)K≥0 converges in law in D([0, T ],E) toward the piecewise determin-

istic process (Nt ,Ht) defined by (2.1)–(2.2) with initial condition (n0, h0).
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The proof of this theorem is based on a compactness-uniqueness argument
which derives from Theorem 3.1 in [19] and will not be developed here. The mo-
ment assumptions (2.12) ensure that the processes ZK and Z are well defined and
that the assumptions of Theorem 3.1 in [19] are satisfied. In the latter, the authors
prove a similar result for a gene regulatory network in which the chemical reac-
tions occur at slow or fast speed.

3. Ergodic properties. In this section, we study the ergodic properties of the
prey–predator community process Z. We will prove the irreducibility of the pro-
cess and of specific sampled chains. From these properties and a Foster–Lyapunov
criterion, we will show that there exists a unique invariant probability measure and
that the process is exponentially ergodic.

3.1. Some definitions and known results. Let us first recall some definitions.
Let (Xt)t≥0 be a Feller process taking values in E a locally compact and separable
metric space. We denote by L its infinitesimal generator and by Pt its semi-group.
For every A ∈ B(E), we set τA = inf{t ≥ 0,Xt ∈ A}.

The process Xt is irreducible if there exists a σ -finite measure ν on E, called
irreducibility measure, such that for all A ∈ B(E)

ν(A) > 0 =⇒ ∀x ∈ E, Ex

(∫ ∞
0

1A(Xt) dt

)
> 0.

The process Xt is Harris recurrent if there exists a σ -finite measure μ on E such
that ∀A ∈ B(E)

μ(A) > 0 =⇒ ∀x ∈ E, Px(τA < ∞) = 1.

A Harris recurrent Markov process is always irreducible (see [39]).
Moreover, a Harris recurrent process Xt has an invariant measure π (see [6]). In

the case where this measure is finite, we say that Xt is positive Harris recurrent.
For continuous time processes, the positive Harris recurrence can be derived

from a Foster–Lyapunov inequality satisfied by the infinitesimal generator on some
petite set. Recall that a set C ⊂ E is petite if there exist a probability measure α

on R+, and a nondegenerate measure να on E such that for any z ∈ C∫ ∞
0

Pt(z, ·)α(dt) ≥ να(·).
For an irreducible Feller process whose irreducibility measure has a support with a
nonempty interior, all compact sets of E are petite sets (from Theorem 5.1 and 7.1
in [44]).

We recall sufficient conditions for the positive Harris recurrence of a Feller
process.

THEOREM A (Theorem 4.2 in [40]). Let (Xt)t≥0 be a Feller process taking
values in E. If the following conditions are satisfied:
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(i) X is irreducible with respect to some measure whose support has a non-
empty interior.

(ii) Foster–Lyapunov inequality: there exist a function V : E → [1,∞[ such
that lim|z|→∞ V (z) = ∞, a compact set K ⊂ E and two constants δ, γ > 0 such
that

LV (z) ≤ −γV (z) + δ1K(z) ∀z ∈ E.

Then X is positive Harris recurrent and there exists a unique invariant probability
measure π . Moreover π(V ) < ∞.

The process Xt is ergodic if it has a unique invariant probability measure π and
if

lim
t→∞
∥∥Pt(x, ·) − π

∥∥
TV = 0 ∀x ∈ E.

Moreover, Xt is exponentially ergodic if there exist a function R : E → (0,∞)

and 0 < ρ < 1 such that∥∥Pt(x, ·) − π
∥∥

TV ≤ R(x)ρt ∀x ∈ E.

In the case of continuous time Markov processes on continuous state spaces, the
ergodicity is related to the behavior of skeletons of the process. A skeleton corre-
sponds to a sampling of the continuous time process at some fixed time. For all
� > 0, the �-skeleton of X is the Markov chain (Xk�)k∈N with transition kernel
P�. We recall sufficient conditions for exponential ergodicity of a Feller process.

THEOREM B (Theorem 6.1 in [39] and Theorem 6.1 in [40]). Let (Xt)t≥0 be
a Feller process taking values in E which satisfies both conditions (i) and (ii) in
Theorem A. If furthermore there exists an irreducible skeleton (Xk�)k∈N (� > 0),
then X is exponentially ergodic and there exist 0 < ρ < 1 and 0 < R < ∞ such
that, for all z ∈ E, ∥∥Pt(z, ·) − π

∥∥
TV ≤ RρtV (z).

Let us briefly explain the origin of the condition on the skeleton of the pro-
cess. Since Xt is positive Harris recurrent, the irreducible skeleton (Xk�)k∈N has
an invariant probability measure. Hence, the skeleton chain is positive recurrent
and aperiodic (see Theorem 5.1 in [39]). The irreducibility is crucial to obtain the
aperiodicity.

Moreover, from the Foster–Lyapunov inequality (ii) in Theorem A, we deduce
that the skeleton chain also satisfies a Foster–Lyapunov inequality with the same
function V : there exist γ ′ < 1 and δ′ > 0 such that for every initial condition z ∈ E

Ez

(
V (X�)

)≤ γ ′V (z) + δ′.
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From Theorem 6.3 in [38], we deduce that the skeleton (Xk�)k∈N is geometrically
ergodic. There exist 0 < ρ < 1 and 0 < R < ∞ such that for all z ∈ E∥∥Pk�(z, ·) − π

∥∥
TV ≤ RρkV (z).

The exponential ergodicity of the continuous time process then derives from the
semi-group property.

3.2. Irreducibly. In this section, we study the irreducibility of (Zt )t≥0 in E =
N∗ ×R+. Let us highlight that a Borel set A ∈ B(E) can always be written as

A = ⋃
k≥1

{k} × Ak,

where Ak ∈ B(R+). We introduce the measure σ on E as the product of the count-
ing measure on N∗ and the Lebesgue measure λ on R+:

(3.1) ∀A ∈ B(E) σ(A) =∑
k≥1

λ(Ak).

In particular, if σ(A) > 0, then there exist k ∈ N∗ such that λ(Ak) > 0.

THEOREM 3.1. (i) If rB − D ≤ 0, then the process (Zt , t ≥ 0) is irreducible
for the measure σ on E given by (3.1).

(ii) Otherwise, the process (Zt , t ≥ 0) is irreducible for the measure σ ′ which is
the restriction of σ to the space E′ = N∗ × (h∗

1,+∞), for h∗
1 defined in (2.5).

The dichotomy in this result derives from the fact that when h∗
1 > 0, the set N∗ ×

(0, h∗
1) is transient for the dynamics. Indeed, the flows t �→ φn(h, t) are increasing

functions for (n,h) ∈ N∗ × (0, h∗
1) and, therefore, the trajectories cannot enter this

area.
In the sequel, we prove a stronger result on the probability for the process Zt to

reach open Borel sets, from which Theorem 3.1 follows.

THEOREM 3.2. (i) In the case where rB − D ≤ 0, we consider an interval
I = {k}× (h−, h+) with 0 ≤ h− < h+ and k ∈N∗. Then for every initial condition
(n,h) ∈ E, there exists t0 > 0 such that ∀t ≥ t0,

P(n,h)(Zt ∈ I ) > 0.

(ii) We have a similar result in the case where rB − D > 0 for any interval
I ⊂ E′ such that σ ′(I ) > 0 and any initial condition (n,h) ∈ E′.

The proof derives from the construction of ideal trajectories and from compar-
isons between the different predator flows.

PROOF OF THEOREM 3.2. (i) We assume that rB −D ≤ 0 which is equivalent
to h∗

1 = 0.
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We consider different cases depending on the position of the interval I = {k} ×
(h−, h+) with respect to the line n �→ h∗

n of the predator equilibria and on the
initial condition (n,h) ∈ E. These cases are illustrated in Figures 1 to 7. In these
figures, the state space E is represented as the positive quadrant of R2 separated by
the line n �→ h∗

n. The process (Zt , t ≥ 0) can only cross this line by a jump of the
prey number. When the process is above this line, the predator density decreases,
while it increases when the process is under this line. The intervals which cross
this line [i.e., such that h∗

k ∈ (h−, h+)] will play a specific role in the proof since
they are stable by the predator flow φk .

