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Abstract

In this paper we consider a statistical estimation problem known as atomic deconvolution. Intro-
duced in reliability, this model has a direct application when considering biological data produced by
flow cytometers. From a statistical point of view, we aim at inferring the percentage of cells express-
ing the selected molecule and the probability distribution function associated with its fluorescence
emission. We propose here an adaptive estima- tion procedure based on a previous deconvolution
procedure introduced by Es, Gugushvili, and Spreij (2008) and Gugushvili, Es, and Spreij (2011).
For both estimating the mixing parameter and the mixing density automatically, we use the Lepskii
method based on the optimal choice of a bandwidth using a bias-variance decomposition. We then de-
rive some convergence rates, that are shown to be minimax optimal (up to some log terms) in Sobolev
classes. Finally, we apply our algorithm on simulated and real biological data.
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1 Introduction

1.1 Motivation

This work is motivated by an issue encountered by biologist researchers when using flow cytometry
measurements: a flow cytometer is an important technical instrument that makes it possible to assess
the efficiency of a drug treatment. Such an electronic machine analyzes a large number of cells and
produces cell engineering results such as counting, sorting or bio-marker detection.

This technology is commonly used for measuring the expression levels of proteins on the cells’
surface. To this aim, the biologists use fluorescent antibodies which bind with specific proteins on the
surface of cells. The flow cytometer then measures on each cell the fluorescent intensity, which is a
reflection of the quantity of marker expressed by the cell. More precisely these measurements derive
from a standard procedure in flow cytometry :

• First the biologist performs a calibration that corresponds to a preliminary estimation of the
baseline population of cells without any treatment: a large number of cells is placed in the
cytometer and a fluorescent intensity is measured on each cell. This calibration ends with a
baseline estimation of the baseline photon emission by a population of cells and yields for example
blue curves in Figure 1.
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Figure 1: Effect of binding of an antibody specific for the CD27 protein expressed at the cell surface of
lymphocytes extracted from the blood of a healthy individual (four different samples). The blue histograms
represent the distribution of the baseline photo emission of untreated cells while the red histograms give
the fluorescent distribution of treated cells. We refer to Section 4.2 for more details on the samples.

• Then the biologist exposes the cells to a fluorescent antibody, which binds with the marker
of interest on the surface of cells. The new fluorescence empirical distribution is built by the
cytometer. In particular, this step mimics the administration of a drug (related to a specific
antibody) to a patient and is therefore useful for the understanding of the effect of this drug.
This step allows to obtain the red curves in Figure 1.

• The expertise of the biologist is at last used to calibrate a qualitative analysis to decide if there
is an effect (or not) of the treatment and what is its mean efficiency. We should mention that
this human expertise may also be assisted by some recent statistical computational analyses and
have resulted in an open project called FlowCAP that makes it possible to produce standard
statistical analysis (essentially data clustering).

Figure 1 is an illustration of the empirical distribution of fluorescence measured by a cytometer
before and after a treatment on different kind of cells with a logarithmic scale (before treatment in
blue, after treatment in red).

Our objective here is to enrich the possibilities for biologists by deriving an additional and new
signal processing step for flow cytometers datasets. We aim to develop an automatic estimation of
drug treatments in order to retrieve both the proportion of positive cells (i.e. the cells that express
a given marker) and the distribution of marker in a population of cells. At the moment (one of the
authors of this paper is a biologist and intensive user of flow cytometers), there is no statistical tool
developed to solve this issue and the analysis of the proportion of reacting cells is estimated empirically
with a visual inspection of blue and red curves derived from the flow cytometers (see Figure 1). As
we will see below, our approach will be to develop a nonparametric statistical deconvolution problem.

1.2 Model

1.2.1 Atomic deconvolution

The above phenomenon can be described as an atomic deconvolution problem. Before treatment, the
fluorescence of a cell possesses a natural fluorescence that is distributed randomly (as illustrated by
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the blue curves in Figure 1). This baseline fluorescence is described by a random variable denoted by
eU (the cytometer produces logarithmic scales so that some realizations of U are directly observed).
Then the treatment is performed by biologists on a large set of cells and it is observed empirically
that sometimes the treatment has unfortunately no effect on the cells, while the other times when the
treatment works, it applies a random multiplicative factor denoted by eX on the fluorescence of the
cells.

Therefore, we can reasonably assume that we observe on the second step after treatment among
the set of cells treated in the cytometer some i.i.d. realizations (Zi)1≤i≤n of a model given by:

Z = U +AX, (1)

where U,A and X are jointly independent random variables. In Equation (1), the random variable Z
is therefore the measurement of the flow cytometer of the fluorescent intensity on a given cell. The
random variable U represents the natural fluorescence of the cell: it is its baseline reaction regardless
of the impact of drug administrated during the experiment. The random variable X stands for the
quantitative effect of the reagent when the cell actively reacts to the treatment. At last, A represents
the effectiveness of the treatment on the cell and belongs to {0, 1}. We can therefore list below our
definitions related to (1):

• U represents the baseline “noise” on the observations, leading to the convolution model. We
assume that the distribution of U is absolutely continuous with respect to the Lebesgue measure
on R and the density of U is assumed to be known and is denoted by g. This assumption for
example translates a preliminary step of calibrating the cytometer before any treatment with a
nonparametric estimation of the density g.

• A is distributed according to a Bernoulli random variable A ∼ B(1 − p) and p is an unknown
parameter. We use the convention P[A = 0] = p (the cell does not react to the administrated
reagent) while P[A = 1] = 1− p (the reagent induces an effect on the cell). We are interested in
the estimation of the success of the treatment, i.e. in the estimation of 1− p.

• X is the quantitative effect of the treatment when the cell is reacting to the treatment and we
assume that the distribution of X is also absolutely continuous with respect to the Lebesgue
measure on R, with an unknown density f . Of course, biologists are interested in estimating
the quantitative effect of the treatment, so that we also need to produce an estimation of f .

For example, in each situation illustrated in Figure 1, we can see that the baseline density g is repre-
sented by the blue area while the “mixture” distribution obtained after the statistical contamination
of U by AX is represented by the red area.

1.2.2 State of the art and related works

Deconvolution Even though relatively simple in appearance, we will see below that Equation (1)
deserves both theoretical development and numerical efforts to obtain a practical and theoretically
supported method of estimation for p and f . For example, we could think of the use of a moment
estimation strategy to obtain information on p. Unfortunately, we can rapidly compute that

E(Z) = E(U) + (1− p)E(X) and V(Z) = V(U) + p(1− p)E(X)2 + (1− p)V(X),

leading to a non trivial relationship between the known moments of the distribution of U , the Bernoulli
parameter p, and the moments of the distribution of X.

This problem has been recently introduced in Es et al. (2008) and was motivated by a reliability
problem estimation, which is an application completely different than ours. To bypass the difficulty
raised by atomic deconvolution, these authors introduced a nonparametric deconvolution strategy (see
Es et al. (2008) and Gugushvili et al. (2011)) adapted to the situation of atomic deconvolution. We
emphasize at this stage that if the baseline density g is assumed to be known, nothing else can be
expected for the knowledge of the model. In particular, the parameter of Bernoulli trials has to be
estimated and there is no reason to assume a specific parametric form for the density f : in the red
curves of Figure 1, it seems difficult to decipher a typical structure of the convolution kernel. Hence,
the use of nonparametric statistics is here unavoidable for a practical feasible estimation of the density
f .
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Their estimator is inspired from the seminal contributions of Carroll and Hall (1988) and Fan
(1991) and uses kernel density estimation associated with Fourier analysis. In particular, Es et al.
(2008) builds an consistent estimator and proves a CLT related to this estimator while Gugushvili
et al. (2011) studies the associated convergence rates and their minimax properties. The former
works are related to the statistical deconvolution inverse problems (see Meister (2009), Cavalier et al.
(2002) and the references therein) and a cornerstone of this kind of statistical issues is the capital
importance of the smoothness of the object to be recovered. A well known feature of nonparametric
density estimation is the great influence of the “number of existing derivatives” of f on the statistical
ability of estimators (for example regarding the L2-consistency rate of convergence). In particular, an
imprecise knowledge on the smoothness parameter will lead to inappropriate estimators.

If Es et al. (2008) and Gugushvili et al. (2011) develop a nonparametric solution for estimating f and
p, both works unfortunately assume the knowledge of the smoothness of f , which is clearly unrealistic
in practice. Moreover, we have pointed out above that this smoothness has a crucial impact on the
ability of the estimators. In particular, to obtain a tractable efficient statistical procedure, there is
an important need to estimate also a smoothness class Hs(R) where the unknown density f is living
(see below for details on the functional space Hs(R)). Since the choice of the “good” smoothness
parameter s may be a real issue from a practical point of view, there is an important need to obtain
an estimator suitable regardless of the value of s: we refer to adaptive estimators when they are able
to adapt themselves to the unknown value of this regularity parameter. In the general settings of
nonparametric regression and density estimation, such adaptive property may be attained by different
strategies that are detailed below.

Adaptation In nonparametric statistics, estimators are importantly affected by a wrong choice of
the parameters that are ideally smoothness-dependent. This is in particular the case for the bandwidth
of a kernel deconvolution (see Fan (1991)) or a frequency threshold in a Tychonov-type regularization
(see Tsybakov (2009)) for example. Different strategies have been designed these last decades to attain
ad-hoc adaptivity of estimators.

Among them, model selection theory introduced initially in Birgé and Massart (1998) produced a
lot of interesting derivations in nonparametric and high-dimensional statistics, while the cornerstone of
a tractable use of such an approach relies on a suitable minimal penalty calibration. Nevertheless, this
calibration is sometimes difficult both from a theoretical and from a practical point of view and other
methods can also be used to produce efficient adaptive estimators. For example, resampling methods
with an additional cross-validation procedure (see e.g. Picard and Cook (1984)) is a popular method
but we should notice that deriving theoretical results with this simple method requires a significant
amount of work (see the recent contributions of Arlot and Lerasle (2016) for density estimation and
of Arlot (2009) on general resampling methods).

In statistical signal processing, adaptivity of estimation may also be achieved with the help of a
suitable decomposition basis and thresholding strategy. This is what is done with wavelets on Besov
balls on specific situations: introduced for density estimation in Donoho, Johnstone, Kerkyacharian,
and Picard (1996) and used in different type of inverse problems in Bigot and Gadat (2010) and Bigot,
Gadat, Klein, and Marteau (2013) for example.

Nevertheless, wavelets are not so easy to use with mixture problems and we propose to follow
another possible guideline. We will use the so-called Lepskii method to derive adaptive estimators. This
method introduced in Lepskii (1992) has been successfully applied in many nonparametric estimation
problems and we refer to Goldenshluger and Lepskii (2011) and Lepskii (2015) for recent contributions
using this method. We also refer to Chichignoud (2010) for an introduction of this method in different
frameworks. The success of this method relies on a good bias-variance trade-off in the estimation
procedure, and does not require a too much involved parameters tuning step.

Inverse problem with noisy operator At last, we point out that we have chosen to only
address the situation where the density g is assumed to be known exactly. Such assumption may
be seen as reasonable because it translates the fact that a biologist may repeat some fluorescence
measurements on untreated cells a larger amount of time comparing to measurement on treated cells.
Below, it will be translated by the use of the characteristic function of the random variable U denoted
by ΦU .
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However, from a theoretical point of view, the effect of a preliminary estimation of the density g on
the estimation of p and f is an open problem, left for a future subject of investigation in our current
paper. When the operator described by ΦU is unknown and has to be estimated from the data, then
the problem falls into the framework of deconvolution with noise in the operator (see Cavalier (2011)).
In such a case, it is highly suspected that the attainable rates may be damaged by the preliminary
estimation of ΦU . We refer to Cavalier and Hengartner (2005), Cavalier and Raimondo (2007) and
Johannes (2009) and the references therein).

1.3 Main assumptions

Below, we will use i to refer to the complex number such that i2 = −1 and the notation “:=” will
refer to the definition of a mathematical object. We assume that the random variables U and X have
a bounded second moment. The characteristic function of any random variable W will be denoted by
ΦW . Therefore, we will frequently use the following notations:

∀t ∈ R ΦZ(t) := E[eitZ ] and ΦU (t) := E[eitU ] and ΦX(t) := E[eitX ],

where (Z,U,X) are the random variables involved in Equation (1). We assume that U (resp. X) has
a known density g (resp. unknown density f) with respect to the Lebesgue measure. We will use for
the sake of convenience the notation Φh to refer to the Fourier transform of any density h:

Φh(t) =

∫
R
eitxh(x)dx.

The notation . refers to an inequality up to a multiplicative constant independent of n.

