TD nº 4:

Équations elliptiques

Exercice 4.1 (Fonction de Green et Principe du maximum). Soient f et k deux fonctions continues sur [0,1]. On suppose que k ne prend que des valeurs strictement positives. On considère le problème de Poisson-Dirichlet suivant :

$$\begin{cases}
-\partial_x(k(x)\partial_x u) = f(x), & \forall x \in]0, 1[, \\
u(0) = u(1) = 0.
\end{cases}$$
(1)

On suppose que f et k sont continues sur [0,1] et que $\inf_{[0,1]} k > 0$.

- 1. Déterminer l'ensemble des solutions de l'équation $-\partial_x(k(x)\partial_x u) = f(x)$.
- **2.** Montrer que le problème (1) admet une unique solution (en un sens à préciser). Cette solution est-elle continue? de classe C^1 ? de classe C^2 ?
- **3.** Déterminer explicitement une fonction $G:[0,1]^2\mapsto G(x,y)$ telle que l'unique solution de (1) s'écrit

$$u(x) = \int_0^1 G(x, y) f(y) \, dy, \quad \forall x \in [0, 1].$$
 (2)

- **4.** Vérifier que G est symétrique et positive (la fonction G s'appelle la fonction de Green associée au problème (1)). En déduire le principe du maximum faible : si $g \geqslant 0$ alors $u \geqslant 0$ sur I.
- **5.** Montrez que le problème (1) satisfait le *principe du maximum fort* : si $f \ge 0$ est non triviale alors u > 0 dans l'intervalle *ouvert*]0,1[.

Exercice 4.2. Soit Ω la boule unité ouverte de \mathbb{R}^2 . On définit sur Ω les fonctions $f_{\alpha}(x) = |x|^{\alpha}$ $(\alpha \in \mathbb{R})$ et $p(x) = 1 + |x|^2$, et on considère le problème

$$\begin{cases}
-\Delta u + pu = f_{\alpha} & (\Omega) \\
u = 0 & (\partial\Omega)
\end{cases}$$
 (\mathcal{P}_{α})

- 1. Pour quelles valeurs de α a-t-on $f_{\alpha} \in L^2(\Omega)$? On considérera désormais que α satisfait cette condition.
- **2.** Écrire la formulation variationnelle du problème (\mathcal{P}_{α}) , en précisant bien l'espace fonctionnel. Montrez que cette formulation variationnelle admet une unique solution u_{α} .
- **3.** Montrez que cette solution u_{α} est solution de l'EDP au sens des distributions sur Ω , et qu'elle est en fait dans $H^2(\Omega) \cap H^1_0(\Omega)$.

Exercice 4.3 (Problème de Neumann coercif). Soit $\Omega \subset \mathbb{R}^N$ un ouvert borné régulier et $f \in L^2(\Omega)$. On considère le problème de Neumann suivant :

$$\begin{cases} -\Delta u + u = f & (\Omega) \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & (\partial \Omega) \end{cases}$$
 (\mathcal{N})

- 1. Écrire la formulation variationnelle correspondante. Montrez qu'il existe une unique solution u de cette formulation variationnelle.
- $\mathbf{2}$. Montrez que u est solution de l'EDP au sens des distributions.
- 3. Calculez $\int_{\Omega} u \, dx$ en fonction des données du problème
- **4.** On admet que $u \in H^2(\Omega)$ et que, par suite, $\frac{\partial u}{\partial \mathbf{n}} \in H^{\frac{1}{2}}(\partial \Omega)$. En quel sens u est-elle solution du problème (\mathcal{N}) ?

Exercice 4.4 (Problème de Neumann pseudo-coercif). Soit $\Omega \subset \mathbb{R}^N$ un ouvert borné régulier et $f \in L^2(\Omega)$. On considère le problème de Neumann suivant :

$$\begin{cases}
-\Delta u = f & (\Omega) \\
\frac{\partial u}{\partial \mathbf{n}} = 0 & (\partial \Omega)
\end{cases} \tag{\mathcal{N}_0}$$

- 1. Montrez que ce problème est mal posé sur $H^2(\Omega)$, c'est-à-dire (i) il n'y a pas unicité des solutions, et (ii) il existe des fonctions f pour lesquelles il n'existe aucune solution.
- **2.** Pour $u, v \in H^1(\Omega)$ on pose

$$a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v \, dx + \frac{1}{|\Omega|} \left(\int_{\Omega} u \, dx \right) \left(\int_{\Omega} v \, dx \right),$$

où $|\Omega|=\int_{\Omega}1.$ Montrez que a est bilinéaire, continue et coercive sur $H^1.$