We introduce additional notations: for all m ∈ N∗, and x, y ∈ R+ we set
rm(x, y) the time needed for the flow φm to go from x to y. This time is well
defined for x ≥ y > h∗

m or x ≤ y < h∗
m. In these cases, it satisfies

φm

(
x, rm(x, y)

)= y.

First case: The interval I is stable for the flow φk (i.e., h∗
k ∈ (h−, h+) if h∗

k > 0
or h− = h∗

k = 0 otherwise). Our aim is to prove that for any t > t0, P(n,h)(Zt ∈
I ) > 0 for some t0 ≥ 0. The idea is to construct simple trajectories which enter the
interval I and arise with positive probability.

We split the reasoning into different sub-cases depending on the initial condi-
tion. We focus on initial conditions such that h > h∗

n. The other cases can be treated
similarly by symmetry.

(A) If n ≤ k and h− ∨ h∗
n < h.

We first consider the specific sub-case where n ≤ k and h− < h∗
n ≤ h ≤ h+ (see

Figure 1).
In this setting, we are interested in trajectories with exactly k − n prey births.

These trajectories reach the line {k} × R+. Furthermore, the number of predators

FIG. 1. Case 1(A). Different ideal trajectories for the specific sub-case where the initial condition
(n,h) satisfies n ≤ k and h− < h∗

n ≤ h ≤ h+. The red line is the map m �→ h∗
m.
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remains in the interval [h∗
n, h ∨ h∗

k] ⊂ (h−, h+). This property derives from the
fact that the predator density decreases as long as Ht ≥ h∗

Nt
and remains therefore

smaller than h but greater than h∗
Nt

≥ h∗
n since Nt ≥ n. If the process jumps below

the line n �→ h∗
n, then the predator density increases and remains bounded by h∗

k .
Thus, after k − n births events, the process reaches the interval I .

Let us now prove that such trajectories occur with positive probability. We first
compute the probability that the first jump is a birth:

P(n,h)(first jump is a birth) = E(n,h)

(
E(1first jump is a birth|T1)

)
= E(n,h)

(
bn

θ(n,φn(h,T1))

)

≥ bn

θ(n,φn(h,h ∨ h∗
n))

,

where the total jump rate θ(n,h) defined in (2.11) increases in n and h.
Then by induction, the probability that the k −n first jumps are births, is greater

than
bn

θ(n,h ∨ h∗
n)

× b(n + 1)

θ(n + 1, h ∨ h∗
n)

× · · · × b(k − 1)

θ(k − 1, h ∨ h∗
n)

> 0.

Recall that the sequence of jump times of the prey population is denoted by
(Tm)m∈N. Let us fix t > 0. Using the lower bound h∗

n of the predator population
size, we bound from below the probability that the k − n births happen before t by

P(n,h)(Tk−n < t |k − n births) ≥ P
(
Poiss

(
tθ
(
n,h∗

n

))≥ k − n
)
> 0,

where Poiss(tθ(n,h∗
n)) is a random variable with Poisson distribution of parame-

ter tθ(n,h∗
n). Finally, we request that no other jump occurs before t , then

P(n,h)(Tk−n+1 > t |Tk−n < t and k − n births) ≥ exp
(−tθ(k, h+)

)
> 0.

Then the event {Tk−n+1 > t and Tk−n < t and k − n births} has positive probabil-
ity, and on this event Zt ∈ I .

Let us come back to the general case where n ≤ k and h− ∨ h∗
n < h (see Fig-

ure 2).
We will consider the trajectories which remain on {n} × R+ until Ht reaches

h+. Then we will request that k − n births occur before the predator population
size reaches h−.

Therefore, we define r1 = rn(h,h+) when it exists and set r1 = 0 otherwise. The
first step is to require that T1 > r1. Since in this case h+ > h∗

k ≥ h∗
n and h > h∗

n,
the flow φn(h, ·) decreases, and thus

P(n,h)(T1 > r1) = exp
(
−
∫ r1

0
θ
(
n,φn(h, s)

)
ds

)
≥ exp

(−r1θ(n,h)
)
> 0.

Then we define r2 = rn(h+, h−) when it exists [i.e., if h∗
n ∈ (h−, h+)] and set

r2 = +∞ otherwise. It is important to remark that r1 +r2 = rn(h,h−). The specific
case considered above corresponds to r1 = 0 and r2 = +∞.
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FIG. 2. Case 1(A). An ideal trajectory. The vertical blue arrows represent the time needed by the
flow to get from the tail to the head of the arrow.

We request that Tk−n < r1 + r2 and that these k − n jumps are births. An easy
adaptation of the previous result shows that this event has positive probability.

Moreover, at time Tk−n, HTk−n
∈ (h−, h+). The upper bound HTk−n

< h+ de-
rives from the same reasoning as above. The lower bound of the predator density
comes from comparisons of the different flows. We denote by Fl the vector field
associated with φl : Fl(y) = y(rBl − D − Cy), for l ∈ N∗.

The first birth occurs at time r1 < T1 < r1 + r2 and HT1 = φn(h,T1) > h−. The
second jump happens at T2 < r1 + r2 and HT2 = φn+1(HT1, T2 − T1) > h−. Since
Fn+1(y) > Fn(y) for all y ∈R+, then φn+1(HT1, T2 −T1) ≥ φn(HT1, T2 −T1), and
thus HT2 ≥ φn(h,T2). Then by iteration, we deduce that HTk−n

≥ φn(h,Tk−n) >

φn(h, r1 + r2) ≥ h−.
We define the time t0 = r1 + r21r2<+∞. Let us now consider t > t0 and finally

request that Tk−n+1 > t . As in the previous case, we deduce that these trajectories
occur with positive probability and satisfy Zt ∈ I .

(B) If n ≤ k and h∗
n ≤ h ≤ h−. (See Figure 3.)

The challenge is to increase the predator density up to h−. Let us fix a time
s > 0. We consider trajectories which have exactly k−n jumps before s, which are
births. Then using a similar reasoning to case (A), we deduce that Hs ≥ φn(h, s).
We define the time r1 = rk(φn(h, s), h−). Therefore, for every t > t0 = s + r1, if
no jump occurs on the time interval [s, t], then

Ht = φk(Hs, t − s) > φk(Hs, r1),

since t − s > r1. Moreover, φk(Hs, r1) ≥ φk(φn(h, s), r1) = h− as Hs ≥ φn(h, s).
Thus, Zt ∈ I .

(C) If n > k and h > h∗
n. (See Figure 3.)

The reasoning is similar to the previous case, except that we aim at decreasing
the predator density. We consider trajectories which have exactly n − k deaths
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FIG. 3. Cases 1(B) and 1(C). Examples of ideal trajectories.

before s > 0. Then Hs ≤ φn(h, s). We define the time r1 = rk(φn(h, s), h+) when
φn(h, s) ≥ h+ and set r1 = 0 otherwise. For every t > t0 = s + r1, if no jump
occurs on the time interval [s, t], then Zt ∈ I .

Second case: The interval I is below the line n �→ h∗
n (i.e., h∗

k > h+). We will
construct an auxiliary interval which is stable for the predator flow. Then we will
prove that starting from this interval, the process enters I in some finite time.

We introduce the integer m = max{l ∈ N∗, h∗
l < h+}. Once again, we split the

reasoning in three cases depending on the position of h∗
m with respect to (h−, h+)

and the positivity of h∗
m.

(A) If h− < h∗
m < h+.

We define the interval J = {m} × (
h++h∗

m

2 , h−) which is stable for the flow φm

(see Figure 4). Then, from the first case, there exists t0, such that ∀t ≥ t0, P(Zt ∈
J ) > 0.

We set r1 = rk(
h++h∗

m

2 , h+). Let us remark that the trajectories starting from
(n0, h0) ∈ J such that exactly k − m births occur during r1 satisfy that Zr1 ∈ I .
This derives once again from comparisons of the flows φl for m ≤ l ≤ k. Moreover,
such trajectories arise with positive probability.