It is well known that the Fourier transform of Z and its empirical counterpart may be used to
obtain reliable estimations of ΦX when dealing with a standard convolution inverse problem (see Fan
(1991)) at the price of an assumption on the deconvolution operator translated in ΦU . Moreover, let us
note that our model includes the situation where p = 0, which turns our atomic deconvolution problem
into the standard deconvolution problem. Therefore, it is expected that our estimation problem can
be solved at the minimal price of some standard smoothness and invertibility conditions on the Fourier
transform of U and some smoothness assumptions on f . Indeed, these kind of assumptions are well
known in the inverse problem literature and commonly used to derive convergence rates of estimators
(see among many references the work e.g. Fan and Koo (2002) where this assumption is used in its
great generality, or Cavalier and Koo (2002) where this assumption is specified in the Poisson inverse
problem situation). We also refer to Bigot and Gadat (2010); Bigot et al. (2012) for other applications
of this kind of assumptions with different “deconvolution + mixture problems”. We are therefore
driven to introduce two sets of densities Hs(R) and H+

ν :

• The set Hs(R) denotes the set of densities f that belong to the Sobolev space of regularity s (and
radius R) described with the help of the associated characteristic functions Φf such that:

Hs(R) :=

{
h ∈ L2(R) :

∫
R
|Φh(t)|2(1 + |t|2s)dt ≤ R2

}
Below, the density of X denoted by f is assumed to belong to Hs(R) with an unknown parameter s,
meaning that we assume that

∫
R |ΦX(t)|2(1 + |t|2s)dt ≤ R2.

• The set H+
ν denotes the set of densities such that the Fourier transform satisfies the smoothness and

“invertibility” condition : ∃ (d0, d1) : 0 < d0 < d1 and d0|t|−ν ≤ |Φ(t)| ≤ d1|t|−ν as |t| −→ +∞.

H+
ν :=

{
h ∈ L2(R) : ∃ 0 < d0 < d1 d0|t|−ν ≤ |Φh(t)| ≤ d1|t|−ν

}
.

Below, we will assume that the density g of the random variable U belongs to H+
ν .

Let us briefly comment on this last assumption. In Fan (1991), H+
ν refers to the set of ordinary smooth

densities of order ν, which includes many distributions as gamma, double exponential distributions.
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Note that it would be possible to address the super-smooth case with an exponential decrease of the
Fourier transform to handle Gaussian or Cauchy densities. Nevertheless, we have chosen in this work
to restrict our study to the ordinary smooth case for the sake of brevity. As pointed in Section 1.2, we
assume that g is known, meaning that ΦU is known on R. Such an assumption is reasonable regarding
the practical example we want to handle where we can repeat the experiments for the calibration of
the cytometer many times.

The estimators introduced in Es et al. (2008) exploit the knowledge of H+
ν and of Hs(R) (which is

more annoying for practical purpose) to obtain an optimal estimator with the important assumption
of the knowledge of s (see Section 2.1).

1.4 Main results

In this article we introduce an adaptive procedure to estimate the unknown parameters p and f . We
consider the estimators p̂n and f̂n proposed in Es et al. (2008) based on a kernel estimation using the
relationship between the Fourier transform of each random variable because Equation (1) yields:

∀t ∈ R ΦZ(t) = ΦU (t) [p+ (1− p)ΦX(t)] . (2)

We detail in Sections 2.1 and 3.1 the non-adaptive construction proposed by Es et al. (2008). We then
develop a well-designed strategy (see e.g. Lepskii (1992)) to obtain an adaptive estimator of p and
f . This method consists in choosing among a grid of regularity, the associated bandwidth parameter
that realizes the bias-variance tradeoff. The precise constructions of the adaptive estimator p̂n,ĵpn and

f̂n,ĵfn are given in Sections 2.2 and 3.2. The aim of this article is to establish the consistency rate of

our adaptive strategy and in particular its optimality (among a functional space for f). To assess this
optimality, we handle the minimax risk paradigm and define the minimax risk for the estimation of p
by:

rn(p) := inf
p̂n

sup
p∈]0,1[,f∈Hs(R)

EPp,f (p̂n − p)2, (3)

where the above infimum is taken over the set of all possible estimators constructed from (Z1, . . . , Zn)
and where EPp,f refers to the expectation over the n-observations i.i.d. according to Equation (1). For
the sake of convenience, we will omit the subscripts p, f in the notation EPp,f and simply denote by E
this expectation.

In the same time, we also introduce the minimax risk for the estimation of f defined by:

rn(f) := inf
f̂n

sup
p∈]0,1[,f∈Hs(R)

EPp,f ‖f̂n − f‖22, (4)

The minimax risk rn(p) (resp. rn(f)) represents the optimal rate of convergence that may be
attained by any estimator of p (resp. of f) in the quadratic sense. We emphasize that the estimators
proposed in Es et al. (2008),Gugushvili et al. (2011) are minimax optimal and not adaptive to the
smoothness parameter s (see Theorem 3 and Theorem 7).

Below, we will prove the following results. The first result concerns the estimation of p.

Theorem 1 (Minimax adaptivity of p) Assume that f belongs to Hs(R) and g to H+
ν with ν > 1.

If p ∈ (0, 1), then the estimator p̂n,ĵpn defined in (12) and (15) satisfies:

rn(p) . E
(
p̂n,ĵpn − p

)2

. (log n) rn(p),

where rn(p) = n−(2s+1)/(2s+2ν).

The proof of Theorem 1 follows a multiple-testing strategy jointly used with a concentration inequal-
ity. The additional logarithmic term (regarding the minimax rate n−(2s+1)/(2s+2ν)) involved in our
upper bound is the price to pay for using a multiple testing strategy and identifying the smoothness
parameter.

Then we use a plug-in strategy to estimate the function f from its Fourier transform.
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Theorem 2 (Minimax adaptivity of f) For any p ∈ (0, 1), assume that Z has a finite variance
and assume that f ∈ Hs(R) and g ∈ H+

ν with ν > 1 and select ĵfn as in Equation (31). Then, the

estimator f̂n,ĵfn defined in (32) satisfies:

rn(f) . E‖f̂n,ĵfn − f‖2 . (log n)a+1/2 rn(f),

where rn(f) = n−s/(2s+2ν+1) and a > 0 is defined in Equation (28).

Hence, Theorem 1 and Theorem 2 show that our estimation procedures derived from (15) and
(32) lead to optimal rates of convergence, that are of polynomial order of the sample size. This rate
deteriorates as long as the degree of ill-posedness ν increases. We recover a standard behavior in
deconvolution situation. We also emphasize that our estimators for p and f , induced by the Lepskii
rule, are non-asymptotic and fully-adaptive with respect to the smoothness parameter s. Therefore,
our results produce an adaptive minimax optimal upper bound up to some logarithmic term. Finally,
note that the lower bounds presented in Theorems 1 and 2 are already established in Es et al. (2008)
and Gugushvili et al. (2011) and are indicated here to assess the statistical efficiency of our adaptive
estimation. Consequently, our theoretical contribution will be to provide the proof of the upper bounds
involved in Theorems 1 and 2.

The article is organized as follows: Section 2 details first the non-adaptive and then the adaptive
estimation of the contamination parameter p while Section 3 proposes to solve similar estimation
problems for f . We present numerical simulations in Section 4 on both simulated and real data-sets
and the interest of our results for biological purposes. Finally, we gather some technical results in
Appendix A, especially for the adaptive result on the estimation of f (see Subsection A.3).

2 Estimation of the contamination rate 1− p

We first consider the problem of estimating the contamination rate 1− p. We recall the non-adaptive
results obtained by Es et al. (2008) and expose our adaptive strategy afterwards.

2.1 Non adaptive estimation of p

We describe below the estimators proposed by Es et al. (2008), that will be used to obtain our
adaptive procedure. A key observation relies on Equation (2). This last equation makes it possible,
from n independent observations (Zi)1≤i≤n, to obtain an estimation of ΦX and p. Given this set of
observations, we first introduce the empirical estimator of the Fourier transform of Z:

∀t ∈ R Φ̂Z,n(t) :=
1

n

n∑
i=1

eitZi .

Since f belongs to Hs(R), then lim|t|−→+∞ ΦX(t) = 0. Therefore, we expect to recover p by using
the information brought by ΦZ and ΦU at large frequencies. In particular, Equation (2) implies the
identifiability of the model and provides some insights for an estimation strategy. Then the knowledge
of ΦU and in particular the fact that the density of U belongs to H+

ν , entails some lower bounds of
ΦU for large frequencies.

We use the construction of Gugushvili et al. (2011) and introduce a smooth real valued kernel ΦK
in the Fourier domain that satisfies:

ΦK(t) 6= 0⇐⇒ t ∈ [−1; 1] and

∫ 1

−1

ΦK(t)dt = 2, (5)

and a flatness condition on the neighborhood of 0 (Vk below denotes an open neighborhood of 0):

∀k ∈ R+, ∃Ck > 0, ∃Vk ∀t ∈ Vk : |ΦK(t)| ≤ Ck|t|k.

This last condition is not restrictive and is satisfied when ΦK is chosen for example as:

ΦK(t) :=
e−a|t|

−m

Ca,m
1|t|≤1,
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for any a > 0, m ≥ 1 (Ca,m is the normalizing constant associated to Equation (5)). Note that this
local condition may be replaced by a global one since ΦK is bounded on [−1; 1]. Therefore, we keep
the notation Ck and assume that:

∀k ∈ R+, ∃Ck > 0 ∀t ∈ [−1; 1] : |ΦK(t)| ≤ Ck|t|k. (6)

Following the works of Fan (1991) and Gugushvili et al. (2011), we use the kernel ΦK on the Fourier
transform p+ (1− p)ΦX and obtain:

h

2

∫
R

ΦK(ht)
ΦZ(t)

ΦU (t)
dt =

h

2

∫
R

ΦK(ht)[p+ (1− p)ΦX(t)]dt = p+
h(1− p)

2

∫ h−1

−h−1

ΦK(ht)ΦX(t)dt.

The last term of the r.h.s. vanishes when h −→ 0. Moreover, it is possible to obtain a tight upper
bound in terms of h of this bias term:∣∣∣∣∣h

∫ h−1

−h−1

ΦK(ht)ΦX(t)dt

∣∣∣∣∣ =

∣∣∣∣∣h
∫ h−1

−h−1

ΦK(ht)|t|−sΦX(t)|t|sdt

∣∣∣∣∣
≤ h

√∫ h−1

−h−1

|ΦK(ht)|2|t|−2sdt

∫
R
|ΦX(t)|2|t|2sdt ≤

√
2CsRh

s+1/2 , (7)

where we applied successively the Cauchy-Schwarz inequality, Inequality (6) with k = s and the fact
that f ∈ Hs(R). Therefore, we can write that:

lim
h−→0

h

2

∫
R

ΦK(ht)
ΦZ(t)

ΦU (t)
dt = p.

We finally plug Equation (2) in the above limit and define a natural estimator of p (that depends on
a small bandwidth parameter hn):

p̂n :=
hn
2

∫ h−1
n

−h−1
n

ΦK(hnt)
Φ̂Z,n(t)

ΦU (t)
dt. (8)

According to (7), we compute an upper-bound of the bias of p̂n as:

[Ep̂n − p]2 ≤ 2C2
sR

2h2s+1
n .

The variance of p̂n is handled in a standard way following the arguments of Fan (1991) with ν > 1:

V(p̂n) .
h2
n

n

∫
R

∣∣∣∣∫
R
eitz

ΦK(hnt)

ΦU (t)
dt

∣∣∣∣2 dz . hn
n

∫
R

∣∣∣∣ ΦK(t)

ΦU (th−1
n )

∣∣∣∣2 dt . 1

nh2ν−1
n

. (9)

Now, a classical optimization of the bias-variance tradeoff yields the optimal (non-adaptive) choice

for the bandwidth parameter h?n := n−
1

2s+2ν . It can be shown that this choice leads to the minimax
optimal consistency rate n−(2s+1)/(2s+2ν). In other words:

Theorem 3 (Theorem 1(i) and 5 in Gugushvili et al. (2011)) Assume that f ∈ Hs(R) and

g ∈ H+
ν with ν > 1, then the choice hn = n−

1
2s+2ν in (8) leads to an estimator p̂n that satisfies

the consistency rate:

E[|p̂n − p|2] ≤ C(s,R)n−
(2s+1)
2s+2ν ,

where C(s,R) is a positive constant that continuously depend of s and R. Moreover, this estimator is
minimax optimal under the additional assumption that |φ′(t)|(1 + |t|ν) ≤ d2 for all t ∈ R and d2 > 0.

This result highly depends on the knowledge of s and a bad strategy for the choice of s and hn
will significantly arms the estimation procedure. Nevertheless it is our starting point to produce an
adaptive estimator of p.
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2.2 Adaptive estimation of p

We propose to adapt the Lepskii strategy (see e.g. Lepskii (1992)) to obtain an adaptive estimator of
p.