- **3.** En déduire qu'il existe un unique $u \in H^1(\Omega)$ tel que $a(u,v) = \int_{\Omega} fv \, dx$ pour tout $v \in H^1(\Omega)$.
- 4. On suppose que $\int_{\Omega} f \, dx = 0$. Montrez que $\int_{\Omega} u \, dx = 0$ et retrouvez l'EDP satisfaite par u.
- **5.** On admet que $u \in H^2(\Omega)$, donc que $\frac{\partial u}{\partial \mathbf{n}} \in H^{\frac{1}{2}}(\partial \Omega)$; en quel sens u satisfait-elle le problème (\mathcal{N}_0) ?

Exercice 4.5 (Problème de Sturm par l'énergie). On travaille dans l'intervalle I =]0,1[. Soient q et f deux fonctions continues sur \overline{I} . On considère le problème suivant :

$$\begin{cases}
-u'' + q(x)u = f(x), & \forall x \in]0, 1[, \\
u(0) = u(1) = 0,
\end{cases}$$
(3)

- 1. Vérifier que si $q(x) = -\pi^2$ alors le problème est mal posé, c'est-à-dire :
 - 1. Il existe des fonctions f pour lesquelles (3) n'a aucune solution.
 - 2. Pour f = 0, il existe des solutions u non nulles de (3).

Autrement dit, le problème (3) n'admet pas toujours des solutions, et s'il en existe elles sont nécessairement non uniques.

 $\mathbf{2}$. À partir de maintenant on suppose que la fonction q vérifie

$$\inf_{I}q>-\pi^2.$$

Proposer une formulation variationnelle dans $H_0^1(I)$ du problème (3). Donner l'expression d'une fonctionnelle "énergie" $u \mapsto E(u)$ dont la solution de (3), si elle existe, serait un minimiseur. Montrer que cette fonctionnelle E est de classe \mathcal{C}^1 pour la topologie de $H_0^1(I)$.

3. Montrer que E est minorée sur $H_0^1(I)$ et en déduire l'existence d'une suite minimisante $(u_n)_n$, i.e. une suite vérifiant $E(u_n) \to \inf_{v \in H_0^1(I)} E(v)$.

 $Indication: 1/\pi \ est \ la \ constante \ optimale \ pour \ l'inégalité \ de \ Poincar\'e \ sur \ I=]0,1[.$

4. Démontrer que cette suite minimisante est de Cauchy dans $H^1_0(I)$ et en déduire qu'il existe un unique $u \in H^1_0(I)$ tel que $E(u) = \inf_{v \in H^1_0(I)} E(v) > -\infty$.

Indication : on pourra écrire l'énergie E comme une partie quadratique Q plus une partie linéaire L et exprimer Q(u-v)+Q(u+v) en fonction de Q(u) et Q(v), puis estimer Q(u-v) en fonction de E(u) et E(v).

- 5. Montrer que la fonction u ainsi obtenue est solution de la formulation variationnelle, et aussi solution de l'EDP au sens des distributions. Démontrer que u est en fait dans $\mathcal{C}^2(I) \cap \mathcal{C}^1(\overline{I})$ et que u est une solution du problème (3) au sens classique.
- **6.** Quelle(s) étape(s) de la démonstration tombe(nt) en défaut quand $q(x) = -\pi^2$ (car d'après la question 1 le problème est mal posé)?

Exercice 4.6 (Généralités sur les méthodes de Galerkin). Pour I=]0,1[on considère $k\in L^\infty(I)$ et $f\in L^2(I)$, et on suppose qu'il existe $\alpha>0$ tel que $\inf_I k\geqslant \alpha$. On munit $H^1_0(I)$ de la norme $\|u\|_{H^1_0(I)}=\|\nabla u\|_{L^2(I)}$ (qui est équivalente à la norme H^1 d'après l'inégalité de Poincaré), et on considère le problème

$$\begin{cases} -\partial_x(k(x)\partial_x u) = f(x), & \forall x \in]0, 1[, \\ u(0) = u(1) = 0. \end{cases}$$

