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REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS

JEFFREY DILLER AND VINCENT GUEDJ

Abstract. For meromorphic maps of complex manifolds, ergodic theory and
pluripotential theory are closely related. In nice enough situations, dynami-
cally defined Green’s functions give rise to invariant currents which intersect
to yield measures of maximal entropy. ‘Nice enough’ is often a condition on
the regularity of the Green’s function. In this paper we look at a variety of
regularity properties that have been considered for dynamical Green’s func-
tions. We simplify and extend some known results and prove several others
which are new. We also give some examples indicating the limits of what one
can hope to achieve in complex dynamics by relying solely on the regularity
of a dynamical Green’s function.

Introduction

A holomorphic, or more generally, meromorphic self-map 𝑓 : 𝑋 → 𝑋 of a com-
pact complex manifold 𝑋 induces actions 𝑓∗, 𝑓∗ : 𝐻∗(𝑋,ℝ) → 𝐻∗(𝑋,ℝ) on the
real cohomology groups of 𝑋. It is conjectured that when these actions are suit-
ably well-behaved, then the topological entropy ℎ𝑡𝑜𝑝(𝑓) of 𝑓 should be log 𝜌(𝑓

∗),
where 𝜌(⋅) denotes the spectral radius. This conjecture has motivated a great deal
of research in the past fifteen years, and it has been verified in some important
cases (see [Gr], [Y], [Sm], [FS 2], [Du], [G 3]). It is known, for instance, that the
inequality ℎ𝑡𝑜𝑝(𝑓) ≤ log 𝜌(𝑓) always holds [DS 1].
The main strategy for proving the reverse inequality has been to look for an

invariant measure whose metric entropy is maximal, i.e. equal to log 𝜌(𝑓). However,
rather than try to realize the measure directly from the dynamics of 𝑓 , it often
seems more promising to use the dynamics to construct invariant positive closed
currents and then try to obtain the measure as an intersection of these currents.
The drawback is that in passing from currents to measures, one must somehow make
sense of what is essentially a product of distributions. For positive closed currents,
this is usually done by resorting to ‘potentials’ for the currents and integrating
by parts. Success depends on having potentials that are substantially more regular
than the currents themselves. The purpose of this paper is to better understand the
regularity properties of potentials associated to dynamically-defined positive closed
(1, 1)-currents. Such potentials will be functions, the dynamical Green’s functions
in the title of the paper.
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4784 JEFFREY DILLER AND VINCENT GUEDJ

In the first section we describe the best possible situation: holomorphic maps.
We present a simple proof, due to Dinh and Sibony (see [DS 2], Theorem 3.7.1; also
[DS 3], Proposition 2.4), of the fact that a dynamical Green’s function associated
to a holomorphic map must be Hölder continuous with Hölder exponent controlled
by what we call the topological Lyapunov exponent

𝜒𝑡𝑜𝑝(𝑓) := lim
𝑛→+∞

1

𝑛
log sup

𝑥∈ℙ𝑘

∣∣𝐷𝑥𝑓𝑛∣∣

of the map. A straightforward example shows that this estimate is sharp.
In the remaining sections of the paper, we turn to the more general class of mero-

morphic self-maps, a principal goal being to see what remains of Hölder continuity
for the Green’s function once one leaves the holomorphic setting.
Our first result, proven in Section 2, is a general existence theorem for dynamical

Green’s functions of meromorphic maps in any dimension. If 𝑓 : 𝑋 → 𝑋 is a
meromorphic map of a compact Kähler manifold, then we say that 𝑓 is 1-stable if
the induced action 𝑓∗ on 𝐻1,1

ℝ
(𝑋) satisfies (𝑓𝑛)∗ = (𝑓∗)𝑛 for all 𝑛 ∈ ℕ. Given a

class 𝜂 ∈ 𝐻1,1
ℝ
(𝑋) satisfying 𝑓∗𝜂 = 𝜆𝜂 and a smooth form 𝜔 representing 𝜂, one

can try to construct an invariant current representing 𝜂 as follows. For each 𝑛 ∈ ℕ

we have an 𝐿1 function 𝑔𝜔𝑛 : 𝑋 → ℝ ∪ {±∞} satisfying
𝜆−𝑛𝑓𝑛∗𝜔 − 𝜔 = 𝑑𝑑𝑐𝑔𝜔𝑛 .

If 𝑔𝜔𝑛 converges in 𝐿
1 to some function 𝑔𝜔 (the dynamical Green’s function), then

the current 𝑇𝜂 := 𝜔 + 𝑑𝑑
𝑐𝑔𝜔 automatically satisfies 𝑓∗𝑇 = 𝜆𝑇 .

Theorem A. Suppose that 𝑓 : 𝑋 → 𝑋 is a 1-stable meromorphic map of a compact
Kähler surface and that the induced action 𝑓∗ has a unique simple eigenvalue 𝜆 of
largest modulus with eigenspace generated by a nef class 𝜂. Then for any smooth
form 𝜔 representing 𝜂, it can be arranged that the sequence (𝑔𝜔𝑛 ) is decreasing and
𝐿1 convergent. The closed current 𝑇 := 𝜔 + 𝑑𝑑𝑐𝑔𝜔 is positive and independent of
𝜔.

Our proof follows Sibony [S] who considered the case 𝑋 = ℙ
𝑘 and Guedj [G 1,

G 2] who considered general 𝑋. The novelty here is that we do not assume that
the smooth representative 𝜔 can be chosen to be positive. Hence it requires some
new ideas to establish that the sequence approximating 𝑔𝜔 is decreasing and to
show that the invariant current 𝑇 is positive. We remark that in dimension two,
the theorem applies to nearly all reasonable meromorphic maps (see Corollary 2.7).
After Section 2, we restrict attention to maps of complex surfaces.
When the map 𝑓 in Theorem A is not holomorphic, the Green’s function 𝑔𝜔

will not be continuous. It will typically have a logarithmic pole at each point of
indeterminacy for 𝑓 and its iterates. We let ℐ𝑓 denote the closure of the set of all
such points. Though ℐ𝑓 can be all of 𝑋, as the first example in Section 6 shows,
there are many situations where the complement of ℐ𝑓 is large, and one can then
hope for continuity of 𝑔+ in 𝑋 − ℐ𝑓 . In Section 3, we validate this hope in some
interesting special cases. Indeed, we give a unified approach to proving something
analogous to, but weaker than, Hölder continuity for 𝑔+ for some large classes of
birational surface maps (Theorem 3.1 and the comment following its proof) and of
polynomial maps of ℂ2 (Theorem 3.4). We point out concerning Theorem 3.4 that
in the important case where the first dynamical degree 𝜆 exceeds the topological
degree, we know of no examples where the hypothesis of the theorem fails.
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In Section 4, we consider a still weaker regularity condition for birational surface
maps. We state a quantitative recurrence property for points of indeterminacy that
turns out to be equivalent to the condition that the derivative 𝑑𝑔+ of the Green’s
function be in 𝐿2. A similar, slightly stronger 𝐿2 condition has been used with much
success in [BD] and [Du] to produce measures of maximal entropy for birational
maps. With our version, the construction of the measure still succeeds, but its fine
dynamical properties remain unclear; in particular, we do not know if log ∣∣𝐷𝑓 ∣∣ is
integrable with respect to the measure, a property that is important for applying
many of the theorems and techniques from smooth ergodic theory.
Continuing with birational surface maps in Section 5, we consider what is perhaps

the weakest relevant regularity condition of all: 𝑔+ is integrable with respect to
(the trace measure of) 𝑇−, the invariant current associated to 𝑓−1. This condition
guarantees that 𝜇 = 𝑇+ ∧ 𝑇− is a well-defined probability measure. Indeed with
no further assumption on 𝑓 (i.e. on 𝑔+), we prove the following.

Theorem B. The measure 𝜇𝑓 is 𝑓 -invariant and mixing, and it does not charge
any compact complex curve.

The proof that 𝜇𝑓 does not charge curves is distinctly indirect, depending on,
among other things, a characterization (Proposition 5.4) of the 𝐿2 condition used
in [BD].
We present several telling examples throughout the paper, and Section 6 is de-

voted to two of these. The first shows that indeterminacy orbits of a meromorphic
map can be dense. That is, ℐ𝑓 = 𝑋. The second builds on an example due to Favre
[F] and demonstrates that one can have 𝑔+ integrable with respect to 𝑇− without
necessarily having that 𝑑𝑔+ is in 𝐿2.

1. Holomorphic maps

Let 𝑓 : ℙ𝑘 → ℙ
𝑘 be a holomorphic endomorphism of the complex projective

space ℙ𝑘. In homogeneous coordinates, 𝑓 = [𝑃0 : . . . : 𝑃𝑘] where the 𝑃𝑗 ’s are
homogeneous polynomials of the same degree 𝜆 with no common zero outside the
origin. We shall always assume 𝜆 ≥ 2.
Let 𝜔 denote the Fubini-Study Kähler form on ℙ

𝑘. Then 𝑓∗𝜔 is a well-defined
smooth closed (1, 1)-form on ℙ𝑘 which is cohomologous to 𝜆𝜔. Thus it follows from
the 𝑑𝑑𝑐-lemma (see [GH], p. 149) that

1

𝜆
𝑓∗𝜔 = 𝜔 + 𝑑𝑑𝑐𝛾,

where 𝛾 ∈ 𝒞∞(ℙ𝑘) is uniquely determined up to an additive constant. Here 𝑑 = ∂+∂
and 𝑑𝑐 = 1

2𝑖𝜋 (∂ − ∂). Pulling back the previous equation by 𝑓𝑛 yields

1

𝜆𝑛
(𝑓𝑛)∗𝜔 = 𝜔 + 𝑑𝑑𝑐𝑔𝑛, where 𝑔𝑛 =

𝑛−1∑
𝑗=0

1

𝜆𝑗
𝛾 ∘ 𝑓 𝑗 .

The sequence of positive closed (1, 1)-forms 𝜆−𝑛(𝑓𝑛)∗𝜔 converges weakly to the
so-called Green current

𝑇𝑓 = 𝜔 + 𝑑𝑑
𝑐𝑔𝑓 , where 𝑔𝑓 :=

∑
𝑗≥0

1

𝜆𝑗
𝛾 ∘ 𝑓 𝑗 .
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4786 JEFFREY DILLER AND VINCENT GUEDJ

This is a dynamically interesting current. It was constructed by H. Brolin [Bro]
(polynomial case) and M. Lyubich [Ly] (rational case) when 𝑘 = 1, and by Hubbard-
Papadopol [HP] and Fornaess-Sibony [FS 2] in higher dimensions. We refer the
reader to [S] for its basic properties. Our aim here is to give a very simple proof of
the fact that the (dynamical) Green function 𝑔𝑓 is Hölder continuous. To this end
we introduce the topological Lyapunov exponent of 𝑓 ,

𝜒𝑡𝑜𝑝(𝑓) := lim
𝑛→+∞

1

𝑛
log sup

𝑥∈ℙ𝑘

∣∣𝐷𝑥𝑓𝑛∣∣.

That the limit exists follows from the submultiplicativity of the sequence
(sup𝑥∈ℙ𝑘 ∣∣𝐷𝑥𝑓𝑛∣∣). The definition clearly does not depend on the choice of the
norm ∣∣ ⋅ ∣∣. Also, the supremum in the definition can be considered only on the
Julia set 𝐽𝑓 of 𝑓 . Let us recall that the Fatou set ℱ𝑓 of 𝑓 is the largest open subset
of ℙ𝑘 on which the sequence of iterates (𝑓𝑛) forms a normal family. The Julia set
𝐽𝑓 is the complement of the Fatou set.
The next result, together with its proof, is essentially Theorem 3.7.1 in [DS 2]

(see Proposition 2.4 in [DS 3] for a more general statement). We include it here for
the convenience of the reader, because many of the results in the following sections
may be viewed as attempts to see what remains when one passes from holomorphic
to more badly behaved meromorphic maps.

Theorem 1.1. The Green function 𝑔𝑓 is Hölder continuous of exponent 𝛼 > 0, for
every 𝛼 < log 𝜆/𝜒𝑡𝑜𝑝(𝑓).