Grid on s We define a grid Sn and will estimate s with an exploration of the possible values in Sn.
We consider an interval [0, s0] where we assume that s ∈ [0, s0] and define a regularly spaced sequence

smax = s0 > s1 > · · · > skn ≥ 0,

such that for every 0 ≤ j ≤ kn,

sj := s0 − j
ε

log n
. (10)

In the last formula, ε > 0 is a fixed parameter. This parameter will be calibrated later on and will
permit to obtain good estimation properties. For each 0 ≤ j ≤ kn, we associate the bandwidth param-
eter hn,j that corresponds to the optimal bandwidth parameter chosen above when the smoothness of
f is known and equal to sj . This rule yields:

hn,j := n−1/(2sj+2ν). (11)

The corresponding estimator is then denoted by:

p̂n,j := 0 ∨

(
hn,j

2

∫ h−1
n,j

−h−1
n,j

ΦK(hnt)
Φ̂Z,n(t)

ΦU (t)
dt

)
∧ 1. (12)

We choose to constraint the estimator to obtain a value in [0, 1], which will not damage the properties
of the estimator since p ∈ [0, 1].

The associated minimax risk in the smoothness class Hsj (R) is of the order n−(sj+1/2)/(2sj+2ν) (see
Theorem 3). Given a positive parameter β, we introduce a penalty term defined by this minimax risk
up to a log term:

κn,j := β
√

log nn−(sj+1/2)/(2sj+2ν), (13)

We should note the important monotonic variations of the quantities defined above: when j > l then
sj < sl and the bandwidth and penalty parameters satisfy hn,j < hn,l and κn,j > κn,l. We introduce
the notation s? for the closest element to the regularity s from below in the grid Gn:

s? := sup {sj ∈ Gn : sj ≤ s} . (14)

For sake of convenience, we denote by j? the integer in {0, . . . , kn} such that s? = sj? . This integer
deterministically depends on n and ε, but we omit this dependence to alleviate the notations. The
calibration of the grid yields

0 ≤ s− s? ≤ ε

log n
.

Model selection with the Lepskii rule To construct the adaptive estimator, we use the
following decision rule driven by the bias variance decomposition of each estimator of p̂n,j :

ĵpn := inf
{

0 ≤ j ≤ kn, ∀l > j : |p̂n,j − p̂n,l| < κn,l
}
. (15)

The decision rule defined by (15) is costly from a computational point of view. However, alternative
coding strategies inspired from Katkovnik (1999) make it possible to efficiently implement (15). These
strategies rely on the construction of confidence intervals for the sequence (p̂n,j)j . We will see in Section
4 that if such a strategy works for the computation of a scalar parameter as p; it is unfortunately no
more possible for the estimation of a density.

The objective of the next paragraphs is to establish the consistency rate of this adaptive strategy,
whose performance is described by Theorem 1. We first detail the Lepskii strategy, then give a
concentration result and conclude.
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2.2.1 Analysis of the Lepskii rule

We begin by the statement of two preliminary results. The first one links the average performance of
p̂n,ĵpn with some deviations inequalities.

Proposition 4 Assume that f ∈ Hs(R) and g is a known density in H+
ν .Then the estimator p̂n,ĵpn

defined with (12) and (15) satisfies

E
∣∣p̂n,ĵpn − p∣∣2 ≤ (β2 log(n) + C

)
e2ε/(2s+2ν)n−(2s+1)/(2s+2ν) +

∑
l≥j?

P
(∣∣p̂n,l − p∣∣ ≥ κn,l

2

)
.

Proof

We can decompose the estimation error as

E
(∣∣∣p̂n,ĵpn − p∣∣∣2) = E

(∣∣∣p̂n,ĵpn − p∣∣∣2 1ĵpn≤j? +
∣∣∣p̂n,ĵpn − p∣∣∣2 1ĵn>j?

)
• We first consider the event {ĵpn ≤ j?} and apply the inequality (a+ b)2 ≤ 2a2 + 2b2 to obtain:∣∣∣p̂n,ĵpn − p∣∣∣2 ≤ 2

∣∣p̂n,ĵpn − p̂n,j? ∣∣2 + 2
∣∣p̂n,j? − p∣∣2. (16)

We study the first term of the r.h.s. of (16). On the event {ĵpn < j?}, the definition (15) of ĵpn
yields: ∣∣p̂n,ĵpn − p̂n,j? ∣∣ < κn,j? ,

and obviously when ĵpn = j? the upper bound above also holds. Hence, we deduce that:

1ĵpn≤j?
∣∣p̂n,ĵpn − p̂n,j? ∣∣2 < {κn,j?}2.

Moreover, writing s? = s+ (s? − s) in the definition of the penalty (13) leads to:

κn,j? = β
√

log(n)n−(s?+1/2)/(2s?+2ν)

= β
√

log(n)n−(s+1/2)/(2s+2ν) exp

[(
s+ 1/2

(2s+ 2ν)
− s? + 1/2

(2s? + 2ν)

)
log n

]
≤ β

√
log(n)n−(s+1/2)/(2s+2ν) exp

[
2νε{log n}−1

(2s? + 2ν)(2s+ 2ν)
log n

]
≤ β exp

[ ε

2s+ 2ν

]√
log(n)n−(s+1/2)/(2s+2ν).

We can handle the second term of the r.h.s. of (16) easily: the nonadaptive estimator obtained
with j? satisfies the upper bound obtained in Theorem 3, so that:

E(
∣∣p̂n,j? − p∣∣2) ≤ Cn−(2s?+1)/(2s?+2ν)

≤ C exp

(
2ε

2s+ 2ν

)
n−(2s+1)/(2s+2ν),

where C is a positive constant independent from s, n, and ε (the constant C only depends on R
and s0). Then,

E(1ĵpn≤j?
∣∣p̂n,ĵpn − p∣∣2) ≤

(
β2 log(n) + C

)
exp

(
2ε

2s+ 2ν

)
n−(2s+1)/(2s+2ν). (17)

• We now consider the complementary event {ĵpn > j?} and remark that

ĵpn > j? ⇐⇒ ∀j ≤ j? ∃ l > j :
∣∣p̂n,j − p̂n,l∣∣ ≥ κn,l.
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Therefore, we deduce that

{ĵpn > j?} =
⋂
j≤j?

⋃
l>j

{∣∣p̂n,j − p̂n,l∣∣ ≥ κn,l}
⊂
⋃
l>j?

{∣∣p̂n,j? − p̂n,l∣∣ ≥ κn,l}
⊂
⋃
l>j?

{∣∣p̂n,l − p∣∣ ≥ κn,l
2

} ⋃
l>j?

{∣∣p̂n,j? − p∣∣ ≥ κn,l
2

}
. (18)

where the second line comes from the inclusion ∩j≤j?{.} ⊂ ∩j=j?{.} and the last line from the
triangle inequality. Since the map l 7→ κn,l is increasing then when l > j?, we have κn,l ≥ κn,j?

so that ⋃
l>j?

{∣∣p̂n,j? − p∣∣ ≥ κn,l
2

}
⊂
{∣∣p̂n,j? − p∣∣ ≥ κn,j?

2

}
.

Using this last inclusion in the second union of the right hand side of (18), we finally deduce that

{ĵpn > j?} ⊂
⋃
l≥j?

{∣∣p̂n,l − p∣∣ ≥ κn,l
2

}
.

From the obvious upper-bound
∣∣p̂n,ĵpn − p∣∣2 ≤ 1, we conclude that:

E
(∣∣p̂n,ĵpn − p∣∣21ĵn>j?) ≤ E

(
1ĵpn>j?

)
≤
∑
l≥j?

P
(∣∣p̂n,l − p∣∣ ≥ κn,l

2

)
. (19)

Gathering (17) and (19) leads to the conclusion. �

2.2.2 Concentration inequality

The adaptivity property of the estimator p̂n,ĵpn will be deduced from the multiple-testing strategy
induced by Proposition 5. A baseline property to successively apply this approach will be a derivation of
a concentration inequality on p̂n,l−p for each fixed l. Next proposition states that such a concentration
inequality holds.

Proposition 5 Let f ∈ Hs(R), g a known density in H+
ν with ν > 1/2, and l ≥ j?, then

P
(∣∣p̂n,l − p∣∣ ≥ κn,l

2

)
≤ 2n−β

2/64.

Proof

The proof is divided into two steps.
Step 1: reduction to a concentration inequality. For any l ≥ j? and n ∈ N, we write

p̂n,l − p =
hn,l

2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)
Φ̂Z,n(t)

ΦU (t)
dt− p

=
hn,l

2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)
Φ̂Z,n(t)− ΦZ(t)

ΦU (t)
dt+

h−1
n,l

2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)
ΦZ(t)

ΦU (t)
dt− p

=
hn,l

2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)
Φ̂Z,n(t)− ΦZ(t)

ΦU (t)
dt+

(1− p)h−1
n,l

2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)ΦX(t)dt.

The triangle inequality and the bias upper bound provided by Equation (7) yield:

∣∣p̂n,l − p∣∣ ≤
∣∣∣∣∣hn,l2

∫ hn,l

−h−1
n,l

ΦK(hn,lt)
Φ̂Z,n(t)− ΦZ(t)

ΦU (t)
dt

∣∣∣∣∣+ CsRh
s+1/2
n,l .

11



The r.h.s. of the upper bound is of the order h
s+1/2
n,l = n−(s+1/2)/(2sl+2ν) while κn,l = β

√
log nn−(sl+1/2)/(2sl+2ν).

From the definition of the grid on s, l ≥ j? implies that sl ≤ sj? so that sl ≤ s. Therefore, we can
write:

h
s+1/2
n,l {κn,l}−1 . {log n}−1/2n(sl−s)/(2sl+2ν) .

1√
log n

.

We then deduce that a sufficiently large n exists such that for l ≥ j?, we have CsRh
s+1/2
n,l < κn,l/4 and

P
(∣∣p̂n,l − p∣∣ ≥ κn,l

2

)
≤ P

(∣∣∣∣∣hn,l2

∫ h−1
n,l

−h−1
n,l

ΦK(hn,lt)
Φ̂Z,n(t)− ΦZ(t)

ΦU (t)
dt

∣∣∣∣∣ ≥ κn,l
4

)

≤ P


∣∣∣∣∣∣∣∣∣∣
1

n

n∑
k=1

hn,l
2

∫ h−1
n,l

−h−1
n,l

ΦK(hn,lt)
eiZkt − ΦZ(t)

ΦU (t)
dt︸ ︷︷ ︸

:=ξk,l

∣∣∣∣∣∣∣∣∣∣
≥ κn,l

4

 . (20)

Step 2: application of the Bernstein concentration inequality. To handle the r.h.s. of Inequality (20),
we will apply the Bernstein inequality to the random variables

ξk,l =
hn,l

2

∫ h−1
n,l

−h−1
n,l

ΦK(hn,lt)
eiZkt − ΦZ(t)

ΦU (t)
dt,

(see Theorem 2.9 of Boucheron, Lugosi, and Massart (2013) and exercise 2.8 therein, a precise statement
is given in Theorem 9 of our Appendix A). The i.i.d. random variables (ξk,l)1≤k≤n are centered and
satisfy an almost sure bound:

∀k ∈ {1 . . . n} |ξk,l| ≤
hn,l

2

∫ h−1
n,l

−h−1
n,l

|ΦK(hn,lt)|
|ΦU (t)|

dt.

We now use the assumption that g ∈ H+
ν to deduce that a d0 exists such that ΦU (t)(1 + |t|)ν ≥ d0 for

all t ∈ R. Therefore, a large enough constant C exists such that for any k ∈ {1 . . . n}:

|ξk,l| ≤
hn,l

2

∫ h−1
n,l

−h−1
n,l

|ΦK(hn,lt)|(1 + |t|)ν

|ΦU (t)|(1 + |t|)ν
dt

≤ hn,l
2d0

∫ h−1
n,l

−h−1
n,l

|ΦK(hn,lt)|(1 + |t|)νdt

≤ (1 + |h−1
n,l |)

ν hn,l
2d0

∫ h−1
n,l

−h−1
n,l

|ΦK(hn,lt)|dt ≤ Ch−νn,l .

We can also bound the variance of each ξk,l and a computation similar to Equation (9) leads to
V(ξk,l) ≤ h−2ν+1

n,l . We then apply Theorem 9 with b = Ch−νn,l and v = nh−2ν+1
n,l and deduce that:

P

(∣∣∣∣∣ 1n
n∑
k=1

ξk,l

∣∣∣∣∣ ≥ κn,l
4

)
≤ 2 exp

− nκ2
n,l

32
(
h−2ν+1
n,l + Ch−νn,lκn,l/3)

) .


Now, remark that h−2ν+1
n,l = n(2ν−1)/(2ν+2sl) while h−νn,lκn,l = βnν/(2ν+2sl)n−(sl+1/2)/(2ν+2sl)

√
log n.

