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REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS

JEFFREY DILLER AND VINCENT GUEDJ

ABSTRACT. For meromorphic maps of complex manifolds, ergodic theory and
pluripotential theory are closely related. In nice enough situations, dynami-
cally defined Green’s functions give rise to invariant currents which intersect
to yield measures of maximal entropy. ‘Nice enough’ is often a condition on
the regularity of the Green’s function. In this paper we look at a variety of
regularity properties that have been considered for dynamical Green’s func-
tions. We simplify and extend some known results and prove several others
which are new. We also give some examples indicating the limits of what one
can hope to achieve in complex dynamics by relying solely on the regularity
of a dynamical Green’s function.

INTRODUCTION

A holomorphic, or more generally, meromorphic self-map f : X — X of a com-
pact complex manifold X induces actions f*, f. : H*(X,R) — H*(X,R) on the
real cohomology groups of X. It is conjectured that when these actions are suit-
ably well-behaved, then the topological entropy hiop(f) of f should be log p(f*),
where p(-) denotes the spectral radius. This conjecture has motivated a great deal
of research in the past fifteen years, and it has been verified in some important
cases (see [Gil, [Y], [Sml, [FS_2], [Dul, [G3]). It is known, for instance, that the
inequality hop(f) < log p(f) always holds [DS 1J.

The main strategy for proving the reverse inequality has been to look for an
invariant measure whose metric entropy is maximal, i.e. equal to log p(f). However,
rather than try to realize the measure directly from the dynamics of f, it often
seems more promising to use the dynamics to construct invariant positive closed
currents and then try to obtain the measure as an intersection of these currents.
The drawback is that in passing from currents to measures, one must somehow make
sense of what is essentially a product of distributions. For positive closed currents,
this is usually done by resorting to ‘potentials’ for the currents and integrating
by parts. Success depends on having potentials that are substantially more regular
than the currents themselves. The purpose of this paper is to better understand the
regularity properties of potentials associated to dynamically-defined positive closed
(1,1)-currents. Such potentials will be functions, the dynamical Green’s functions
in the title of the paper.

Received by the editors November 10, 2006 and, in revised form, August 28, 2007.

2000 Mathematics Subject Classification. Primary 32H50, 37F10, 37D25.

Key words and phrases. Complex dynamics, meromorphic maps, pluripotential theory, Green’s
function.

The first author gratefully acknowledges support from National Science Foundation grant
DMS06-53678 during the preparation of this article.

(©2009 American Mathematical Society
Reverts to public domain 28 years from publication

4783

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4784 JEFFREY DILLER AND VINCENT GUEDJ

In the first section we describe the best possible situation: holomorphic maps.
We present a simple proof, due to Dinh and Sibony (see [DS 2], Theorem 3.7.1; also
[DS 3], Proposition 2.4), of the fact that a dynamical Green’s function associated
to a holomorphic map must be Hélder continuous with Hoélder exponent controlled
by what we call the topological Lyapunov exponent

1
Xtop(f) = lim - log sup || D £
of the map. A straightforward example shows that this estimate is sharp.

In the remaining sections of the paper, we turn to the more general class of mero-
morphic self-maps, a principal goal being to see what remains of Hélder continuity
for the Green’s function once one leaves the holomorphic setting.

Our first result, proven in Section 2, is a general existence theorem for dynamical
Green’s functions of meromorphic maps in any dimension. If f : X — X is a
meromorphic map of a compact Kahler manifold, then we say that f is 1-stable if
the induced action f* on Hy'(X) satisfies (f*)* = (f*)" for all n € N. Given a
class n € Hﬂlg’l(X) satisfying f*n = An and a smooth form w representing 7, one
can try to construct an invariant current representing 7 as follows. For each n € N
we have an L! function g% : X — R U {4o0} satisfying

AT w —w = ddgy.

If g% converges in L' to some function g* (the dynamical Green’s function), then
the current T}, := w 4 dd°g* automatically satisfies f*T" = AT

Theorem A. Suppose that f : X — X is a 1-stable meromorphic map of a compact
Kahler surface and that the induced action f* has a unique simple eigenvalue A of
largest modulus with eigenspace generated by a nef class n. Then for any smooth
form w representing n, it can be arranged that the sequence (g%) is decreasing and
L' convergent. The closed current T := w + dd°g* is positive and independent of
w.

Our proof follows Sibony [S] who considered the case X = P* and Guedj [G 1}
G 2| who considered general X. The novelty here is that we do not assume that
the smooth representative w can be chosen to be positive. Hence it requires some
new ideas to establish that the sequence approximating ¢g“ is decreasing and to
show that the invariant current 7' is positive. We remark that in dimension two,
the theorem applies to nearly all reasonable meromorphic maps (see Corollary 27).
After Section 2, we restrict attention to maps of complex surfaces.

When the map f in Theorem A is not holomorphic, the Green’s function g,
will not be continuous. It will typically have a logarithmic pole at each point of
indeterminacy for f and its iterates. We let Zy denote the closure of the set of all
such points. Though Z; can be all of X, as the first example in Section 6 shows,
there are many situations where the complement of Z¢ is large, and one can then
hope for continuity of g* in X — Z;. In Section 3, we validate this hope in some
interesting special cases. Indeed, we give a unified approach to proving something
analogous to, but weaker than, Holder continuity for ¢g* for some large classes of
birational surface maps (Theorem Bl and the comment following its proof) and of
polynomial maps of C? (Theorem [3.4]). We point out concerning Theorem [3.4] that
in the important case where the first dynamical degree \ exceeds the topological
degree, we know of no examples where the hypothesis of the theorem fails.
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REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS 4785

In Section 4, we consider a still weaker regularity condition for birational surface
maps. We state a quantitative recurrence property for points of indeterminacy that
turns out to be equivalent to the condition that the derivative dg™ of the Green’s
function be in L2. A similar, slightly stronger L? condition has been used with much
success in [BD] and [Dul| to produce measures of maximal entropy for birational
maps. With our version, the construction of the measure still succeeds, but its fine
dynamical properties remain unclear; in particular, we do not know if log || Df|| is
integrable with respect to the measure, a property that is important for applying
many of the theorems and techniques from smooth ergodic theory.

Continuing with birational surface maps in Section 5, we consider what is perhaps
the weakest relevant regularity condition of all: ¢gT is integrable with respect to
(the trace measure of) T, the invariant current associated to f~!. This condition
guarantees that 4 = T AT~ is a well-defined probability measure. Indeed with
no further assumption on f (i.e. on g*), we prove the following.

Theorem B. The measure py is f-invariant and mizing, and it does not charge
any compact complex curve.

The proof that py does not charge curves is distinctly indirect, depending on,
among other things, a characterization (Proposition [5.4)) of the L? condition used
in [BD].

We present several telling examples throughout the paper, and Section 6 is de-
voted to two of these. The first shows that indeterminacy orbits of a meromorphic
map can be dense. That is, Zy = X. The second builds on an example due to Favre
[F] and demonstrates that one can have g* integrable with respect to T~ without
necessarily having that dg% is in L2.