Proof. Set 𝑀 = sup𝑥∈ℙ𝑘 ∣∣𝐷𝑥𝑓 ∣∣. A straightforward induction yields, for all 𝑥, 𝑦 ∈
ℙ
𝑘 and all 𝑗 ∈ ℕ,

𝑑(𝑓 𝑗𝑥, 𝑓 𝑗𝑦) ≤𝑀 𝑗𝑑(𝑥, 𝑦).

Here 𝑑 denotes the distance associated to the Fubini-Study metric on ℙ𝑘. Since 𝛾
is smooth, it is in particular Hölder-continuous of exponent 𝛼 > 0, for any 𝛼 ≤ 1.
We fix 𝛼 < log 𝜆/𝑀 and estimate

∣𝑔𝑓 (𝑥)− 𝑔𝑓 (𝑦)∣ ≤
∑
𝑗≥0

1

𝜆𝑗
∣𝛾 ∘ 𝑓 𝑗(𝑥)− 𝛾 ∘ 𝑓 𝑗(𝑦)∣ ≤ 𝐶𝛼𝑑(𝑥, 𝑦)𝛼,

where 𝐶𝛼 =
∑
𝑗≥0 𝜆

−𝑗𝑀𝛼𝑗 < +∞.
Replacing 𝑓 by 𝑓𝑛 in the above argument lowers the constant 𝑀 to 𝑀𝑛 =

(sup ∣∣𝐷𝑥𝑓𝑛∣∣)1/𝑛. Letting 𝑛→ +∞ yields the desired upper bound. □

Example 1.2 shows that the bound in this theorem is optimal. One can also
establish bounds in the other direction using the infimum of the differential on
the Julia set. These imply in particular that the affine Green’s functions 𝐺𝑐 of
quadratic maps 𝑓𝑐(𝑧) = 𝑧2 + 𝑐 with 𝑐 ∈ ℝ are Hölder continuous of exponent 𝛼𝑐
with 𝛼𝑐 → 0 as 𝑐→ +∞.
Examples 1.2. Consider the quadratic family of holomorphic endomorphisms of
the Riemann sphere 𝑓𝑐 : ℙ

1 → ℙ
1, given by quadratic polynomials in some affine

chart,

𝑓𝑐(𝑧) = 𝑧
2 + 𝑐.

We let 𝐺𝑐(𝑧) = 𝑔𝑓𝑐 [1 : 𝑧] denote the affine Green’s function.
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1) If 𝑐 = 0 one easily computes 𝐺0(𝑧) = log
+ ∣𝑧∣, 𝐽𝑓0 = 𝑆1 is the unit circle, and

𝜒𝑡𝑜𝑝(𝑓0) = log 2. If 𝑐 = −2, then 𝑓−2 is semi-conjugate to 𝑓0, and one can compute
its iterates explicitly. This yields 𝐽𝑓−2

= [−2, 2], 𝜒𝑡𝑜𝑝(𝑓−2) = 2 log 2 and

𝑔−2(𝑧) = logmax

(∣∣∣∣∣𝑧 +
√
𝑧2 − 4
2

∣∣∣∣∣ ;
∣∣∣∣∣𝑧 −

√
𝑧2 − 4
2

∣∣∣∣∣
)
.

Observe that this is a Hölder-continuous function of exponent 1/2.
2) If ∣𝑐∣ ≤ 2, one can easily show that the Julia set 𝐽𝑓𝑐 is always contained in the

closed disk centered at the origin and of radius 2. We infer 𝜒𝑡𝑜𝑝(𝑓𝑐) ≤ 2 log 2. Note
that this disk contains the Mandelbrot set ℳ, i.e. the set of parameter values 𝑐
such that 𝐽𝑓𝑐 is connected.
More generally, if 𝑓 is any monic centered polynomial of degree 𝜆 with connected

Julia set, it was proved by X. Buff [Bu] that

𝜒𝑡𝑜𝑝(𝑓) ≤ sup
𝐽𝑓

∣𝑓 ′∣ ≤ 2 log𝜆.

We also have bounds from below. If 𝜇 is any invariant ergodic measure such that
log ∣∣(𝐷𝑓)±1∣∣ ∈ 𝐿1(𝜇), then its Lyapunov exponent 𝜒𝜇(𝑓) satisfies 𝜒𝜇(𝑓) ≤ 𝜒𝑡𝑜𝑝(𝑓).
In particular if 𝜇 = 𝜔 + 𝑑𝑑𝑐𝑔𝑓 = 𝑑𝑑

𝑐𝐺𝑓 is the Brolin-Lyubich measure, then

log 𝜆 ≤ log 𝜆+
∑

𝑓 ′(𝑐)=0

𝐺𝑓 (𝑐) = 𝜒𝜇(𝑓) ≤ 𝜒𝑡𝑜𝑝(𝑓).

Remark 1.3. For 𝑋 = ℙ1, the Hölder continuity of the dynamical Green’s func-
tions was first established by N. Sibony (see [CG], Theorem 8.3.2). It was then
generalized to endomorphisms of ℙ𝑘 by J.-Y. Briend [Bri] and M. Kosek [K].
As we explain below, the elementary proof given above applies to other manifolds.

Slightly modifying the proof shows also that if (𝑓𝑡)𝑡∈𝑀 is a holomorphic family of
endomorphisms of the same degree 𝜆, then the Green’s function (𝑥, 𝑡) �→ 𝑔𝑓𝑡(𝑥) is
Hölder continuous with respect to the parameter 𝑡.

Consider a holomorphic endomorphism 𝑓 : 𝑋 → 𝑋 of some compact Kähler
manifold 𝑋. Then 𝑓∗ respects complex conjugation and bidegree of forms, and
therefore restricts to a linear action on 𝐻1,1

ℝ
(𝑋) := 𝐻2(𝑋,ℝ) ∩𝐻1,1(𝑋).

Assume that 𝑓∗𝜂 = 𝜆𝜂 for some 𝜆 > 1 and 𝜂 ∈ 𝐻1,1
ℝ
(𝑋). Then if 𝜔 is a smooth

closed (1, 1)-form representing 𝜂, we have 𝛾 ∈ 𝒞∞(𝑋,ℝ) such that
1

𝜆
𝑓∗𝜔 = 𝜔 + 𝑑𝑑𝑐𝛾.

Pulling back by 𝑓𝑛 yields

1

𝜆𝑛
(𝑓𝑛)∗𝜔 −→ 𝑇𝜂 = 𝜔 + 𝑑𝑑

𝑐𝑔𝜔, where 𝑔𝜔 =
∑
𝑗≥0

1

𝜆𝑗
𝛾 ∘ 𝑓 𝑗 .

Observe that the dynamical Green’s current 𝑇𝜂 only depends on 𝜂: if 𝜔
′ also rep-

resents 𝜂, then 𝜔′ = 𝜔 + 𝑑𝑑𝑐𝑢 for some smooth function 𝑢. Hence 𝑢 ∘ 𝑓𝑛/𝜆𝑛 → 0
uniformly on 𝑋, and

1

𝜆𝑛
(𝑓𝑛)∗𝜔′ =

1

𝜆𝑛
(𝑓𝑛)∗𝜔 + 𝑑𝑑𝑐

(
1

𝜆𝑛
𝑢 ∘ 𝑓𝑛

)
→ 𝑇𝜂.

The same proof as above shows that the Green’s function 𝑔𝜔 is Hölder con-
tinuous.
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In concluding this section, we recall (see e.g. [Meo], section I) that if 𝑆 is any
positive closed (1, 1)-current on 𝑋, then we may define the pullback 𝑓∗𝑆. Namely,
we write 𝑆 = 𝜂 + 𝑑𝑑𝑐𝑢, where 𝜂 is a smooth closed (1, 1)-form and 𝑢 is a quasi-
plurisubharmonic (henceforth ‘qpsh’) function, and we set 𝑓∗𝑆 = 𝑓∗𝜂 + 𝑑𝑑𝑐𝑢 ∘ 𝑓 .
The result is another positive closed (1, 1)-current on 𝑋.
A cohomology class 𝜂 is pseudoeffective if it can be represented by a positive

closed current 𝑆 of bidegree (1, 1). In this case, 𝑓∗𝑆 is a well-defined positive closed
current of bidegree (1, 1) on 𝑋 which represents 𝑓∗𝜂. Thus 𝑓∗ preserves the cone
𝐻1,1
𝑝𝑠𝑒𝑓 (𝑋) ⊂ 𝐻1,1

ℝ
(𝑋) of pseudoeffective classes. Because the pseudoeffective cone

is closed, convex and strict (i.e., contains no lines), it follows from Perron-Frobenius

theory that there exists an invariant class 𝜂 ∈ 𝐻1,1
𝑝𝑠𝑒𝑓 (𝑋) associated to the spectral

radius 𝜆 = 𝜚𝑓∗ ≥ 1 of 𝑓∗∣𝐻1,1
ℝ

(𝑋). When 𝜚𝑓∗ > 1 (which is equivalent [Gr] to saying

that 𝑓 has positive entropy), it is reasonable to hope that the associated current
𝑇𝜂 will itself be positive. In the next section, we pursue the construction of 𝑇𝜂, and
this hope in particular, for a much larger class of maps.

2. Green’s functions for meromorphic maps

Let 𝑋 be a compact Kähler manifold of dimension 𝑘. When 𝑓 : 𝑋 → 𝑋 is merely
meromorphic (i.e., rational, when 𝑋 is projective), the construction of dynamical
Green’s currents is a more delicate task, due to the presence of points of indeter-
minacy. Nevertheless, Green’s currents have been constructed in some particular
meromorphic cases (see [S] for the case 𝑋 = ℙ𝑘, [DF] for the case of birational sur-
face maps, [G 1] for the case of Hirzebruch surfaces, and [G 2] for a slightly more
general context). In this section we use ideas of [BD] to provide a very general
construction.
We let 𝐼𝑓 denote the indeterminacy locus, i.e. the set of points at which 𝑓 is

not holomorphic. This is an analytic subset of 𝑋 of codimension ≥ 2. We let
Γ𝑓 ⊂ 𝑋 × 𝑋 denote the graph of 𝑓 and Γ̃𝑓 denote a desingularization of it. We
have a commutative diagram

Γ̃𝑓
𝜋1↙

𝜋2↘
𝑋

𝑓−→ 𝑋

where 𝜋1, 𝜋2 are holomorphic maps. We always assume that 𝑓 is dominant, i.e. that
its Jacobian determinant does not vanish identically (in any coordinate chart).
Given a smooth closed real form 𝜔 of bidegree (1, 1) on 𝑋, we set 𝑓∗𝜔 :=

(𝜋1)∗(𝜋∗2𝜔), where we push 𝜋
∗
2𝜔 forward by 𝜋1 as a current. Observe that 𝑓

∗𝜔
is actually a form with 𝐿1

𝑙𝑜𝑐-coefficients which coincides with the usual smooth pull-
back (𝑓∣𝑋∖𝐼𝑓 )

∗𝜔 in 𝑋 ∖ 𝐼𝑓 . Thus the definition does not depend on the choice
of desingularization. Also 𝑓∗ preserves boundaries and thus induces an action
𝑓∗ : 𝐻1,1

ℝ
(𝑋)→ 𝐻1,1

ℝ
(𝑋) given by

{𝜔} �→ {𝑓∗𝜔}.
Our formula for 𝑓∗𝜔 may also be applied to pull back (differences of) positive

closed (1, 1)-currents 𝑆: given 𝑆 ≥ 0, one uses the construction described at the
end of the previous section to define 𝜋∗2𝑆. Then, as in the holomorphic case, 𝑓

∗𝑆 :=
𝜋1∗𝜋∗2𝑆 is also a positive closed (1, 1)-current. It follows again that 𝑓

∗ preserves
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the pseudoeffective cone and that there exists 𝜂 ∈ 𝐻1,1
𝑝𝑠𝑒𝑓 (𝑋) such that 𝑓

∗𝜂 = 𝜆𝜂

where 𝜆 = 𝜚𝑓∗ ≥ 1 is the spectral radius of 𝑓∗∣𝐻1,1
ℝ

(𝑋).

