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Abstract Studying the (long-term) behavior of the Kähler-Ricci flow on mildly sin-
gular varieties, one is naturally lead to study weak solutions of degenerate parabolic
complex Monge–Ampère equations. The purpose of this article, the first of a series on
this subject, is to develop a viscosity theory for degenerate complex Monge–Ampère
flows in domains of Cn .
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1 Introduction

The study of the (long-term) behavior of the Kähler-Ricci flow on mildly singular
varieties in relation to the minimal model program was undertaken by Song and Tian
[28,29] and requires a theory of weak solutions for certain degenerate parabolic com-
plex Monge–Ampère equations modelled on:

∂φ

∂t
+ φ = log

(ddcφ)n

V
(1.1)

where V is volume form and φ a t-dependant Kähler potential on a compact Kähler
manifold. The approach in [29] is to regularize the equation and take limits of the
solutions of the regularized equation with uniform higher order estimates. But as far
as the existence and uniqueness statements in [29] are concerned, we believe that a
zeroth order approach would be both simpler and more efficient.

There is a well established pluripotential theory of weak solutions to elliptic com-
plexMonge–Ampère equations, following the pionnering work of Bedford and Taylor
[6,7] in the local case (domains inCn). A complementary viscosity approach has been
developed only recently in [14,15,20,30] both in the local and the global case (compact
Kähler manifolds).

Suprisingly no similar theory has ever been developed on the parabolic side. The
most significant reference for a parabolic flow of plurisubharmonic functions on
pseudoconvex domains is [18] but the flow studied there takes the form:

∂φ

∂t
= (

(ddcφ)n
)1/n (1.2)

which does not make sense in the global case. The purpose of this article, the first
of a series on this subject, is to develop a viscosity theory for degenerate complex
Monge–Ampère flows of the form (1.1).

This article focuses on solving this problem in domains ofCn , while its companion
[16] is concerned with the global case. More precisely we study here the degenerate
parabolic complex Monge–Ampère equations

e∂tϕ+F(t,z,ϕt ) μ(z) − (ddcϕt )
n = 0 in �T (1.3)

where

• � � C
n is a smooth bounded strongly pseudoconvex domain,

• T ∈]0,+∞];

123



Degenerate complex Monge–Ampère flows 933

• F(t, z, r) is continuous in [0, T [×� × R and non decreasing in r ,
• μ(z) ≥ 0 is a bounded continuous volume form on �,
• ϕ : �T := [0, T [×� → R is the unknown function, with ϕt := ϕ(t, ·).

Our plan is to adapt the viscosity approach developped by Lions et al. (see [12,23]) to
the complex case, using the elliptic side of the theory which was developped in [14]. It
should be noted that the method used in [29] is a version of the classical PDE method
of vanishing viscosity which was superseded by the theory of viscosity solutions.

After developing the appropriate definitions of (viscosity) subsolution, supersolu-
tion and solution in the first section, we establish in the second section an important
connection with the elliptic side of the theory:

Theorem A. If u is a bounded subsolution of the above degenerate parabolic complex
Monge–Ampère flow (1.3) in ]0, T [×�, then z �→ u(t, z) is plurisubharmonic in �

for all t > 0.

As is often the case in the viscosity theory, one of our main technical tools is the
following comparison principle, which we establish in the third section:

Theorem B. If u (resp. v) is a bounded subsolution (resp. supersolution) of the above
degenerate parabolic equation then

max
�T

(u − v) ≤ max{0,max
∂0�T

(u − v)}.

Here ∂0�T = ({0} × �
) ∪ ([0, T [×∂�) denotes the parabolic boundary of �T .

We actually establish several variants of the comparison principle (see Theorem 4.2
and the remarks following its proof).

In the fourth section we construct barriers at each point of the parabolic boundary
and use the Perron method to eventually show the existence of a viscosity solution
to the Cauchy–Dirichlet problem for the Complex Monge–Ampère flow (1.3) (see
Sect. 1):

Theorem C. Letϕ0 be a continuous plurisubharmonic function on� such that (ϕ0, μ)

is admissible in the sense of Definition 5.6.
The Cauchy–Dirichlet problem for the parabolic complexMonge–Ampère equation

with initial data ϕ0 admits a unique viscosity solution ϕ(t, x) in infinite time; it is the
upper envelope of all subsolutions.

Wegive simple criteria in Lemma 5.7 to decidewhether a data (ϕ0, μ) is admissible.
This is notably always the case when μ > 0 is positive, while we can not expect the
existence of a supersolution if μ vanishes and ϕ0 is not a maximal plurisubharmonic
function.

We finally study the long term behavior of the flow in section five, showing that it
asymptotically recovers the solution of the corresponding elliptic Dirichlet problem
(see Theorems 6.1 and 6.2):

Theorem D. Assume (ϕ0, μ) is admissible and F = F(z, r) is time independent. The
complex Monge–Ampère flow ϕt starting at ϕ0 uniformly converges, as t → +∞,
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934 P. Eyssidieux et al.

to the solution ψ of the Dirichlet problem for the degenerate elliptic Monge–Ampère
equation

(ddcψ)n = eF(z,ψ)μ(z) in �, with ψ|∂� = ϕ0.