1. HOLOMORPHIC MAPS

Let f : P* — P* be a holomorphic endomorphism of the complex projective
space P¥. In homogeneous coordinates, f = [Py : ... : Pg] where the Pj’s are
homogeneous polynomials of the same degree A\ with no common zero outside the
origin. We shall always assume A > 2.

Let w denote the Fubini-Study Kéhler form on P*. Then f*w is a well-defined
smooth closed (1, 1)-form on P* which is cohomologous to Aw. Thus it follows from
the dd®-lemma (see [GH], p. 149) that

1
Xf*w =w + dd%,

where v € C* (_Pk) is uniquely determined up to an additive constant. Here d = 0+0
and d° = ;1 (9 — 9). Pulling back the previous equation by f™ yields

2
1 n—1 1 .
ﬁ(f")*w = w + ddg,, where g, = ZO 3570 9
]:

The sequence of positive closed (1,1)-forms A" (f")*w converges weakly to the
so-called Green current

1 .
Ty =w+dd°gs, where gy := Z it .
Jj=0
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4786 JEFFREY DILLER AND VINCENT GUEDJ

This is a dynamically interesting current. It was constructed by H. Brolin [Bro]
(polynomial case) and M. Lyubich [Ly] (rational case) when k = 1, and by Hubbard-
Papadopol [HP] and Fornaess-Sibony [F'S 2] in higher dimensions. We refer the
reader to [S] for its basic properties. Our aim here is to give a very simple proof of
the fact that the (dynamical) Green function gy is Holder continuous. To this end
we introduce the topological Lyapunov exponent of f,

1
Xeop(f) i=  tim o log sup [|Dx f7].
That the limit exists follows from the submultiplicativity of the sequence
(supyepr [|Dzf"|]). The definition clearly does not depend on the choice of the
norm || -||. Also, the supremum in the definition can be considered only on the
Julia set J¢ of f. Let us recall that the Fatou set Fy of f is the largest open subset
of P¥ on which the sequence of iterates (f™) forms a normal family. The Julia set
Jy is the complement of the Fatou set.

The next result, together with its proof, is essentially Theorem 3.7.1 in [DS 2]
(see Proposition 2.4 in [DS 3] for a more general statement). We include it here for
the convenience of the reader, because many of the results in the following sections
may be viewed as attempts to see what remains when one passes from holomorphic
to more badly behaved meromorphic maps.

Theorem 1.1. The Green function gf is Holder continuous of exponent a > 0, for
every o < log A/ Xtop(f)-

Proof. Set M = sup,cpr ||D5f||. A straightforward induction yields, for all z,y €
Pk and all j € N,

d(flz, fly) < MY d(z,y).
Here d denotes the distance associated to the Fubini-Study metric on P*. Since ~

is smooth, it is in particular Holder-continuous of exponent o > 0, for any o < 1.
We fix a < log \/M and estimate

1 j j «
l95(2) = 95 W) < D 5lve F(w) = vo f(y)] < Cadla,y)”,
j=0
where Co =35 ATTM < +o0.
Replacing f by f™ in the above argument lowers the constant M to M, =
(sup || Dy f™]])*/™. Letting n — +oc yields the desired upper bound. O

Example shows that the bound in this theorem is optimal. One can also
establish bounds in the other direction using the infimum of the differential on
the Julia set. These imply in particular that the affine Green’s functions G, of
quadratic maps f.(z) = 22 + ¢ with ¢ € R are Holder continuous of exponent
with a. — 0 as ¢ — +o0.

Examples 1.2. Consider the quadratic family of holomorphic endomorphisms of
the Riemann sphere f, : P* — P!, given by quadratic polynomials in some affine
chart,

fo(2) =22 +c
We let G.(2) = gy.[1 : 2] denote the affine Green’s function.
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REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS 4787

1) If ¢ = 0 one easily computes Gq(z) = log™ |z|, Jy, = S* is the unit circle, and
Xtop(fo) =log2. If ¢ = —2, then f_, is semi-conjugate to fo, and one can compute
its iterates explicitly. This yields Jy , = [—2,2], Xtop(f—2) = 2log2 and

z4+vVz22 -4 z—\/22—4>

2 2
Observe that this is a Hélder-continuous function of exponent 1/2.

2) If |¢| < 2, one can easily show that the Julia set Jy, is always contained in the
closed disk centered at the origin and of radius 2. We infer x0p(fe) < 2log2. Note
that this disk contains the Mandelbrot set M, i.e. the set of parameter values ¢
such that J¢_ is connected.

More generally, if f is any monic centered polynomial of degree A with connected
Julia set, it was proved by X. Buff [Bu] that

Xtop(f) < Sup |f'] < 2log A
f

)

g—2(z) = log max (

We also have bounds from below. If y is any invariant ergodic measure such that
log||(Df)*!|| € L*(p), then its Lyapunov exponent x,, (f) satisfies x,,(f) < Xtop(f)-
In particular if y = w + dd°gy = dd°G s is the Brolin-Lyubich measure, then

logA <logA+ Y Gr(c) = xu(f) < Xeop(f).
f'(e)=0

Remark 1.3. For X = P!, the Holder continuity of the dynamical Green’s func-
tions was first established by N. Sibony (see [CGJ, Theorem 8.3.2). It was then
generalized to endomorphisms of P¥ by J.-Y. Briend [Bri] and M. Kosek [K].

As we explain below, the elementary proof given above applies to other manifolds.
Slightly modifying the proof shows also that if (f:):ens is & holomorphic family of
endomorphisms of the same degree A, then the Green’s function (z,t) — gy, () is
Hoélder continuous with respect to the parameter t.

Consider a holomorphic endomorphism f : X — X of some compact Kéhler
manifold X. Then f* respects complex conjugation and bidegree of forms, and
therefore restricts to a linear action on Hy''(X) := H?(X,R) N H“1(X).

Assume that f*n = An for some A > 1 and 7 € H]ll@’l(X). Then if w is a smooth

closed (1, 1)-form representing 7, we have v € C*(X,R) such that
1
Xf*w = w + dd°y.
Pulling back by f™ yields
1 1 .
)\—n(f")*w — T,) = w + dd°g,,, where g, = Z 77 ° 1.
3=0
Observe that the dynamical Green’s current 7}, only depends on 7: if w’ also rep-

resents 7, then w’ = w + dd°u for some smooth function u. Hence uo f*/A" — 0
uniformly on X, and

1 1 1
The same proof as above shows that the Green’s function g, is Holder con-
tinuous.
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4788 JEFFREY DILLER AND VINCENT GUEDJ

In concluding this section, we recall (see e.g. [Meo|, section I) that if S is any
positive closed (1, 1)-current on X, then we may define the pullback f*S. Namely,
we write S = 1 + ddu, where 7 is a smooth closed (1, 1)-form and w is a quasi-
plurisubharmonic (henceforth ‘qpsh’) function, and we set f*S = f*n+ dd°uo f.
The result is another positive closed (1,1)-current on X.