An argument of M. Gromov [Gr] implies that 𝑓 has zero topological entropy
when 𝜚𝑓∗ = 1. In the sequel we assume to the contrary that 𝜚𝑓∗ > 1. Any smooth
form 𝜔 representing 𝜂 may be written as a difference of positive forms. Hence we
can iterate 𝑓∗ and try to construct a Green’s current 𝑇𝜂 = lim𝑛→∞ 𝑓𝑛∗𝜔 associated
to 𝜂.
We immediately face some problems. First, the action 𝑓∗∣𝐻1,1

ℝ
(𝑋) is not neces-

sarily compatible with the dynamics: it might happen, as in the following example,
that (𝑓𝑛)∗ is different from (𝑓∗)𝑛 for some 𝑛 ∈ ℕ.

Example 2.1. The polynomial endomorphism of ℂ2,

(𝑧1, 𝑧2) �→ (𝑧1𝑧2, 𝑧1),

extends to a meromorphic endomorphism 𝑓 : ℙ2 → ℙ2 of the complex projective
plane. The extended map is given in homogeneous coordinates by

𝑓 [𝑧0 : 𝑧1 : 𝑧2] = [𝑧
2
0 : 𝑧1𝑧2 : 𝑧0𝑧1],

where (𝑧0 = 0) denotes the line at infinity. Observe that the indeterminacy locus

𝐼𝑓 consists of the single point [0 : 0 : 1]. Since 𝐻
1,1
ℝ
(ℙ2) ≃ ℝ is one-dimensional,

the linear action 𝑓∗ is multiplication by 2, so that (𝑓∗)2 is multiplication by 4. On
the other hand, a simple computation shows that (𝑓2)∗ is multiplication by 3.

If one extends the polynomial map above to a meromorphic map 𝑔 on 𝑋 =
ℙ1 × ℙ1, one can check that (𝑔∗)𝑛 = (𝑔𝑛)∗ for all 𝑛 ∈ ℕ. This motivates the
following.

Definition 2.2. The mapping 𝑓 : 𝑋 → 𝑋 is said to be 1-stable if (𝑓𝑛)∗ = (𝑓∗)𝑛

for all 𝑛 ∈ ℕ.

Remark 2.3. The notion of a 1-stable map has been studied by several authors
in the past decade, where it has been variously called generic [FS 3], minimally
separating [Di 1], algebraically stable [S], or 1-regular [BK].
It was shown in [DF] that when 𝑓 is a birational surface map, one can al-

ways make a birational change of coordinates so that 𝑓 becomes 1-stable. It is an
interesting, and probably quite difficult, open question to know whether this re-
mains true for dominant 2-dimensional meromorphic maps of ‘small’ (i.e. less than
𝜌(𝑓∗∣𝐻1,1

ℝ
(𝑋))) topological degree. Favre and Jonsson, in a recent paper [FJ] con-

cerning polynomial maps of ℂ2, have proposed a very different approach to issues
concerning 1-stability.

We assume from now on that 𝑓 : 𝑋 → 𝑋 is a 1-stable meromorphic map. Let
𝜂 ∈ 𝐻1,1

𝑝𝑠𝑒𝑓 (𝑋) be such that 𝑓
∗𝜂 = 𝜆𝜂, with 𝜆 = 𝜚𝑓∗ > 1. Let 𝜔 be a smooth closed

real (1, 1)-form representing 𝜂. By the 𝑑𝑑𝑐-lemma again, there exists 𝛾𝜔 ∈ 𝐿1(𝑋)
such that

(2.1)
1

𝜆
𝑓∗𝜔 = 𝜔 + 𝑑𝑑𝑐𝛾𝜔.

Since 𝑓 is 1-stable, we can pull this equation back by 𝑓𝑛 to get

1

𝜆𝑛
𝑓𝑛∗𝜔 = 𝜔 + 𝑑𝑑𝑐𝑔𝜔𝑛 , where 𝑔𝜔𝑛 :=

𝑛−1∑
𝑗=0

1

𝜆𝑗
𝛾𝜔 ∘ 𝑓 𝑗 .
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The second problem we face is that 𝛾𝜔 is not smooth when 𝑓 is meromorphic,
so it is not obvious that the sequence 𝑔𝜔𝑛 converges in 𝐿

1(𝑋). This convergence is
the content of our next result, which is a slight refinement of Theorem A in the
introduction. Recall that a class 𝜂 ∈ 𝐻1,1

ℝ
(𝑋) is nef if it is the limit of Kähler

classes.

Theorem 2.4. If 𝜂 is nef, then the sequence (𝑔𝜔𝑛 ) converges in 𝐿
1(𝑋). Let 𝑔𝜔 be

the limit, and define

𝑇𝜂 := 𝜔 + 𝑑𝑑
𝑐(𝑔𝜔) = lim

𝑛→+∞
1

𝜆𝑛
(𝑓𝑛)∗𝜔.

Then 𝑇𝜂 is a closed current satisfying 𝑓
∗𝑇𝜂 = 𝜆𝑇𝜂. If 𝜆 is a simple eigenvalue of

𝑓∗, then 𝑇𝜂 is positive.

Proof. Step 1. The first step of the proof consists in showing that 𝛾𝜔 is bounded
from above on 𝑋. Rewriting (1) in the desingularized graph yields

𝑑𝑑𝑐 (𝛾𝜔 ∘ 𝜋1) =
1

𝜆
𝜋∗1𝜋1∗𝜋∗2𝜔 − 𝜋∗1𝜔.

Since 𝜋1 is a local isomorphism away from its exceptional divisor ℰ(𝜋1) ⊂ Γ̃𝑓 , we
have that 𝑅 := 𝜋∗1𝜋1∗𝜋∗2𝜔 − 𝜋∗2𝜔 is a closed current of bidegree (1, 1) supported on
ℰ(𝜋1).

Lemma 2.5. 𝑅 is positive.

Proof. If 𝜔 (and hence 𝜋∗2𝜔) is a non-negative form, then so is 𝜋
∗
1𝜋

∗
1𝜋

∗
2𝜔. Since 𝜋

∗
2𝜔

agrees with the latter form outside ℰ(𝜋1) and does not charge ℰ(𝜋1) itself, it follows
that 𝑅 is positive.
Dropping the non-negativity assumption, we observe that 𝑅 depends only on the

cohomology class of 𝜔: if 𝜎 = 𝑑𝑑𝑐𝑢 is a cohomologically trivial (1, 1)-form, then

𝜋∗1𝜋1∗𝜎 − 𝜎 = 𝑑𝑑𝑐(𝜋∗𝜋∗𝑢− 𝑢) = 𝑑𝑑𝑐0 = 0.
Since 𝜔 is nef, we may approximate 𝜔 in cohomology by non-negative (1, 1)-forms
𝜔𝑗 . Pullback and pushforward are continous operators on currents, so 𝑅𝑗 :=
𝜋∗1𝜋1∗𝜋∗2𝜔𝑗 − 𝜋∗2𝜔𝑗 converges weakly to 𝑅. That is, 𝑅 is a limit of positive cur-
rents and therefore positive. □

Continuing with the proof of Theorem 2.4, we have

𝑑𝑑𝑐(𝛾𝜔 ∘ 𝜋1) = 𝑅+ 𝜋
∗
2𝜔 − 𝜋∗1𝜔,

so that 𝛾𝜔 ∘ 𝜋1 is a qpsh function on Γ̃𝑓 . Therefore 𝛾𝜔 ∘ 𝜋1 is bounded from above

on Γ̃𝑓 , as is 𝛾𝜔 on 𝑋.
Step 2. It is now clear that we can add a constant to 𝛾𝜔 to get 𝛾𝜔 ≤ 0. Therefore

𝑔𝜔𝑛 =
𝑛−1∑
𝑗=0

1

𝜆𝑗
𝛾𝜔 ∘ 𝑓 𝑗

is a decreasing sequence of 𝐿1 functions. We claim that it converges, i.e., that
𝑔𝜔 =

∑
𝑗≥0 𝜆

−𝑗𝛾𝜔 ∘ 𝑓 𝑗 belongs to 𝐿1(𝑋).

The claim can be established using tricky integration by parts as in [G 2, pp.
2377-2378]. Instead, we follow here a trick of N. Sibony (who treats the case 𝑋 = ℙ𝑘

in [S]). Since 𝜔 is nef, we can choose Kähler forms 𝜔𝑗 whose classes converge to
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that of 𝜔. The mass of 𝜔𝑗 is controlled by its cohomology class, so the sequence
(𝜔𝑗) must accumulate on some positive closed current �̃� cohomologous to 𝜔.
Considering Cesaro means of 𝜆−𝑗(𝑓 𝑗)∗�̃� and extracting a limit, we can produce a

positive closed (1, 1)-current 𝜎 which is cohomologous to 𝜔 and satisfies 𝑓∗𝜎 = 𝜆𝜎.
Now 𝜎 = 𝜔 + 𝑑𝑑𝑐𝑣 for some qpsh function 𝑣 on 𝑋. Invariance of 𝜎 allows us to
arrange

𝛾𝜔 = 𝑣 − 1

𝜆
𝑣 ∘ 𝑓

by adding a constant to 𝑣. Pulling this equation back by 𝑓𝑛 then gives

𝑔𝜔𝑛 = 𝑣 −
1

𝜆𝑛
𝑣 ∘ 𝑓𝑛 ≥ 𝑣 − sup𝑋 𝑣

𝜆𝑛
.

Thus, 𝑣 ≤ 𝑔𝜔 ≤ 0 and in particular 𝑔𝜔 ∈ 𝐿1(𝑋). The current 𝑇𝜂 := 𝜔 + 𝑑𝑑𝑐(𝑔𝜔)
clearly satisfies 𝑓∗𝑇𝜂 = 𝜆𝑇𝜂.

Step 3. It remains to prove that when 𝜆 is a simple eigenvalue of 𝑓∗, then 𝑇𝜂
is positive. Taking 𝑝 = dimℂ𝑋, we observe that it suffices to show that

⟨𝑇𝜂, 𝜒𝜎⟩ ≥ 0,
where 𝜒 is a smooth non-negative cutoff function supported on a coordinate chart
𝑈 ⊂ 𝑋 and 𝜎 is a positive (𝑝 − 1, 𝑝 − 1)-form that is constant with respect to
coordinates on 𝑈 .

Lemma 2.6. If 𝜆 is a simple eigenvalue of 𝑓∗, then some subsequence of
(𝑓𝑛∗ (𝜒𝜎)/𝜆

𝑛) converges weakly to a positive closed (𝑝− 1, 𝑝− 1)-current 𝑆.
Proof. Note first that if 𝜔0 is a Kähler form on 𝑋, then 0 ≤ 𝜒𝜎 ≤ 𝐶𝜔𝑝−1

0 for 𝐶 > 0
large enough. Hence assuming 𝜆 is a simple eigenvalue of 𝑓∗, we obtain uniform
control on the mass of 𝜆−𝑗𝑓𝑛∗ (𝜒𝜎) as follows:∫

𝜔0 ∧ 𝑓𝑛∗ (𝜒𝜎) ≤ 𝐶
∫
𝜔0 ∧ 𝑓𝑛∗ 𝜔𝑝−1

0 = 𝐶

∫
𝑓𝑛∗𝜔0 ∧ 𝜔𝑝−1

0 ≤ 𝐶 ′𝜆𝑛.

In particular, the sequence (𝑓𝑛∗ 𝜒𝜎/𝜆
𝑛) has weak limit points. These will be positive

by continuity, so we need only show that they are also closed. For this we employ
a well-known argument of Bedford and Smillie (see [BS]) to show that the mass of
∂𝑓𝑛∗ (𝜒𝜎) is no larger than 𝐶𝜆

𝑛/2. Specifically, we let 𝜑 be any real test 1-form and
estimate

∣ ⟨∂𝑓𝑛∗ (𝜒𝜎), 𝜑⟩ ∣ =

∣∣∣∣
∫
𝑓𝑛∗𝜑 ∧ 𝑑𝜒 ∧ 𝜎

∣∣∣∣
≤

(∫
𝑓𝑛∗𝜑 ∧ 𝐽𝑓𝑛∗𝜑 ∧ 𝜎

)1/2(∫
𝑑𝜒 ∧ 𝑑𝑐𝜒 ∧ 𝜎

)1/2

≤ 𝐶

(∫
𝑓𝑛∗𝜔0 ∧ 𝜎

)1/2 (∫
𝑑𝜒 ∧ 𝑑𝑐𝜒 ∧ 𝜎

)1/2

≤ 𝐶 ′𝜆𝑛/2.