The solution ψ to the above elliptic Dirichlet problem is well known to exist in the
pluripotential sense [10], while its existence in the viscosity sense was established in
[14,20,30].

Pluripotential theory actually suggests that the solutions to (1.3) should be defined
as upper semi continuous t-dependant plurisubharmonic functions which are a.e.
derivable w.r.t to the time variable and satisfy the equation almost everywhere where
(ddcφ)n is replaced by the Monge–Ampère operator. We did not try and phrase such
a definition in a precise and usable way nor determine how it connects to the viscosity
concepts developped here.

2 Parabolic viscosity concepts

2.1 A Cauchy–Dirichlet problem

Let � � C
n be a bounded strongly pseudoconvex domain and T > 0 a fixed number

and define

�T :=]0, T [×�.

We are studying the parabolic complex Monge–Ampère equation (2.1)

e∂tϕ+F(t,z,ϕ) μ(t, z) − (ddcϕt )
n = 0 in �T , (2.1)

where F(t, z, r) is continuous in [0, T [×�×R and non decreasing in r . The measure
μ = μ(t, z) = μt (z) ≥ 0 is assumed to be a bounded continuous non negative volume
form depending continuously on the time variable t . It will be often necessary to also
impose further that either μ > 0 is positive, or that μ = f (z)ν(t, z) with f (z) ≥ 0
and ν = ν(t, z) > 0. The positive part of the density can then be absorbed in F . For
simplicity, we have therefore stated our main results in the introduction in the case
when μ = μ(z) ≥ 0 is time independent but will use a slightly larger framework in
the bulk of the article.

We call this equation the parabolic Monge–Ampère equation associated to (F, μ)

in �T .
Recall that the parabolic boundary of �T is defined as the set

∂0�T := ({0} × �
) ∪ ([0, T [×∂�) .

Wewant to study the Cauchy–Dirichlet problem for (2.1) with the following Cauchy–
Dirichlet conditions:
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Degenerate complex Monge–Ampère flows 935

{
ϕ(0, z) = ϕ0(z), (0, z) ∈ {0} × �,

ϕ(t, ζ ) = h(ζ ), (t, ζ ) ∈ [0, T [×∂�,
(2.2)

where h : ∂� → R is a continuous function (the Dirichlet boundary data) and
ϕ0 is a bounded plurisubharmonic function in � (the Cauchy data), which extends
continuously to �.

Thus h is actually determined by the boundary values of ϕ0. Such a function ϕ0
will be called the Cauchy–Dirichlet data for the parabolic complex Monge–Ampère
equation (2.1) and we will simply write

ϕ|∂�T = ϕ0.

2.2 Parabolic sub/super-solutions

We assume the reader has some familiarity with the elliptic side of the viscosity theory
for complex Monge–Ampère equations which was developed in [14].

The definitions of subsolutions and supersolutions can be extended to the parabolic
setting using upper and lower test functions as in the degenerate elliptic case.

We first define what should be a classical solution to our problem. A classical
solution to the parabolic complex Monge–Ampère equation (2.1) is a continuous
function ϕ : [0, T [×� −→ R which is C1 in t , C2 in z in ]0, T [×� such that for any
t ∈]0, T [, the function z �−→ ϕ(t, z) is a (continous) plurisubharmonic function in �

that satisfies the following equation

(ddcϕt )
n = e∂tϕ(t,z)+F(t,z,ϕ(t,z))μ(t, z),

for all z ∈ �. The function ϕ is said to be C1 in t and C2 in z (or C (1,2) in short) in
]0, T [×� if (t, z) −→ ∂tϕ(t, x) exists and is continuous in ]0, T [×� and the second
partial derivatives of z −→ ϕ(t, z) with respect to z j and z̄k exists and are continuous
in all the variables (t, z) in ]0, T [×�.

Observe that if we split this equality into two inequalities ≥ (resp. ≤), we obtain
the notion of a classical subsolution (resp. supersolution) to the parabolic Eq. (2.1).

Now let us introduce the general definition.

Definition 2.1 (Test functions) Let w : �T −→ R be any function defined in �T and
(t0, z0) ∈ �T a given point. An upper test function (resp. a lower test function) for
w at the point (t0, z0) is a C (1,2)-smooth function q in a neighbourhood of the point
(t0, z0) such that w(t0, z0) = q(t0, z0) and w ≤ q (resp. w ≥ q) in a neighbourhood
of (t0, z0). We will write for short w ≤(t0,z0) q (resp. w ≥(t0,z0) q).

Definition 2.2 1. A function u : [0, T [×� −→ R is said to be a (viscosity) subso-
lution to the parabolic complexMonge–Ampère equation (2.1) in ]0, T [×� if u is
upper semi-continuous in [0, T [×� and for any point (t0, z0) ∈ �T :=]0, T [×�

and any upper test function q for u at (t0, z0), we have

(
ddcqt0(z0)

)n ≥ e∂t q(t0,z0)+F(t0,z0,q(t0,z0))μ(t0, z0).
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936 P. Eyssidieux et al.