A cohomology class n is pseudoeffective if it can be represented by a positive
closed current S of bidegree (1,1). In this case, f*S is a well-defined positive closed
current of bidegree (1,1) on X which represents f*n. Thus f* preserves the cone
H;;‘lg s(X) C Hﬂi’l(X ) of pseudoeffective classes. Because the pseudoeffective cone
is closed, convex and strict (i.e., contains no lines), it follows from Perron-Frobenius
theory that there exists an invariant class n € H. ;sle f (X) associated to the spectral
radius A = gp« > 1 of f*|HD%‘1(X). When gs+ > 1 (which is equivalent [G1] to saying
that f has positive entropy), it is reasonable to hope that the associated current
T, will itself be positive. In the next section, we pursue the construction of T;,, and
this hope in particular, for a much larger class of maps.

2. GREEN’S FUNCTIONS FOR MEROMORPHIC MAPS

Let X be a compact Kahler manifold of dimension k. When f : X — X is merely
meromorphic (i.e., rational, when X is projective), the construction of dynamical
Green’s currents is a more delicate task, due to the presence of points of indeter-
minacy. Nevertheless, Green’s currents have been constructed in some particular
meromorphic cases (see [3] for the case X = P*, [DF] for the case of birational sur-
face maps, [G 1] for the case of Hirzebruch surfaces, and [G 2] for a slightly more
general context). In this section we use ideas of [BD] to provide a very general
construction.

We let Iy denote the indeterminacy locus, i.e. the set of points at which f is
not holomorphic. This is an analytic subset of X of codimension > 2. We let
'ty € X x X denote the graph of f and r ¢ denote a desingularization of it. We
have a commutative diagram

where 71, mo are holomorphic maps. We always assume that f is dominant, i.e. that
its Jacobian determinant does not vanish identically (in any coordinate chart).
Given a smooth closed real form w of bidegree (1,1) on X, we set f*w :=
(m1)«(m3w), where we push mjw forward by m as a current. Observe that f*w
is actually a form with L}, -coefficients which coincides with the usual smooth pull-
back (fix\r,)*w in X \ I;. Thus the definition does not depend on the choice
of desingularization. Also f* preserves boundaries and thus induces an action

£+ Hy''(X) — Hy''(X) given by
{w} = {f"w}.

Our formula for f*w may also be applied to pull back (differences of) positive
closed (1,1)-currents S: given S > 0, one uses the construction described at the
end of the previous section to define 75S. Then, as in the holomorphic case, f*S :=
1,735 is also a positive closed (1, 1)-current. It follows again that f* preserves
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REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS 4789

the pseudoeffective cone and that there exists n € H ;;16 f(X ) such that f*n = A\n
where A = gy~ > 1 is the spectral radius of f*|H§=1(X)'

An argument of M. Gromov [Gr] implies that f has zero topological entropy
when gg« = 1. In the sequel we assume to the contrary that oy« > 1. Any smooth
form w representing 1 may be written as a difference of positive forms. Hence we
can iterate f* and try to construct a Green’s current 7;, = lim,,_, . f"*w associated
to n.

We immediately face some problems. First, the action f*| HL'(x) 1S not neces-
sarily compatible with the dynamics: it might happen, as in the following example,
that (f™)* is different from (f*)" for some n € N.

Example 2.1. The polynomial endomorphism of C2,
(Zlv 22) g (21227 Zl),

extends to a meromorphic endomorphism f : P2 — P2 of the complex projective
plane. The extended map is given in homogeneous coordinates by

flzo: 21t 20] = [28 : 2129 : 2021),
where (zp = 0) denotes the line at infinity. Observe that the indeterminacy locus
Iy consists of the single point [0 : 0 : 1]. Since Hﬂé’l(}}”z) ~ R is one-dimensional,
the linear action f* is multiplication by 2, so that (f*)? is multiplication by 4. On
the other hand, a simple computation shows that (f2)* is multiplication by 3.

If one extends the polynomial map above to a meromorphic map g on X =
P! x P!, one can check that (¢*)" = (g")* for all n € N. This motivates the
following.

Definition 2.2. The mapping f : X — X is said to be l-stable if (f™)* = (f*)"
for all n € N.

Remark 2.3. The notion of a 1-stable map has been studied by several authors
in the past decade, where it has been variously called generic [FS_3], minimally
separating [Di 1], algebraically stable [S], or 1-regular [BK].

It was shown in [DE] that when f is a birational surface map, one can al-
ways make a birational change of coordinates so that f becomes 1-stable. It is an
interesting, and probably quite difficult, open question to know whether this re-
mains true for dominant 2-dimensional meromorphic maps of ‘small’ (i.e. less than
p(f*|HD§,1(X))) topological degree. Favre and Jonsson, in a recent paper [FJ] con-
cerning polynomial maps of C2, have proposed a very different approach to issues
concerning 1-stability.

We assume from now on that f : X — X is a l-stable meromorphic map. Let
ne H" (X)besuch that f*n = A, with A\ = of+ > 1. Let w be a smooth closed

psef
real (1,1)-form representing 1. By the dd°-lemma again, there exists v, € L(X)
such that
1
(2.1) Xf*w =w + ddy,.

Since f is 1-stable, we can pull this equation back by f™ to get

n—1

1 1 ,

n* _ Cc W w o, J

—)\nf w=w+dd°g,), where g = EO—M%,of.
=
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The second problem we face is that ~,, is not smooth when f is meromorphic,
so it is not obvious that the sequence g% converges in L!(X). This convergence is
the content of our next result, which is a slight refinement of Theorem A in the
introduction. Recall that a class n € Hﬂlg’l(X) is nef if it is the limit of Kahler
classes.

Theorem 2.4. If 1) is nef, then the sequence (g¥) converges in L'(X). Let g, be
the limit, and define

1

T, =w+dd(g,) = lim —

mn\*

n—-4oo \" (f ) w-

Then T, is a closed current satisfying f*T,, = NT,,. If X is a simple eigenvalue of
f*, then T;, is positive.

Proof. Step 1. The first step of the proof consists in showing that -, is bounded
from above on X. Rewriting (1) in the desingularized graph yields

* * *
dd’ (yyom) = F LW = T,

Since m is a local isomorphism away from its exceptional divisor £(m1) C r £, We
have that R := mim.m5w — miw is a closed current of bidegree (1,1) supported on

5(71'1).
Lemma 2.5. R s positive.

Proof. If w (and hence mw) is a non-negative form, then so is 77 m5w. Since miw
agrees with the latter form outside £(m1) and does not charge £(m1) itself, it follows
that R is positive.

Dropping the non-negativity assumption, we observe that R depends only on the
cohomology class of w: if 0 = dd“u is a cohomologically trivial (1, 1)-form, then

T 1.0 — 0 = dd°(mem*u — u) = dd°0 = 0.