Note that 𝐽 here is the complex structure operator on real cotangent vectors. More-
over, all integrals may be interpreted as taking place away from the set 𝐼(𝑓) where
𝑓𝑛∗𝜑 might be singular. Having established the desired control on ∂𝑓𝑛∗ (𝜒𝜎), we are
done. □
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Using the subsequence from the lemma, we have

⟨𝑇𝜂, 𝜒𝜎⟩ = lim
𝑗→∞

𝜆−𝑛𝑗 ⟨𝑓𝑛𝑗∗𝜔, 𝜒𝜎⟩ = lim
𝑗→∞

𝜆−𝑛𝑗
〈
𝜔, 𝑓

𝑛𝑗∗ (𝜒𝜎)
〉
= ⟨𝜔, 𝑆⟩ = 𝜂 ⋅ {𝑆} ≥ 0,

where the last inequality comes from the assumption that 𝜂 is nef. □

It remains to understand when our hypotheses are satisfied. When dimℂ𝑋 = 2,
the cone 𝐻1,1

𝑛𝑒𝑓 (𝑋) is preserved by 𝑓
∗, so the invariant class 𝜂 is automatically nef

(Proposition 1.11 in [DF]). Moreover, 𝜆2 is never less than the topological degree
of 𝑓 ; when it is strictly larger, it is a simple eigenvalue of 𝑓∗ (Remark 5.2 in [DF]).

Corollary 2.7. If dimℂ𝑋 = 2, the sequence (𝑔𝜔𝑛 ) always converges in 𝐿
1(𝑋). If

𝜆2 exceeds the topological degree of 𝑓 , then the associated closed invariant current
𝑇𝜂 := 𝜔 + 𝑑𝑑

𝑐𝑔𝜔 is positive.

For the rest of the paper, we focus exclusively on the case dimℂ𝑋 = 2 of maps
on complex surfaces. Recall from [S] that a point 𝑥 ∈ 𝑋 is said to be normal if
there exist neighborhoods 𝑈 of 𝑥 and 𝑉 of 𝐼𝑓 , such that 𝑓

𝑛𝑈 ∩𝑉 = ∅ for all 𝑛 ∈ ℕ.
The set of normal points is denoted by 𝒩𝑓 : this is the set of points which remain
‘locally uniformly’ away from the indeterminacy locus under iteration. The proof
of Theorem 1.1 applies straightforwardly to show that 𝑔𝜔 is Hölder continuous
in 𝒩𝑓 (this is Theorem 1.7.1 in [S]). Complex Hénon mappings are polynomial
automorphisms of ℂ2 which extend to ℙ2 as 1-stable maps of positive entropy. For
such mappings the set of normal points is 𝒩𝑓 = ℙ2 ∖ 𝐼𝑓 ; hence the dynamical
Green’s function is Hölder continuous off the indeterminacy locus. This result was
first proved in [FS 1].

3. Sub-Hölder continuity

The set 𝒩𝑓 might well be empty for a given meromorphic map 𝑓 , and 𝑔𝜔 can
be very discontinuous in general (see, e.g., example 1.11 in [GS] and example 6.1
below). In this section we consider some families of rational surface mappings that
permit weaker, though still ‘Hölder-like’ control on the modulus of continuity of
the dynamical Green’s function

𝑔𝜔 :=

+∞∑
𝑗=0

1

𝜆𝑗
𝛾𝜔 ∘ 𝑓 𝑗 .

Of course this can be done only off the extended indeterminacy locus,

ℐ𝑓 :=
∪
𝑛≥0

𝐼𝑓𝑛 ,

since 𝑔𝜔 usually has positive Lelong number at every point of 𝐼𝑓𝑛 .
Hölder continuity of 𝑔𝜔 at 𝑝 requires that the orbit of 𝑝 uniformly avoid the

indeterminacy locus (normal points). Weaker kinds of continuity of 𝑔𝜔 can be
established by simply requiring that 𝑓𝑛(𝑝) not approach 𝐼𝑓 too rapidly: see [FG],
[G 1], [GS] for the case of weakly-regular polynomial endomorphisms of ℂ𝑘; and
[Di 2] for birational maps of ℙ2 that are separating, i.e. such that ℐ𝑓 ∩ ℐ𝑓−1 = ∅.
Here we present a unified approach to estimating the modulus of continuity of

𝑔𝜔 in 𝑋 ∖ℐ𝑓 . It applies to a class of rational maps large enough to encompass both
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weakly-regular endomorphisms and separating birational surface maps. Our main
dynamical assumption is as follows. There exists 𝐶 > 1 and 𝛽 ∈ [1, 𝜆[ such that

(3.1)
1

𝐶
[𝑑(𝑥, ℐ𝑓 )]𝛽 ≤ 𝑑(𝑓𝑥, ℐ𝑓 ), for all 𝑥 ∈ 𝑋 ∖ ℐ𝑓 .

Note that this estimate is stated in terms of the extended indeterminacy set ℐ𝑓
rather than just the indeterminacy set 𝐼𝑓 . This is because 𝐼𝑓 is rarely invariant
under 𝑓−1, whereas one always has 𝑓−1(ℐ𝑓 − 𝐼𝑓−1) ⊂ ℐ𝑓 .
We shall rely on three further estimates, all of which hold independently of the

above assumption. The first gives us pointwise control on 𝛾𝜔:

(3.2) 𝛾𝜔(𝑥) ≥ 𝐶 log 𝑑(𝑥, 𝐼𝑓 ) + 𝐶 ′.

This follows from Proposition 1.2 in [BD], which, despite the birational context of
that paper, remains valid for arbitrary meromorphic surface maps. The other two
estimates are local bounds on the Lipschitz constants of 𝑓 and 𝛾𝜔. Namely, one
can check by computing in local charts that there exist 𝑚1,𝑚2 > 0 such that for
all 𝑥, 𝑦 ∈ 𝑋 ∖ 𝐼𝑓 ,

(3.3) ∣𝛾𝜔(𝑥)− 𝛾𝜔(𝑦)∣ ≤ 𝐶𝑑(𝑥, 𝑦)

[𝑑𝐼𝑓 (𝑥, 𝑦)]
𝑚1

and 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐶𝑑(𝑥, 𝑦)

[𝑑𝐼𝑓 (𝑥, 𝑦)]
𝑚2
,

where 𝑑𝐼𝑓 (𝑥, 𝑦) := min{𝑑(𝑥, 𝐼𝑓 ), 𝑑(𝑦, 𝐼𝑓 )} is the distance from the pair {𝑥, 𝑦} to
the indeterminacy locus. We similarly denote the distance to ℐ𝑓 by 𝑑ℐ𝑓

(𝑥, 𝑦). For
convenience, we take the constant 𝐶 > 0 to be the same in (2), (3), and (4). It
follows directly from (4) that

(3.4) ∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦))∣ ≤ 𝐶𝑗+1𝑑(𝑥, 𝑦)

[𝑑𝐼𝑓 (𝑓
𝑗𝑥, 𝑓 𝑗𝑦)]𝑚1Π𝑗−1

𝑙=0 [𝑑𝐼𝑓 (𝑓
𝑙𝑥, 𝑓 𝑙𝑦)]𝑚2

.

It follows from (2) and (4) and the fact that 𝑑ℐ𝑓
≤ 𝑑𝐼𝑓 that

(3.5)
1

𝑑ℐ𝑓
(𝑓 𝑗𝑥, 𝑓 𝑗𝑦)

≤ 𝐶1+𝛽+⋅⋅⋅+𝛽𝑗−1

[𝑑ℐ𝑓
(𝑥, 𝑦)]𝛽𝑗 .

We will use these bounds to obtain control on the modulus of continuity of 𝑔𝜔.
We treat the cases 𝛽 = 1 and 𝛽 > 1 separately since they are quite different.

3.1. The case 𝛽 = 1. Our aim here is to prove the following.

Theorem 3.1. Let 𝑓 : 𝑋 → 𝑋 be a 1-stable map which satisfies (2) with 𝛽 = 1.
Then there exists 𝛼 > 0 such that for all 𝑥, 𝑦 ∈ 𝑋 ∖ ℐ𝑓 ,

∣𝑔𝜔(𝑥)− 𝑔𝜔(𝑦)∣ ≤ 𝐶𝑥,𝑦 exp(−𝛼
√
∣ log 𝑑(𝑥, 𝑦)∣),

where (𝑥, 𝑦) �→ 𝐶𝑥,𝑦 > 0 is locally uniformly bounded in 𝑋 ∖ ℐ𝑓 .
We need the following elementary lemma whose proof is left to the reader.

Lemma 3.2. Fix 𝛼 ∈ ]0, 1[ and set, for 0 ≤ 𝑡 ≤ 1,
ℎ𝛼(𝑡) := exp(−𝛼

√
∣ log 𝑡∣).

Then for all 𝑡 ∈ [0, 1] and for all 𝐴 ≥ 1,
0 ≤ 𝑡 ≤ 𝑒 ℎ𝛼(𝑡) and 0 ≤ ℎ𝛼(𝐴𝑡) ≤ exp(𝛼

√
log𝐴)ℎ𝛼(𝑡).
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Proof of Theorem 3.1. Let 𝑥, 𝑦 ∈ 𝑋 − ℐ𝑓 be given. Since 𝛽 = 1, we infer from (3)
and (6) that ∣𝛾 ∘ 𝑓 𝑗(𝑥)∣ ≤ 𝐶𝑗, where 𝐶 depends only on 𝑑(𝑥, ℐ𝑓 ). In particular, if
𝑡 > 1, then

∣𝛾 ∘ 𝑓 𝑗(𝑥)− 𝛾 ∘ 𝑓 𝑗(𝑦)∣
𝑡𝑗

≤𝑀
for all 𝑗 ≥ 0 and some constant 𝑀 depending on 𝑡 and 𝑑ℐ𝑓

(𝑥, 𝑦). Moreover, from
(5) and (6), we obtain the alternative upper bound

∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣
𝑡𝑗

≤ 𝐶𝑚2𝑗
2+𝑚1𝑗+𝑗+1

𝑡𝑗 [𝑑ℐ𝑓
(𝑥, 𝑦)]𝑚1+𝑚2𝑗

𝑑(𝑥, 𝑦).

It follows therefore from Lemma 3.2 that

∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣
𝑀𝑡𝑗

≤ 𝑒 exp
(
𝛼
√
(𝑚2𝑗2 log𝐶 +𝐴𝑗 +𝐵)

)
ℎ𝛼(𝑑(𝑥, 𝑦)),

where 𝐴 and 𝐵 depend on 𝑡 and 𝑑ℐ𝑓
(𝑥, 𝑦). Thus

∣𝑔𝜔(𝑥)− 𝑔𝜔(𝑦)∣ ≤
∑
𝑗≥0

𝑀𝑡𝑗

𝜆𝑗
∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣

𝑀𝑡𝑗
≤ 𝐶𝑥,𝑦,𝑡ℎ𝛼 ∘ 𝑑(𝑥, 𝑦),

where the series defining 𝐶𝑥,𝑦,𝑡 converges as soon as 𝛼 < log(𝜆/𝑡)[𝑚2 log𝐶]
−1/2

since it is comparable to∑
𝑗≥0

𝑡𝑗

𝜆𝑗
exp

[
𝑗𝛼
√
𝑚2 log𝐶

]
< +∞.