In this case we also say that u satisfies the differential inequality (ddcϕt )
n ≥

e∂tϕ(t,z)+F(t,z,ϕ(t,z))μ(t, z) in the viscosity sense in �T .
2. A function v : [0, T [×� −→ R is said to be a (viscosity) supersolution to the

parabolic complex Monge–Ampère equation (2.1) in�T =]0, T [×� if v is lower
semi-continuous in �T and for any point (t0, z0) ∈]0, T [×� and any lower test
function q for v at (t0, z0) such that ddcqt0(z0) ≥ 0, we have

(ddcqt0)
n(z0) ≤ e∂t q(t0,z0)+F(t0,z0,q(t0,z0))μ(t0, z0).

In this case we also say that v satisfies the differential inequality (ddcϕt )
n ≤

e∂tϕ(t,z)+F(t,z,ϕ(t,z))μ(t, z) in the viscosity sense in �T .
3. A function ϕ : [0, T [×� −→ R is said to be a (viscosity) solution to the par-

abolic complex Monge–Ampère equation (2.1) in ]0, T [×� if it is a subsolution
and a supersolution to the parabolic complex Monge–Ampère equation (2.1) in
]0, T [×�. Hence ϕ is continuous in [0, T [×�.

We let the reader check that a classical (sub/super) solution of equation (2.1) is a
viscosity (sub/super) solution.

Remark 2.3 In order to fit into the framework of viscosity theory, we consider the
function H : [0, T [×� × R × R × R

n × S2n −→ R ∪ {+∞} defined by

{
H(t, z, r, τ, p, Q) := eτ+F(t,z,r)μ(t, z) − (ddcQ)n, if ddcQ ≥ 0,
H(t, z, r, τ, p, Q) := +∞, if not,

,

where ddcQ is the hermitian (1, 1)-part of the quadratic form Q in Cn 	 R
2n .

Observe that the function H is lower semi-continuous in the set [0, T [×� × R ×
R × R

n × S2n , continuous in its domain

DomH := {H < +∞} = [0, T [×� × R × R × R
n × {Q ∈ S2n; ddcQ ≥ 0}

and is degenerate elliptic in the sense of [12]. Moreover it is non decreasing in the r
variable. We call it the Hamilton function of the parabolic complex Monge–Ampère
equation (2.1).

Observe that if u is a subsolution (resp. a supersolution) of the parabolic equation
H = 0 then it is a subsolution of the degenerate elliptic equation H = 0 in 2n + 1
variables (t, z) ∈]0, T [×� ⊂ R

2n+1 of a special type which does not depend on the
gradient w.r.t. z nor on the second derivative w.r.t. t . Actually the two notions are
equivalent but we will not use this (see [12]).

The notions of subsolutions and supersolutions for the parabolic equation H = 0
as defined in [12] are exactly the ones defined above.

However as far as supersolutions are concerned, it is more useful to work with the
finite Hamilton function H+, where

H+(t, z, r, τ, p, Q) := eτ+F(t,z,r)μ(t, z) − (ddcQ)n+,

and (ddcQ)+ = ddcQ if ddcQ ≥ 0 and (ddcQ)+ = 0 if not.
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Degenerate complex Monge–Ampère flows 937

Observe that H+ : [0, T [×� × R × R × R
n × S2n −→ R is an upper semi-

continuous and finite Hamilton function such that H+ = H in DomH , the domain of
H .

Therefore most of the general principles of the viscosity method as explained in
[12] can be also applied here (at least formally). On the other hand we have to be
careful since there is no symmetry between subsolutions and supersolutions.

It follows from [14] that if u is a subsolution to the parabolic equation H = 0, any
parabolic upper test function q for u at (t0, z0) satisfies the condition ddcqt0(z0) ≥ 0.
Hence u is a subsolution to the parabolic equation H+ = 0, but the converse is not
true unless μ > 0 (see [14]).

Since the fundamental Jensen–Ishii’s maximum principle will be stated in terms
of semi-jets, it is convenient to use these notions which we now introduce following
[12], in order to characterize as well the notions of sub/super solutions.

Definition 2.4 Let u : �T −→ R be a fixed function. For (t0, z0) ∈ �T , the parabolic
second order superjet of u at (t0, z0) is the set of (τ, p, Q) ∈ R×R

2n ×S2n such that
for (t, z) ∈ �T ,

u(t, z) ≤ u(t0, z0) + τ(t − t0) + o(|t − t0|)
+〈p, z − z0〉 + 1

2
〈Q(z − z0), z − z0〉 + o(|z − z0|2).

We letP2,+u(t0, z0) denote the set of parabolic second order superjets of u at (t0, z0).
We define in the same way the set P2,−u(t0, z0) of parabolic second order subjets of
u at (t0, z0) by

P2,−u(t0, z0) = −P2,+(−u)(t0, z0).

The set of parabolic second order jets of u at (t0, z0) is defined by

P2u(t0, z0) = P2,+u(t0, z0) ∩ P2,−u(t0, z0).

We will need a slightly more general notion (see [12]).

Definition 2.5 Let u : �T −→ R be a fixed function and (t0, z0) ∈ �T . The set
P̄2,+u(t0, z0) of approximate parabolic second order superjets of u at (t0, z0) is defined
as the set of (τ, p, Q) ∈ R × R

2n × S2n such that there exists a sequence (t j , z j ) ∈
]0, T [×� converging to (t0, z0), such that u(t j , z j ) → u(t0, z0) and a sequence
(τ j , p j , Q j ) ∈ P2,+u(t j , z j ) converging to (τ, p, Q).