Therefore, for any t ≥ t0 + r1, we deduce from the Markov property at time
t − r1 that

P(n,h)(Zt ∈ I ) ≥ E(n,h)

(
PZt−r1

(Zr1 ∈ I )1Zt−r1∈J

)
P(n,h)(Zt−r1 ∈ J ) > 0.

(B) If 0 < h∗
m ≤ h− < h+.

For this configuration, we use the invertibility of the flow φk . We will construct
an interval I ′ = {k}× (u, v) such that φk(u, s0) = h− and φk(v, s0) = h+ for some
s0 > 0 and that furthermore satisfies that u < h∗

m < v (see Figure 5).
To this aim, we fix ε ∈ (0, h∗

m) and remark that for any k ≥ 1 and 0 < ε < y ≤
h < h∗

k , the equation φk(y, s) = h is equivalent to y = ψk,h(s), where ψk,h(s) is
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FIG. 4. Case 2(A). Construction of the auxiliary interval and of an ideal trajectory.

the inverse image by the flow φk(·, s) of the point h. We deduce from (2.4) that the
application ψk,h is defined from [0, rk(ε, h)] to [ε,h] by

ψk,h(s) = h

es(rBk−D) − hC
rBk−D

(es(rBk−D) − 1)
.

It is continuous and strictly decreasing on [0, rk(ε, h)].
Furthermore, from the uniqueness of the flow we deduce that for any rk(ε, h) ≥

s ≥ 0:

ψk,h+(s) > ψk,h−(s).

Therefore, there exists a time s0 > 0 such that the points v = ψk,h+(s0) and u =
ψk,h−(s0) satisfy u < h∗

m < v and we set I ′ = {k} × (u, v).

FIG. 5. Case 2(B). Construction of the auxiliary interval I ′.
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FIG. 6. Case 2(C). Construction of the auxiliary intervals I1, I2 and I3.

From the case 2(A), we deduce that there exists t1 such that ∀t ≥ t1,

P(n,h)

(
Zt ∈ I ′)> 0.

For any trajectory which is in I ′ at time t , we request that no jump occurs during
s0, which happens with positive probability. Therefore, using the Markov property
at time t , we deduce that

P(n,h)(Zt+s0 ∈ I ) > 0.

(C) If h∗
m = 0.

In this case, the above construction 2(B) does not work because the only stable
interval on {m}×R+ are of the form {m}× (0, a) with a > 0, which would impose
s0 = +∞.

Let us fix a small δ > 0 and define the interval I 3 = {m}× (h− + δ, h+ − δ). We
remark that we can adapt the previous reasoning to prove that for every (n,h) ∈ E

there exists t0 > 0, such that ∀t ≥ t0,

P(n,h)

(
Zt ∈ I 3)> 0.

Let us explain this construction (see Figure 6). We first define m′ = min{q ∈
N∗, h∗

q > h− + δ}. As in the step 2(B), we construct an auxiliary interval I 2 =
{m} × (a, b) with s0 > 0

h+ − δ = φm(b, s0),

h− + δ = φm(a, s0) and

a < h∗
m′ < b.

We fix η > 0 such that h∗
m′ > a + η and set I 1 = {m′} × (a + η, b). From the

first step, there exists t1 such that ∀t ≥ t1, P(n,h)(Zt ∈ I 1) > 0. Starting from I 1,
we request furthermore that exactly m′ − m successive deaths occur on the time
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FIG. 7. The hatched area corresponds to the points that cannot be reached starting from an initial
condition which is not in this zone.

interval [t, t + r1] with r1 = rm(a + η, a). This ensures that Zt+r1 ∈ I 2. Further-
more, we request that no jump occurs on [t + r1, t + r1 + s0], and thus, ∀t ≥ t1
P(n,h)(Zt+r1+s0 ∈ I 3) > 0.

We now define the times r2 = rm(h−, h− + δ) and r3 = rk(h+ − δ, h+) and
set t2 = min(r2, r3). For any trajectory which is at time t + r1 + s0 in I 3, we
request furthermore that exactly k − m successive births occur before the time
t + r1 + s0 + t2. Therefore, we deduce from the Markov property that ∀t ≥ t0

P(n,h)(Zt+r1+s0+t2 ∈ I ) > 0.

Third case: h∗
k < h−. The proof is very similar to the second case. We introduce

the smallest integer m such that h∗
m > h− and adapt the previous reasoning by

inverting birth and death events.
(ii) Let us now consider the situation where h∗

1 > 0. Starting from a point
(n0, h0) ∈ E such that h ≥ h∗

1, the process cannot reach the set {z ∈ E,h ≤ h∗
1}

which corresponds to the hatched zone on Figure 7. Therefore, we restrict our-
selves to the measure σ ′ and initial conditions in E′. The proof is the similar to
above. �

PROOF OF THEOREM 3.1. We give the proof in the case where h∗
1 = 0, the

other case being an easy adaptation.
For any A ∈ B(E) such that σ(A) > 0, there exist an integer k ∈ N∗ and a Borel

set Ak ∈ B(R) such that {k} × Ak ⊂ A and λ(Ak) > 0. Once again, we split the
proof in two sub-cases.

First case: Let us first assume that there exists an open interval (h−, h+) ⊂ Ak

with h− < h+ and define I = {k} × (h−, h+).
We choose ε small enough such that the interval Iε = {k} × (h− + ε,h+ − ε)

still satisfies σ(Iε) > 0 and fix a small δ > 0 such that ∀(k, h′) ∈ Iε , φk(h
′, δ) ∈ I .
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From Theorem 3.2, we can construct trajectories that belong to the interval Iε

at time t ≥ t0 with positive probability for some t0 > 0. We ask furthermore that
no jump occurs during a time δ. Then for any t ≥ t0

P(n,h)

(
Zs ∈ I,∀s ∈ [t, t + δ])

≥ P(n,h)

(
Zt ∈ Iε and no jump occurs on [t, t + δ])

≥ e−δθ(k,h+−ε)P(n,h)(Zt ∈ Iε) > 0.

Therefore,

E(n,h)

(∫ ∞
0

1A(Zs) ds

)
≥ δP(n,h)

(
Zs ∈ I,∀s ∈ [t, t + δ])> 0.

Second case: We now consider the case where Ak does not contain any interval
(as an example R \Q, or a fat Cantor set). We consider an open bounded interval
(h−, h+) such that λ(A ∩ (h−, h+)) > 0. Such an interval always exists since

λ(Ak) =
∞∑

M=0

λ
(
Ak ∩ (M,M + 1)

)
> 0.

Moreover, it is possible to choose (h−, h+) such that h∗
k /∈ [h−, h+], that is, this

interval is not stable for the flow φk . Indeed, the opposite case would imply by
successive divisions of the interval, that for any ε > 0, λ(Ak \(h∗

k −ε,h∗
k +ε)) = 0.

Thus, we would have that 0 < λ(Ak) = λ(Ak ∩(h∗
k −ε,h∗

k +ε)) ≤ 2ε for any ε > 0,
which is not possible.

We now restrict ourselves to the set Bk = Ak ∩ (h−, h+) with λ(Bk) > 0 and
assume that the flow φk increases on (h−, h+) (the other case being an easy adap-
tation).

Let us fix ε > 0. In the sequel, we consider the trajectories that reach the interval
(h− − ε,h−) and then, we ask that no jump occurs until these trajectories attain
h+. Then the time spent by those trajectories in Bk will be positive since the flows
are continuous. More precisely, from Theorem 3.2 we deduce that there exists t0
such that ∀t ≥ t0, P(n,h)(Zt ∈ {k}× (h− − ε,h−)) > 0. We define the positive time
r1 = rk(h− − ε,h+) needed for the flow φk to go from h− − ε to h+. For all t ≥ t0,
we consider the event

Et = {Zt ∈ {k} × (h− − ε,h−) and no jump occurs on [t, t + r1]}.
Then P(n,h)(Et ) > 0 and

E(n,h)

(∫ t+r1

t
1{k}×Bk

(Zs) ds|Et

)
= E(n,h)

(∫ r1

0
1Bk

(
φk(Zt , s)

)
ds|Et

)
.
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Since the flow φk is invertible, we make the change of variable u = φk(Zt , s) and
obtain

E(n,h)

(∫ t+r1

t
1{k}×Bk

(Zs) ds
∣∣∣Et

)

= E(n,h)

(∫ φk(Zt ,r1)

Zt

1Bk
(u)

u(rBk − D − Cu)
du
∣∣Et

)
.