Since we assumed that ν > 1/2, the main contribution in the denominator of the exponential bound
above is brought by h−2ν+1

n,l . We therefore conclude that a large enough n exists such that:

P

(∣∣∣∣∣ 1n
n∑
k=1

ξk,l

∣∣∣∣∣ ≥ κn,l
4

)
≤ 2 exp

(
−

nκ2
n,l

64h−2ν+1
n,l

)
= 2n−β

2/64,

because the penalty term κn,l has been designed so that
nκ2

n,l

h−2ν+1
n

= β2 log(n). �
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2.2.3 Proof of Theorem 1

We can achieve the proof of Theorem 1 and establish the adaptation of our estimator p̂n,ĵpn : Proposi-
tions 4 and 5 yield

E
∣∣p̂n,ĵpn − p∣∣2 ≤ (β2 log(n) + C

)
exp

(
2ε

2s+ 2ν

)
n−(2s+1)/(2s+2ν) + 2

∑
l≥j?

n−β
2/64.

The size of the grid is bounded from above by ε−1smax log n. Therefore, for n large enough

E
∣∣p̂n,ĵpn − p∣∣2 ≤ (β2 + 1)e

2ε
2s+2ν (log n)n−(2s+1)/(2s+2ν) + ε−1smax log nn−β

2/64.

It remains to choose the constant ε and β. We first pick β such that

n−β
2/64 ≤ n−(2s+1)/(2s+2ν), (21)

then we choose ε in order to minimize the constant, regardless the value of s,

(β2 + 1)e
2ε

2s+2ν + smaxε
−1. (22)

These choices yield the desired adaptive property (optimal up to a log term):

E
∣∣p̂n,ĵpn − p∣∣2 . (log n)n−(2s+1)/(2s+2ν).

�

Remark 6 For numerical experiments, the calibration of the parameters ε and β given by (21) and (22)
is crucial. Since the value of s is unknown, these inequality have to be true for all s ∈ [0, smax] = [0, s0].
We are driven to an optimal choice of the form

β? = 8

√
2smax + 1

2smax + 2ν
and ε? = argmin

{
((β?)2 + 1)e

ε
ν + smaxε

−1
}
.

3 Estimation of f

We first briefly describe the estimator proposed by Gugushvili et al. (2011) and then detail our adaptive
procedure.

3.1 Non adaptive approach

The estimation of f is highly similar to the one of p and relies on the Fourier transform of U and of
the empirical data. It exploits the relationship:

ΦX(t) =
ΦZ(t)− pΦU (t)

(1− p)ΦU (t)
,

and therefore uses a plug-in estimator of p and of ΦZ with another kernel smoothing strategy. Following
Gugushvili et al. (2011), we introduce a second kernel Q whose Fourier transform is denoted by ΦQ
has its support in [−1, 1] and satisfies the following assumptions:

ΦQ(0) = 1, ∀t ∈ R |ΦQ(t)− 1| ≤M |t|s,
∫ 1

−1

|ΦQ(t)|2dt <∞, (23)

where M > 0. It is worth saying that the choice of the kernel used for this deconvolution is important
regarding the numerical results as well as the theoretical ones. For our purpose, we only handle

13



ordinary smooth inverse problem in Sobolev spaces. In that case, it will be enough to handle a very
simple kernel ΦQ, given by the sinc function:

ΦQ(t) := 1[−1;1] so that ∀x ∈ R Q(x) =
sinx

πx
with Q(0) =

1

π
.

It is immediate to check that this kernel automatically matches the requirements given in Equation
(23) on the smoothness of ΦQ around 0. We refer to Delaigle and Hall (2006) for a detailed discussion
on the influence of the kernel choice from a numerical point of view, and to Comte and Lacour (2013)
and Goldenshluger and Lepskii (2011) for deeper insights on functional spaces where the estimation is
done (e.g. in anisotropic Nikol’skii classes). The plug-in strategy proposed in Gugushvili et al. (2011)
reads as follows:

Φ̂X,n =
Φ̂Z,n(t)− p̌nΦU (t)

(1− p̌n)ΦU (t)
ΦQ(δnt), (24)

where p̌n is a preliminary truncated estimation of p that is plugged into Equation 24, with the following
rule:

p̌n := p̂n ∧ 1− τn. (25)

The truncation step under 1− τn makes it possible to avoid numerical instability when p̂n is estimated
close to 1. It is important to remark that for a theoretical purpose, it is necessary to build a preliminary
estimator of p with p̌n independent from the estimated ΦZ in (24). This can be achieved using bn/2c
samples to compute p̌n and the remaining ones to build Φ̂X,n according to our plug-in strategy. We
can now state the minimax consistency result of Gugushvili et al. (2011), which is obtained with a
similar bias-variance tradeoff.

Theorem 7 (Theorem 2(i) and 3(i) in Gugushvili et al. (2011)) Assume f ∈ Hs(R) and g ∈
H+
ν with ν > 1 and set τn = log(3n)−1. Then the choice hn = n−

1
2s+2ν in (8) and δn = n−1/(2s+2ν+1)

in (24) leads to an estimator f̂n that satisfies the consistency rate:

E[‖f̂n − f‖2] . n−
(2s)

2s+2ν+1 .

It is shown in Gugushvili et al. (2011) that such estimator is minimax optimal under the additional
assumptions that s ≥ 1/2 and |φ′(t)|(1 + |t|ν) ≤ d2 for all t ∈ R and d2 > 0. In particular, we note
that the consistency rate corresponds to the standard rate of ordinary smooth deconvolution inverse
problem (see e.g. Fan (1991)). Again, we stress the fact that the proposed estimator highly depends
on s through δn = n−1/(2s+2ν+1), which is unknown in practice and should be estimated. The next
paragraph describes our proposed strategy.

3.2 Adaptive estimation of f

3.2.1 Grid on s

The adaptation follows the same strategy as the one for p, even though significantly harder from a
theoretical point of view. We still use the same grid Sn: s0 > s1 > · · · > skn ≥ 0, such that for every
0 ≤ j ≤ kn, sj = s0 − j ε

logn , and the notation hn,j for the bandwidth parameter associated to the

optimal estimation of p in Hs(R) when s = sj , i.e. we use hn,j := n−1/(2sj+2ν). A second bandwidth
parameter associated to the estimation of f is defined by δn,j , ∀0 ≤ j ≤ kn:

δn,j := n−1/(2sj+2ν+1). (26)

With these two bandwidth parameters derived from a regularity sj , we build a preliminary estimator
of p with the observations (Zi)1≤i≤bn/2c:

p̂
(1)
n,j = 0 ∨

{{
hn,j

2

∫ h−1
n,j

−h−1
n,j

ΦK(hn,jt)
Φ̂

(1)
Z,n(t)

ΦU (t)
dt

}
∧ 1− τn

}
(27)
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where Φ̂
(1)
Z,n(t) and Φ̂

(2)
Z,n(t) are two unbiased independent estimates of ΦZ(t):

∀t ∈ R Φ̂
(1)
Z,n(t) :=

1

bn/2c

bn/2c∑
k=1

eitZk and Φ̂
(2)
Z,n(t) :=

1

n− 1− bn/2c

n∑
k=bn/2c+1

eitZk .

Theorem 7 entails for a good choice of the truncation parameter introduced in Equation (25) and we
choose

τn := log(n)−a, (28)

for a > 0. Then, we use p̂
(1)
n,j to obtain an estimator of the empirical Fourier transforms of X by:

Φ̂
(2)
Xn,j

:=
Φ̂

(2)
Z,n(t)− p̂(1)

n,jΦU (t)

(1− p̂(1)
n,j)ΦU (t)

ΦQ(δn,jt) (29)

The application of the Lepskii method relies on a penalty term, which is defined as

ρn,l := β(log n)a+1/2n−sl/(2sl+2ν+1). (30)

This penalty is the minimax risk of estimation of f in Hs(R) when sl = s, up to a log term (see
Theorem 7). We recall that for the estimation of p, the penalty was associated with a supplementary
(log n)1/2 term. However, such a penalty is not strong enough to obtain a good concentration inequality
for the estimator of f (see Proposition 13 below).

3.2.2 Lepski’s rule for the estimation of f

We use the penalization introduced in (30) to define:

ĵfn := inf{0 ≤ j ≤ kn, ∀l > j : ‖f̂n,j − f̂n,l‖2 < ρn,l}.

Thanks to the Parseval identity, this can be also formulated in terms of the Fourier transforms:

ĵfn := inf{0 ≤ j ≤ kn, ∀l > j : ‖Φ̂(2)
Xn,j
− Φ̂

(2)
Xn,l
‖

2
< ρn,l}. (31)

The estimator derived from the penalization above is then written as Φ̂
(2)
X
n,ĵ

f
n

where we used the selection

of ĵfn in (31) with the definition of Φ̂
(2)
X
n,ĵ

f
n

given in (29). It leads to the estimation of f itself using the

Fourier reconstruction formula:

f̂n,ĵfn(x) :=
1

2π

∫
R
e−itxΦ̂

(2)
X
n,ĵ

f
n

(t)dt. (32)

Again, we start with the statement of a proposition that links the average performance of Φ̂
(2)
X
n,ĵ

f
n

with a family of deviation inequalities.

Proposition 8 Let f ∈ Hs(R) and g a known density in H+
ν , then the estimator f̂n,ĵfn satisfies:

E‖f̂n,ĵfn − f‖2 . (log n)a+1/2n−s/(2s+2ν+1) +

√∑
l≥j?

P
(
‖f̂n,l − f‖2 ≥

ρn,l
2

)
.

Proof

The proof is close to the one of Proposition 4. We denote by s? = sj? the closest element from s from
below in the grid Sn (see Equation (14)). Following the same guidelines, we obtain that:

E‖f̂n,ĵfn − f‖2 = E
(
‖f̂n,ĵfn − f‖21ĵfn≤j? + ‖f̂n,ĵfn − f‖21ĵfn>j?

)
.
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On the event {ĵfn ≤ l?}: we first apply the triangle inequality

E(‖f̂n,ĵfn − f‖21ĵfn≤j?) ≤ E
[(
‖f̂n,ĵfn − f̂j?‖2 + ‖f̂j? − f‖2

)
1ĵfn≤j?

]
On ĵfn ≤ j?, the first term is upper bounded by

ρn,j? = β(log n)a+1/2n−sj?/(2sj?+2ν+1)

= β(log n)a+1/2n−s/(2s+2ν+1)) exp
[( s

2s+ 2ν + 1
− sj?

2sj? + 2ν + 1

)
log n

]
≤ β(log n)a+1/2n−s/(2s+2ν+1)) exp

( ε

2s+ 2ν + 1

)
.

For the second term, we apply the results of the non adaptive estimator in Theorem 7:

E
(
‖f̂j? − f‖21ĵfn≤j?

)
≤ Cn−sj?/(2sj?+2ν+1),

and deduce that:

E(‖f̂n,ĵfn − f‖21ĵfn≤j?) ≤
(
β(log n)a+1/2 + C

)
n−s/(2s+2ν+1)) exp

( ε

2s+ 2ν + 1

)
. (33)

where C is a positive constant independent from β, ε and n.

On the event {ĵfn > l?}: On this event, the triangle inequality yields ‖f̂n,l − f̂n,j‖2 ≤ ‖f̂n,l − f‖2 +

‖f̂n,j − f‖2 , so that {
ĵfn > j?

}
⊂
⋃
l≥j?

{
‖f̂n,l − f‖2 ≥

ρn,l
2

}
.

Therefore, the Cauchy-Schwarz inequality and the inclusion above yields

E(‖f̂n,ĵfn − f‖21ĵfn>j?) ≤
√

E(‖f̂n,ĵfn − f‖
2
2
)
√

E(1ĵfn>j?)

≤

√√√√ kn∑
j=0

E
(
‖f̂n,j − f‖22

)√√√√√E

1⋃
l≥j?

{
‖f̂n,l−f‖2≥

ρn,l
2

}
We now use a refinement of Theorem 7 given by Proposition 10 in the appendix Section A to bound
E(‖f̂n,j − f‖22):

E(‖f̂n,ĵfn − f‖21ĵfn>j?) ≤

√√√√ kn∑
j=0

Φ(s,R)n−2 min(sj ,s)/(2sj+2ν+1)

√√√√√E

1⋃
l≥j?

{
‖f̂n,l−f‖2≥

ρn,l
2

}
Since kn ≤ s0ε

−1 log(n) and Φ is continuous in s, then C = {sups∈[0,s0] Φ(s,R)}1/2
√
s0ε−1 is a finite

constant. Setting now α = s0ε
−1, we shall now study the next sum:

kn∑
j=0

n−sj/(sj+ν+1/2) =

α log(n)∑
j=0

n−
jε/ log(n)

jε/ log(n)+ν+1/2 .