In the same way we define the set P̄2,−u(t0, z0) := −P̄2,+(−u)(t0, z0) of approx-
imate parabolic second order subjets of u at (t0, z0).

Proposition 2.6 1. An upper semi-continuous function u : �T −→ R is a subso-
lution to the parabolic equation (2.1) if and only if for all (t0, z0) ∈ �T and
(τ, p, Q) ∈ P2,+u(t0, z0), we have

eτ+F(t0,z0,u(t0,z0))μ(t0, z0) ≤ (ddcQ)n . (2.3)
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938 P. Eyssidieux et al.

2. A lower semi-continuous functionv : �T −→ R is a supersolution to the parabolic
equation (2.1) if and only if for all (t0, z0) ∈ �T and (τ, p, Q) ∈ P2,−v(t0, z0)
such that ddcQ ≥ 0, we have

eτ+F(t0,z0,v(t0,z0))μ(t0, z0) ≥ (ddcQ)n . (2.4)

Another way to phrase the definition of supersolutions is to require that, for all
(t0, z0) ∈ �T and all (τ, p, Q) ∈ P2,−v(t0, z0), we have

eτ+F(t0,z0,v(t0,z0))μ(t0, z0) ≥ (ddcQ)n+.

This statement necessitates some comments:

(1) The reader will easily check that when u is a subsolution (resp. supersolution)
to the Eq. (2.1), the inequalities (2.3) (resp. 2.4) are satisfied for all (τ, p, Q) ∈
P2,+

u(t0, z0) (resp. P2,−
v(t0, z0)).

(2) If for a fixed z0 ∈ �, the function t �−→ u(t, z0) is L-lipschitz in a neighborhood

of t0 ∈]0, T [. Then for any (τ, p, Q) ∈ P2,+
u(t0, z0), we have |τ | ≤ L . Indeed

for |s| << 1 and |z − z0| << 1,

u(t0 + s, z) ≤ u(t0, z0) + τ s + 〈p, z − z0〉
+1

2
〈Q(z − z0), z − z0〉 + o(|s| + |z − z0|2),

hence −L|s| ≤ u(t0 + s, z0) − u(t0, z0) ≤ τ s + o(|s|) for |s| small enough and
the conclusion follows.

(3) A discontinuous viscosity solution to the equation (2.1) (in the the sense of [22])
is a function u : �T → [+∞,−∞] such that
(i) the usc envelope u∗ of u satisfies ∀x, u∗(x) < +∞ and is a viscosity subso-

lution to the Eq. (2.1),
(ii) the lsc envelope u∗ of u satisfies ∀x, u∗(x) > −∞ and is a viscosity super-

solution to the Eq. (2.1).

If we consider a time independent equation, its static viscosity (sub/super) solu-
tions (i.e.: those who are independent of the time variable) are the time independent
extension of the viscosity (sub/super) solutions of the corresponding complexMonge–
Ampère equation in the sense of [14] where discontinuous viscosity solutions were
not considered.

We introduce discontinuous viscosity solutions here for technical reasons that will
be explained later on.Note that the characteristic function u ofC\Q2 is a discontinuous
viscosity solution of 
u = 0.
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Degenerate complex Monge–Ampère flows 939

2.3 Relaxed semi-limits

Let (h j ) be a sequence of locally uniformly bounded functions on a metric space
(Y, d). The upper relaxed semi-limit of (h j ) is

h(y) = lim sup∗
j→+∞h j (y) := lim

j→+∞ sup{hk(z); k ≥ j, d(z, y) ≤ 1/ j}.

The reader will easily check that h is upper semi-continuous on Y .
We define similarly the lower relaxed semi-limit of the sequence (h j ),

h = lim inf∗ j→+∞h j .

This is a lower semi-continuous function in Y . Observe that

lim inf∗ j→+∞h j ≤ (lim inf
j→∞ h j )∗ ≤ (lim sup

j→+∞
h j )

∗ ≤ lim sup∗
j→+∞h j .

If (h j ) is a non decreasing (resp. non increasing) sequence of continuous functions
on Y then h = (sup h j )

∗ (resp. h = (inf h j )∗). Moreover if (h j ) converges locally
uniformly to a continuous function h on Y then all these limits coincide with h on Y .

The following stability result for viscosity sub/super-solutions is a classical and
useful tool (see [12,24]):

Lemma 2.7 Let μ j (t, x) ≥ 0 be a sequence of continuous volume forms converging
uniformly to a volume formμ on�T and let F j be a sequence of continuous functions
in [0, T [×� × R converging locally uniformly to a function F. Let (ϕ j ) be a locally
uniformly bounded sequence of real valued functions defined in �T .