Since, Zt ∈ (h− − ε,h−) and φk(Zt , r1) ∈ (h+, h∗
k), we deduce that for some con-

stant v > 0,

E(n,h)

(∫ t+r1

t
1{k}×Bk

(Zs) ds
∣∣∣Et

)
> vλ(Bk) > 0.

Thus, E(n,h)(
∫∞

0 1Bk
(Zs) ds) > 0 which completes the proof of the irreducibility.

�

3.3. Positive Harris recurrence. We recall the expression of the infinitesimal
generator of the prey–predator process given in (2.6). We prove in the following
that it satisfies a Foster–Lyapunov criterion.

PROPOSITION 3.3. Let V : E �→ [1,+∞[ be the function V (n,h) = n+h/r .
Then there exist δ, γ > 0 and a compact set K such that

(3.2) AV (z) ≤ −γV (z) + δ1K(z) ∀z ∈ E.

We combine Theorem 3.1 and Proposition 3.3, to deduce from Theorem A in
Section 3.1 that:

THEOREM 3.4. The process Zt is positive Harris recurrent, and thus there
exists a unique invariant probability measure π on E′ which furthermore satisfies
π(V ) < ∞.

PROOF OF PROPOSITION 3.3. For all (n,h) ∈ E,

AV (n,h) = h

r
(rBn − D − Ch) + bn − n(d + cn + Bh)1n≥2

=

⎧⎪⎪⎨⎪⎪⎩
−h

(
h
C

r
− D

r

)
− n
(
nc − (b − d)

)
, if n ≥ 2,

−h

(
h
C

r
− D

r
− B

)
+ b, if n = 1.

For any γ > 0, we obtain easily that there exists n0 ∈ N∗ and h0 > 0 such that

−n
(
nc − (b − d)

)≤ −γ n ∀n ≥ n0 and

−h

(
h
C

r
− D

r

)
≤ −γ

h

r
∀h ≥ h0.
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Then for all (n,h) with n ≥ n0 and h ≥ h0, AV (n,h) ≤ −γV (n,h). Moreover,
since n0 is finite, there exists h1(n0) such that ∀(n,h) with n < n0 and h ≥ h1,
AV (n,h) ≤ −γV (n,h). Similarly, there exists n1(h0) such that ∀(n,h) with h <

h0 and n ≥ n1, AV (n,h) ≤ −γV (n,h).
Therefore, setting K = {1, . . . ,max(n0, n1)} × [0,max(h0, h1)] and δ =

max{V (n,h), (n,h) ∈ K}, the function V introduced above clearly satisfies the
Foster–Lyapunov criterion (3.2). �

REMARK 3.5. The function V introduced in Proposition 3.3 is not the only
Lyapunov function of the system. An easy computation leads to the fact that
W(n,h) = n2 +h also satisfies (3.2). With Theorem 3.4, we conclude that π(W) <

∞ which improves our knowledge of the invariant probability measure π .

3.4. Exponential ergodicity. In this section, we investigate the convergence in
total variation norm of the transition kernel toward the invariant measure. Let us
first recall Theorem 2.2.

THEOREM (Theorem 2.2). The community process (Zt )t≥0 is exponentially
ergodic. It converges toward its invariant probability measure π at an exponential
rate. There exist 0 < ρ < 1 and 0 < R < ∞ such that, for all z ∈ E′,
(3.3)

∥∥Pt(z, ·) − π
∥∥

TV ≤ RρtV (z).

PROOF. From Theorem B in Section 3.1, it remains to prove that a skeleton
chain of the prey–predator process is irreducible. This condition is actually equiv-
alent to the ergodicity for positive Harris recurrent processes (Theorem 6.1 [39]).

It derives immediately from Theorem 3.2, that any skeleton chain (Zk�)k∈N
(with � > 0) reaches any open Borel set with positive probability. Indeed,
let O be an open set of B(E′) with λ(O) > 0 then there exists an inter-
val I ⊂ O with λ(I) > 0, and thus, for any z ∈ E′ and for q large enough,
Pz(Zq� ∈ O) ≥ Pz(Zq� ∈ I ) > 0.

To generalize from open Borel sets to Borel sets, we need some regularity of
the function z �→ Pz(Z� ∈ A) for A ∈ B(E′). We compute this probability by
distinguishing the trajectories with the number of jumps J (�) occurring on [0,�],
then for all z ∈ E′ and A ∈ B(E′),

(3.4) Pz(Z� ∈ A) =
∞∑

k=0

Pz

(
Z� ∈ A and J (�) = k

)
.

We recall that the sequence of jump times of the prey population is denoted by
(Tk)k∈N and that Pz(T1 ≥ t) = e−�(z,t) where �(z, t) = ∫ t

0 θ(φ(z, s)) ds and the
total jump rate θ(z) is given by (2.11).

The first term of (3.4) handles trajectories where no jump occurs. It is given by

Pz

(
Z� ∈ A and J (�) = 0

)= e−�(z,�)ds1A

(
φ(z,�)

)
.
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This function is not continuous in z since the indicator function 1A is not continu-
ous and the total flow φ(z,�) is continuous.

The idea is then to bound from below Pz(Z� ∈ A) by a continuous function (see
Chapter 6 of [37] and [7]). In the sequel, we consider

Pz(Z� ∈ A) ≥ Pz

(
Z� ∈ A and J (�) = 1

)
,

and prove that for any A ∈ B(E′), the function z �→ T (z,A) = Pz(Z� ∈
A and J (�) = 1) is continuous on E′. The continuity will derive from the fact
that the law of first jump time has a density with respect to the Lebesgue measure.

Indeed, for any z = (n,h) ∈ E′

Pz

(
Z� ∈ A and J (�) = 1

)
= Pz(Z� ∈ A and T1 ≤ � < T2)

=
∫ �

0
1A

(
n + 1, φn+1

(
φn(h, s),� − s

))
bne−�(n,h,s)e�(n+1,φn(h,s),�−s) ds

+
∫ �

0
1A

(
n − 1, φn−1

(
φn(h, s),� − s

))
n
(
d + cn + Bφn(h, s)

)
1n≥2

× e−�(n,h,s)e�(n−1,φn(h,s),�−s) ds.

The first integral corresponds to the event where a birth occurs at T1 while the
second interval to the event where a death happens at T1. In the sequel, we consider
the first integral. The study on the second integral is very similar and will not be
detailed. The predator density at time � conditioned on the fact that only one jump
happens on [0,�] and is a birth occurring at time s ∈ [0,�] is given by

g(n,h,�)(s) = φn+1
(
φn(h, s),� − s

)
.

We note that for any s and �, the application (n,h) �→ g(n,h,�)(s) is continuously
differentiable. To perform the change of variable y = g(n,h,�)(s) in the previous
integral, we have to verify that d

ds
g(n,h,�)(s) does not vanish.

d

ds
g(n,h,�)(s) = ∂2φn(h, s) · ∂1φn+1

(
φn(h, s),� − s

)− ∂2φn+1
(
φn(h, s),� − s

)
.

We recall that φn is the flow associated with (2.3), then

∂2φn(h, s) = φn(h, s)
(
rBn − D − Cφn(h, s)

)
.

From the exact expression (2.4), we obtain that

∂1φn(h, s) = φn(h, s)

h(1 + hC
rBn−D

(e(rBn−D)s − 1))
.