Since w is nef, we may approximate w in cohomology by non-negative (1, 1)-forms
wj. Pullback and pushforward are continous operators on currents, so R; :=
T TTow; — Tow; converges weakly to R. That is, R is a limit of positive cur-
rents and therefore positive. O

Continuing with the proof of Theorem [Z4] we have
dd®(y, om) = R+ myw — miw,
so that 7, o is a qpsh function on r ¢. Therefore ~,, o 7y is bounded from above

on Iy, as is 7y, on X.
Step 2. It is now clear that we can add a constant to ~,, to get v, < 0. Therefore

n—1
1 )
W_E - J
gn - . OAj,YUJOf
j=

is a decreasing sequence of L! functions. We claim that it converges, i.e., that
9o = 2 ;50\ 77w o f7 belongs to L'(X).

The claim can be established using tricky integration by parts as in IG 2] pp.
2377-2378]. Instead, we follow here a trick of N. Sibony (who treats the case X = P¥
in [J]). Since w is nef, we can choose Kéhler forms w; whose classes converge to
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that of w. The mass of w; is controlled by its cohomology class, so the sequence
(w;) must accumulate on some positive closed current w cohomologous to w.
Considering Cesaro means of A=/ (f7)*@ and extracting a limit, we can produce a
positive closed (1, 1)-current o which is cohomologous to w and satisfies f*o = Ao.
Now 0 = w + ddv for some qpsh function v on X. Invariance of o allows us to
arrange
Yw =V — VO f

A
by adding a constant to v. Pulling this equation back by f™ then gives

sup y v
An
Thus, v < g, < 0 and in particular g, € L'(X). The current T, := w + dd®(g.,)
clearly satisfies f*T; = \T,.
Step 3. It remains to prove that when ) is a simple eigenvalue of f*, then T}
is positive. Taking p = dim¢ X, we observe that it suffices to show that

1
g2 =v—vofrzu-

<T777 XU> Z 07

where x is a smooth non-negative cutoff function supported on a coordinate chart
U C X and o is a positive (p — 1,p — 1)-form that is constant with respect to
coordinates on U.

Lemma 2.6. If \ is a simple eigenvalue of f*, then some subsequence of
(f2(xo)/A™) converges weakly to a positive closed (p — 1,p — 1)-current S.

Proof. Note first that if wg is a Kdhler form on X, then 0 < yo < wafl for C >0
large enough. Hence assuming A is a simple eigenvalue of f*, we obtain uniform
control on the mass of A7 f7(xo) as follows:

/wo A fl(xo) < C/wo A frawb™t = C’/f”*wo Awb™t <A™,

In particular, the sequence (fI* xo/A™) has weak limit points. These will be positive
by continuity, so we need only show that they are also closed. For this we employ
a well-known argument of Bedford and Smillie (see [BS]) to show that the mass of
f™(xo) is no larger than CA™2. Specifically, we let o be any real test 1-form and

estimate
[0 (xo), )| = ‘/f”*@AdXAU
1/2 1/2
< (/fn*(p/\an*(p/\U> </dx/\dcx/\cr>
1/2 1/2
< C(/f"*wo/\cr) </dx/\dcx/\cr> < C'A2,

Note that J here is the complex structure operator on real cotangent vectors. More-
over, all integrals may be interpreted as taking place away from the set I(f) where
/™ ¢ might be singular. Having established the desired control on 9f*(yo), we are
done. O
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4792 JEFFREY DILLER AND VINCENT GUEDJ

Using the subsequence from the lemma, we have
(Ty, xo) = lim A7 (f"*w,x0) = lim A7 (w, f7 (x0)) = (w,S) =1 -{S} >0,
J—00 j—o0
where the last inequality comes from the assumption that 7 is nef. (I

It remains to understand when our hypotheses are satisfied. When dim¢ X = 2,
the cone Hijzlf(X ) is preserved by f*, so the invariant class 7 is automatically nef
(Proposition 1.11 in [DE]). Moreover, A\? is never less than the topological degree
of f; when it is strictly larger, it is a simple eigenvalue of f* (Remark 5.2 in [DF]).

Corollary 2.7. If dim¢ X = 2, the sequence (¢%) always converges in L'(X). If
A2 exceeds the topological degree of f, then the associated closed invariant current
T, = w+dd°g., is positive.

For the rest of the paper, we focus exclusively on the case dim¢ X = 2 of maps
on complex surfaces. Recall from [I] that a point z € X is said to be normal if
there exist neighborhoods U of z and V of Iy, such that f"UNV = for all n € N.
The set of normal points is denoted by Ny: this is the set of points which remain
‘locally uniformly’ away from the indeterminacy locus under iteration. The proof
of Theorem [[.1] applies straightforwardly to show that g, is Holder continuous
in Ny (this is Theorem 1.7.1 in [S]). Complex Hénon mappings are polynomial
automorphisms of C? which extend to P? as 1-stable maps of positive entropy. For
such mappings the set of normal points is Ny = P2\ I t; hence the dynamical
Green’s function is Holder continuous off the indeterminacy locus. This result was
first proved in [FS1].

3. SUB-HOLDER CONTINUITY

The set Ny might well be empty for a given meromorphic map f, and g, can
be very discontinuous in general (see, e.g., example 1.11 in [GS] and example 6.1
below). In this section we consider some families of rational surface mappings that
permit weaker, though still ‘Holder-like’ control on the modulus of continuity of
the dynamical Green’s function

+0oo 1
- — J
gw —Z)\]’onf .
j=0
Of course this can be done only off the extended indeterminacy locus,

If = U Ifn,
n>0

since g,, usually has positive Lelong number at every point of Ifx.

Holder continuity of g, at p requires that the orbit of p uniformly avoid the
indeterminacy locus (normal points). Weaker kinds of continuity of g, can be
established by simply requiring that f™(p) not approach Iy too rapidly: see [FG],
[G 1], [GS] for the case of weakly-regular polynomial endomorphisms of C¥; and
[Di 2] for birational maps of P? that are separating, i.e. such that Z; N Tp=0.

Here we present a unified approach to estimating the modulus of continuity of
9w in X\ Zy. It applies to a class of rational maps large enough to encompass both
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weakly-regular endomorphisms and separating birational surface maps. Our main
dynamical assumption is as follows. There exists C > 1 and 8 € [1, A[ such that

(3.1) é [d(az,If)]ﬁ <d(fzx,Zy), forallze X\I;.

Note that this estimate is stated in terms of the extended indeterminacy set Zy
rather than just the indeterminacy set Ir. This is because Iy is rarely invariant
under f~!, whereas one always has f~1(Z; — I;v) CIy.

We shall rely on three further estimates, all of which hold independently of the
above assumption. The first gives us pointwise control on ~,,:

(3.2) Yulz) > Clogd(z,If) + C".