1. Assume that for every j ∈ N, ϕ j is a viscosity subsolution to the complex Monge–
Ampère flow

e∂tϕ
j+F j (t,z,ϕ j )μ j (t, z) − (ddcϕ j

t )
n = 0,

associated to (F j , μ j ) in �T . Then its upper relaxed semi-limit

ϕ = lim sup∗
j→+∞ϕ j

of the sequence (ϕ j ) is a subsolution to the parabolic Monge–Ampère equation

e∂tϕ+F(t,z,ϕ)μ − (ddcϕt )
n = 0,

in �T .
2. Assume that for every j ∈ N,ϕ j is a viscosity supersolution to the complexMonge–

Ampère flow associated to (F j , μ j ) in �T . Then the lower relaxed semi-limit

ϕ = lim inf∗ j→+∞ϕ j

123



940 P. Eyssidieux et al.

of the sequence (ϕ j ) is a supersolution to the complex Monge–Ampère flow asso-
ciated to (F, μ) in �T .

It is a remarkable fact thatwedonot need any apriori estimate on the timederivatives
to pass to the limit in the viscosity differential inequalities.

Remark 2.8 An important example in applications is when F(t, z, r) = αr with
α ≥ 0. In this case a simple change of variables reduces the general case α > 0 to the
case when α = 0. Indeed if α > 0 set

ψ(s, z) := α(1 + s)ϕ(t, z), with t := α−1 log(1 + s),

and observe that

∂sψ(s, z) = αϕ(t, z) + ∂tϕ(t, z).

Thus ϕ is a (sub/super)solution to the the parabolic Monge– Ampère equation

exp (∂tϕ + αϕ) μ − (ddcϕt )
n = 0,

if and only ψ is a (sub/super)solution to

e∂tψμ̃(s, ·) − (ddcψs)
n = 0,

where μ̃(s, z) = αn(s + 1)nμ(z).

3 The parabolic Jensen–Ishii’s maximum principle

3.1 Maximum principles

Recall that a function u : U ⊂ R
N −→ R is semi-convex in U if for each small ball

B � U , there exists a constant A > 0 such that the function x �−→ u(x) + A|x |2 is
convex in B.

We also recall that the upper second order jet J 2,+u(x0) at x0 ∈ U of a function
u : U −→ R is the set of (p, Q) ∈ R

N × SN s.t. for x close to x0,

u(x) ≤ u(x0) + 〈p, x − x0〉 + 1

2
〈Q(x − x0), x − x0〉 + o(|x − x0|2).

The set J̄ 2,+u(x0) of approximate second order superjets is then defined in the same
way as in Definition 2.5.

The following is a consequence of the fundamental Theorem of Jensen on which
the Jensen–Ishii maximum principle is based (see [9,12]):

Theorem 3.1 Let u be a semi-convex function in an open set U ⊂ R
N , attaining a

local maximum at some point x0 ∈ U. Then there exists (p, Q) ∈ J̄ 2,+u(x0) such
that p = 0 and Q ≤ 0.
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More precisely for any subset E ⊂ U ofLebesguemeasure 0, there exists a sequence
(xk) of points in U \ E such that xk → x0, u(xk) → u(x0), u is twice differentiable
at each point xk for k > 1, Du(xk) → 0 and D2u(xk) → Q ≤ 0 as k → +∞.

A crucial ingredient is Alexandrov’s theorem on almost everywhere second order
differentiability of convex functions [1]. From this we can derive the following useful
result:

Lemma 3.2 Let U ⊂ R
N be an open set and H : U ×R×R

N ×SN −→ R∪{+∞}
be a function.

1. Assume that H is lower semi-continuous and degenerate elliptic. Let w be a semi-
convex function in the open set U ⊂ R

N such that for almost all x0 ∈ U,

H (x0, w(x0), p, Q) ≤ 0,∀(p, Q) ∈ J 2,+w(x0).

Then w is a (viscosity) subsolution to the equation H = 0 in U.
2. Assume that H : U × R × R

N × SN −→ R is finite, upper semi-continuous and
degenerate elliptic. Let w be a semi-concave function in the open set U ⊂ R

N

such that for almost all x0 ∈ U,

H (x0, w(x0), p, Q) ≥ 0,∀(p, Q) ∈ J 2,−w(x0).

Then w is a (viscosity) supersolution to the equation H = 0 in U.

In other words, if w is a subsolution (resp. supersolution) of the equation H = 0
almost everywhere in U , then it is a subsolution (resp. supersolution) everywhere.

Proof We prove the first statement concerning subsolutions. The second statement
concerning supersolutions can be proved in the same way.

We will use the maximum principle of Jensen for semi-convex functions. Let q be
a C2 upper test function for w at a fixed point x0. Thus u := w − q is semi-convex
function in U which takes a local maximum at x0.

Let us denote by E the exceptional set of points where the viscosity inequality
in the lemma is not satisfied. Since E has Lebesgue measure 0, it follows from the
local maximum principle of Jensen for the semi-convex function u that there exists
a sequence xk in U \ E converging to x0 such that u is twice differentiable at xk ,
Du(xk) → 0 and D2u(xk) → A ≤ 0 as k → +∞ i.e. (0, A) ∈ J̄ 2,+u(x0) and
A ≤ 0.

By definition Du(xk) = Dw(xk) − Dq(xk) and D2u(xk) = D2w(xk) − D2q(xk)
for any k hence pk := Dw(xk) = Du(xk) + Dq(xk) → Dq(x0) and Qk :=
D2w(xk) → A + D2q(x0) =: Q. Therefore Q ≤ D2q(x0) since A ≤ 0.