Then an easy calculation using (2.4) leads to

d

ds
g(n,h,�)(s) = −rB

g(n,h,�)(s)

1 + φn(h,s)C
rB(n+1)−D

(e(rB(n+1)−D)(�−s) − 1)
< 0.
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Let us finally remark that

g(n,h,�)(0) = φn+1(h,�) and g(n,h,�)(�) = φn(h,�),

hence∫ �

0
1A

(
n + 1, φn+1

(
φn(h, s),� − s

))
bne−�(n,h,s)e�(n+1,φn(h,s),�−s) ds

(3.5)

=
∫ φn+1(h,�)

φn(h,�)
1A(n + 1, y)f (n,h,�,y) dy,

where

f (n,h,�,y) = bn
e
−�(n,h,g−1

(n,h,�)(y))
e
�(n+1,φn(h,g−1

(n,h,�)(y)),�−g−1
(n,h,�)(y))

| d
ds

g(n,h,�)(s)|s=g−1
(n,h,�)(y)

| .

The function of (n,h) given defined by (3.5) is continuous since the upper and
the lower bounds of the integral are continuous functions of (n,h) on E′ and the
integrand is continuous in (n,h) on E′ and locally bounded.

To conclude with the irreducibility of (Zk�)k∈N, we fix a point z0 ∈ E′ and
remark that the measure T (z0, ·) = Pz(Z� ∈ · and J (�) = 1) is nondegenerate
since T (z0,E

′) > 0.
For any A ∈ B(E′) such that T (z0,A) > 0, there exists, by continuity of T , an

open neighborhood O of z0 such that ∀z ∈ O, T (z,A) > T (z0,A)/2. Moreover,
we deduce from Theorem 3.2 that for any initial condition (n,h) there exists q ∈N

such that P(n,h)(Zq� ∈ O) > 0. Then it derives from the Markov property at time
q� and from the properties of the kernel T that

P(n,h)(Z(q+1)� ∈ A) ≥ E(n,h)

(
1Z(q+1)�∈AEZq�(1Z�∈O)

)
≥ P(n,h)(Zq� ∈ O)

T (z0,A)

2
> 0.

Hence, (Zk�)k∈N is irreducible with respect to the measure T (z0, ·). �

REMARK 3.6. Here, we chose to study the behavior of skeletons of the pro-
cess in order to derive the exponential ergodicity of the process. This standard
method has already been used in the context of PDMP (see, e.g., [7, 33]). Costa
and Dufour [18, 25] developed a different approach based on an embedded Markov
chain whose long time behavior is equivalent to those of the PDMP. For the prey–
predator process Z, it seems to us more natural to study the continuous time tra-
jectories since comparisons where possible. Moreover, in future work, we aim at
deriving from these trajectory constructions more quantitative convergence speeds
using recently developed coupling methods for PDMP (e.g., [9, 27]).
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REMARK 3.7. The results of this section can be extended to the model in-
cluding migration introduced in Remark 2.1. Indeed, using the very same trajec-
tory construction, one can prove that the process (N(m),H (m)) is irreducible on
E(m) for the Lebesgue measure σ . Moreover, the infinitesimal generator (2.7) sat-
isfies a Foster–Lyapunov inequality with the same Lyapunov function. Therefore,
(N(m),H (m)) admits a unique probability invariant measure. Finally, by adapting
the proof of Theorem 2.2 we get that it is exponentially ergodic.

4. Rescaling the predator dynamics. We introduce a new parameter ε which
rescales the predator dynamics and illustrates the biological assumption that the
predator mass is almost negligible comparing to the prey mass. There exists an
important literature about the metabolic theory which describes the relationships
between mass and metabolic characteristics of living individuals (see among oth-
ers [10, 21]). Following this theory, the demographic parameters of individuals
increase when their mass decreases. Here, we simplify these relationships by as-
suming that the predator parameters vary as 1/ε.

For any ε ∈ (0,1], we consider the community process Zε = (Nε,Hε) where
for all t ≥ 0,

(4.1)
d

dt
Hε

t = Hε
t

ε

(
rBNε

t − D − CHε
t

)
and the dynamics of Nε is given by the jump mechanism (2.2) associated with the
predator population Hε . The process studied in the previous sections corresponds
to ε = 1 or to the parameters rε = r/ε, Dε = D/ε and Cε = C/ε.

This scaling changes the time scale of the predator flow. If φε
n is the flow asso-

ciated with (4.1), then

(4.2) φε
n(h, t) = φ1

n

(
h,

t

ε

)
∀t ≥ 0,∀(n,h) ∈ E.

4.1. Convergence toward an averaged process. In the sequel, we study the
limit as ε tends to 0 of the sequence Zε in D([0, T ],E). The prey–predator process
is a slow–fast system. As ε diminishes, the predator process converges faster to its
equilibrium between the jumps of the prey population. The slow dynamics of the
prey population is then averaged on the predator equilibria.

We first give the expression of the infinitesimal generator of the process Zε

defined above: ∀f ∈ E and (n,h) ∈ E

Aεf (n,h) = ∂2f (n,h)
h(rBn − D − Ch)

ε
+ bn

(
f (n + 1, h) − f (n,h)

)
+ n(d + cn + Bh)

(
f (n − 1, h) − f (n,h)

)
1n≥2.

To carry out the limit as ε → 0, we use the fact that the convergence speed of
the flow φε

n to its equilibrium h∗
n is uniform in ε. This is only true if the number of
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predators remains bounded from below by some strictly positive constant. To this
aim, we make the following assumptions:

(i) rB − D > 0. This implies that the predator population cannot

become extinct;
(4.3)

(ii) We restrict ourselves to initial conditions in the set

E′ = {1, . . .} × [h∗
1,∞).

The state space E′ is stable for the prey–predator dynamics and is the support of
the irreducibility measure σ ′ introduced in Theorem 3.1(ii).

PROPOSITION 4.1. Under Assumption (4.3), there exists δ > 0 such that for
all (n,h) ∈ E′,

(4.4)
∣∣φε

n(h, t) − h∗
n

∣∣≤ ∣∣h − h∗
n

∣∣e−δ t
ε .

PROOF. Let us remark that thanks to (4.2), it is sufficient to prove the result
for ε = 1.

Using (2.4), an easy computation leads to

∣∣φn(h, t) − h∗
n

∣∣= ∣∣∣∣ h − h∗
n

1 + h
h∗

n
(e−t (rBn−D) − 1)

∣∣∣∣ ∀(n,h) ∈ E′ and t ≥ 0.

Therefore, it is enough to find δ > 0 satisfying ∀(n,h) ∈ E′ and t ≥ 0:

eδt ≤ 1 + h

h∗
n

(
e−t (rBn−D) − 1

)
.

The function t �→ 1 + h
h∗

n
(e−t (rBn−D) − 1) − eδt equals 0 for t = 0, and increases

as soon as hC ≥ δ and rBn − D ≥ δ. Since h ≥ h∗
1 > 0, we choose δ < Ch∗

1 to
obtain (4.4). �

Following Kurtz [31], we introduce the predator occupation measure:

(4.5) �ε([0, t],A)= ∫ t

0
1A

(
Hε

s

)
ds ∀t ≥ 0 and A ∈ B

(
R+).

This random measure belongs to the set Mm(R+) of measures μ on R+ × R+
such that μ([0, t] × R+) = t , ∀t ≥ 0. For any t ≥ 0, we denote by Mt

m(R+) the
set of the measures μ ∈Mm(R+) restricted to [0, t] ×R+.

In the sequel, we prove using the averaging method developed in [31] that the
sequence (Nε,�ε) converges in law. This method allows us to avoid the difficulties
related to the fast convergence of the predator flow to its equilibrium.
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THEOREM 4.2. Fix T > 0 and assume (4.3). We suppose that the sequence of
initial conditions (Zε

0)0<ε≤1 converges to �Z0 in law, and moreover, that

(4.6) sup
0<ε≤1

E
((

Nε
0
)4)

< ∞, sup
0<ε≤1

E
((

Hε
0
)4)

< ∞.

Then the sequence (Nε,�ε) converges in law toward (�N,�) in D([0, T ],N) ×
MT

m(R+) as ε → 0.
The process �N is a pure jump process on N∗ whose infinitesimal generator is

well defined for every measurable and bounded function f :N∗ →R by

(4.7) Lf (n) = (f (n+ 1)−f (n)
)
bn+ (f (n− 1)−f (n)

)
n
(
d + cn+Bh∗

n

)
1n≥2.