This sum may be divided into two parts: one with sj ≤ 1 and the other part with smoothness sj ≥ 1.
If jε/ log(n) ≥ 1, then we use the rough bound sj/(sj + ν + 1/2) ≥ 1/(ν + 3/2) and obtain that:

kn∑
j=ε−1 log(n)

n−sj/(sj+ν+1/2) ≤ α log(n)n−1/(ν+3/2),

16



which is a bounded sequence. Now, if jε/ log(n) ≤ 1, we have:

ε−1 log(n)∑
j=0

n−
jε/ log(n)

jε/ log(n)+ν+1/2 ≤
ε−1 log(n)∑

j=0

e−
jε

jε/ log(n)+ν+1/2 ≤
ε−1 log(n)∑

j=0

e−
ε

ν+3/2
j ≤ 1

1− e−
ε

3/2+ν
.

Therefore, a constant C(ε, s0, R) exists such that:

E(‖f̂n,ĵfn − f‖21ĵfn>j?) ≤ C(ε, s0, R)

√∑
l≥j?

P
(
‖f̂n,l − f‖2 ≥

ρn,l
2

)
. (34)

The conclusion follows from (33) and (34). �

3.2.3 Proof of Theorem 2

Proposition 8 and Proposition 12 (see Appendix A, paragraph A.3) yield:

E‖f̂n,ĵfn − f‖2 . (log n)a+1/2n−s/(2s+2ν+1) +

√∑
m≥j?

P
(
‖f̂n,m − f‖2 ≥

ρn,m
2

)

. (log n)a+1/2n−s/(2s+2ν+1) +

√√√√∑
m≥j?

P
(
‖Φ̂(2)

Xn,l
− EΦ̂

(2)
Xn,l
‖2

2
≥
ρ2
n,l

8

)
From the definition of the grid Sn (see the beginning of Section 3.2), it contains a number of order

s0ε
−1 log(n) points and for all l, n

− 3/2+sl+ν

2sl+2ν+1 ≤ n−1/2. Then, we conclude from Proposition 13 (see
Appendix A, paragraph A.3) that:

E‖f̂n,ĵfn − f‖2 . β(log n)a+1/2n−s/(2s+2ν+1) +

√√√√s0ε−1 log n

(
n−

β2

64 + n−1 + (log n)−1/2n
− β2d2

2
24‖ΦQ‖22

+
3/2+ν+sl
2ν+2sl+1

)

Therefore, for β large enough:

E‖f̂n,ĵfn − f‖2 . (log n)a+1/2n−s/(2s+2ν+1),

which ends the proof of the almost optimal (up to some log terms) adaptivity of our Lepskii’s rule. �

4 Numerical experiments

This section presents our numerical investigations for solving the adaptive atomic deconvolution prob-
lem given by Equation (1). We first detail in Section 4.1 some simulations on some simulated synthetic
dataset where both the targeted density f and the targeted proportion p are known. Then, Section
4.2 studies a real original dataset obtained through flow cytometer measurements and derive some
statistical conclusions from our analysis.

Below, our nonparametric estimation of the density f will be obtained by considering the real
positive part of f̂n,ĵfn . In particular, we estimate f with

˜̂fn,ĵfn := max
(
Re
(
f̂n,ĵfn

)
, 0
)
.

We emphasize that ˜̂fn,ĵfn possesses a lower quadratic risk than f̂n,ĵfn thanks to the following arguments:
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|˜̂fn,ĵfn(x)− f(x)| = |˜̂fn,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
>0

+ |˜̂fn,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
<0

= |Re
(
f̂n,ĵfn

)
(x)− f(x)|1

Re
(
f̂
n,ĵ

f
n

)
>0

+ |f(x)|1
Re
(
f̂
n,ĵ

f
n

)
<0

≤ |f̂n,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
>0

+ |f(x)|1
Re
(
f̂
n,ĵ

f
n

)
<0

≤ |f̂n,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
>0

+ |Re
(
f̂n,ĵfn

)
(x)− f(x)|1

Re
(
f̂
n,ĵ

f
n

)
<0

≤ |f̂n,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
>0

+ |f̂n,ĵfn(x)− f(x)|1
Re
(
f̂
n,ĵ

f
n

)
<0

= |f̂n,ĵfn(x)− f(x)|.

Therefore, all our simulations will use the truncated estimator ˜̂fn,ĵfn that essentially possesses the

same optimal statistical properties as those of f̂n,ĵfn , and that remains a real non-negative function
everywhere.

4.1 Simulated data

4.1.1 Description of the statistical setup

We have first run some simulations with a synthetic example based on Gamma distributions. This
family of distribution depends on an integer γ and on a scaling real number θ and is denoted by
Gamma(γ, θ) below. We recall that the density with respect to the Lebesgue measure is given by:

∀x ≥ 0 Γγ,θ(x) =
xγ−1e−x/θ

Γ(γ)θγ
.

The main interest of the Gamma(γ, θ) distribution is that the smoothness parameter of this distribu-
tion is exactly known since its characteristic function Φγ,θ(t) (t ∈ R) is given by:

Φγ,θ(t) = (1− θit)−γ . (35)

For the simulated random variables U,A,X, we then use the model Z = U+AX and we considered
several settings detailed below. We will pay a specific attention to the effect of the smoothness
parameter s and to the probability of appearance of the effect p.

First dataset: effect of the smoothness parameter s of f

U ∼ Gamma(2, 1), A ∼ Ber(0.4), X ∼ Gamma(γ, 1),

for γ ∈ {4, 6, 8} (see Figure 2). Therefore the density of U is g = Γ2,1, the density of Z is f = Γγ,1
and the smoothness parameter s of the unknown density f satisfies s = γ. In the first experiment,
this parameter varies while the smoothness parameter of g, denoted by ν, is kept fixed to ν = 2. As
pointed out in Equation (35), we shall observe that the smoothness of f increases with γ, and translate
a polynomial decay in the tail of the Fourier transform of f .

Second dataset: effect of the ill-posedness parameter ν of g

U ∼ Gamma(γ, 1), A ∼ Ber(0.4), X ∼ Gamma(2, 1),

for γ ∈ {2, 4, 6, 8}. In that case, the density of U is g = Γγ,1, the density of Z is f = Γ2,1 and the
smoothness parameter s of the unknown density f satisfies s = 2. In the second experiment, the
parameter ν = γ varies while s the smoothness parameter of f is kept fixed. In that situation, the
degree of ill-posedness of the inverse problem increases with γ (see Equation (35)).

Below, we will investigate on these two datasets the influence of the smoothness parameters s and
ν on the estimations of p and f .
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Figure 2: Density of the baseline perturbation U (in plain black) and of the observed signal Z for different
values of γ (dotted curves).

Third dataset: effect of the contamination rate 1− p

U ∼ Gamma(2, 1), A ∼ Ber(1− p), X ∼ Gamma(8, 1),

for 1 − p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. This last dataset is used to assess the efficiency of
our statistical procedure for the estimation of f when the contamination rate becomes smaller and
smaller: the parameter 1− p represents the probability to observe the event U +X and it is expected
that when p −→ 1, the statistical estimation of f becomes harder and harder since the law of X is
observed less frequently. We still use the densities f = Γ2,1 and g = Γ8,1.

4.1.2 Results

Results - Estimation of p We first focus on the estimation of p. For each data sets we performed

Monte Carlo replications (with 100 repetitions) in order to approach E
(
‖p̂n,ĵpn−p‖

2
2

)
for different values

of the sample size n ∈ {100, 200, 500, 700, 1000, 2000}. Let us remark that the Lepskii procedure is
costly in terms of numerical simulations since the criterion for selection requires to compute all the
estimators on a grid. An alternative procedure has thus been proposed by Katkovnik (1999) based
on the construction of confidence intervals. However, in the setting of the estimation of a density,
this construction is no longer possible. Therefore, our simulations are based on the exact Lepskii
decision rule given in (15) for p and (31) for f . Figure 3 gives in a log− log scale the estimators of

E
(
‖p̂n,ĵpn−p‖

2
2

)
obtained by the Monte Carlo replications as a function of the numbers of observations

n. The left and right sides of Figure 3 correspond respectively to the first and second data sets.

Figure 3: Log-Log plot of n 7−→ E
(
‖p̂n,ĵpn − p‖

2
2

)
obtained by Monte Carlo replications. Left: first data

set for several values of s = γ. Right: second data set for several values of ν = γ. For these simulations,
we choose ε = 0.5 and β = 9.0.

In both cases, logarithm of the mean squared error decreases linearly with log(n), which is consistent
with Theorem 1 and 3. We observe in Figure 3 that the estimation of p is easier for large values of s
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(large γ) on the left graph, while the estimation gets more difficult as ν increases (large values of γ)
on the right graph. This phenomenon is completely consistent with the rates derived in Theorem 1.

Results - Estimation of f and E
(
‖f̂
n,ĵfn
− f‖2

)
For the non parametric estimation of f , we

compared the estimation obtained with the Lepskii procedure proposed in this article with a similar
one assuming that the mixing parameter p is known. Note that for a sample of size n our Lepskii
procedure uses a sub sample of size n/2 to estimate p and the second sub-sample to estimate f . When
p is assumed to be known, we also used a sub-sample of size n/2 to estimate f .
In Figure 4, we draw the expected Fourier transform φX and estimators obtained with the Lepskii
procedure for different sample sizes n ∈ {100, 1000, 10000}. The left side corresponds to the complete
Lepskii procedure (31) while in the right side the parameter p is given. In this case, the simulated data
correspond to the first data set with γ = 4. On these graphs, we can first see that when the sample
size increases, the bandwidth selected in the algorithm is improved since the support of Φ̂Xn widen.

Figure 4: True characteristic function ΦX as well as its estimations counterpart for different sample sizes
n ∈ {100, 1000, 10000}. Left: Lepskii procedure described in Section 3.2. Right: the true value of the
mixing parameter p is assumed to be known. We used datas according to the first data set with γ = 4
and we set ε = 0.5 and β = 9.

We shall observe first that the algorithm leads to better results when the mixing parameter is
known, which is not surprising since the estimation of p provides an additional noise in our statistical
estimator. As for the estimation of p, we computed with Monte Carlo replications the mean squared
estimation error for different sample sizes (see Figure 5). Once again we compared our algorithm (left
side) with the case where p is known (right side). We find that the estimators are more accurate when
p is known and that the regularity s = γ of the function f improves the convergence speed.

Figure 5: On these graphs, we draw in a log− log scale the estimators of E‖f̂n,ĵfn−f‖
2
2 obtained by Monte

Carlo simulations (for n ∈ {100, 1000, 10000}). The left panel corresponds to the case where p is unknown
while on the right panel, the value of p was given. For these simulations, we used the first data set with
different values of γ and chose β = 9.0 and ε = 0.5.

Finally in Figure 6 we observe the effect of p on the quality of our estimation. As expected, the
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estimation becomes more and more difficult as p increases, since the number of observations of the
perturbed signal U +X is low.

Figure 6: On these graphs, we draw in a the estimators of E‖f̂n,ĵfn − f‖22 obtained by Monte Carlo

simulations (for n = 5000) for different values of p (third data set). As above β = 9.0 and ε = 0.5.

4.2 Real data

Description of the dataset The dataset used in this study is coming from fluorescence dis-
tribution measured using a flow cytometer instrument (BD Biosciences, LSRII FORTESSA) on cells
obtained from human blood. Lymphocytes are cells of the immune system useful for cancer cell de-
struction in immunotherapy (among other), they were extracted from the fresh blood of a healthy
individual by the biologist and this cell suspension was then used for the experiment. Technically, the
cell suspension was split into two parts. One half was left untouched and the baseline photo emission
of untreated cells was recorded by the cytometer. The second half was mixed with a fluorescently
labeled antibody (reagent) that specifically binds to the CD27 protein. Then, the photo emission by
treated cells was again recorded by the cytometer. The amount of reagent binding is reflected by the
fluorescence emitted by the cell that is coming only from the antibody treatment (see Figure 1). The
biological experiment’s goal was to assess the expression of the molecule CD27 by human lympho-
cytes. This protein is expressed at the surface of lymphocytes and reflect their activation status. It
is therefore used to estimate the functionality of a lymphocyte population. Methods that would help
to decipher the mixture of functionalities among a lymphocyte population is thus of major biological
interest.

In this setting, we use the estimation procedure developed in our paper to infer the percentage
of lymphocytes expressing CD27 on their surface and the conditional probability for a cell to express
CD27 conditionally to its fluorescence intensity.

Preliminary estimation of the distribution of the noise U From the recorded fluo-
rescence intensity of untreated cells, we infer the density g of U with a preliminary kernel density
estimation using a Gaussian kernel through the scipy.stats.gaussian kde Python software. We then
use the recorded fluorescence intensity of treated cells as data for the analysis (see Figure 7(a)). In
this case, the size of the recorded data is n = 12645.

Of course, our work only deals with the situation where the density g is known, which is unfor-
tunately not possible in our biological situation. Therefore, we admit as a reasonable approximation
the estimation of g provided by a preliminary kernel density estimation. We have not treated in our
theoretical study the consequences of such a preliminary nonparametric estimation, and we leave this
subject open as a future subject of investigation. Such a work would then fall into the field of statistical
inverse problems with noise in the operator (see e.g Cavalier and Hengartner (2005) and the references
therein).