By the choice of xk , we infer H(xk, pk, Qk) ≤ 0. By the lower semi-continuity of
H we get at the limit H(x0, Dq(x0), Q) ≤ 0. Since Q ≤ D2q(x0), by the degenerate
ellipticity condition, we conclude that

H
(
x0, Dq(x0), D

2q(x0)
)

≤ 0.

Thus w satisfies the viscosity differential inequality at each point of U . ��
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942 P. Eyssidieux et al.

We now state the parabolic Jensen–Ishii’s maximum principle ([12], [13, p.65]):

Theorem 3.3 Let� ⊂ R
N be a domain, u an upper semi-continuous function and v a

lower semi-continuous function in ]0, T [×�. Let φ be a function defined in ]0, T [×�2

such that (t, x, y) �−→ φ(t, x, y) is continuously differentiable in t and twice contin-
uously differentiable in (x, y).

Assume that the function (t, x, y) �−→ u(t, x) − v(t, y) − φ(t, x, y) has a local
maximum at some point (t̂, x̂, ŷ) ∈]0, T [×�2.

Assume furthermore that both w = u and w = −v satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

∀(s, z) ∈ � ∃r > 0 such that ∀M > 0 ∃C satisfying
|(t, x) − (s, z)| ≤ r,
(τ, p, Q) ∈ P2,+w(t, x)
|w(t, x)| + |p| + |Q| ≤ M

⎫
⎬

⎭
�⇒ τ ≤ C.

Then for any κ > 0, there exists (τ1, p1, Q+) ∈ P̄2,+u(t̂, x̂), (τ2, p2, Q−) ∈
P̄2,−v(t̂, ŷ) such that

τ1 = τ2 + Dtφ(t̂, x̂, ŷ), p1 = Dxφ(t̂, x̂, ŷ), p2 = −Dyφ(t̂, x̂, ŷ)

and

−
(
1

κ
+ ‖A‖

)
I ≤

(
Q+ 0
0 −Q−

)
≤ A + κA2,

in the sense of quadratic forms on R
N , where A := D2

x,yφ(t̂, x̂, ŷ).

Remark 3.4 Condition (2.3) is automatically satisfied for w locally Lipschitz in the
time variable or if w is a subsolution of (1.1) with μ > 0. It need not be satisfied for
a general supersolution of (1.1) even if μ > 0.

3.2 Regularizing in time

Given a bounded upper semi-continuous function u : [0, T [×� −→ R, we consider
the upper approximating sequence by Lipschitz functions in t ,

uk(t, x) := sup{u(s, x) − k|s − t |, s ∈ [0, T [}, (t, x) ∈ [0, T [×�.

If v is a bounded lower semi-continuous function, we consider the lower approxi-
mating sequence of Lipschitz functions in t ,

vk(t, x) := inf{v(s, x) + k|s − t |, s ∈ [0, T [}, (t, x) ∈ [0, T [×�.

Lemma 3.5 For k ∈ R
+, uk is an upper semi-continuous function which satisfies the

following properties:

• u(t, z) ≤ uk(t, z) ≤ sup|s−t |≤A/k u(s, z), where A > 2oscXT u.
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• |uk(t, x) − uk(s, x)| ≤ k|s − t |, for (s, z) ∈ [0, T [×�, (t, z) ∈ [0, T [×�.
• For all (t0, z0) ∈ [0, T − A/k] × �, there exists t∗0 ∈ [0, T [ such that

|t∗0 − t0| ≤ A/k and uk(t0, z0) = u(t∗0 , z0) − k|t0 − t∗0 |.

Moreover if u satisfies

e∂t u+F(t,ut ,·)μ(t, ·) ≤ (ddcut )
n in ]0, T [×�, (3.1)

where μ = μ(·, ·) ≥ 0 is a continuous Borel measure in �T , then the function uk is a
subsolution of

e∂tw+Fk (t,ut ,·)μk(t, ·) − (ddcwt )
n = 0 in ]A/k, T − A/k[×�,

where Fk(t, x, z) := inf |s−t |≤A/k F(s, x, z) + k|s − t | and μk(t, z) := inf |s−t |≤A/k

μ(s, z). The dual statement is true for a lower semi-continuous function v which is a
supersolution.

Proof The first statement is elementary. Let us prove the second one in the same spirit
as [11]. Let (t0, z0) ∈]0, T [×� be fixed and let q(t, z) be an upper test function that
touches uk from above at (t0, z0). Consider for k large enough, the following smooth
function given by

q∗(t, z) := q(t + t0 − t∗0 , z) + k|t0 − t∗0 |.

Then q∗ is an upper test function for u at the point (t∗0 , z0). Since u satisfies the
differential inequality (3.1), we have

e∂t q∗(t∗0 ,z0)+F(t∗0 ,q∗(t0,z0),z0)μ(t∗0 , z0) ≤ (ddcq∗
t∗0

(z0))
n .

Since ∂t q∗(t∗0 , z0) = ∂t q(t0, z0), q∗(t∗0 , z0) = q(t0, z0) + k|t − t∗0 | and ddcq∗
t∗0

(z0) =
ddcqt0(x0) and F is non decreasing, we deduce the following inequality

e∂t q(t0,z0)+F(t∗0 ,q(t0,z0),z0)μ(t∗0 , z0) ≤ (ddcqt0(z0))
n,

which proves the statement of the lemma since μ(t∗0 , z0) ≥ μk(t0, z0) and
F(t∗0 , q(t0, z0), z0) ≥ Fk(t0, q(t0, z0), z0).