Moreover, the limiting measure is defined by �(ds × dy) = δh∗�Ns
(dy) ds.

We say that �N is an averaged process since it behaves as if the predator density
is constant at its equilibrium. Let us consider the specific case where D = 0. In
this case, the averaged prey population �N evolves almost as a logistic birth and
death process with individual birth rate b and individual death rate d + c̃n where
c̃ = c + rB2/C. The logistic parameter c̃ corresponds to the apparent competition
pressure (see [3]): it takes into account both the prey competition c and the effect
of predation.

PROOF OF THEOREM 4.2. We divide the proof in several steps. The first three
steps are devoted to the convergence of the prey population process. We use a
standard compactness-identification method inspired from Genadot [29]. In the
fourth step, we use the averaging method developed by Kurtz [31] to prove the
convergence of the predator occupation measures.

STEP 1: We prove that there exists an unique (in law) solution to the mar-
tingale problem associated to (4.7): for every measurable and bounded function
f :N∗ →R,

f (�Nt) − f (�N0) −
∫ t

0
Lf (�Ns)ds

is a martingale.
It derives from the representation Theorem 3.2 in [32] and a localization ar-

gument (see Theorem 4.6.3 in [26]) that the uniqueness of the solution of this
martingale problem is equivalent to the uniqueness in law of the solution �N of the
following stochastic differential equation provided that sups≤t

�Ns < ∞ a.s. for any
t ≥ 0:

(4.8) �Nt = �N0 +
∫ t

0

∫
R+

1u≤b�Ns− −1b�Ns−<u≤�Ns−(b+d+c�Ns−+Bh∗�Ns− )Q(ds, du),

where Q is a Poisson point measure on (R+)2 with intensity the product of
Lebesgue measure ds du. The uniqueness of the weak solution of (4.8) can be
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adapted from [28]. Moreover, if E(�N0) < +∞, then this solution is well defined
on R+ and sups≤t

�Ns < ∞ a.s. for any t ≥ 0.
STEP 2: Tightness of (Nε

t ,0 ≤ t ≤ T ). Similar to the proof of Theorem 2.4, we
construct a pure birth process X independent from Hε

0 , and thus from ε, which
dominates the prey population. Then we deduce from (4.6) that ∀z ∈ E′

(4.9) sup
0<ε≤1

Ez

(
sup

s∈[0,T ]
(
Nε

s

)4)≤ Ez

(
sup

s∈[0,T ]
(Xs)

4
)

< +∞.

Let us now fix η, δ > 0 and consider stopping times σ, τ such that σ ≤ τ ≤ (σ +
δ) ∧ τ . Using the trajectory’s construction (2.9), we write

Nε
t = Nε

0 +
∫ t

0
Nε

s

(
b − (d + cNε

s + BHε
s

)
1Nε

s ≥2
)
ds + Mε

t ,

where Mε
t is a pure jump martingale with quadratic variation〈

Mε〉
t =
∫ t

0
Nε

s

(
b + (d + cNε

s + BHε
s

)
1Nε

s ≥2
)
ds.

Hence,

E
((

Nε
τ − Nε

σ

)2)
= E

((∫ τ

σ
Nε

s

(
b − (d + cNε

s + BHε
s

)
1Nε

s ≥2
)
ds + Mε

τ − Mε
σ

)2)

≤ 2
[
E

((∫ τ

σ
Nε

s

(
b + d + cNε

s + BHε
s

)
ds

)2)
+E
((

Mε
τ − Mε

σ

)2)]
.

We deduce from (2.10) that the first term is bounded above by

E

((∫ τ

σ
Nε

s

(
b + d + cNε

s + B

(
Hε

0 + rB

C
sup

u∈[0,s]
Nε

u

))
ds

)2)
.

Therefore, using (4.6) and (4.9), there exists a constant CT > 0 such that

E

((∫ τ

σ
Nε

s

(
b + d + cNε

s + BHε
s

)
ds

)2)
≤ CT δ2.

For the second term,

E
((

Mε
τ − Mε

σ

)2)= E

(∫ τ

σ
Nε

s

(
b + (d + cNε

s + BHε
s

)
1Nε

s ≥2
)
ds

)
≤ E

(∫ τ

σ
Nε

s

(
b + d + cNε

s + B

(
Hε

0 + rB

C
sup

u∈[0,s]
Nε

u

))
ds

)
,

where the last inequality derives from (2.10). Combining this two inequalities (4.6)
and (4.9), we deduce that

E
((

Nε
τ − Nε

σ

)2)≤ δCT ,
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for some constant CT > 0 independent of ε which leads to the tightness of the laws
of (Nε

t , t ∈ [0, T ]) in D([0, T ],N) using Aldous tightness criterion [1].
STEP 3: Identification of the limit. Let us consider a sub-sequence of (Nε

t ,0 ≤
t ≤ T ) (still denoted Nε) which converges in law when ε → 0 toward a process
(�Nt,0 ≤ t ≤ T ). In the sequel, we prove that �N is the unique solution of the mar-
tingale problem associated to (4.7).

We consider bounded functions f , g1, . . . , gk on N∗ and times 0 ≤ t1 < · · · <

tk < t < t + s ≤ T . We deduce from Theorem 2.4 that

E

[(
f
(
Nε

t+s

)− f
(
Nε

t

)− ∫ t+s

t
Lf
(
Nε

u

)
du

) k∏
i=1

gi

(
Nε

ti

)]

+E

[(∫ t+s

t

(
f
(
Nε

u − 1
)

(4.10)

− f
(
Nε

u

))
Nε

uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

) k∏
i=1

gi

(
Nε

ti

)]
= 0.

From the convergence in law of Nε to �N and (4.9), the first term converges as
ε → 0 to

E

[(
f (�Nt+s) − f (�Nt) −

∫ t+s

t
Lf (�Nu)du

) k∏
i=1

gi(�Nti )

]
.

Let us prove that

lim
ε→0

E

[(∫ t+s

t

(
f
(
Nε

u − 1
)− f

(
Nε

u

))
(4.11)

× Nε
uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

) k∏
i=1

gi

(
Nε

ti

)]= 0.

We first remark that

E

[(∫ t+s

t

(
f
(
Nε

u − 1
)− f

(
Nε

u

))
Nε

uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

) k∏
i=1

gi

(
Nε

ti

)]

≤
k∏

i=1

‖gi‖∞E

[∫ t+s

t

∣∣f (Nε
u − 1

)− f
(
Nε

u

)∣∣
× Nε

uB
∣∣Hε

u − h∗
Nε

u
−∣∣1Nε

u≥2 du

]
.
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We split the integral according to the sequence of jump times (T ε
k , k ∈ N) of the

prey population:∣∣∣∣E(∫ t+s

t

∣∣f (Nε
u − 1

)− f
(
Nε

u

)∣∣Nε
uB
∣∣Hε

u − h∗
Nε

u

∣∣1Nε
u≥2 du

)∣∣∣∣
≤ 2‖f ‖∞B

∞∑
k=0

∞∑
n=1

E

(
1n

(
Nε

T ε
k

)
n

∫ T ε
k+1∧(t+s)

T ε
k

∣∣h∗
Nε

u
− Hε

u

∣∣du

)
.

Since on the event {Nε
T ε

k
= n}, for any u ∈ [T ε

k , T ε
k+1 ∧ (t + s)], the predator density

is given by Hε
u = φε

n(H
ε
T ε

k
, u − T ε

k ), we derive from Proposition 4.1 that

∣∣h∗
Nε

u
− Hε

u

∣∣≤ ∣∣h∗
Nε

u
− Hε

T ε
u

∣∣e− δ(u−T ε
k

)

ε .

Hence,∣∣∣∣E(∫ t+s

t

(
f
(
Nε

u − 1
)− f

(
Nε

u

))
Nε

uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

)∣∣∣∣
≤ 2‖f ‖∞B

∞∑
k=0

∞∑
n=1

E

(
1n

(
Nε

T ε
k

)
n

∫ T ε
k+1∧(t+s)

T ε
k

∣∣h∗
n − Hε

T ε
k

∣∣e− δ(u−T ε
k

)

ε du

)
.