Estimation of p For the estimation of the proportion of cells expressing CD27 on their cells’
surface, which corresponds to 1 − p, we use the Lepskii procedure proposed in Section 2.2. To verify
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the convergence of our algorithm, we use a subsampling strategy of our data set and repeat it on
permutated versions of the data.

We observe on Figure 7(b) the good behavior of our algorithm: it produces a sharp estimation even
using the half of the data and it converges to the value p̂n,ĵpn = 0.31. We aim at comparing this value
with the measurement classically used in cytometric analysis. Usually biologist use a quantity called
percentage of positive cells which reflects the percentage of marked cells whose fluorescent intensity
is higher that a given threshold. This threshold is computed as the 95th percentile of the density g
(see Figure 7(a)). On this data, the percentage of positive cells is 0.85, which is much larger than the
quantity we estimate 1− p̂n,ĵpn = 0.69.
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Figure 7: Results of the Lepskii procedure on real data. (a) Histogram of the fluorescence of treated cells
and estimated probability distribution for the fluorescence of un-treated cells. (b) Estimation of p on
an increasing sub-sample of the data (the data being permutated 5 times). (c) In red, empirical Fourier

transform φ̂Z and two estimators computed respectively with the values f̂n,ĵfn and p̂
(1)

n,ĵfn
obtained with the

Lepskii procedure for f (in blue) and with the values obtained when p is first estimated and then used
in the estimation of f (in green). (d) Comparison of the obtained estimators of f . (e) Estimated density
of Z computed using the two different strategies for estimating f and comparison with the histogram of
data. (f) Estimators of the conditional density fA=0|Z(z).

Estimation of f Next, we focus on the estimation of the density f , which represents here the
distribution of fluorescence intensity due to the presence of CD27 on the cells’ surface. We use two
different estimation strategies:

• First, we apply the global Lepskii estimation procedure introduced in Section 3.2.

• Second, we use a similar approach but we consider that the value of p is known and given by the
previously estimated p̂n,ĵn,p above. We then use the Lepskii procedure with a fixed value of p as
described in Section 3.2.

In both cases we then compute an approximation of the Fourier transform ΦZ of the mixed signal and
compared it with the empirical estimator Φ̂Z,n in Figure 7(c). In particular, in Figure 7(c), we show
several colored curves:

• the red curve is the empirical estimator Φ̂Z,n
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• the blue dotted curve is the estimator derived from the global Lepskii procedure

• the green dotted curve corresponds to the modified Lepskii procedure for f when p is previously
estimated).

We observe that the estimator of f computed with p = 0.31 seems to behave better, which is not
surprising since the Lepskii procedure for f does not provide any theoretical guarantee for estimating

p (we obtained p̂
(1)

n,ĵfn
= 0.081, which seems very low and not realistic for our biological framework).

Then we calculate the inverse transform of both estimators (see Figure 7(d) ), compute the estimated
density of Z and compare it with the observed histogram (Figure 7(e)). We observe first that our
estimation can take negative values (due to the bandwidth parameter in the estimation) and secondly
that it fails to capture the exact shape of the density, however it reproduces reasonably well the mean
and the variance.

Finally, we study the probability that a cell expresses CD27 on its surface conditionally to the
value of the observed fluorescence. We compute estimators of this conditional density with the Bayes
formula:

fA=0|Z(z) =
pg(z)

pg(z) + (1− p)f ∗ g(z)

The results are drawn on Figure 7(f) for both estimators of f . Since our estimation of f can take
negative values and vanish, we observe artificial singularities that should be omitted for the biological
interpretation. We have not pushed further our investigations from a biological point of view since the
goal of our paper is mainly theoretical.

A Technical results

A.1 Bernstein inequality

We first state a classical concentration inequality that may be found in Boucheron et al. (2013).

Theorem 9 (Bernstein inequality) Let X1, . . . , Xn be independent random variables with finite
variance such that |Xi| ≤ b for some b > 0 almost surely for all i ≤ n. Let S =

∑n
i=1Xi − E[Xi] and

v =
∑n
i=1 E[X2

i ]. Then

P (|S| ≥ t) ≤ 2 exp

(
− t2

2(v + bt/3)

)
.

A.2 Non adaptive estimation

In this section, we sketch the proof of Theorem Gugushvili et al. (2011) with τn = log(n)−a and
a > 0 instead of the choice τn = log(3n)−1 given in Gugushvili et al. (2011), in order to control

E(‖f̂n,ĵfn − f‖2).

Proposition 10 If Hs(R) and H+
ν hold with ν > 1, then the choices hn,j = n

− 1
2sj+2ν in (8),

τn = log(n)−a in (28) and δn,j = n−1/(2sj+2ν+1) in (26) lead to an estimator f̂n,j that satisfies
the consistency rate:

E[‖f̂n,j − f‖22] ≤ C(s,R)n
−

2 min(s,sj)

2sj+2ν+1 ,

where C(s,R) is a positive constant depending continuously on s and R.

Proof

The bias-variance decomposition and Fubini’s Theorem yield

E[‖f̂n,j − f‖22] ≤
∫ ∞
−∞

(
E(f̂n,j(t)− f(t))

)2

dt+

∫ ∞
−∞

V(f̂n,j(t))dt
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Integrated bias In this section, we introduce more explicit notations, we set f̂n,hn,j ,δn,j = f̂n,j

defined by (29) and set f̂n,δn,j the estimator of f when p is known :

f̂n,δn,j =
1

2π

∫
e−itx

Φ̂
(2)
Z,n(t)− pΦU (t)

(1− p)ΦU (t)
ΦQ(δn,jt)dt.

We also define

f̃n,δn,j =
1

2π

∫
e−itx

Φ̂
(2)
Z,n(t)

ΦU (t)
ΦQ(δn,jt)dt.

Then ∫ (
E(f̂n,j − f)

)2

=

∫ (
E(f̂n,hn,j ,δn,j − f)

)2

≤ 2

∫ (
E(f̂n,hn,j ,δn,j − f̂n,δn,j )

)2

+ 2

∫ (
E(f̂n,δn,j − f)

)2

Using the Parseval inequality, then assumptions (23) and f ∈ Hs(R) we deduce that the second term
behaves like: ∫ (

E(f̂n,δn,j − f)
)2

≤ 1

2π

∫ ∞
−∞
|Φf (t)|2 |ΦQ(δn,jt)− 1|2

(δn,jt)2s
(δn,jt)

2sdt,

≤MRδ2s
n,j .

Then, for the first term we obtain that:

∫ (
E(f̂n,hn,j ,δn,j − f̂n,δn,j )

)2

≤ 2

∫
E

[
f̃n,δn,j

(p̂
(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2

+ 2E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2 ∫ (
1

δn,j
Q(tδ−1

n,j)

)2

dt

≤ 2E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2 ∫
E
[
f̃n,δn,j

]2

+ 2E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2 ∫ (
1

δn,j
Q(tδ−1

n,j)

)2

dt

Assumptions (23) on the kernel Q and the Parseval inequality lead to:∫ ∞
−∞

(
1

δn,j
Q(tδ−1

n,j)

)2

dt = δ−1
n,j

∫ 1

−1

Q(t)2dt <∞.

Moreover, we use a concentration inequality similar to Proposition 5 stated in Lemma 11. It remains
to compute ∫

E[f̃nδn,j ]
2 =

∫
V(f̃nδn,j ) +

∫
E[f̃2

nδn,j ].

From the definition of f̃nδn,j , we remark that

f̃nδn,j (x) =
1

δn,j(n− n′)

n∑
k=n′

Wn,j

(
x− Zk
δn,j

)

where Wn,j(x) =
∫ 1

−1
e−itxΦQ(t)ΦU (tδ−1

n,j)
−1dt. Then∫

V(f̃nδn,j ) ≤
1

δ2
n,j(n− n′)

∫ ∞
−∞

E

(
Wn,j

(
x− Z
δn,j

)2
)
dx

A straightforward computation using that g ∈ H+
ν leads to:
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∫ ∞
−∞

E

(
Wn,j

(
x− Z
δn,j

)2
)
dx ≤

4δ1−2ν
n,j

d2

∫ 1

−1

|ΦQ|2(δνn,j + tν)2dt

Thus for some constant C: ∫
V(f̃nδn,j ) ≤ Cδ−1−2ν

n,j (n− n′)−1,

which entails as sj > 0 that V(f̃nδn,j )→ 0.

It remains to bound
∫
E[f̃2

n,δn,j
]. The Parseval inequality and the fact that |ΦX | ≤ 1 yields:∫

E[̃[f2
n,δn,j ] ≤ δ

−1
n,j

∫ 1

−1

|ΦQ(t)|2dt.

Therefore, combining the previous inequality we deduce that:∫ (
E(f̂n,j − f)

)2

≤ 2MRδ2s
n,j + 4C(s,R)(n− n′)−

2 min(s,sj)+1

2sj+2ν

×
(
δ−1
n,j

∫
Q(t)2dt+ Cδ−1−2ν

n,j (n− n′)−1 + δ−1
n,j

∫ 1

−1

|ΦQ(t)|2dt
)

The second term of the r.h.s. is of order h
2 min(s,sj)+1
n,j δ−1

n,j which is negligible before δ
2 min(s,sj)
n,j . This

entails that: ∫ (
E(f̂n,j − f)

)2

≤ C(s,R)(n)n
−

2 min(s,sj)

2sj+2ν+1 . (36)

Integrated variance Let us first remark that:∫ ∞
−∞

V(f̂n,j) =

∫ ∞
−∞

V(f̂n,hn,j ,δn,j )

≤ 2

∫ ∞
−∞

V(f̂n,hn,j ) + 2

∫ ∞
−∞

V(f̂n,hn,j ,δn,j − f̂n,hn,j ).

We have proved above that

2

∫ ∞
−∞

V(f̂n,hn,j ) ≤ Cδ−1−2ν
n,j (n− n′)−1.

It remains to consider the second term. We use once again an auxiliary sequence Ψn → 0:∫ ∞
−∞

V(f̂n,hn,j ,δn,j − f̂n,δn,j ) ≤
∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )2]

≤
∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )21|p̂n,j−p|>Ψn ]

+

∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )21|p̂n,j−p|≤Ψn ].

Similarly as for the integrated bias we obtain that:∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )21|p̂n,j−p|>Ψn ] ≤ 2

∫
E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
f̃2
n,δn,j1|p̂(1)

n,j−p|>Ψn

]

+ 2E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|>Ψn

]∫ (
1

δn,j
Q(tδ−1

n,j)

)2

dt.

25



The second term of the r.h.s. is bounded by

2δ−1
n,j

2(1− τn)2 + 2p2

τ2
n(1− p)

(∫ 1

−1

Q(t)dt

)
P(|p̂(1)

n,j − p| > Ψn).

We prove below in (37) that P(|p̂(1)
n,j − p| > Ψn) decreases exponentially fast to 0 when ψn is chosen as

ψn = n−1/(2(2smax+2ν)). Thus, the previous term is o

(
n
−

2 min(s,sj)

2sj+2ν+1

)
.

Concerning the other term, we apply the Fubini theorem and obtain that:∫
E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
f̃2
n,δn,j1|p̂(1)

n,j−p|>Ψn

]
= E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|>Ψn

∫
f̃2
n,δn,j

]

= E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|>Ψn

∫
|Φ̂Z,n(t)ΦQ(δn,jt)|2

|ΦU (t)|2
dt

]

≤ 2 + 2p2

τ2
n(1− p)2

4δ−1−2ν
n,j

d2
2

∫ 1

−1

[ΦQ(t)|2(1 + tν)2dtP(|p̂(1)
n,j − p| > Ψn).

Hence, we deduce that similarly∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )21|p̂(1)
n,j−p|>Ψn

≤ o
(
n
−

2 min(s,sj)

2sj+2ν+1

)
.

We finally consider the event where |p̂(1)
n,j − p| ≤ Ψn and use the independence between p̂

(1)
n,j and f̃n,δn,j

to obtain∫ ∞
−∞

E[(f̂n,hn,j ,δn,j − f̂n,δn,j )21|p̂(1)
n,j−p|≤Ψn

] ≤ 2

∫
E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|≤Ψn

]
E
[
f̃2
n,δn,j

]

+ 2E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|≤Ψn

]∫ (
1

δn,j
Q(tδ−1

n,j)

)2

dt.

From Lemma 11 and an argument similar to the one used for the integrated bias, we conclude that

this last term is equal to O

(
n
−

2 min(s,sj)

2sj+2ν+1

)
, which concludes the proof of Proposition 10. �

Lemma 11 Assume sj ≥ 1/2 and that f ∈ Hs(R), g ∈ H+
ν , with the choices of hn,j = n−1/(2sj+2ν)

and τn = log(n)−a then

E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2

≤ C(s,R)n
−

2 min(s,sj)+1

2sj+2ν .