Observe also that the dependence of 𝐶𝑥,𝑦 on (𝑥, 𝑦) only involves log 𝑑ℐ𝑓
(𝑥, 𝑦); hence

it is bounded on compact subsets of 𝑋 ∖ ℐ𝑓 . □
We now want to provide examples of rational mappings satisfying the assump-

tions of Theorem 3.1. Observe first that any separating birational 1-stable self-map
of a compact Kähler surface 𝑋 satisfies (2): this was observed by the first author
who proved Theorem 3.1 in this context (see Theorem 5.3 in [Di 2]). The reader
will find several examples of such birational mappings in [Di 1]. Note that the
proof given above greatly simplifies the proof given in [Di 2]. It also applies to
non-birational mappings, as the following example shows.

Example 3.3. Consider the meromorphic map 𝑓 : ℙ2 → ℙ2, given in local coordi-
nates on ℂ2 by

𝑓 : (𝑧1, 𝑧2) ∈ ℂ
2 �→ (𝑃 (𝑧1), 𝑄(𝑧1) +𝑅(𝑧2)) ∈ ℂ

2,

where 𝑃,𝑄,𝑅 are polynomials of degree 𝑝, 𝑞, 𝜆 with 𝜆 = 𝑝𝑞 > max(𝑝, 𝑞). The
indeterminacy locus consists of the single point

𝐼𝑓 = [0 : 0 : 1] = {𝑧0 = 𝑧2 = 0},
where {𝑧0 = 0} denotes the line at infinity, written in homogeneous coordinates.
Observe that 𝑓 contracts the line at infinity to the superattracting fixed point
[0 : 1 : 0] /∈ 𝐼𝑓 . Therefore 𝑓 is 1-stable on ℙ2 and ℐ𝑓 = 𝐼𝑓 . The map 𝑓 is an example
of a weakly-regular polynomial endomorphism of ℂ2 (see [GS]). It corresponds to
the critical case of mappings considered in [G 1], since the topological degree of 𝑓 ,

𝑑𝑡(𝑓) = 𝑝𝑞 = 𝜆,

coincides with its first dynamical degree 𝜆 > 1. Computations similar to those in
[G 1] show that 𝑓 satisfies (2) with 𝛽 = 1.
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3.2. The case 𝛽 > 1.

Theorem 3.4. Assume 𝑓 satisfies (2) with 1 < 𝛽 < 𝜆. Fix 𝛼 ∈ [0, log 𝜆
log 𝛽 − 1[. Then

for all 𝑥, 𝑦 ∈ 𝑋 ∖ ℐ𝑓 ,

∣𝑔𝜔(𝑥)− 𝑔𝜔(𝑦)∣ ≤ 𝐶𝛼(𝑥, 𝑦)

1 + ∣ log 𝑑(𝑥, 𝑦)∣𝛼 ,

where (𝑥, 𝑦) �→ 𝐶𝛼(𝑥, 𝑦) is locally uniformly bounded in 𝑋 ∖ ℐ𝑓 .
We need the following elementary lemma whose proof is left to the reader.

Lemma 3.5. Set 𝜑𝛼(𝑡) := [1 + ∣ log 𝑡∣𝛼]−1, for 0 ≤ 𝑡 ≤ 1.
Then there exists 𝐶 ′ > 1 independent of 𝛼 such that for all 𝑡 ∈ [0, 1] and for all

𝐴 ≥ 𝑒,
0 ≤ 𝑡 ≤ 𝐶 ′𝜑𝛼(𝑡) and 0 ≤ 𝜑𝛼(𝐴𝑡) ≤ 𝐶 ′(log𝐴)𝛼𝜑𝛼(𝑡).

Proof of Theorem 3.4. Let 𝑥, 𝑦 ∈ 𝑋 − ℐ𝑓 be given. Since 𝛽 > 1 it follows from (3)
and (6) that

∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣ ≤ max{∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)∣, ∣𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣} ≤𝑀𝛽𝑗 ,

for all 𝑗 ∈ ℕ and some constant 𝑀 depending on 𝑑ℐ𝑓
(𝑥, 𝑦). From (5) and (6) we

have the alternative bound

∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣ ≤
[

𝐶2

𝑑ℐ𝑓
(𝑥, 𝑦)𝑚3

]𝛽𝑗

𝑑(𝑥, 𝑦),

where 𝑚3 = 𝑚1 +𝑚2/(𝛽 − 1) and log𝐶2 = [1 +𝑚1/(𝛽 − 1) +𝑚2/(𝛽 − 1)2] log𝐶.
We infer using Lemma 3.5,

∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣
𝑀𝛽𝑗

≤ 𝐶𝛽𝛼𝑗𝜑𝛼 ∘ 𝑑(𝑥, 𝑦)

for all 𝑗 ∈ ℕ. Once again 𝐶 depends on 𝑥 and 𝑦 only through 𝑑ℐ𝑓
(𝑥, 𝑦). The factor

of 𝑀𝛽𝑗 ensures that the right side remains bounded above by 1; i.e., it guarantees
that the hypothesis of Lemma 3.5 is satisfied.
Now we conclude that

∣𝑔𝜔(𝑥)− 𝑔𝜔(𝑦)∣ ≤
∞∑
𝑗=0

𝑀

(
𝛽

𝜆

)𝑗 ∣𝛾𝜔 ∘ 𝑓 𝑗(𝑥)− 𝛾𝜔 ∘ 𝑓 𝑗(𝑦)∣
𝑀𝛽𝑗

≤ 𝐶𝜑𝛼(𝑑(𝑥, 𝑦))
∞∑
𝑗=0

(
𝛽

𝜆

)𝑗
𝛽𝛼𝑗 .

The sum on the right side converges as soon as 𝛽𝛼+1 < 𝜆, i.e. as soon as 𝛼 <
log 𝜆/ log 𝛽 − 1. □

Weakly-regular polynomial endomorphisms of ℂ𝑘 as considered in [FG], [G 1],
[GS] provide several examples of mappings which satisfy the assumptions of Theo-
rem 3.4. Let us recall that such control on the modulus of continuity of 𝑔𝜔 yields
integrability of log+ ∣∣𝐷𝑓 ∣∣ with respect to special invariant measures, as well as
estimates on the pointwise dimension of these measures (see [S], [Di 2]).
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4. Sobolev regularity

It can happen that the extended indeterminacy locus ℐ𝑓 is very large (see Section
6 for an example where ℐ𝑓 = 𝑋). Our aim in this section is to consider weaker
regularity properties for the functions 𝑔𝜔 which can hold even across points of
indeterminacy. To simplify we restrict ourselves to the case where 𝑓 is a
bimeromorphic surface map; i.e., dimℂ𝑋 = 2 and there is a meromorphic map
𝑓−1 : 𝑋 → 𝑋 such that 𝑓 ∘ 𝑓−1 = Id.
In this case it was proved by the first author and C. Favre [DF] that one can

always make a birational change of coordinates so that 𝑓 : 𝑋 → 𝑋 becomes 1-
stable. Moreover the spectral radius 𝜆 of 𝑓∗ : 𝐻1,1

ℝ
(𝑋) → 𝐻1,1

ℝ
(𝑋) is a simple

eigenvalue as soon as 𝜆 > 1. Since 𝑓∗ preserves the pseudoeffective cone and 𝑓∗ is
intersection adjoint to 𝑓∗, there are classes {𝜔±} ∈ 𝐻1,1

𝑝𝑠𝑒𝑓 (𝑋), unique up to positive
multiples, such that

𝑓∗{𝜔+} = 𝜆{𝜔+} and (𝑓−1)∗{𝜔−} = 𝜆{𝜔−}.
By Theorem 2.4 applied to 𝑓 and 𝑓−1, there are positive closed currents

𝑇± = 𝜔± + 𝑑𝑑𝑐𝑔±, where 𝑔± =
∑
𝑗≥0

1

𝜆𝑗
𝛾± ∘ 𝑓±𝑗

and the functions 𝛾± ∈ 𝐿1(𝑋) satisfy 𝜆−1(𝑓±)∗𝜔± = 𝜔±+𝑑𝑑𝑐𝛾±. We shall assume
moreover that

(4.1) {𝜔+} ⋅ 𝑓(𝑝) > 0 and {𝜔−} ⋅ 𝑓−1(𝑞) > 0,

for all 𝑝 ∈ 𝐼𝑓 , 𝑞 ∈ 𝐼𝑓−1 . This can always be arranged (see Proposition 4.1 in [BD]).
The main result of this section identifies geometric conditions equivalent to the

statement that the gradients ∇𝑔± belong to 𝐿2(𝑋). Since qpsh functions are always
in 𝐿1(𝑋), this is equivalent to saying that 𝑔+ and 𝑔− belong to the Sobolev space
𝑊 1,2(𝑋).

Theorem 4.1. Let 𝑓 : 𝑋 → 𝑋 be a birational map with 𝜆 = 𝜚𝑓∗ > 1. Then the
following conditions are equivalent:

(1) ∇𝑔+ ∈ 𝐿2(𝜔− ∧ Ω);
(2) for all 𝑝 ∈ 𝐼𝑓 ,

∑
𝑛≥0

𝛾−∘𝑓−𝑛(𝑝)
𝜆2𝑛 > −∞;

(3)
∑
𝑛≥0 𝜆

−2𝑛 log dist(𝐼𝑓−1 , 𝑓−𝑛𝐼𝑓 ) > −∞.
Observe that when 𝜔− is Kähler, then (1) means precisely that 𝑔+ has gradient

in 𝐿2(𝑋) with respect to the Lebesgue measure. The class {𝜔−} is automatically
Kähler when, for instance, 𝑋 = ℙ2. This condition should be compared to the
slightly stronger condition studied in [BD]: 𝑔− is finite at each point of 𝐼𝑓 . This is
equivalent to ∑

𝑛≥0

𝛾− ∘ 𝑓−𝑛(𝑝)
𝜆𝑛

> −∞

for all 𝑝 ∈ 𝐼𝑓 . As in [BD], these equivalent conditions are symmetric in 𝑓 and 𝑓−1;
i.e., one can interchange the roles played by 𝑓 and its inverse 𝑓−1 and obtain three
further equivalent conditions.

Proof. The equivalence between (2) and (3) follows from the fact that under the
assumption (4.1), 𝛾− is a smooth function in 𝑋 ∖ 𝐼𝑓−1 with logarithmic singu-
larities at points of indeterminacy of 𝑓−1. More precisely, there exist constants
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𝐴,𝐵,𝐴′, 𝐵′ > 0 such that

𝐴 log dist(𝑥, 𝐼𝑓−1)−𝐵 ≤ 𝛾−(𝑥) ≤ 𝐴′ log dist(𝑥, 𝐼𝑓−1)−𝐵′.

We refer the reader to [BD] for a proof of this fact.
It is a simple exercise to check that condition (2) is equivalent to the finiteness

of the sum
∑
𝑛≥0 𝜆

−𝑛𝑔−𝑛 (𝑝) at all points 𝑝 ∈ 𝐼𝑓 . Therefore the equivalence between
(1) and (2) is a consequence of the next lemma. □
Lemma 4.2. ∫

𝑋

𝑑𝑔+𝑛 ∧ 𝑑𝑐𝑔+𝑛 ∧ 𝜔− =
∑
𝑝∈𝐼𝑓

𝑛−1∑
𝑗=0

𝑐𝑗(𝑝)
∣𝑔−𝑗 (𝑝)∣
𝜆𝑗

+𝑂(1),

where the constants 𝑐𝑗(𝑝) are positive and uniformly bounded away from 0 and ∞.
Proof. Set 𝑇+

𝑛 := 𝜆−𝑛(𝑓𝑛)∗𝜔+. For 0 ≤ 𝑗 ≤ 𝑛− 1 we have

(4.2)

∫
(𝛾+ ∘ 𝑓 𝑗)𝑇+

𝑛 ∧ 𝜔− =
∫
𝛾+𝑇+

𝑛−𝑗 ∧
𝑓 𝑗∗𝜔−

𝜆𝑗
=

∫
𝛾+𝑇+

𝑛−𝑗 ∧ 𝜔− +𝐴𝑛,𝑗 ,

where

𝐴𝑛,𝑗 :=

∫
𝛾+𝑇+

𝑛−𝑗 ∧ 𝑑𝑑𝑐𝑔−𝑗 =
∫ [

1

𝜆
𝑓∗𝜔+ − 𝜔+

]
∧ 𝑔−𝑗 𝑇+

𝑛−𝑗 .