This follows from Proposition 1.2 in [BD], which, despite the birational context of
that paper, remains valid for arbitrary meromorphic surface maps. The other two
estimates are local bounds on the Lipschitz constants of f and ~,. Namely, one
can check by computing in local charts that there exist mi, mos > 0 such that for
all z,y € X \ I,

Cd(z,y) Cd(x,y)
(33) () ) < g0 B
[, (, y)]™ (i, (, y)]™2
where dj, (2,y) := min{d(z, Iy),d(y,I)} is the distance from the pair {z,y} to
the indeterminacy locus. We similarly denote the distance to Zy by dz,(x,y). For
convenience, we take the constant C' > 0 to be the same in (2), (3), and (4). It
follows directly from (4) that

and d(f(x), f(y)) <

CI*ld(z,y)
[dr, (f, fry) ™I g dr, (fla, fy))m
It follows from (2) and (4) and the fact that dz, < dj, that

(34) o fl(z) — o fy)l <

1 OB+t
- — < —
dr,(fiz, fiy) = [dz, (x,y)]”

We will use these bounds to obtain control on the modulus of continuity of g,,.
We treat the cases =1 and § > 1 separately since they are quite different.

(3.5)

3.1. The case = 1. Our aim here is to prove the following.

Theorem 3.1. Let f: X — X be a 1-stable map which satisfies (2) with 8 = 1.
Then there exists o > 0 such that for all z,y € X \ Iy,

190(%) = 9w (y)| < Cuy exp(—ar/[logd(z,y)|),

where (x,y) = Cgy > 0 is locally uniformly bounded in X \ Zy.
We need the following elementary lemma whose proof is left to the reader.

Lemma 3.2. Fiz o € ]0,1] and set, for 0 <t <1,

ha(t) := exp(—an/|logt]).

Then for all t € [0,1] and for all A > 1,
0 <t<ehy(t) and 0 < hy(At) < exp(ar/log A)hy(t).
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Proof of Theorem 3.1. Let z,y € X — Iy be given. Since § = 1, we infer from (3)
and (6) that |y o f/(x)| < Cj, where C depends only on d(z,Z;). In particular, if
t > 1, then ' '
[y o f7(x) =y o F ()l
ti
for all j > 0 and some constant M depending on ¢ and dz,(x,y). Moreover, from
(5) and (6), we obtain the alternative upper bound

w0 fi(2) = ywo fily)| . Cmaditmititl
ti = ti[dg, (w,y)|mrtmad
It follows therefore from Lemma that

e o f7 (x)]\;ﬂyw PO e (a\/(m2j2 log C + Aj + B)) ha(d(z,y)),

where A and B depend on t and dz, (z,y). Thus

Mt |y, o fi(x) — Yo o fi(y)]

2N Mb

<M

d(z,y).

|90 () — 90 (y)| < < Cyytha od(z,y),

where the series defining C, ,; converges as soon as a < log(\/t)[mz log C]~1/2
since it is comparable to

tJ
37 &P {ja\/mg log C} < 4o00.
Jj=0
Observe also that the dependence of C, ,, on (z,y) only involves log dz, (, y); hence
it is bounded on compact subsets of X \ Zy. (]

We now want to provide examples of rational mappings satisfying the assump-
tions of Theorem [3.Il Observe first that any separating birational 1-stable self-map
of a compact Kahler surface X satisfies (2): this was observed by the first author
who proved Theorem Bl in this context (see Theorem 5.3 in [Di2]). The reader
will find several examples of such birational mappings in [Di1]. Note that the
proof given above greatly simplifies the proof given in [Di2]. It also applies to
non-birational mappings, as the following example shows.

Example 3.3. Consider the meromorphic map f : P? — P2, given in local coordi-
nates on C? by
f: (2’1,2’2) eC?— (P(Zl),Q(Zl) + R(ZQ)) S (C2,
where P, (@, R are polynomials of degree p,q, A with A = pg > max(p,q). The
indeterminacy locus consists of the single point
If:[OZOI].]:{ZO:ZQ:O},

where {zp = 0} denotes the line at infinity, written in homogeneous coordinates.
Observe that f contracts the line at infinity to the superattracting fixed point
[0:1:0] ¢ I. Therefore f is 1-stable on P? and Zy = I;. The map f is an example
of a weakly-regular polynomial endomorphism of C? (see [GS]). It corresponds to
the critical case of mappings considered in [G 1], since the topological degree of f,

die(f) =pg = A,
coincides with its first dynamical degree A > 1. Computations similar to those in
[G_1] show that f satisfies (2) with 8 = 1.
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3.2. The case > 1.

Theorem 3.4. Assume [ satisfies (2) with 1 < § < X. Fiz o € [0, iggg —1[. Then
for all z,y € X\ Iy,

< Cul(z,9)
~ 1+ |logd(z,y)|*’

|gw (:E) — Juw (y)

where (x,y) — Co(z,y) is locally uniformly bounded in X \ Zy.
We need the following elementary lemma whose proof is left to the reader.

Lemma 3.5. Set ¢, (t) :=[1 + |logt|*]~!, for0 <t <1.
Then there exists C' > 1 independent of a such that for all t € [0,1] and for all
A>e,

0<t<Clpa(t) and 0<pa(At) < C'(log A)%palt).

Proof of Theorem 3.4. Let x,y € X — Iy be given. Since § > 1 it follows from (3)
and (6) that

e © f7 (@) = v 0 f (y)| < max{| o F7(2)], I o ()]} < MB7,

for all j € N and some constant M depending on dz,(z,y). From (5) and (6) we
have the alternative bound

< )mrj d(z,y),

Vo ofj(x) — Yw ij(y)| < [W

where mz = my +ma/(8—1) and logCo = [1 + my /(B8 — 1) + ma/(B8 — 1)?]1og C.
We infer using Lemma [B.5]

Ve © f7 () — 7w 0 f7(y)]
Mpi

< OBy 0d(z,y)

for all j € N. Once again C' depends on z and y only through dz, (z,y). The factor
of M3’ ensures that the right side remains bounded above by 1; i.e., it guarantees
that the hypothesis of Lemma is satisfied.

Now we conclude that

190 (x) — 90 (y)| < ZM (%) IV © f7(x) — v 0 f7(y)]
=0

M3

< Cpatatr 3 (2

J=0

The sum on the right side converges as soon as 8t! < A, i.e. as soon as a <
log A/log 5 — 1. O

Weakly-regular polynomial endomorphisms of C* as considered in [FG], [G 1],
[GS] provide several examples of mappings which satisfy the assumptions of Theo-
rem [3.4] Let us recall that such control on the modulus of continuity of g, yields
integrability of log™ ||Df|| with respect to special invariant measures, as well as
estimates on the pointwise dimension of these measures (see [S], [Di 2]).
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4. SOBOLEV REGULARITY

It can happen that the extended indeterminacy locus Zy is very large (see Section
6 for an example where Z; = X). Our aim in this section is to consider weaker
regularity properties for the functions g, which can hold even across points of
indeterminacy. To simplify we restrict ourselves to the case where f is a
bimeromorphic surface map; i.e., dim¢ X = 2 and there is a meromorphic map
f~': X — X such that fo f~! =1Id.