From (2.10), we obtain that for every T > 0

(4.12) sup
u∈[0,T ]

Hε
u ≤ H+ + rB

C
sup

u∈[0,T ]
Nε

u < +∞.

Since h∗
n ≤ rBn/C, we deduce that for all u ∈ [T ε

k , T ε
k+1 ∧ (t + s)]∣∣h∗

Nε
T ε
k

− Hε
T ε

k

∣∣≤ H+ + 2
rB

C
sup

u∈[0,T ]
Nε

u.

With a change of variable u → u − T ε
k , we obtain that∫ T ε

k+1∧(t+s)

T ε
k

e− δ(u−T ε
k

)

ε du =
∫ T ε

k+1∧(t+s)−T ε
k

0
exp
(
−δu

ε

)
du

≤
∫ t+s

0
exp
(
−δu

ε

)
du1T ε

k ≤t+s

≤ ε

δ
1T ε

k ≤t+s .

Combining these two inequalities, we have that∣∣∣∣E(∫ t+s

t

(
f
(
Nε

u − 1
)− f

(
Nε

u

))
Nε

uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

)∣∣∣∣
≤ 2‖f ‖∞BE

((
H+ + 2

rB

C
sup

u∈[0,T ]
Nε

u

)
sup

u∈[0,T ]
Nε

u

∞∑
k=1

1T ε
k ≤t+s

)
ε

δ
.
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It remains to bound the expectation independently of ε. To this aim, we denote by
J ε

t the number of jumps before time t . By neglecting the non-positive terms, we
deduce from the trajectorial construction (2.9) that

sup
t∈[0,T ]

Nε
t J ε

T ≤
∫ T

0

∫
R+

(
Nε

s− + J ε
s− + 1

)
1u≤bNε

s−Q1(ds, du)

+
∫ T

0

∫
R+

(
Nε

s−
)
1u≤Nε

s−(d+cNε
s−+BHε

s−)Q2(ds, du).

Then we choose S ≥ T and taking expectations we deduce from (4.6) and (4.9)
that there exists a positive constant CS such that

E
(

sup
t∈[0,T ]

Nε
t J ε

T

)
≤ CS +E

(∫ T

0
bJ ε

t sup
s∈[0,t]

Nε
s dt

)
.

We conclude using Gronwall lemma that E(supt∈[0,T ] Nε
t J ε

T ) < ∞. A very similar
computation leads to

E
(

sup
t∈[0,T ]

(
Nε

t

)2
J ε

T

)
≤ E

(∫ T

0
2b
(
Nε

s

)2
J ε

s + bNε
s J ε

s + bNε
s

(
1 + Nε

s

)
+ (Nε

s − 1
)2

Nε
s

(
d + cNε

s + BHε
s

)
ds

)
.

We conclude with (4.6), (4.9) and Gronwall lemma that

E
(

sup
t∈[0,T ]

(
Nε

t

)2
J ε

T

)
< ∞.

Therefore, we deduce that there exists a constant CS,T > 0 such that∣∣∣∣E(∫ t+s

t

(
f
(
Nε

u − 1
)− f

(
Nε

u

))
Nε

uB
(
Hε

u − h∗
Nε

u

)
1Nε

u≥2 du

)∣∣∣∣≤ CS,T

ε

δ
.

Thus, (4.11) is verified.
Therefore,

E

[(
f (�Nt+s) − f (�Nt) −

∫ t+s

t
Lf (�Nu)du

) k∏
i=1

gi(�Nti )

]
= 0,

and thus �N is a solution of the martingale problem associated with L. From (4.6),
we deduce that E(�N0) < ∞ and then from the first step, Nε converge in law to the
unique solution of the martingale problem associated with L which is a birth and
death process, which jumps from n → n + 1 at rate bn and from n → n − 1 at rate
n(d + cn + Bh∗

n)1n≥2.
STEP 4: Limit behavior of the predator population size. We prove the weak

convergence of the sequence of occupation measures �ε introduced in (4.5). From,
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Lemma 1.3 in [31], the sequence of the laws of �ε is tight in the set MT
m(R+) if

for any δ > 0 and t ∈ [0, T ] there exists a compact K ⊂R+ such that

inf
ε
E
(
�ε([0, t] × K

))≥ (1 − δ)t.

From (4.12), we deduce that the family {Hε
s , ε ∈ (0,1], s ∈ [0, T ]} is relatively

compact, and thus the sequence of the laws of (�ε)ε∈(0,1] is tight.
Hence, the pair (Nε,�ε) is tight and we consider a sub-sequence, still denoted

(Nε,�ε), that converges toward (�N,�).
Since �ε([0, t],R+) = t , for all ε ∈ (0,1) and t ∈ [0, T ], we deduce (see

Lemma 1.4 in [31]) that there exists a process γs taking values in the set of prob-
ability measures on R+, measurable with respect to (ω, s), such that for every
measurable and bounded function h on [0, T ] ×R+∫ T

0

∫
R+

h(s, y)�(ds × dy) =
∫ T

0

∫
R+

h(s, y)γs(dy) ds.

Using (4.9), we deduce from Theorem 2.1 in [31] that for every function f on N∗
continuous and bounded and t ≤ T

f (�Nt) − f (�N0) −
∫ t

0

∫
R+

[(
f (�Ns + 1) − f (�Ns)

)
b�Ns

(4.13)
+ (f (�Ns − 1) − f (�Ns)

)�Ns(d + c�Ns + By)1�Ns≥2
]
γs(dy) ds

is a martingale.
Concerning the predator dynamics, for every function g ∈ C1

b(R+), the process

εMε
g(t) = εg

(
Hε

t

)− εg
(
Hε

0
)− ∫ t

0
g′(Hε

s

)
Hε

s

(
rBNε

s − D − CHε
s

)
ds;

is a martingale. Using (4.9), we prove easily that (εMε
g(t))0<ε≤1,t∈[0,T ] is uni-

formly integrable and that

lim
ε→0

E
(∣∣εMε

g(t) − M̃g(t)
∣∣)= 0,

where M̃g(t) = ∫ t
0
∫
R+ g′(y)y(rB �Ns − D − Cy)γs(dy) ds. Therefore, we deduce

from the uniform integrability of εMε
g that M̃g(t) is a martingale. Since it is also a

continuous and finite variation process, it must be null. Thus,∫
R+

g′(y)y(rB �Nt − D − Cy)γt (dy) = 0
(4.14)

for dt-almost every t ∈ [0, T ].
We recall that the infinitesimal generator of �N is given by (4.7), then by identi-

fication in (4.13) we deduce that for all t ∈ [0, T ],
(4.15)

∫
R+

yγt (dy) = h∗�Nt
.
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Then we apply (4.14) to the function g(y) = ∫∞
y f (u) du, where f is continuous

on a compact of R+,∫
R+

f (y)y(rB �Nt − D − Cy)γt (dy) = 0, for dt-almost every t ∈ [0, T ].

From the Riesz theorem, the measure μ(·) = ∫· y(rB �Nt −D−Cy)γt (dy) on R+ is
null for almost every t ∈ [0, T ]. Then, for almost every t ∈ [0, T ], γt only charges
0 and h∗�Nt

. Finally, using (4.15) we conclude that γt (dy) = δh∗�Nt

(dy) for dt-almost

every t ∈ [0, T ]. �

REMARK 4.3. The proof of Theorem 4.2 relies on the uniform convergence
of the flows φn(h, t) to their equilibrium h∗

n as t → ∞, ∀(n,h) ∈ E′. It is not
possible to extend this reasoning to the process (N(m),H (m)) including migration
introduced in Remark 2.1, since its state space is N × R+. However, we can still
prove using the same method that the accelerated sequence (N(m),ε,�(m),ε) is tight
(with obvious notation). The difficulty to extend Theorem 4.2 to the migration case
lies in the identification of the limiting values.