Proof

Let us first remark that using the Cauchy-Schwarz inequality and a truncation strategy, we have that:

E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2

≤ 1

τ2
n(1− p)2

E[(p̂
(1)
n,j − p)

2].

Moreover using (7) and (9)

E[(p̂
(1)
n,j − p)

2] ≤ 2CsR
2h2s+1
n,j +

cte(s)

nh2ν−1
n,j

,
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where cte(s) is a constant which depend continuously in s. Therefore, with our choice of hn,j in (11)
we deduce that there exist a constant φ(s,R) depending continuously on s an d R such that

E[(p̂
(1)
n,j − p)

2] ≤ φ(s,R)n
−

2 min(s,sj)+1

2sj+2nu ,

and thus

E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2

≤ 1

τ2
n(1− p)2

φ(s,R)n
−

2 min(s,sj)+1

2sj+2nu .

With this simple reasoning our upper bound depend on the truncation τn. Therefore, we will refine
the result by using an auxiliary sequence Ψn → 0 and split the events into two sub-cases:

E

[
(p̂

(1)
n,j − p)

(1− p)(1− p̂(1)
n,j)

]2

≤ E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2

]

≤ E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|≤Ψn

]
+ E

[
(p̂

(1)
n,j − p)2

(1− p)2(1− p̂(1)
n,j)

2
1|p̂(1)

n,j−p|>Ψn

]

≤ 1

(1− p)2(1− p−Ψn)2
φ(s,R)n

−
2 min(s,sj)+1

2sj+2nu +
1

(1− p)2τ2
n

P(|p̂(1)
n,j − p|> Ψn).

In the following, our aim is to calibrate the sequence Ψn such that the second term is negligible
compared to the first one. We have studied concentration inequalities in Section 2.2.2 for a non

truncated version of p̂
(1)

n,ĵpn
, that we denote here p̃

(1)
n,j . Then

P(|p̂(1)
n,j − p|> Ψn) ≤ P(|p̂(1)

n,j − p̃
(1)
n,j |> Ψn) + P(|p̃(1)

n,j − p|> Ψn)

≤ E(1τn>Ψn/21p̃(1)
n,j>1−τn

) + P(|p̃(1)
n,j − p|> Ψn/2),

≤ E
(
1τn>Ψn/21p̃(1)

n,j>1−τn

)
+ P

(∣∣∣∣∣ 1n
n∑
k=1

ξk,j

∣∣∣∣∣ > Ψn/4

)
+ P(CsRh

s+1/2
n,l > Ψn/4).

where the random variables ξk,j are defined in (20) Therefore

P(|p̂(1)
n,j − p|> Ψn) ≤ P(|p̂(1)

n,j − p̃n,j |> Ψn) + P(|p̃(1)
n,j − p|> Ψn)

≤ E(1τn>Ψn/21p̃(1)
n,j>1−τn

) + P(|p̃(1)
n,j − p|> Ψn/2),

≤ E
(
1τn>Ψn/21p̃(1)

n,j>1−τn

)
+ P

(∣∣∣∣∣ 1

n− n′
n∑

k=n′

ξk,j

∣∣∣∣∣ > Ψn/4

)
+ P(CsRh

s+1/2
n,l > Ψn/4).

Using the Bernstein inequality, we then have:

P(|p̂(1)
n,j − p|> Ψn) ≤ 1τn>Ψn/2P

(
p̃

(1)
n,j > 1− τn

)
+ exp

− (n− n′)Ψ2
n

8
(
C ′h−2ν+1

n,l + Ch−νn,lΨn/3)
)


+ 1
CsRh

s+1/2
n,l >Ψn/4

.

We choose Ψn = n−1/2(2smax+2ν) such that the last term of the r.h.s. is always null. Thus, it remains
to consider P(p̃n,j > 1− τn). Applying similarly Bernstein inequality leads to:

P(p̃
(1)
n,j > 1− τn) ≤ P(|p̃(1)

n,j − p|> 1− τn − p) ≤ exp

− (n− n′)(1− τn − p)2

8
(
C ′h−2ν+1

n,l + Ch−νn,l (1− τn − p)/3)
)

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The two previous inequalities yield:

P(|p̂(1)
n,j − p|> Ψn) ≤ exp

− (n− n′)(1− τn − p)2

8
(
C ′h−2ν+1

n,l + Ch−νn,l (1− τn − p)/3)
)
 .

+ exp

− (n− n′)Ψ2
n

8
(
C ′h−2ν+1

n,l + Ch−νn,lΨn/3)
)
 (37)

It is clear that τ−2
n P(|p̂(1)

n,j − p|> Ψn) = o
(
n−1/2(2smax+2ν)

)
, which concludes the proof. �

A.3 Technical results for the proof of Theorem 2

Our starting point is Proposition 8:

E‖f̂n,ĵfn − f‖2 . (log n)a+1/2n−s/(2s+2ν+1) +

√∑
l≥j?

P
(
‖f̂n,l − f‖2 ≥

ρn,l
2

)
.

A.3.1 Bias upper bound

Once again, the main difficulty of the proof is to obtain a deviation inequality on each event:

Ωn,l :=
{
‖f̂n,l − f‖2 ≥

ρn,l
2

}
=

{
‖Φ̂(2)

Xn,l
− ΦX‖22 ≥

ρ2
n,l

4

}
.

where the last equality comes from the Parseval identity. We begin by the following statement:

Proposition 12 Assume l ≥ j?, for n large enough one has

Ωn,l ⊂

{
‖Φ̂(2)

Xn,l
− EΦ̂

(2)
Xn,l
‖2

2
≥
ρ2
n,l

8

}
.

Proof

The main ingredient of the proof uses the bias-variance decomposition of the squared L2 norm. Hence,
we define

T1 := ‖EΦ̂
(2)
Xn,l
− ΦX‖22 and T2 := V(Φ̂

(2)
Xn,l

) = E‖E(Φ̂
(2)
Xn,l

)− Φ̂
(2)
Xn,l
‖2

2
. (38)

A key remark comes from the fact that Φ̂
(2)
Z,n(t) is built with a sample of n− bn/2c observations, that

are independent of the one used to estimate p with p̂
(1)
n,l . We can write that:

EΦ̂
(2)
Xn,l

(t) = E

[
pΦU (t) + (1− p)ΦU (t)ΦX(t)− p̂(1)

n,lΦU (t)

(1− p̂(1)
n,l)ΦU (t)

ΦQ(δn,lt)

]

= E

[
p− p̂(1)

n,l

1− p̂(1)
n,l

]
ΦQ(δn,lt) +

[
E

[
1− p

1− p̂(1)
n,l

]
ΦQ(δn,lt)− 1

]
ΦX(t) + ΦX(t)

= E

[
p− p̂(1)

n,l

1− p̂(1)
n,l

]
ΦQ(δn,lt)(1− ΦX(t)) + [ΦQ(δn,lt)− 1]ΦX(t) + ΦX(t).

Using (a+ b)2 ≤ 2a2 + 2b2, the bias term T1 defined in (38) is upper bounded by

T1 ≤ 2

{
E

[
p− p̂(1)

n,l

1− p̂(1)
n,l

]}2 ∫
R
|ΦQ(δn,lt)(1− ΦX(t))|2 dt︸ ︷︷ ︸

:=T1,1

+ 2

∫
R
|[ΦQ(δn,lt)− 1]ΦX(t)|2 dt︸ ︷︷ ︸

:=T1,2

,
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We may apply the Cauchy-Schwarz inequality and Lemma 11 of the appendix, Section A and obtain:{
E

[
p− p̂(1)

n,l

1− p̂(1)
n,l

]}2

≤ E

[
p− p̂(1)

n,l

1− p̂(1)
n,l

]2

. h2sl+1
n,l .

The function |ΦX | is bounded by 1 so that

T1,1 . h
2sl+1
n,l

∫
R
|ΦQ(δn,lt)(1− ΦX(t))|2 dt . h2sl+1

n,l

∫
R
|ΦQ(δn,lt)|2 dt . h2sl+1

n,l δ−1
n,l‖ΦQ‖

2
2
.

Moreover, for a given smoothness parameter sl, the estimation of p is “easier” (faster) than the
estimation of f , which is translated by hn,l = o (δn,l). We conclude that:

T1,1 . h
2sl
n,l ∼ n

−2sl/(2sl+2ν) = o(ρ2
n,l).

The upper bound of the second term T1,2 uses the smoothness assumption on f ∈ Hs(R) and the
construction of the kernel Q: applying Equation (23) with α = s, we obtain:

T1,2 ≤ 2

∫
R
|δn,lt|2s|ΦX(t)|2dt . δ2s

n,l = O
(
n−2s/(2sl+2ν+1)

)
.

Since l ≥ j?, we deduce that sl ≤ s and the additional log term in the definition of ρn,l in (30) permits
to conclude that

T1,2 ≤ δ2sl
n,l = o(ρ2

n,l).

Therefore, T1 is smaller than ρ2
n,l/8 for n large enough.

We can conclude the proof using the triangle inequality

‖Φ̂(2)
Xn,l
− EΦ̂

(2)
Xn,l
‖

2
≥ ‖Φ̂(2)

Xn,l
− ΦX‖2 − ‖EΦ̂

(2)
Xn,l
− ΦX‖2 .

Hence
‖Φ̂(2)

Xn,l
− ΦX‖2 ≥

ρn,l
2

=⇒ ‖Φ̂(2)
Xn,l
− EΦ̂

(2)
Xn,l
‖

2
≥ ρn,l

2
−
√
T1 ≥

ρn,l

2
√

2
.

�

A.3.2 Concentration inequality

From Proposition 12, we can see that the Lepskii rule will perform well if we succeed in bounding the
probability

P

(
‖Φ̂(2)

Xn,l
− EΦ̂

(2)
Xn,l
‖2

2
≥
ρ2
n,l

8

)
.

For a given t ∈ R, we can rewrite this expression as

Φ̂
(2)
Xn,l

(t)− EΦ̂
(2)
Xn,l

(t) = ΦQ(δn,lt)

 Φ̂
(2)
Z,n(t)− p̂(1)n,lΦU (t)

(1− p̂(1)n,l)ΦU (t)

− ΦQ(δn,lt)E

 Φ̂
(2)
Z,n(t)− p̂(1)n,lΦU (t)

(1− p̂(1)n,l)ΦU (t)


=

ΦQ(δn,lt)

ΦU (t)

 Φ̂
(2)
Z,n(t)− p̂(1)n,lΦU (t)

1− p̂(1)n,l

− ΦQ(δn,lt)

ΦU (t)
ΦZ(t)E

 1

1− p̂(1)n,l

+ ΦQ(δn,lt)E

 p̂
(1)
n,l

1− p̂(1)n,l


=

ΦQ(δn,lt)

ΦU (t)

 Φ̂
(2)
Z,n(t)

1− p̂(1)n,l
− ΦZ(t)E

 1

1− p̂(1)n,l

− ΦQ(δn,lt)

 p̂
(1)
n,l

1− p̂(1)n,l
− E

 p̂
(1)
n,l

1− p̂(1)n,l


= T2,1 + T2,2 − T2,3,

where

T2,1 :=
ΦQ(δn,lt)

ΦU (t)

Φ̂
(2)
Z,n(t)− ΦZ(t)

1− p̂(1)
n,l

T2,2 :=
ΦQ(δn,lt)ΦZ(t)

ΦU (t)

[
1

1− p̂(1)
n,l

− E

[
1

1− p̂(1)
n,l

]]
,

and

T2,3 := ΦQ(δn,lt)

[
p̂

(1)
n,l

1− p̂(1)
n,l

− E

[
p̂

(1)
n,l

1− p̂(1)
n,l

]]
.