In this case it was proved by the first author and C. Favre [DF] that one can
always make a birational change of coordinates so that f : X — X becomes 1-
stable. Moreover the spectral radius A of f* : Hﬂé’l(X) — Hﬂé’l(X) is a simple
eigenvalue as soon as A > 1. Since f* preserves the pseudoeffective cone and f, is
intersection adjoint to f*, there are classes {w*} € H ;;le (X)), unique up to positive
multiples, such that

Fwty =Mo}and (f ) {w )} = Mw )
By Theorem 2.4 applied to f and f~!, there are positive closed currents

1 A
+_ o+ c & +_ o ek
T+ =w™ +dd°g™, where g *Z/\ﬂ of
Jj>0
and the functions y* € LY(X) satisfy A~1(f*)*w* = w* 4 dd°y*. We shall assume
moreover that

(4.1) {w*}- f(p) >0 and {w™}-f7'(q) >0,

for all p € Iy, q € Iy-1. This can always be arranged (see Proposition 4.1 in [BD]).
The main result of this section identifies geometric conditions equivalent to the

statement that the gradients Vg* belong to L?(X). Since gpsh functions are always

in L'(X), this is equivalent to saying that g* and g~ belong to the Sobolev space
Wh2(X).

Theorem 4.1. Let f : X — X be a birational map with A\ = gy~ > 1. Then the
following conditions are equivalent:

(1) Vgt € L3 (w™ AQ);
(2) forallpe Iy, 3,50 %n(p) > —00;
(3) 2n>0 A2 logdist(Ij-1, f7"1f) > —oo.

Observe that when w™ is Kahler, then (1) means precisely that g has gradient
in L2(X) with respect to the Lebesgue measure. The class {w™} is automatically
Kahler when, for instance, X = P2. This condition should be compared to the
slightly stronger condition studied in [BD]: ¢~ is finite at each point of I¢. This is
equivalent to

— 0 fn
3 gl /{n w)
n>0
for all p € Ir. As in [BD], these equivalent conditions are symmetric in f and f~!;
i.e., one can interchange the roles played by f and its inverse f~! and obtain three
further equivalent conditions.

Proof. The equivalence between (2) and (3) follows from the fact that under the
assumption (I)), v~ is a smooth function in X \ Iy-1 with logarithmic singu-
larities at points of indeterminacy of f~!. More precisely, there exist constants
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A, B, A, B' > 0 such that
Alogdist(z,Ip-1) — B <~ (z) < A'logdist(z, I[;-1) — B'.
We refer the reader to [BD] for a proof of this fact.
It is a simple exercise to check that condition (2) is equivalent to the finiteness
of the sum ano A~ "g,, (p) at all points p € Iy. Therefore the equivalence between
(1) and (2) is a consequence of the next lemma. O

Lemma 4.2.

n—1

[ ot nasgl nwm =30 S e
X

pely j=0

\gj

+O()

where the constants c;(p) are positive and uniformly bounded away from 0 and oco.

Proof. Set T,F := A\="(f")*w™. For 0 < j <n— 1 we have

(4.2) /(’erofj)qu/\w*:/ trt. /\f*)\ /+T+ ANw™ + Ay,

where )
A, = /7+Trf7j Nddtg; = / [Xf*uﬁ ] Ngj T+

Observe that the currents f*w™, TJ_ ; both have positive Lelong numbers at points
in Iy; thus

fw/\ ch] f(w/\T;jl)
pEly

where 0, denotes the Dirac mass at point p and the c¢;’s are positive constants.
Observe that f*wt AT; — f*wt ATT, since gj+ decreases towards gt. Since
T+ has positive Lelong number at all points of indeterminacy, it follows that the
measure f*w™ AT has a Dirac mass coo(p) > 0 at each point p € Iy. Therefore
¢;j(p) = cx(p) > 0. In particular, the sequences (¢;(p)) are uniformly bounded
away from zero and infinity. We infer

_ 1 _ _
A= Z cn—j(P)g; (P) + ﬁ/(gj of Mwt AT G /gj Wt AT
pEly

Observe that )Flg; ofl= g;+1—7~ - Thus multiplying (8) by A~7 and summing
from 7 =0 to n — 1 yields

n—1 —
_ g9; (p) 9 _
/QIT;/\W = E : E :Cn*j(p) j)\j Vw+/\w+ _/’7 TH AW 4 My,

pEIf 7=0

where

n—1 n—1
1 1
_ +t + -+ +
MH*ZE/’Y T, \w fz)\jﬂ/’yw ANT 4
=0 i=0
is a bounded sequence. Note to conclude that
[eanm e = [cotarg ne+ [(gyretnwt

= /dg:Lr ANdegt Aw™ +O(1). O
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The function g™ (resp. g~ ) typically has positive Lelong number at every point
of I3° 1= UnZO Ifn = UnZO f7"(Iy) (resp. I, = Unzo It = UnZO ST y-1)).
The closer f~"I; is to Iy-1, the stronger the singularity of g~ at these points. The
symmetric condition Vg* € L?(X) is thus a quantitative way of saying that the
sets IJ?O and IJ?‘ll stay away from each other (recall that the condition of 1-stability

means precisely that IJ‘?O N ij‘il = (). We will see in Section 6 that this condition
is often but not always satisfied.

5. A CANONICAL INVARIANT MEASURE

We consider here, as in the previous section, a compact Ké&hler surface X
equipped with a Kéahler form 2, and a 1-stable bimeromorphic map f : X — X
such that A = py > 1. As before, we let T* = w* + dd°g* denote the positive
closed (1,1)-currents invariant under f*!. We normalize so that

T}y AT ={} {T"}={Q} {T"} =1
Our aim here is to define and study the measure
ppi=“TH AT,
5.1. Definition of the canonical measure p . It is well known that one cannot
always define the wedge product of two positive closed currents. When g7 is inte-

grable with respect to the trace measure of T—, i.e. g* € LY(T~ A ), the current
gTT~ is well defined, and we can set

pri=wt AT +dd°(gtT™).

Observe that the condition is symmetric, as follows from the Stokes theorem:
/ (—gHT- AQ = / (=g )T AQ —|—/ (7wt —gfw™) A Q.
X X X

When the potentials g* have gradients in L?(X), it follows from the Cauchy-
Schwarz inequality that g* € L1(T~ A Q), since

OS/—g+T_/\Q:/—g+w_/\Q+/dg+/\ng_/\Q
1/2

1/2
</—g+w‘/\Q+</dg+/\ng+/\Q) (/dg‘/\d@‘/\@) < 400.

It may happen, however, that gt € L*(T~AQ) while Vgt ¢ L?(X) (see example
6.2). We know of no example for which the function g7 is not integrable with respect
to the trace measure of T~. Hence we have the following:

Question 5.1. Is the condition g* € LY(T~ A Q) always satisfied?

We now derive a criterion which will allow us to check the condition g+ €
LY(T~ A Q) for some birational mappings.