4.2. Long time behavior of the averaged process. We are interested in the long
time behavior of the averaged prey population �N .

PROPOSITION 4.4. The process �N is positive recurrent on N∗ and converges
toward its unique invariant probability measure �μ =∑∞

n=1 μnδn, which satisfies
the system:

(4.16) ∀n ≥ 2 μn = bn−1

n
∏n

i=2(d + ci + Bh∗
i )

μ1.

The proof is very classical and left to the reader (see, e.g., [2], page 216). More-
over, we are interested in the process �Z = (�N,h∗�N) which represents the averaged
prey and predator populations. We obtain immediately the form of its invariant
distribution since h∗�N is a function of �N .

COROLLARY 4.5. The process �Z = (�N,h∗�N) admits a unique invariant prob-
ability measure �π given by

(4.17) �π =∑
n≥1

μnδ(n,h∗
n),

where the sequence μn satisfies (4.16).

The expression of �π is not explicit, however thanks to (4.16) we can derive
information on the shape of the distribution. In the sequel, we denote by �x� =
min{m ∈ Z;m ≥ x} for x ∈ R.
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PROPOSITION 4.6. The invariant probability measure �π admits a unique
maximum at 1 if μ1 ≥ μ2 and at n1 > 1 otherwise. The value of n1 can be ex-
plicitly computed in function of the model parameters.

PROOF. The study of the existence of maxima of the distribution �π and thus
�μ is equivalent to we study of μn+1

μn
− 1 = ξ(n) for ξ the function defined by

ξ(x) = b

(x + 1)(d + c(x + 1) + B(rB(x + 1) − D)/C)
− 1 ∀x ∈ [1,+∞).

The sign of ξ(x) is given by the sign of the polynomial

(4.18) αx2 + βx + γ = 0

with

α = c + rB2

C
,

β = d + 2c + 2
rB2

C
− BD

C
,

γ = −b + d + c + rB2

C
− BD

C
.

Its discriminant equals

β2 − 4αγ =
(
d − BD

C

)2
+ 4
(
c + rB2

C

)
b,

which is always positive. Therefore, the polynomial (4.18) admits 2 real roots:

x0 = −β −
√

(β2 − 4αγ )

2α
and x1 = −β +

√
(β2 − 4αγ )

2α
.

The smallest root x0 is always negative. If x1 > 1, then the invariant distribution
�μ admits exactly one mode at n1 = �x1�. Otherwise, the sequence (�μn)n≥1 is de-
creasing. To complete the proof, it remains to remark that the condition x1 > 1 is
equivalent to ξ(1) > 0 which is the condition given in the proposition. �

4.2.1. Numerics. For each ε ∈ (0,1], we proved in Section 3 that there exists
a unique invariant probability measure πε for the process Zε . In this section, we
study with numerical simulations the behavior of the sequence of invariant prob-
ability measures (πε)ε as ε → 0. An approximation of the invariant measure πε

is obtained by simulating 3000 times the prey–predator process Zε on a long time
interval. One interest of the process Zε is that the flow for the fast predator pop-
ulation admits an explicit formula (2.4). Therefore, we are able to compute exact
simulations of the process Zε for every ε ∈ (0,1]. The code for these simulations
is available in [16] (Chapter 3, Appendix A).
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FIG. 8. Approximation of the invariant measure πε for different values of ε. These histograms are
built from 3000 iterations of the community process Zε until time 1000. The parameters are b = 0.4,
d = 0, c = 0.005, B = 0.02, r = 2, D = 0 and C = 0.04.

In the simulations, the demographic parameters are given by

b = 0.4, d = 0, c = 0.005, B = 0.02, r = 2,

D = 0 and C = 0.04.

In Figure 8, we draw three-dimensional histograms of the distributions of the in-
variant measure πε for different values of ε [in (a) ε = 1, in (b) ε = 0.1 and in
(c) ε = 0.00001]. We observe that the support of these measures concentrates as
ε → 0 on the set {(n,h∗

n), n ∈ N∗}. This set corresponds to the support of the sta-
tionary distribution �π .

We now compare these measures πε with the measure �π . With the parameters
of the simulations, the averaged invariant measure �π =∑∞

n=1 μnδ(n,h∗
n) satisfies

μn = bn−1

(c̃)n−1n(n!)μ1 ∀n ≥ 2,

∞∑
n=1

μn = 1,

where c̃ = c + rB2/C is the apparent competition.
In the simulation, we approximate μ1 by

μ1 � 1∑50
k=1(b/c̃)k−1k(k)! � 2,69 · 10−5.

In Figure 9, we consider the marginal distribution of prey and predators given by
the previous simulations (ε = 1 in the left column, ε = 0.1 the middle column
and ε = 0.00001 in the right column). These distributions are projections of the
histograms in Figure 8. We compare them with the projections of the averaged
distribution �π represented with a black line joining the points (n,μn). For these
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FIG. 9. Marginal invariant distributions of the prey population in (a)–(b)–(c) and of the predator
population (d)–(e)–(f) for different values of ε (ε = 1 in (a)–(d), ε = 0.1 in (b)–(e) and ε = 0.00001
in (c)–(f). These histograms are built from 3000 iterations of the community process Zε until time
1000. The parameters are b = 0.4, d = 0, c = 0.005, B = 0.02, r = 2, D = 0 and C = 0.04.

histograms, we chose subdivisions centered in the integers for the prey population
and in the (h∗

n)≥1 for the predator populations.
We observe a rapid convergence of the marginal distributions of prey and of

predators, toward the marginal averaged distributions.
In these simulations, the sequence (πε)ε seems to converge in law to πε but we

have yet no mathematical proof of this result.

5. Discussion. We introduced new models for prey–predator communities in
which the predator dynamics is faster than the prey one. These stochastic models
derive from a microscopic model of the community under the successive scalings
of large predator population size and small predator mass. In both cases, we as-
sume that the prey population size remains finite. This assumption corresponds to
a biological reality as in the case of forest or experimental settings, for example,
in [42] the authors study trees-insects communities in which the number of trees is
of the order of a hundred. These models can be easily simulated and their dynam-
ics are simple, therefore, they represent an alternative to slow–fast Lotka–Volterra
dynamical systems [41].

From an ecological point of view, we proved that our prey–predator process ad-
mits a long time distribution. Since the convergence to the invariant measure is ex-
ponentially fast, this invariant measure can be rapidly simulated using trajectories
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of the process. This distribution gives insight on the composition of prey–predator
systems and can be used to compute the composition of trees-insects communi-
ties when the counting of insects may be difficult to do experimentally. Moreover,
in the situation where the mass ratio between prey individuals and predators is
small, the limiting distribution admits an explicit expression, which is valuable for
applications.

In this article, our approach was to consider first a large predator population
size and then the small size of predators. The interest of these successive scalings
was to introduce two different models corresponding to two different biological
configurations. It would also be possible, and biologically relevant, to consider
both scalings simultaneously by considering accelerated birth and death events as
in [13] (Section 4.2). In this case, other processes would arise as the coupling of a
birth death process and a diffusion. The study of such processes will be considered
in future works.

Knowing the long time behavior the prey–predator community is crucial to con-
sider the evolutionary dynamics of the community. Indeed, if we are interested in
the phenotypic evolution of phenotype traits of prey and/or predators (as the devel-
opment of specific tree defenses or of specialist insects strategies [42]), one might
be interested to consider the arrival of rare mutations as in adaptive dynamics set-
tings (e.g., [24, 36]). In this setting, the stationary distribution represents the state
of the resident community as a mutant arises. Therefore, its knowledge is impor-
tant to study the possible invasion of the mutant phenotype and to characterize the
favorable strategies for prey or predators [14].

Finally, even if our motivation was to describe the dynamics of ecological com-
munities such as trees-insects communities, these models or methods could also be
applied to very different questions such as epidemiology. For example, the study
of the propagation of insect transmitted diseases such as malaria impose to con-
sider the interaction between insect and human populations [4]. In this case the
dynamics of insects is much faster than the human dynamics. Therefore, piecewise
deterministic processes could be introduce to model the dynamics of the disease
and to study its outbreaks.
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