For a supersolution the same proof works modulo obvious modifications. ��

3.3 Spatial plurisubharmonicity of parabolic subsolutions

We first connect sub/super-solutions of certain degenerate elliptic complex Monge–
Ampère equations to sub/super-solutions properties of their slices.
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944 P. Eyssidieux et al.

Proposition 3.6 Let G :]0, T [×R × � −→ R be a continuous function, ν(t, z) =
νt (z)acontinuous family of volume formsand letw :]0, T [×� −→ Rbea subsolution
(resp. supersolution) to the degenerate elliptic complex Monge–Ampère equation

eG(t,z,w)ν(t, z) − (ddcw)n = 0,

in the viscosity sense in ]0, T [×�. Then for all t0 ∈ [0, T [, the function

wt0 : z �−→ w(t0, z)

is a subsolution (resp. supersolution) to the degenerate elliptic equation eG(t0,z,ψ)νt0
− (ddcwt0)

n = 0 in �.

Let us stress that these equations do not contain any time derivative ∂tw!

Proof We give the proof for the supersolution case and let the reader deal with the
(slightly simpler) case of subsolutions.

Assume that w satisfies the differential inequality

(ddcw)n ≤ eG(t,z,w)ν(t, z)

in the sense of viscosity in U :=]0, T [×�. We approximate w by inf-convolution
wε(t, z) in all variables, the function wε is defined in the open set Uε :=]Aε, T
− Aε[×�ε ⊂ U for ε > 0 small, where

�ε = {z ∈ � | d(z, ∂�) > Aε}, with A := 4 oscX (u).

It is a classical fact (see [11]) that the function v := wε is a supersolution of an
approximate parabolicMonge–Ampère equation: it satisfies the differential inequality

(ddcvε)
n ≤ eG

ε(t,z,vε)νε,

in the sense of viscosity, where

νε(t, z) := sup{ν(t ′, z′); |t ′ − t |, |z′ − z| ≤ Aε}

and Gε is defined similarly.
Sincewε is semi-concave inUε , it follows fromAlexandrov’s theorem that it is twice

differentiable almost everywhere in Uε. The above inequality is therefore satisfied
pointwise almost everywhere, i.e. at each point (t, z) where wε has a second order jet.
Observe that for almost all t0 ∈]Aε, T − Aε[, there exist a set Et0 ⊂ �ε of Lebesgue
measure 0 such that for any z0 /∈ Et0 , the functionwε is twice differentiable at (t0, z0).
By definitionwehaveJ 2wε(t0, z0) = {(τ, p, κ, Q)} and {(p, Q)} = J 2ψ(z0), where
ψ = wε(t0, ·). The viscosity inequality satisfied by w at (t0, z0) implies

(ddcQ)n+ ≤ eG
ε(t0,z0,v(t0,z0))νε(t0, z0).
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It follows that for almost all fixed t0 ∈]0, T [, the function ψ(z) := wε(t0, z) is
pointwise second order differentiable at almost all z0 ∈ �ε and satisfies

(
ddcψ(z0)

)n
+ ≤ eG

ε(t0,z0,ψ(z0))νε(t0, z0).

Lemma 3.2 now shows that ψ satisfies the viscosity inequality (ddcψ)n ≤
eF

e(t0,·,ψ)νε(t0, ·) at every point of �ε. Since νε → ν and Gε → G locally uni-
formly in U , it follows from the stability Lemma 2.7 that w(t0, ·) = limε→0 wε(t0, ·)
is a supersolution to the degenerate elliptic equation

eG(t0,·,ψ)νt0 − (ddcψ)n = 0

in the sense of viscosity in �. This is true for almost every t0 ∈]0, T [. Now given
any t0 ∈]0, T [, one can find a sequence of points (t j ) converging to t0 in ]0, T [ such
that for every j ∈ N, the function ψ j := ψ(t j , ·) is a supersolution to the degenerate
elliptic equation associated to (G j , ν j ), where G j := G(t j , ·) and ν j := ν(t j , ·).
Since G j → G(t0, ·) and ν j → ν(t0, ·) locally uniformly in �, it follows from the
stability Lemma in the degenerate elliptic case (see [12]) thatψ(t0, ·) is a supersolution
to the degenerate elliptic equation associated to (G(t0, ·), ν(t0, ·). ��

As a consequence we show that subsolutions to parabolic complexMonge–Ampère
equations are plurisubharmonic in the space variable:

Corollary 3.7 Assume that u is a bounded subsolution to the parabolic Monge–
Ampère equation (2.1) in ]0, T [×�. Then for any fixed t0 ∈ [0, T [, the function

z �→ u(t0, z) is plurisubharmonic in �,

Moreover for all (t0, z0) ∈ �T and (τ, p, Q) ∈ P2,+u(t0, z0), we have ddcQ ≥ 0
and ddcQ > 0 when μ(t0, z0) > 0.

Proof We consider here the parabolic Monge–Ampère equation (2.1) as a degenerate
elliptic equation on ]0, T [×� as explained in Remark 2.3.