Proposition 5.2. Let S be a positive closed (1,1)-current on X, whose cohomology
class {S} is Kdhler. Assume

(1) g= € LY (S AQ), so that the measure S AT~ is well defined;

(2) gt € LN(SAT™).
Then gt € LY (T~ A Q).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



REGULARITY OF DYNAMICAL GREEN’S FUNCTIONS 4799

Proof. Let 05 > £Q be a Kihler form cohomologous to S. Let s € L'(X) be a
gpsh function such that S = g+ dd°ps. We can assume without loss of generality
that s <0 and € = 1. Then

OS/ aq*T*AQg/ w*T*AHS:/ fg+T*AS+/g+T*Addcws.
X X X X

The next to last integral is finite by assumption. The last one is finite by Stokes
theorem:

/g+T* ANddps = lim [ gtT~ Add°ps = lim /fgasT* A (=ddg})
n— oo

n—oo

< / (—ps)T~ Awh < .
X

The first inequality holds because —dd¢g,” = w™ — T+ < w'. The second holds
because wt < CQ and s € LY(T~ AQ) & g~ € LY(SAQ). O

We will use this criterion in Section 6.2 when S = [V] is the current of integration
along an invariant irreducible curve V.

5.2. Dynamical properties of ;. We assume in the sequel that g™ € L' (T~ AQ)
so that uy =T+ AT is well defined.

Theorem 5.3. The measure ¢ does not charge the indeterminacy locus I¢. It is
an invariant probability measure.

Proof. The current ji is a positive measure. This can be seen by locally regularizing
the qpsh function ¢g*. It is a probability measure by our choice of normalization,
and it is the weak limit of the measures

1
iy = V(f")*w ANT™.

Let x be a test function. Observe that T~ does not charge curves (it has zero
Lelong number at each point in X'\ 132,; see [DF]), hence neither does i,,. It follows
therefore from the change of variables formula and the invariance f,7T~ = AT~ that

(s ) = 5 (U™ XFTT) = g X0 ).

We infer, if puf(Iy) = 0, that (us, x) = (us, x © f); hence py is invariant.

It remains to prove that p s does not charge any point p € I¢. Since f is 1-stable,
we may assume that p ¢ I,. If p = f~N(p) is periodic, then g~ is finite at p.
Hence it follows from Proposition [5.4] below that p¢({p}) = 0.

If on the other hand, p is not periodic, we can fix N > 1 and choose r = rny > 0
such that f=9B(p,7) N f~kB(p,r) = 0 for 0 < j,k < N, j # k. Let x be a test
function such that 0 < y <1, x = 1 near p, and supp x C B(p,r). Then

n—1
ngpzzzxofjgl,
§=0
since the functions x o f7 have disjoint supports. Set
N-1

Roi= (o )T =3 (xo f*")T.

j=0
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It follows from the extremality of T that the positive currents (y o f/m)T+
converge to ¢, TT, where ¢, = [xdus (see [BD], [G1]). Thus R, — Ne¢, .
Now 0 < R,, < T since 0 < v < 1; hence

1
0< s () < ex =[xy <

Since N was arbitrary, we conclude that p1¢({p}) = 0. Thus p¢ does not charge the
indeterminacy locus. O

Proposition 5.4. Fiz p € Iy. Then g (p) is finite if and only if logdist(-,p) €
LY(ug). In particular g~ is finite on Iy (the [BD] condition described after Theorem
1) if and only if logdist(-, I7) € L' (uy).

Proof. We first characterize the [BD] condition. Afterward, we will show how to
‘localize’ it to individual points in Iy. Recall from [BDJ] that, under the assumption
([@T), logdist(-,I) is comparable to the function v*. Hence it suffices to analyze
the condition y* € L' (uy).

Suppose first that ¢~ is finite on I;. It follows from Corollary 4.8 in [BD] that
gt € L' (puy), and from the bound g™ <~ < 0 that v© € L (py).

Assume now that y© € L'(uy). It follows from the Stokes theorem that

/ (—y")dpy = O(1) +/ (—g")dd~yt AT~ > O(1) +/ dyt Ayt AT,
X X X

where the O(1) terms account for the fact that g and 4T are plurisubharmonic
only up to the addition of a smooth function. Therefore v* has finite energy with
respect to the invariant current 7~. By the Stokes theorem again,

/d’y+ ANdYyT AT =0(1) + /al"/Jr ANdyt Addg™ = O(1) + /(—gf)(ddC’er)z.
Now
(dd°yT)?* = Z cpbp F AT (W Aw) =220 ot AwT ot AwT,
pEly
where ¢, > 0 and J,, denotes the Dirac mass at point p. Therefore
[ artadt At =0 -3 ao o),
X pels

so vt € L'(uys) implies that g~ is finite at every point of I;.

We can now localize the previous reasoning in the following way. Fix p € Iy and
x > 0 a test function supported near p such that xy = 1 in some small neighborhood
of p. Thus ¢t := xyT is comparable to logdist(-,p). Observe that dd°p™ equals
xddyt up to a smooth form. By using the Stokes theorem as above we thus get

[ iy =0+ [t nxddeyt =044 [T Axsrut.
Now XTIt A f*wt = ¢b, + xf* (Tt Aw™) for some ¢ > 0. Therefore
Jeovns =0 -+ [(—gmo T A

The last integral is finite since 0 > g~ o f=! > A\g~. Thus ¢ ~ logdist(-,p) is
integrable with respect to uy if and only if g~ is finite at point p. O
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Theorem 5.5. The measure jif is mizing.

Proof. Let x, v be test functions. We have to show that

/w(xof")dufﬂcxcw, where cX:/ X dpy and sz/ Yduy.
X b's X

It follows from the extremality of T+ that the currents (x o f*)T" converge weakly
towards ¢, 7. For fixed j, the forms A= (f~7)*w™ are smooth off the finite set
Ip-;. Since TT AXI(f~7)*w™ does not charge this set, we infer
(o fMYTH AT (fI) W) — (e T oA (F77) W),
as n — 4o0. Since X7/ (f77)*w” = w™ +dd°g; with g; decreasing towards g, it
follows from the Monotone Convergence Theorem that
<CXT+7 ,(/})‘_j(f_j>*w_> — <CXT+7 wT_> = CXC’L[M
when j — +o00. Therefore it suffices to show that the difference
(xo fM"THT~) = (x o f"TH, YA (f /) 'w™) = (xo f"TF,¢dd (g~ —g;))
converges to 0 as j — 400 uniformly with respect to n. By the Stokes theorem, it
suffices to uniformly control the following four quantities:

Ay ji=(xo fPTT Ndd°y, (g7 — g} )); Bnj = (@dd°(x o f") AT, (97 = g7));
and
Cnj = (dpNd*(xo fY)AT, (97 —g;)); Dnyj = (dYAd(xo f")ATT, (97 —g; )
Observe first that
[An 5] < [@llezlxllee (QATT, (g7 —g7))-

To control B, ;, we observe that dd(x o f*T") does not charge curves. Hence
changing variables gives

|Bujl = [(ddx AT, %0 f7 (g7 = g5 )| < [1lleollxlle2 (QATT, (g5 — 97))-

To control C,, ;, we use the Cauchy-Schwarz inequality and obtain
|G gl < {dp NdY AT, (g7 — gy N2 (dx o f" Adx o [P AT, (g7 — gy )'/?
< Wllerlixller QAT (g7 —g N2 QAT (g7, — g~ N2
The estimation for D, ; is similar. This shows that p; is mixing. O
Thanks to the preceding results, we can show that jr is not too concentrated.
Corollary 5.6. The measure piy does not charge compact complex curves.