Observe that the currents 𝑓∗𝜔+, 𝑇+
𝑛−𝑗 both have positive Lelong numbers at points

in 𝐼𝑓 ; thus

1

𝜆
𝑓∗𝜔+ ∧ 𝑇+

𝑛−𝑗 =
∑
𝑝∈𝐼𝑓

𝑐𝑛−𝑗(𝑝)𝛿𝑝 +
1

𝜆2
𝑓∗
(
𝜔+ ∧ 𝑇+

𝑛−𝑗−1

)
,

where 𝛿𝑝 denotes the Dirac mass at point 𝑝 and the 𝑐𝑗 ’s are positive constants.
Observe that 𝑓∗𝜔+ ∧ 𝑇𝑗 → 𝑓∗𝜔+ ∧ 𝑇+, since 𝑔+𝑗 decreases towards 𝑔+. Since

𝑇+ has positive Lelong number at all points of indeterminacy, it follows that the
measure 𝑓∗𝜔+ ∧ 𝑇+ has a Dirac mass 𝑐∞(𝑝) > 0 at each point 𝑝 ∈ 𝐼𝑓 . Therefore
𝑐𝑗(𝑝) → 𝑐∞(𝑝) > 0. In particular, the sequences (𝑐𝑗(𝑝)) are uniformly bounded
away from zero and infinity. We infer

𝐴𝑛,𝑗 =
∑
𝑝∈𝐼𝑓

𝑐𝑛−𝑗(𝑝)𝑔−𝑗 (𝑝) +
1

𝜆2

∫
(𝑔−𝑗 ∘ 𝑓−1)𝜔+ ∧ 𝑇+

𝑛−(𝑗+1) −
∫
𝑔−𝑗 𝜔

+ ∧ 𝑇+
𝑛−𝑗 .

Observe that 𝜆−1𝑔−𝑗 ∘𝑓−1 = 𝑔−𝑗+1−𝛾−. Thus multiplying (8) by 𝜆−𝑗 and summing
from 𝑗 = 0 to 𝑛− 1 yields∫

𝑔+𝑛 𝑇
+
𝑛 ∧ 𝜔− =

∑
𝑝∈𝐼𝑓

𝑛−1∑
𝑗=0

𝑐𝑛−𝑗(𝑝)
𝑔−𝑗 (𝑝)
𝜆𝑗

+

∫
𝑔−𝑛
𝜆𝑛
𝜔+ ∧ 𝜔+ −

∫
𝛾−𝑇+ ∧ 𝜔+ +𝑀𝑛,

where

𝑀𝑛 :=
𝑛−1∑
𝑗=0

1

𝜆𝑗

∫
𝛾+𝑇+

𝑛−𝑗 ∧ 𝜔+ −
𝑛−1∑
𝑗=0

1

𝜆𝑗+2

∫
𝛾−𝜔+ ∧ 𝑇+

𝑛𝑗−1

is a bounded sequence. Note to conclude that∫
(−𝑔+𝑛 )𝑇+

𝑛 ∧ 𝜔− =
∫
(−𝑔𝑛)+𝑑𝑑𝑐𝑔+𝑛 ∧ 𝜔− +

∫
(−𝑔𝑛)+𝜔+ ∧ 𝜔+

=

∫
𝑑𝑔+𝑛 ∧ 𝑑𝑐𝑔+𝑛 ∧ 𝜔− +𝑂(1). □
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The function 𝑔+ (resp. 𝑔−) typically has positive Lelong number at every point
of 𝐼∞𝑓 :=

∪
𝑛≥0 𝐼𝑓𝑛 =

∪
𝑛≥0 𝑓

−𝑛(𝐼𝑓 ) (resp. 𝐼∞𝑓−1 :=
∪
𝑛≥0 𝐼𝑓−𝑛 =

∪
𝑛≥0 𝑓

𝑛(𝐼𝑓−1)).

The closer 𝑓−𝑛𝐼𝑓 is to 𝐼𝑓−1 , the stronger the singularity of 𝑔− at these points. The
symmetric condition ∇𝑔± ∈ 𝐿2(𝑋) is thus a quantitative way of saying that the
sets 𝐼∞𝑓 and 𝐼∞𝑓−1 stay away from each other (recall that the condition of 1-stability

means precisely that 𝐼∞𝑓 ∩ 𝐼∞𝑓−1 = ∅). We will see in Section 6 that this condition
is often but not always satisfied.

5. A canonical invariant measure

We consider here, as in the previous section, a compact Kähler surface 𝑋
equipped with a Kähler form Ω, and a 1-stable bimeromorphic map 𝑓 : 𝑋 → 𝑋
such that 𝜆 = 𝜌𝑓 > 1. As before, we let 𝑇± = 𝜔± + 𝑑𝑑𝑐𝑔± denote the positive
closed (1, 1)-currents invariant under 𝑓±1. We normalize so that

{𝑇+} ⋅ {𝑇−} = {Ω} ⋅ {𝑇+} = {Ω} ⋅ {𝑇−} = 1.
Our aim here is to define and study the measure

𝜇𝑓 := “𝑇
+ ∧ 𝑇−”.

5.1. Definition of the canonical measure 𝜇𝑓 . It is well known that one cannot
always define the wedge product of two positive closed currents. When 𝑔+ is inte-
grable with respect to the trace measure of 𝑇−, i.e. 𝑔+ ∈ 𝐿1(𝑇− ∧ Ω), the current
𝑔+𝑇− is well defined, and we can set

𝜇𝑓 := 𝜔
+ ∧ 𝑇− + 𝑑𝑑𝑐(𝑔+𝑇−).

Observe that the condition is symmetric, as follows from the Stokes theorem:∫
𝑋

(−𝑔+)𝑇− ∧ Ω =
∫
𝑋

(−𝑔−)𝑇+ ∧ Ω+
∫
𝑋

(𝑔−𝜔+ − 𝑔+𝜔−) ∧ Ω.

When the potentials 𝑔± have gradients in 𝐿2(𝑋), it follows from the Cauchy-
Schwarz inequality that 𝑔+ ∈ 𝐿1(𝑇− ∧ Ω), since

0 ≤
∫
−𝑔+𝑇− ∧ Ω =

∫
−𝑔+𝜔− ∧ Ω+

∫
𝑑𝑔+ ∧ 𝑑𝑐𝑔− ∧ Ω

≤
∫
−𝑔+𝜔− ∧ Ω+

(∫
𝑑𝑔+ ∧ 𝑑𝑐𝑔+ ∧ Ω

)1/2 (∫
𝑑𝑔− ∧ 𝑑𝑐𝑔− ∧ Ω

)1/2

< +∞.

It may happen, however, that 𝑔+ ∈ 𝐿1(𝑇−∧Ω) while ∇𝑔+ /∈ 𝐿2(𝑋) (see example
6.2). We know of no example for which the function 𝑔+ is not integrable with respect
to the trace measure of 𝑇−. Hence we have the following:

Question 5.1. Is the condition 𝑔+ ∈ 𝐿1(𝑇− ∧ Ω) always satisfied?
We now derive a criterion which will allow us to check the condition 𝑔+ ∈

𝐿1(𝑇− ∧ Ω) for some birational mappings.
Proposition 5.2. Let 𝑆 be a positive closed (1, 1)-current on 𝑋, whose cohomology
class {𝑆} is Kähler. Assume

(1) 𝑔− ∈ 𝐿1(𝑆 ∧ Ω), so that the measure 𝑆 ∧ 𝑇− is well defined;
(2) 𝑔+ ∈ 𝐿1(𝑆 ∧ 𝑇−).

Then 𝑔+ ∈ 𝐿1(𝑇− ∧ Ω).
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Proof. Let 𝜃𝑆 ≥ 𝜀Ω be a Kähler form cohomologous to 𝑆. Let 𝜑𝑆 ∈ 𝐿1(𝑋) be a
qpsh function such that 𝑆 = 𝜃𝑆 + 𝑑𝑑

𝑐𝜑𝑆. We can assume without loss of generality
that 𝜑𝑆 ≤ 0 and 𝜀 = 1. Then

0 ≤
∫
𝑋

−𝑔+𝑇− ∧ Ω ≤
∫
𝑋

−𝑔+𝑇− ∧ 𝜃𝑆 =
∫
𝑋

−𝑔+𝑇− ∧ 𝑆 +
∫
𝑋

𝑔+𝑇− ∧ 𝑑𝑑𝑐𝜑𝑆 .

The next to last integral is finite by assumption. The last one is finite by Stokes
theorem:∫

𝑔+𝑇− ∧ 𝑑𝑑𝑐𝜑𝑆 = lim
𝑛→∞

∫
𝑔+𝑛 𝑇

− ∧ 𝑑𝑑𝑐𝜑𝑆 = lim
𝑛→∞

∫
−𝜑𝑆𝑇− ∧ (−𝑑𝑑𝑐𝑔+𝑛 )

≤
∫
𝑋

(−𝜑𝑆)𝑇− ∧ 𝜔+ <∞.

The first inequality holds because −𝑑𝑑𝑐𝑔+𝑛 = 𝜔+ − 𝑇+ ≤ 𝜔+. The second holds
because 𝜔+ ≤ 𝐶Ω and 𝜑𝑆 ∈ 𝐿1(𝑇− ∧ Ω)⇔ 𝑔− ∈ 𝐿1(𝑆 ∧ Ω). □

We will use this criterion in Section 6.2 when 𝑆 = [𝑉 ] is the current of integration
along an invariant irreducible curve 𝑉 .

5.2. Dynamical properties of 𝜇𝑓 . We assume in the sequel that 𝑔
+ ∈ 𝐿1(𝑇−∧Ω)

so that 𝜇𝑓 = 𝑇
+ ∧ 𝑇− is well defined.

Theorem 5.3. The measure 𝜇𝑓 does not charge the indeterminacy locus 𝐼𝑓 . It is
an invariant probability measure.

Proof. The current 𝜇𝑓 is a positive measure. This can be seen by locally regularizing
the qpsh function 𝑔+. It is a probability measure by our choice of normalization,
and it is the weak limit of the measures

𝜇𝑛 :=
1

𝜆𝑛
(𝑓𝑛)∗𝜔+ ∧ 𝑇−.

Let 𝜒 be a test function. Observe that 𝑇− does not charge curves (it has zero
Lelong number at each point in 𝑋∖𝐼∞𝑓−1 ; see [DF]), hence neither does 𝜇𝑛. It follows

therefore from the change of variables formula and the invariance 𝑓∗𝑇− = 𝜆𝑇− that

⟨𝜇𝑛, 𝜒⟩ = 1

𝜆𝑛+1
⟨(𝑓𝑛)∗𝜔+, 𝜒𝑓∗𝑇−⟩ = ⟨𝜇𝑛+1, 𝜒 ∘ 𝑓⟩.

We infer, if 𝜇𝑓 (𝐼𝑓 ) = 0, that ⟨𝜇𝑓 , 𝜒⟩ = ⟨𝜇𝑓 , 𝜒 ∘ 𝑓⟩; hence 𝜇𝑓 is invariant.
It remains to prove that 𝜇𝑓 does not charge any point 𝑝 ∈ 𝐼𝑓 . Since 𝑓 is 1-stable,

we may assume that 𝑝 /∈ 𝐼∞𝑓−1 . If 𝑝 = 𝑓−𝑁 (𝑝) is periodic, then 𝑔− is finite at 𝑝.