The terms T2,2 and T2,3 can be upper bounded easily while T2,1 deserves a specific attention.
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Study of T2,2: We first remark that E
[

1

1−p̂(1)
n,l

]
is close to 1

1−p using the upper bound:

∣∣∣∣∣ 1

1− p̂(1)
n,l

− 1

1− p

∣∣∣∣∣ ≤ |p− p̂
(1)
n,l |

1− p
(log n)a, (39)

where the inequality derives from p̂
(1)
n,l ≤ 1 − τn and (28). Therefore, applying Theorem 3 with the

smoothness parameter sl we deduce that∣∣∣∣∣E
[

1

1− p̂(1)
n,l

]
− 1

1− p

∣∣∣∣∣ . (log n)an−(sl+1/2)/(2sl+2ν), (40)

Consider a constant c > 0, the term T2,2 is then handled as follows:

P (‖T2,2‖2 ≥ cρn,l) ≤ P

(∣∣∣∣∣ 1

1− p̂(1)
n,l

− E

[
1

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ cρn,l

‖ΦQ(δn,l.)ΦZΦ−1
U ‖2

)

≤ P

(∣∣∣∣∣ 1

1− p̂(1)
n,l

− E

[
1

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ cρn,l
‖ΦQ(δn,l.)(p+ (1− p)ΦX)‖2

)

≤ P

(∣∣∣∣∣ 1

1− p̂(1)
n,l

− E

[
1

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l

)
,

where we use the upper bound of the L2 norm: ‖ΦQ(δn,l.)(p + (1 − p)ΦX)‖22 ≤ 4
∫
R |ΦQ(δn,lt)|2dt ≤

4δ−1
n,l‖ΦQ‖22. We now use Equation (40) and obtain:

P

∣∣∣∣∣∣ 1

1− p̂(1)n,l
− E

 1

1− p̂(1)n,l

∣∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l

)

≤ P

∣∣∣∣∣∣ 1

1− p̂(1)n,l
−

1

1− p

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

1− p
− E

 1

1− p̂(1)n,l

∣∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l


≤ P

∣∣∣∣∣∣ 1

1− p̂(1)n,l
−

1

1− p

∣∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l − C(logn)an−(sl+1/2)/(2sl+2ν)


≤ P

∣∣∣∣∣∣ 1

1− p̂(1)n,l
−

1

1− p

∣∣∣∣∣∣ ≥ c

4‖ΦQ‖2
ρn,lδ

1/2
n,l

 ,

for n large enough because the approximation term involved in the upper bound of Equation (40) is

negligible compared to ρn,lδ
1/2
n,l . Using again (39), we obtain that for a sufficiently small constant η

(independent on n and l):

P (‖T2,2‖2 ≥ cρn,l) ≤ P
(
|p− p̂(1)

n,l | ≥ ηρn,lδ
1/2
n,l

)
.

In order to apply the Bernstein inequality (see Theorem 9 in the appendix Section A) , let us remark
first that the penalty κn,l defined by (13) satisfies

κn,l = o
(
ρn,lδ

1/2
n,l

)
.

Since for n large enough we have p ≤ 1− τn , the truncated estimator satisfies

‖p̂(1)
n,l − p‖ ≤ ‖p̂n/2,l − p‖

where p̂
(1)
n,l is given by (27). Thus we can conclude that

P (‖T2,2‖2 ≥ cρn,l) . n−β
2/64. (41)
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Study of T2,3: This study is of the same nature because E
[

p̂
(1)
n,l

1−p̂(1)
n,l

]
is close to p

1−p : Inequality (40)

reads: ∣∣∣∣∣E
[

p̂
(1)
n,l

1− p̂(1)
n,l

]
− p

1− p

∣∣∣∣∣ =

∣∣∣∣∣E
[

p− p̂(1)
n,l

(1− p)(1− p̂(1)
n,l)

]∣∣∣∣∣ . (log n)an−(sl+1/2)/(2sl+2ν),

Hence

P (‖T2,3‖2 ≥ cρn,l) ≤ P

(∣∣∣∣∣ p̂
(1)
n,l

1− p̂(1)
n,l

− E

[
p

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ cρn,l
2‖ΦQ(δn,l.)‖2

)

≤ P

(∣∣∣∣∣ p̂
(1)
n,l

1− p̂(1)
n,l

− E

[
p

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l

)
,

We use again Equation (40) and obtain that:

P

(∣∣∣∣∣ p̂
(1)
n,l

1− p̂(1)
n,l

− E

[
p̂

(1)
n,l

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l

)

≤ P

(∣∣∣∣∣ p̂
(1)
n,l

1− p̂(1)
n,l

− p

1− p

∣∣∣∣∣+

∣∣∣∣∣ p

1− p
− E

[
p̂

(1)
n,l

1− p̂(1)
n,l

]∣∣∣∣∣ ≥ c

2‖ΦQ‖2
ρn,lδ

1/2
n,l

)

≤ P

(∣∣∣∣∣ p̂
(1)
n,l

1− p̂(1)
n,l

− p

1− p

∣∣∣∣∣ ≥ c

4‖ΦQ‖2
ρn,lδ

1/2
n,l

)
,

and similar arguments used for T2,2 yields:

P (‖T2,3‖2 ≥ cρn,l) . n−β
2/64. (42)

Study of T2,1: We recall that the support of ΦQ is [−1; 1], which implies that

‖T2,1‖22 =

∫ δ−1
n,l

−δ−1
n,l

|ΦQ(δn,lt)|2

|ΦU (t)|2

∣∣∣Φ̂(2)
Z,n(t)− ΦZ(t)

∣∣∣2
(1− p̂(1)

n,l)
2

dt.

We now define Mn,l as the supremum of the empirical process Φ̂
(2)
Z,n(t)−ΦZ(t) when t varies between

−δ−1
n,l and δ−1

n,l :

Mn,l := sup
|t|≤δ−1

n,l

∣∣∣Φ̂(2)
Z,n(t)− ΦZ(t)

∣∣∣ ,
and write

‖T2,1‖2 ≤Mn,l ×
1

(1− p̂(1)
n,l)
×
∥∥∥∥ΦQ(δn,lt)

ΦU (t)

∥∥∥∥
2

.

We then deduce that

P (‖T2,1‖2 ≥ ρn,l) ≤ P

(∥∥∥∥ΦQ(δn,lt)

ΦU (t)

∥∥∥∥
2

Mn,l

1− p̂(1)
n,l

≥ ρn,l

)
≤ P

(∥∥ΦQ(δn,l.)ΦU (.)−1
∥∥

2
Mn,l ≥ τnρn,l

)
.

To upper bound the L2 norm of ΦQ(δn,l.)Φ
−1
U , we follow a standard argument of Fan (1991) using that

g ∈ H+
ν and deduce that

∥∥ΦQ(δn,l.)ΦU (.)−1
∥∥2

2
=

∫
R

|ΦQ(δn,lt)|2

|ΦU (t)|2
dt ≤ 1

δn,l

∫ 1

−1

|ΦQ(ξ)|2

|ΦU (ξδ−1
n,l )|2

dξ ≤
‖ΦQ‖22
d−2

2

δ
−(2ν+1)
n,l .
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This inequality yields

P (‖T2,1‖2 ≥ ρn,l) ≤ P
(
Mn,l ≥

d2

‖ΦQ‖2
τnρn,lδ

1/2+ν
n,l

)
. (43)

It remains to obtain a deviation inequality on Mn,l, which is the supremum norm of Φ̂
(2)
Z,n − ΦZ on

the interval [−δ−1
n,l , δ

−1
n,l ]. For this purpose, we could try to use the roadmap of applying the Talagrand

inequality associated to a chaining strategy (see Boucheron et al. (2013) for example) but these general
theorems will not lead to a satisfactory deviation bound because of our assumption on U , which is not
a sub-Gaussian random variable.

Nevertheless, it is possible to exploit the feature of the process (Φ̂
(2)
Z,n(t)−ΦZ(t))−δ−1

n,l≤t≤δn,l
, which

is an average of centered bounded random processes. We handle a discretization of the interval
[−δ−1

n,l , δn,l] and define t 7−→Wn(t) by:

∀t ∈ R : Wn(t) = Φ̂
(2)
Z,n(t)− ΦZ(t).

We introduce a parameter α > 0 that will be chosen small enough below. The control of Mn,l relies
on the simple remark that:

Wn(t+ u)−Wn(t) =
1

n− n′ + 1

n∑
j=n′

[
eitZj − ei(t+u)Zj

]
− E

[
eitZ − ei(t+u)Z

]
,

where we set n′ = [n/2] + 1. The elementary remark |eia − eib| ≤ |a− b| for all (a, b) ∈ R2 yields

|Wn(t+ u)−Wn(t)| ≤ |u|

 1

n− n′ + 1

n∑
j=n′

|Zj |+ E|Z|

 . (44)

In particular, if we define the event

Ωn :=

 1

n− n′ + 1

n∑
j=n′

|Zj | < 2E|Z|

 .

The Tchebychev inequality applied to the L2-random variables (Zj)n′≤j≤n shows that:

P(Ωcn) ≤ Var(|Z|)
nE[|Z|]2

≤ c

n
,

with c = Var(|Z|) {E[|Z|]}−2
. Obviously, E[|Z|] > 0 because Z = U + AX and Z cannot be a.s. 0

because U is assumed to satisfy H+
ν . The important point on Ωn is that Inequality (44) does not

depend on t, so that ∀s > 0:

P
(

sup
|t|≤δ−1

n,l ,|u|≤α
|Wn(t+ u)−Wn(t)| > s

)
≤ P

(
α
( 1

n− n′
n∑

j=n′

|Zj |+ E|Z|
)
> s ∩ Ωn

)
+ P (Ωcn)

≤ 13αE[|Z|]>s +
c

n

(45)

We now define the threshold sn,l and the window size αn,l by:

sn,l :=
1

2

d2

‖ΦQ‖2
τnρn,lδ

1/2+ν
n,l and αn,l :=

sn,l
3E[|Z|]

. (46)

We are naturally driven to handle a discrete grid Tn,l regularly spaced from −δ−1
n,l to δ−1

n,l whose step-size
is αn,l. We have

|Tn,l| ≤
2δ−1
n,l

αn,l
=

6E[|Z|]δ−1
n,l

sn,l
and ∀t ∈ [−δ−1

n,l , δ
−1
n,l ], ∃τt ∈ Tn,l : |t− τt| ≤ αn,l.
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These settings permit to deduce from (45) that:

P

 sup
|t|≤δ−1

n,l ,|u|≤αn,l
|Wn(t+ u)−Wn(t)| > sn,l

 ≤ c

n
. (47)

Now, for each element of the grid τ ∈ Tn,l, Wn(τ) is a mean of n random variables that whose modulus
are bounded by 1. The Hoeffding inequality implies that ∀τ ∈ Tn,l:

P
(
|Wn(τ)| > sn,l

)
≤ P

∣∣∣ 1

n− n′
n∑

j=n′

cos(τZj)− E(cos(τZ))
∣∣∣ < sn,l

2


+ P

∣∣∣ 1

n− n′
n∑

j=n′

sin(τZj)− E(sin(τZ))
∣∣∣ < sn,l

2


≤ 4 exp

(
−

(n− n′)s2
n,l

8

)
.

(48)

We now produce an upper bound of P (‖T2,1‖2 ≥ ρn,l). Equation (43) yields:

P (‖T2,1‖2 ≥ ρn,l) = P

 sup
|t|≤δ−1

n,l

|Wn(t)| ≥ 2sn,l


≤ P

 sup
|t|≤δ−1

n,l,|u|≤hn,l
|Wn(t+ u)−Wn(t)| ≥ sn,l and sup

|t|≤δ−1
n,l

|Wn(t)| ≥ 2sn,l


+P

 sup
|t|≤δ−1

n,l,|u|≤hn,l
|Wn(t+ u)−Wn(t)| ≤ sn,l and sup

|t|≤δ−1
n,l

|Wn(t)| ≥ 2sn,l


≤ P

 sup
|t|≤δ−1

n,l,|u|≤hn,l
|Wn(t+ u)−Wn(t)| ≥ sn,l

+ P

(
sup
τ∈Tn,l

|Wn(τ)| ≥ sn,l

)

≤ c

n
+
∑
τ∈Tn,l

P (|Wn(τ)| ≥ sn,l)

≤ c

n
+

2δ−1
n,l

αn,l
× 4 exp

(
−

(n− n′)s2
n,l

8

)
.

where we successively applied the triangle inequality, a union bound over Tn,l, and then inequalities
(47) and (48). An immediate computation from (46) (28), (30) and (26) shows that:

ns2
n,l = n

d2
2

4‖ΦQ‖22
τ2
nρ

2
n,lδ

1+2ν
n,l

= n
d2

2

4‖ΦQ‖22
× (log n)−2a × β2(log n)2a+1n−2sl/(2sl+2ν+1) × n−(1+2ν)/(2sl+2ν+1)

=
β2d2

2

4‖ΦQ‖22
log(n),

and

δ−1
n,lα

−1
n,l =

6E(|Z|)‖ΦQ‖2
d2

β log(n)−1/2n
3/2+ν+sl
2ν+2sl+1 .

We therefore deduce that

P (‖T2,1‖2 ≥ ρn,l) ≤
c

n
+ β log(n)−1/2 48E(|Z|)‖ΦQ‖2

d2
n
− β2d2

2
24‖ΦQ‖22

+
3/2+ν+sl
2ν+2sl+1

. (49)
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Conclusion To conclude with a concentration estimate of Φ̂
(2)
Xn,l

it remains to combine (41), (42)

and (49) to obtain the following result.

Proposition 13 Let f ∈ Hs(R), g a known density in H+
ν with ν > 1, and l ≥ j?, then

P

(
‖Φ̂(2)

Xn,l
− EΦ̂

(2)
Xn,l
‖2

2
≥
ρ2
n,l

8

)
. n−

β2

64 + n−1 + log(n)−1/2n
− β2d2

2
24‖ΦQ‖22

+
3/2+ν+sl
2ν+2sl+1

.
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