Proof. Suppose first that py charges some point p € X. By Theorems and
B35 p is a fixed point not in Iy or I;-1, and puy is concentrated entirely at p. In
particular, both functions log dist(-, Iy) and log dist (-, [f-1) are jug-integrable. From
Proposition [5.4] we obtain that ¢g* is finite on I;—1 and g~ is finite on Iy, i.e. that
the [BD] condition holds. Theorem 4.10 from [BD] then implies that py does not
charge points, which is a contradiction.

Now suppose that p; charges some irreducible curve V' C X. Then invariance
of y1y implies that V' cannot be critical for f, because f(V —1If) C Iy-1. Invariance
also implies that u; almost every point is non-wandering. Hence f* restricts to an
automorphism of V for some k£ > 0. However, the only mixing invariant measures
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for automorphisms of curves are point masses concentrated at fixed points, and we
have already ruled out the possibility that s charges points. O

In Section 6 we will see examples where g* € LY(T~ A Q) but the conditions
in both Theorem 1] and in [BD] fail. Observe that when the condition in [BD]
is not satisfied, it is unclear whether f has well-defined Lyapunov exponents (see

Proposition [5.4)).

6. EXAMPLES

In this section, we present two examples that complement the theorems above.
The first shows that the indeterminacy orbit of a rational map can be dense in the
host manifold. The second, which occupies the majority of the section, shows that
the invariant measure py = T AT~ can exist for a birational surface map even
when the map fails to satisfy the equivalent conditions in Theorem 1]

6.1. A rational map with dense indeterminacy orbits. Let Y = F x E be
a complex torus, where E = C/Z[(] is the elliptic curve associated to a primitive
root of unity ¢ of order 3,4 or 6. The matrix

d 1
a4 1] ans

preserves the lattice A = Z[¢] x Z[(] and thus induces a holomorphic endomorphism
g:Y — Y such that

Xa(g) = (d* — 1)* and Ai(g) = (d+1)* < Xa(g).

Let 0 : Y — Y be multiplication by {, and let f : X — X denote the endomorphism
induced by g on the rational surface X obtained by desingularizing the quotient
Y/(o), i.e. by blowing up at fixed points of o.

Let a be such a fixed point. Since g has topological degree \2(g) > 2, g~ !(a)
contains preimages other than the fixed points of o. Each point in g~(a) \ Fiz (o)
corresponds, in X, to a point of indeterminacy of f. Since the Lebesgue measure
vy of the torus Y is g-mixing, the preimages (¢~ "(a))nen are equidistributed with
respect to vy and therefore dense in Y. It follows that the set

I3 = U f~"1y is dense in X.
neN
Observe also that f is 1-stable: since g does not contract any curve, neither does

f.

6.2. A birational surface map with constrained indeterminacy orbits. Our
second example is a variation on one due to Favre [F]. For parameters a,b, ¢ € C*,
we consider f = fap : P2 — P2 defined by

flz :y: 2] = [bex(—cx + acy + 2) : acy(x — ay + abz) : abz(bcx + y — bz)].

The following facts can be verified by straightforward computation.

® fube is birational with inverse f=1 = f,-1;-1,-1.
o [y ={[a:1:0],0:5:1],[1:0:¢]}.
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e f preserves each of the lines {x = 0}, {y = 0}, {z = 0} according to the
formulas
be ac ba
[x:l:O]»—)[—E:c:I:O}, [O:y:l]»—){o:—?yzl}, [1:0:z]— 1:0:—?2 .
In particular, we have 13,122, C {zyz = 0} for all a,b,c € C*. Let Q denote the
Fubini Study Kéhler form on P?. We will spend the rest of this section proving

Theorem 6.1. Given s > 1 and an irrational number § € R, let f : P? — P? be
the birational map f = fape with a =i, b = —se*>™% ¢ =i/s. Then f is 1-stable
with invariant currents TT = Q4 dd°g* such that gt € LY (QAT™). Moreover, for
suitable choices of the irrational number 0, the condition (3) in Theorem E.1] fails.

In other words, the measure g = T+ A T~ is well-defined even though the
conditions in Theorem [£.1] sometimes fail.

Proof. To see that f is 1-stable, observe that the hypothesis s > 1 implies that
f7rIyn{z =0} C {[0:y:1]: |yl > 1} for all n > 0, whereas I;—» N {z =
0} C{[0:y:1]: |yl <1}. In particular f~"Iy N Ip-1 N {z = 0} = 0. Similarly,
"Iy NI N{y = 0} = (. Finally, for each n > 0, we have f~"I; N {z =
0} = [ie=2m% : 1 : (], and since @ is irrational, these points never coincide with
It-in{z =0} =[—i:1:0]. We conclude that f~"I; NIj—1 = () for all n > 0.
That is, f is 1-stable. In particular A := g« = 2.

To prove that g+ € L'(Q A T™), we apply Proposition 5.2 with S equal to the
current of integration [x = 0] over the line {x = 0}. Observe that QA [x = 0] is just
area measure on {z = 0}. Because g~ is gpsh it follows that either g~ is integrable
with respect to QA [z = 0], or g~ |;z—0} = —o0. The latter is far from true, however.
One can compute directly, for instance, that g~ > —oo at the fixed point [0: 0 : 1].
Thus g~ € LY QA [z = 0)]).

It follows from standard arguments that local potentials for 7~ must be harmonic
on any open set U C {z = 0} such that

e iterates of f~! form a normal family on U, and
o UN f"Iy—1 =0 for all n > 0.

The only point in {x = 0} where iterates of f~! fail to act normally is the fixed
point [0 : 0 : 1]. Hence

supp ([xt =0|NT7) C U frlp—

n>0

is a compact subset of {[0 : y : 1] : |y| < 1}. Replacing f~! with f, the same
reasoning shows that local potentials for 7" are harmonic on {[0:y: 1] : |y| < 1}.
Thus g* is uniformly bounded on supp ([z = 0] N 7T~), and it follows that g™ €
L'([x = 0] AT™). Therefore by Proposition 5.2, g7 € LY(QAT™).

To see that condition (3) in Theorem A1l fails for suitably chosen 6, let h : Rt —
R* be a function decreasing rapidly to 0. By a Baire category argument, one can
find irrational € such that

2n;6 mod 1 < h(n;)
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for infinitely many n; € N. Thus, if we set p©™ =[i:1:0] € [fand p~ =[—i:1:
0] € Iy, we obtain

i log dist(f"(p~),p")

IN

> 1
Z W log dlSt(f_nIf, If—l)

2n
n=0 n=0 2
log |e i | log h(n;)
< oyl o Z on;
n=0

The last sum diverges to —oo if we take e.g. h(z) = 272" and condition (3) in
Theorem [] then fails. O
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