- 1. Écrire la formulation variationnelle correspondante.
- **2.** On introduit la forme bilinéaire $a: H_0^1(I) \times H_0^1(I) \mapsto \mathbb{R}$ définie par

$$a(u,v) = \int_{I} k(x) \nabla u(x) \nabla v(x) dx.$$

- a. Montrer que a est continue et que $||a|| \leq ||k||_{\infty}$.
- b. Montrer que a est coercive, c'est-à-dire

$$a(u,u) \geqslant \alpha ||u||_{H_0^1(I)}^2, \quad \forall u \in H_0^1(I).$$

c. En déduire qu'il existe une unique solution $u \in H^1_0(I)$ de la formulation variationnelle. 3. Soit $(V_n)_{n \in \mathbb{N}}$ une suite de sous-espaces de dimension finie de $H^1_0(I)$, telle que dim $V_n = n$. Démontrer qu'il existe une unique solution $u_n \in V_n$ de

$$\forall v_n \in V_n, \qquad \int_I k(x) \nabla u_n(x) \nabla v_n(x) \, dx = \int_I f(x) v_n(x) \, dx \tag{FV_n}$$

4. Démontrer que la solution u de la formulation variationnelle de départ et la solution u_n de (FV_n) vérifient

$$d(u, V_n) \le ||u - u_n||_{H_0^1} \le \frac{||k||_{\infty}}{\alpha} d(u, V_n),$$

où $d(u, V_n) = \inf_{v \in V_n} \|u - v\|_{H_0^1}$.

Exercice 4.7. On rappelle que $H_0^1(\mathbb{R}) = H^1(\mathbb{R})$.

1. A-t-on l'inégalité de Poincaré sur $H_0^1(\mathbb{R}) = H^1(\mathbb{R})$?

Indication: on pourra considérer la suite de fonctions $u_n(x) = e^{-x^2/n}$.

A partir de maintenant on munit H_0^1 de la norme usuelle, c'est-à-dire $||u||_{H_0^1}^2 = ||u||_{L^2}^2 + ||u'||_{L^2}^2$.

2. Montrer que si $\alpha = cste > 0$ l'application

$$A: H^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad u \mapsto -u'' + \alpha u$$

est bien définie et continue pour les topologies concernées.

- **3.** En précisant toutes les hypothèses du ou des théorème(s) employé(s), montrer que pour tout $f \in L^2$ il existe une unique solution $u \in H^1_0(\mathbb{R})$ de l'EDP $\mathcal{A}u = f$ au sens des distributions.
- **4.** Montrer que la solution u de (iii) est en fait dans $H^2(\mathbb{R})$. A quel théorème de cours, que vous énoncerez, ceci vous fait-il penser?
- **5.** Montrer que, si $\mathcal{A}^{-1}: L^2(\mathbb{R}) \to H^2(\mathbb{R})$ est défini par $\mathcal{A}^{-1}(f) = u$, alors $\mathcal{A} \circ \mathcal{A}^{-1} = Id_{L^2}$.
- **6.** En utilisant la formulation variationnelle, estimer la norme H^1 de $u = \mathcal{A}^{-1}(f)$ en fonction de $||f||_{L^2}$ et $\alpha > 0$. En déduire que \mathcal{A}^{-1} est continu de L^2 dans H^2 (pour les topologies concernées) et estimer sa norme d'opérateur en fonction de $\alpha > 0$.
- 7. Question bonus : quelles étapes dans la construction ci-dessus de l'inverse \mathcal{A}^{-1} tombent en défaut si on remplace $I = \mathbb{R}$ par \mathbb{R}^N avec $N \ge 2$?

Exercice 4.8. Soient Ω un ouvert borné et régulier de \mathbb{R}^d , $\alpha > 0$, $f \in L^2(\Omega)$ et $g \in L^2(\partial\Omega)$. On souhaite résoudre le problème elliptique suivant, avec conditions aux limites de type Robin (ou Fourier) :

$$\begin{cases}
-\Delta u = f, & \text{dans } \Omega \\
\partial_n u + \alpha u = g, & \text{sur } \partial\Omega
\end{cases}$$

- 1. Donner la formulation faible (ou variationnelle) de ce problème.
- 2. Démontrer l'existence et l'unicité d'une solution faible. Pour cela on pourra prouver et utiliser l'inégalité de Poincaré-Friedrichs : il existe une constante $\beta>0$ telle que pour tout $u\in H^1(\Omega)$

$$||\nabla u||_{L^2(\Omega)} + \left(\int_{\partial\Omega} |u|^2 d\sigma\right)^{1/2} \ge \beta ||u||_{L^2(\Omega)}.$$

3. Que peut-on dire sur la régularité de la solution?