Hence it follows from Proposition 5.4 below that 𝜇𝑓 ({𝑝}) = 0.
If on the other hand, 𝑝 is not periodic, we can fix 𝑁 ≫ 1 and choose 𝑟 = 𝑟𝑁 > 0

such that 𝑓−𝑗𝐵(𝑝, 𝑟) ∩ 𝑓−𝑘𝐵(𝑝, 𝑟) = ∅ for 0 ≤ 𝑗, 𝑘 ≤ 𝑁 , 𝑗 ∕= 𝑘. Let 𝜒 be a test
function such that 0 ≤ 𝜒 ≤ 1, 𝜒 ≡ 1 near 𝑝, and supp 𝜒 ⊂ 𝐵(𝑝, 𝑟). Then

0 ≤ 𝜓 :=
𝑛−1∑
𝑗=0

𝜒 ∘ 𝑓 𝑗 ≤ 1,

since the functions 𝜒 ∘ 𝑓 𝑗 have disjoint supports. Set

𝑅𝑛 := (𝜓 ∘ 𝑓𝑛)𝑇+ =
𝑁−1∑
𝑗=0

(𝜒 ∘ 𝑓 𝑗+𝑛)𝑇+.
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It follows from the extremality of 𝑇+ that the positive currents (𝜒 ∘ 𝑓 𝑗+𝑛)𝑇+

converge to 𝑐𝜒𝑇
+, where 𝑐𝜒 =

∫
𝜒𝑑𝜇𝑓 (see [BD], [G 1]). Thus 𝑅𝑛 → 𝑁𝑐𝜒𝑇

+.
Now 0 ≤ 𝑅𝑛 ≤ 𝑇+ since 0 ≤ 𝜓 ≤ 1; hence

0 ≤ 𝜇𝑓 ({𝑝}) ≤ 𝑐𝜒 =
∫
𝜒𝑑𝜇𝑓 ≤ 1

𝑁
.

Since 𝑁 was arbitrary, we conclude that 𝜇𝑓 ({𝑝}) = 0. Thus 𝜇𝑓 does not charge the
indeterminacy locus. □

Proposition 5.4. Fix 𝑝 ∈ 𝐼𝑓 . Then 𝑔−(𝑝) is finite if and only if log dist(⋅, 𝑝) ∈
𝐿1(𝜇𝑓 ). In particular 𝑔

− is finite on 𝐼𝑓 (the [BD] condition described after Theorem
4.1) if and only if log dist(⋅, 𝐼𝑓 ) ∈ 𝐿1(𝜇𝑓 ).

Proof. We first characterize the [BD] condition. Afterward, we will show how to
‘localize’ it to individual points in 𝐼𝑓 . Recall from [BD] that, under the assumption
(4.1), log dist(⋅, 𝐼𝑓 ) is comparable to the function 𝛾+. Hence it suffices to analyze
the condition 𝛾+ ∈ 𝐿1(𝜇𝑓 ).
Suppose first that 𝑔− is finite on 𝐼𝑓 . It follows from Corollary 4.8 in [BD] that

𝑔+ ∈ 𝐿1(𝜇𝑓 ), and from the bound 𝑔+ ≤ 𝛾+ ≤ 0 that 𝛾+ ∈ 𝐿1(𝜇𝑓 ).
Assume now that 𝛾+ ∈ 𝐿1(𝜇𝑓 ). It follows from the Stokes theorem that∫
𝑋

(−𝛾+)𝑑𝜇𝑓 = 𝑂(1) +

∫
𝑋

(−𝑔+)𝑑𝑑𝑐𝛾+ ∧ 𝑇− ≥ 𝑂(1) +
∫
𝑋

𝑑𝛾+ ∧ 𝑑𝑐𝛾+ ∧ 𝑇−,

where the 𝑂(1) terms account for the fact that 𝑔+ and 𝛾+ are plurisubharmonic
only up to the addition of a smooth function. Therefore 𝛾+ has finite energy with
respect to the invariant current 𝑇−. By the Stokes theorem again,∫
𝑑𝛾+ ∧ 𝑑𝑐𝛾+ ∧ 𝑇− = 𝑂(1) +

∫
𝑑𝛾+ ∧ 𝑑𝑐𝛾+ ∧ 𝑑𝑑𝑐𝑔− = 𝑂(1) +

∫
(−𝑔−)(𝑑𝑑𝑐𝛾+)2.

Now

(𝑑𝑑𝑐𝛾+)2 =
∑
𝑝∈𝐼𝑓

𝑐𝑝𝛿𝑝 + 𝜆
−2𝑓∗(𝜔+ ∧ 𝜔+)− 2𝜆−1𝑓∗𝜔+ ∧ 𝜔+ + 𝜔+ ∧ 𝜔+,

where 𝑐𝑝 > 0 and 𝛿𝑝 denotes the Dirac mass at point 𝑝. Therefore∫
𝑋

𝑑𝛾+ ∧ 𝑑𝑐𝛾+ ∧ 𝑇− = 𝑂(1)−
∑
𝑝∈𝐼𝑓

𝑐𝑝𝑔
−(𝑝),

so 𝛾+ ∈ 𝐿1(𝜇𝑓 ) implies that 𝑔
− is finite at every point of 𝐼𝑓 .

We can now localize the previous reasoning in the following way. Fix 𝑝 ∈ 𝐼𝑓 and
𝜒 ≥ 0 a test function supported near 𝑝 such that 𝜒 ≡ 1 in some small neighborhood
of 𝑝. Thus 𝜑+ := 𝜒𝛾+ is comparable to log dist(⋅, 𝑝). Observe that 𝑑𝑑𝑐𝜑+ equals
𝜒𝑑𝑑𝑐𝛾+ up to a smooth form. By using the Stokes theorem as above we thus get∫
(−𝜑+)𝑑𝜇𝑓 = 𝑂(1) +

∫
(−𝑔−)𝑇+ ∧ 𝜒𝑑𝑑𝑐𝛾+ = 𝑂(1) + 𝜆−1

∫
(−𝑔−)𝑇+ ∧ 𝜒𝑓∗𝜔+.

Now 𝜒𝑇+ ∧ 𝑓∗𝜔+ = 𝑐𝛿𝑝 + 𝜒𝑓
∗(𝑇+ ∧ 𝜔+) for some 𝑐 > 0. Therefore∫

(−𝜑+)𝑑𝜇𝑓 = 𝑂(1)− 𝑐𝑔
−(𝑝)
𝜆

+

∫
(−𝑔− ∘ 𝑓−1)𝑇+ ∧ 𝜔+.

The last integral is finite since 0 ≥ 𝑔− ∘ 𝑓−1 ≥ 𝜆𝑔−. Thus 𝜑+ ≃ log dist(⋅, 𝑝) is
integrable with respect to 𝜇𝑓 if and only if 𝑔

− is finite at point 𝑝. □
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Theorem 5.5. The measure 𝜇𝑓 is mixing.

Proof. Let 𝜒, 𝜓 be test functions. We have to show that∫
𝑋

𝜓(𝜒 ∘ 𝑓𝑛) 𝑑𝜇𝑓 −→ 𝑐𝜒𝑐𝜓, where 𝑐𝜒 =

∫
𝑋

𝜒𝑑𝜇𝑓 and 𝑐𝜓 =

∫
𝑋

𝜓 𝑑𝜇𝑓 .

It follows from the extremality of 𝑇+ that the currents (𝜒∘𝑓𝑛)𝑇+ converge weakly
towards 𝑐𝜒𝑇

+. For fixed 𝑗, the forms 𝜓𝜆−𝑗(𝑓−𝑗)∗𝜔− are smooth off the finite set
𝐼𝑓−𝑗 . Since 𝑇+ ∧ 𝜆−𝑗(𝑓−𝑗)∗𝜔− does not charge this set, we infer

⟨(𝜒 ∘ 𝑓𝑛)𝑇+, 𝜓𝜆−𝑗(𝑓−𝑗)∗𝜔−⟩ −→ ⟨𝑐𝜒𝑇+, 𝜓𝜆−𝑗(𝑓−𝑗)∗𝜔−⟩,
as 𝑛→ +∞. Since 𝜆−𝑗(𝑓−𝑗)∗𝜔− = 𝜔− + 𝑑𝑑𝑐𝑔−𝑗 with 𝑔

−
𝑗 decreasing towards 𝑔

−, it
follows from the Monotone Convergence Theorem that

⟨𝑐𝜒𝑇+, 𝜓𝜆−𝑗(𝑓−𝑗)∗𝜔−⟩ −→ ⟨𝑐𝜒𝑇+, 𝜓𝑇−⟩ = 𝑐𝜒𝑐𝜓,
when 𝑗 → +∞. Therefore it suffices to show that the difference
⟨𝜒 ∘ 𝑓𝑛𝑇+, 𝜓𝑇−⟩ − ⟨𝜒 ∘ 𝑓𝑛𝑇+, 𝜓𝜆−𝑗(𝑓−𝑗)∗𝜔−⟩ = ⟨𝜒 ∘ 𝑓𝑛𝑇+, 𝜓𝑑𝑑𝑐(𝑔− − 𝑔−𝑗 )⟩

converges to 0 as 𝑗 → +∞ uniformly with respect to 𝑛. By the Stokes theorem, it
suffices to uniformly control the following four quantities:

𝐴𝑛,𝑗 := ⟨𝜒 ∘ 𝑓𝑛𝑇+ ∧ 𝑑𝑑𝑐𝜓, (𝑔− − 𝑔−𝑗 )⟩; 𝐵𝑛,𝑗 := ⟨𝜓𝑑𝑑𝑐(𝜒 ∘ 𝑓𝑛) ∧ 𝑇+, (𝑔− − 𝑔−𝑗 )⟩;
and

𝐶𝑛,𝑗 := ⟨𝑑𝜓∧𝑑𝑐(𝜒∘𝑓𝑛)∧𝑇+, (𝑔−−𝑔−𝑗 )⟩; 𝐷𝑛,𝑗 := ⟨𝑑𝑐𝜓∧𝑑(𝜒∘𝑓𝑛)∧𝑇+, (𝑔−−𝑔−𝑗 )⟩.
Observe first that

∣𝐴𝑛,𝑗 ∣ ≤ ∣∣𝜓∣∣𝒞2 ∣∣𝜒∣∣𝒞0 ⟨Ω ∧ 𝑇+, (𝑔−𝑗 − 𝑔−)⟩.
To control 𝐵𝑛,𝑗 , we observe that 𝑑𝑑

𝑐(𝜒 ∘ 𝑓𝑛 𝑇+) does not charge curves. Hence
changing variables gives

∣𝐵𝑛,𝑗 ∣ =
∣∣⟨𝑑𝑑𝑐𝜒 ∧ 𝑇+, 𝜓 ∘ 𝑓−𝑛(𝑔− − 𝑔−𝑗+𝑛)⟩

∣∣ ≤ ∣∣𝜓∣∣𝒞0 ∣∣𝜒∣∣𝒞2 ⟨Ω ∧ 𝑇+, (𝑔−𝑗+𝑛 − 𝑔−)⟩.
To control 𝐶𝑛,𝑗 , we use the Cauchy-Schwarz inequality and obtain

∣𝐶𝑛,𝑗 ∣ ≤ ⟨𝑑𝜓 ∧ 𝑑𝑐𝜓 ∧ 𝑇+, (𝑔− − 𝑔−𝑗 )⟩1/2 ⋅ ⟨𝑑𝜒 ∘ 𝑓𝑛 ∧ 𝑑𝑐𝜒 ∘ 𝑓𝑛 ∧ 𝑇+, (𝑔− − 𝑔−𝑗 )⟩1/2
≤ ∣∣𝜓∣∣𝒞1 ∣∣𝜒∣∣𝒞1 ⟨Ω ∧ 𝑇+, (𝑔−𝑗 − 𝑔−)⟩1/2 ⋅ ⟨Ω ∧ 𝑇+, (𝑔−𝑗+𝑛 − 𝑔−)⟩1/2.

The estimation for 𝐷𝑛,𝑗 is similar. This shows that 𝜇𝑓 is mixing. □

Thanks to the preceding results, we can show that 𝜇𝑓 is not too concentrated.

Corollary 5.6. The measure 𝜇𝑓 does not charge compact complex curves.

Proof. Suppose first that 𝜇𝑓 charges some point 𝑝 ∈ 𝑋. By Theorems 5.3 and
5.5, 𝑝 is a fixed point not in 𝐼𝑓 or 𝐼𝑓−1 , and 𝜇𝑓 is concentrated entirely at 𝑝. In
particular, both functions log dist(⋅, 𝐼𝑓 ) and log dist(⋅, 𝐼𝑓−1) are 𝜇𝑓 -integrable. From
Proposition 5.4 we obtain that 𝑔+ is finite on 𝐼𝑓−1 and 𝑔− is finite on 𝐼𝑓 , i.e. that
the [BD] condition holds. Theorem 4.10 from [BD] then implies that 𝜇𝑓 does not
charge points, which is a contradiction.
Now suppose that 𝜇𝑓 charges some irreducible curve 𝑉 ⊂ 𝑋. Then invariance

of 𝜇𝑓 implies that 𝑉 cannot be critical for 𝑓 , because 𝑓(𝑉 − 𝐼𝑓 ) ⊂ 𝐼𝑓−1 . Invariance

also implies that 𝜇𝑓 almost every point is non-wandering. Hence 𝑓
𝑘 restricts to an

automorphism of 𝑉 for some 𝑘 ≥ 0. However, the only mixing invariant measures
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for automorphisms of curves are point masses concentrated at fixed points, and we
have already ruled out the possibility that 𝜇𝑓 charges points. □

In Section 6 we will see examples where 𝑔+ ∈ 𝐿1(𝑇− ∧ Ω) but the conditions
in both Theorem 4.1 and in [BD] fail. Observe that when the condition in [BD]
is not satisfied, it is unclear whether 𝑓 has well-defined Lyapunov exponents (see
Proposition 5.4).

6. Examples

In this section, we present two examples that complement the theorems above.
The first shows that the indeterminacy orbit of a rational map can be dense in the
host manifold. The second, which occupies the majority of the section, shows that
the invariant measure 𝜇𝑓 = 𝑇+ ∧ 𝑇− can exist for a birational surface map even
when the map fails to satisfy the equivalent conditions in Theorem 4.1.

6.1. A rational map with dense indeterminacy orbits. Let 𝑌 = 𝐸 × 𝐸 be
a complex torus, where 𝐸 = ℂ/ℤ[𝜁] is the elliptic curve associated to a primitive
root of unity 𝜁 of order 3, 4 or 6. The matrix

𝐴 =

[
𝑑 1
1 𝑑

]
, 𝑑 ≥ 3,

preserves the lattice Λ = ℤ[𝜁]×ℤ[𝜁] and thus induces a holomorphic endomorphism
𝑔 : 𝑌 → 𝑌 such that

𝜆2(𝑔) = (𝑑
2 − 1)2 and 𝜆1(𝑔) = (𝑑+ 1)

2 < 𝜆2(𝑔).

Let 𝜎 : 𝑌 → 𝑌 be multiplication by 𝜁, and let 𝑓 : 𝑋 → 𝑋 denote the endomorphism
induced by 𝑔 on the rational surface 𝑋 obtained by desingularizing the quotient
𝑌/⟨𝜎⟩, i.e. by blowing up at fixed points of 𝜎.
Let 𝑎 be such a fixed point. Since 𝑔 has topological degree 𝜆2(𝑔) ≥ 2, 𝑔−1(𝑎)

contains preimages other than the fixed points of 𝜎. Each point in 𝑔−1(𝑎) ∖𝐹𝑖𝑥(𝜎)
corresponds, in 𝑋, to a point of indeterminacy of 𝑓 . Since the Lebesgue measure
𝜈𝑌 of the torus 𝑌 is 𝑔-mixing, the preimages (𝑔−𝑛(𝑎))𝑛∈ℕ are equidistributed with
respect to 𝜈𝑌 and therefore dense in 𝑌 . It follows that the set

𝐼∞𝑓 :=
∪
𝑛∈ℕ

𝑓−𝑛𝐼𝑓 is dense in 𝑋.

Observe also that 𝑓 is 1-stable: since 𝑔 does not contract any curve, neither does
𝑓 .

6.2. A birational surface map with constrained indeterminacy orbits. Our
second example is a variation on one due to Favre [F]. For parameters 𝑎, 𝑏, 𝑐 ∈ ℂ∗,
we consider 𝑓 = 𝑓𝑎𝑏𝑐 : ℙ

2 → ℙ2 defined by

𝑓 [𝑥 : 𝑦 : 𝑧] = [𝑏𝑐𝑥(−𝑐𝑥+ 𝑎𝑐𝑦 + 𝑧) : 𝑎𝑐𝑦(𝑥− 𝑎𝑦 + 𝑎𝑏𝑧) : 𝑎𝑏𝑧(𝑏𝑐𝑥+ 𝑦 − 𝑏𝑧)].
The following facts can be verified by straightforward computation.

∙ 𝑓𝑎𝑏𝑐 is birational with inverse 𝑓−1 = 𝑓𝑎−1𝑏−1𝑐−1 .
∙ 𝐼𝑓 = {[𝑎 : 1 : 0], [0 : 𝑏 : 1], [1 : 0 : 𝑐]}.
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∙ 𝑓 preserves each of the lines {𝑥 = 0}, {𝑦 = 0}, {𝑧 = 0} according to the
formulas

[𝑥 : 1 : 0] �→ [−𝑏𝑐
𝑎
𝑥 : 1 : 0], [0 : 𝑦 : 1] �→

[
0 : −𝑎𝑐

𝑏
𝑦 : 1

]
, [1 : 0 : 𝑧] �→

[
1 : 0 : −𝑏𝑎

𝑐
𝑧

]
.

In particular, we have 𝐼∞𝑓 , 𝐼
∞
𝑓−1 ⊂ {𝑥𝑦𝑧 = 0} for all 𝑎, 𝑏, 𝑐 ∈ ℂ∗. Let Ω denote the

Fubini Study Kähler form on ℙ
2. We will spend the rest of this section proving

Theorem 6.1. Given 𝑠 > 1 and an irrational number 𝜃 ∈ ℝ, let 𝑓 : ℙ2 → ℙ
2 be

the birational map 𝑓 = 𝑓𝑎𝑏𝑐 with 𝑎 = 𝑖, 𝑏 = −𝑠𝑒2𝜋𝑖𝜃, 𝑐 = 𝑖/𝑠. Then 𝑓 is 1-stable
with invariant currents 𝑇± = Ω+𝑑𝑑𝑐𝑔± such that 𝑔+ ∈ 𝐿1(Ω∧𝑇−). Moreover, for
suitable choices of the irrational number 𝜃, the condition (3) in Theorem 4.1 fails.

In other words, the measure 𝜇 = 𝑇+ ∧ 𝑇− is well-defined even though the
conditions in Theorem 4.1 sometimes fail.

Proof. To see that 𝑓 is 1-stable, observe that the hypothesis 𝑠 > 1 implies that
𝑓−𝑛𝐼𝑓 ∩ {𝑥 = 0} ⊂ {[0 : 𝑦 : 1] : ∣𝑦∣ > 1} for all 𝑛 ≥ 0, whereas 𝐼𝑓−1 ∩ {𝑥 =
0} ⊂ {[0 : 𝑦 : 1] : ∣𝑦∣ < 1}. In particular 𝑓−𝑛𝐼𝑓 ∩ 𝐼𝑓−1 ∩ {𝑥 = 0} = ∅. Similarly,
𝑓−𝑛𝐼𝑓 ∩ 𝐼𝑓−1 ∩ {𝑦 = 0} = ∅. Finally, for each 𝑛 ≥ 0, we have 𝑓−𝑛𝐼𝑓 ∩ {𝑧 =
0} = [𝑖𝑒−2𝜋𝑖𝑛𝜃 : 1 : 0], and since 𝜃 is irrational, these points never coincide with
𝐼𝑓−1 ∩ {𝑧 = 0} = [−𝑖 : 1 : 0]. We conclude that 𝑓−𝑛𝐼𝑓 ∩ 𝐼𝑓−1 = ∅ for all 𝑛 ≥ 0.
That is, 𝑓 is 1-stable. In particular 𝜆 := 𝜚𝑓∗ = 2.
To prove that 𝑔+ ∈ 𝐿1(Ω ∧ 𝑇−), we apply Proposition 5.2 with 𝑆 equal to the

current of integration [𝑥 = 0] over the line {𝑥 = 0}. Observe that Ω∧ [𝑥 = 0] is just
area measure on {𝑥 = 0}. Because 𝑔− is qpsh it follows that either 𝑔− is integrable
with respect to Ω∧ [𝑥 = 0], or 𝑔−∣{𝑥=0} ≡ −∞. The latter is far from true, however.

One can compute directly, for instance, that 𝑔− > −∞ at the fixed point [0 : 0 : 1].
Thus 𝑔− ∈ 𝐿1(Ω ∧ [𝑥 = 0]).
It follows from standard arguments that local potentials for 𝑇− must be harmonic

on any open set 𝑈 ⊂ {𝑥 = 0} such that
∙ iterates of 𝑓−1 form a normal family on 𝑈 , and
∙ 𝑈 ∩ 𝑓𝑛𝐼𝑓−1 = ∅ for all 𝑛 ≥ 0.

The only point in {𝑥 = 0} where iterates of 𝑓−1 fail to act normally is the fixed
point [0 : 0 : 1]. Hence

supp ([𝑥 = 0] ∩ 𝑇−) ⊂
∪
𝑛≥0

𝑓𝑛𝐼𝑓−1

is a compact subset of {[0 : 𝑦 : 1] : ∣𝑦∣ < 1}. Replacing 𝑓−1 with 𝑓 , the same
reasoning shows that local potentials for 𝑇+ are harmonic on {[0 : 𝑦 : 1] : ∣𝑦∣ < 1}.
Thus 𝑔+ is uniformly bounded on supp ([𝑥 = 0] ∩ 𝑇−), and it follows that 𝑔+ ∈
𝐿1([𝑥 = 0] ∧ 𝑇−). Therefore by Proposition 5.2, 𝑔+ ∈ 𝐿1(Ω ∧ 𝑇−).
To see that condition (3) in Theorem 4.1 fails for suitably chosen 𝜃, let ℎ : ℝ+ →

ℝ
+ be a function decreasing rapidly to 0. By a Baire category argument, one can

find irrational 𝜃 such that

2𝑛𝑗𝜃 mod 1 < ℎ(𝑛𝑗)
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for infinitely many 𝑛𝑗 ∈ ℕ. Thus, if we set 𝑝+ = [𝑖 : 1 : 0] ∈ 𝐼𝑓 and 𝑝− = [−𝑖 : 1 :
0] ∈ 𝐼𝑓 , we obtain

∞∑
𝑛=0

1

𝜆2𝑛
log dist(𝑓−𝑛𝐼𝑓 , 𝐼𝑓−1) ≤

∞∑
𝑛=0

log dist(𝑓𝑛(𝑝−), 𝑝+)
22𝑛

≤ 𝐶
∞∑
𝑛=0

log ∣𝑒−2𝜋𝑛𝑖 + 1∣
22𝑛

≤ 𝐶
∞∑
𝑗=0

log ℎ(𝑛𝑗)

22𝑛𝑗
.

The last sum diverges to −∞ if we take e.g. ℎ(𝑥) = 2−22𝑛

, and condition (3) in
Theorem 4.1 then fails. □
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phes de P𝑘. Thése, Université Paul Sabatier, Toulouse (France), 1997.

[Bro] H. Brolin: Invariant sets under iteration of rational functions. Ark. Mat. 6 (1965) 103–144.
MR0194595 (33:2805)

[Bu] X. Buff: On the Bieberbach conjecture and holomorphic dynamics. Proc. Amer. Math.
Soc. 131 (2003), no. 3, 755–759. MR1937413 (2003i:37041)

[CG] L. Carleson & T. Gamelin: Complex dynamics. Universitext: Tracts in Mathematics.
Springer-Verlag, New York, 1993. MR1230383 (94h:30033)

[Di 1] J. Diller: Dynamics of birational maps of P2. Indiana Univ. Math. J. 45 (1996), no. 3,
721–772. MR1422105 (97k:32044)

[Di 2] J. Diller: Invariant measure and Lyapunov exponents for birational maps of P2. Comment.
Math. Helv. 76 (2001), no. 4, 754–780. MR1881705 (2003a:32029)

[DF] J. Diller & C. Favre: Dynamics of bimeromorphic maps of surfaces. Amer. J. Math. 123
(2001), no. 6, 1135–1169. MR1867314 (2002k:32028)

[DS 1] T.-C. Dinh & N. Sibony: Regularization of currents and entropy. Ann. Sci. École Norm.
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