Since u is a subsolution to the parabolic Monge–Ampère equation (2.1), it is also a
subsolution to the degenerate elliptic equation (ddcut )n = 0 in ]0, T [×�. Applying
Proposition 3.6 with μ ≡ 0, we conclude that for any fixed t0 ∈]0, T [, the function
w := u(t0, ·) is a subsolution of the degenerate elliptic equation (ddcw)n = 0 in �.

Therefore by [14] the function ϕ = u(t0, ·) is psh in �. The last statement follows
also from [14]. ��

Proposition 3.8 Assume that μ ≡ 0 vanishes identically in some open set D ⊂ �

and v is a bounded supersolution to the parabolic Monge–Ampère equation (2.1) in
]0, T, [×D.

Then for all t0 ∈]0, T [ the function z �→ v(t0, z) is a supersolution to the degenerate
elliptic equation (ddcw)n = 0 in D i.e. (ddcvt0)

n ≤ 0 in the viscosity sense in D.
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If v is moreover continuous in ]0, T, [×D then the plurisubharmonic envelope
P(vt0) = sup{u | u psh in D and u ≤ vt0} of the function z �→ v(t0, z) satisfies

(
ddcP(vt0)

)n = 0

in the viscosity sense in D, hence it is a maximal psh function in D.

Recall that a psh function u is maximal (see [26]) if for every relatively compact
open set U ⊂ D and every psh continuous function h on U ,

h ≤ u on ∂U ⇒ h ≤ u in U.

Proof Since v is a bounded supersolution to the parabolic Monge–Ampère equation
(2.1) in ]0, T, [×D andμ ≡ 0 in D, it follows that v is a supersolution to the degenerate
elliptic equation (ddcv)n = 0 in ]0, T [×D. Using Lemma 3.6 with μ ≡ 0, we infer
that for t0 ∈]0, T [, the function w := v(t0, ·) is a supersolution of the degenerate
elliptic equation (ddcw)n = 0 in D.

When w is continuous, it follows from [14, Lemma 4.7] that its plurisubharmonic
envelope θ := P(w) is a (viscosity) supersolution to the equation (ddcθ)n = 0 in
D. Since θ is also plurisubharmonic, we infer that θ is a viscosity solution to the
homogeneous complex Monge–Ampère equation (ddcθ)n = 0 in D.

Fix a ball B � D and observe that the continuous psh function θ is the unique solu-
tion to the Dirichlet problem for the homogeneous complex Monge–Ampère equation
(ddcψ)n = 0 in B with boundary values ψ|∂B = θ|∂B.

It is known [14,30] that the viscosity solution to this Dirichlet problem is the upper
envelope of all viscosity subsolutions. Since viscosity subsolutions are exactly the
pluripotential ones by [14, Theorem 1.9], we infer that θ is the upper envelope of the
pluripotential subsolutions to the Dirichlet problem above, hence it coincides with
the Perron–Bremermann envelope and is a maximal psh function (see [8,26]). Thus
(ddcθ)n = 0 in the pluripotential sense and θ is a maximal psh function in the open
set D. ��
Remark 3.9 Letϕ be a continuous plurisubharmonic function andμ ≥ 0 an absolutely
continuous measure with continuous non-negative density. As the proof of the propo-
sition above shows, the following are equivalent:

(i) (ddcϕ)n = μ in the pluripotential sense of Bedford–Taylor [7];
(ii) (ddcϕ)n = μ in the viscosity sense [14].

The dictionary between viscosity and plutipotential theory is quite subtle when μ is
allowed to vanish and as far as supersolution are concerned. These notions however
coincide for continuous solutions of Dirichlet problems.

The following immediate consequence of the previous proposition shows that one
cannot run continuously a parabolic complex Monge–Ampère flow from an arbitrary
initial data, if the measure μ is allowed to vanish:

Corollary 3.10 Assume that ϕ is a solution to the the parabolicMonge–Ampère equa-
tion (2.1) in ]0, T, [×�which extends continuously to [0, T [×�. Ifμ vanishes in some
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open set D, then for all t ∈ [0, T [, the function ϕt is a maximal psh function in D. In
particular ϕ0 has to be a maximal plurisubharmonic function in D.

4 The parabolic comparison principle

In this sectionwe establish a comparison principle for the following parabolic complex
Monge–Ampère equation in bounded domains of Cn :

e∂tϕ+F(t,·,ϕt )μt − (ddcϕt )
n = 0, (4.1)

where μ(t, z) = μt (z) ≥ 0 is a continuous family of Borel measure on �.
We begin with a technical lemma.

Lemma 4.1 Let μ(t, z) ≥ 0 and ν(t, x) ≥ 0 be two continuous Borel measures on �

depending on the variables (t, z) and F,G : [0, T [×� × R −→ R two continuous
functions.

Assume that u : �̄T → R is upper semicontinuous and v : �̄T → R is lower
semicontinuous. Assume that the restriction of u to �T is a bounded subsolution to
the parabolic complex Monge–Ampère equation (4.1) associated to (F, μ) in �T and
that the restriction of v to �T is a bounded supersolution to the parabolic complex
Monge–Ampère equation (4.1) associated to (G, ν) in �T .

Assume (†) that v is locally Lipschitz in the time variable and either u is locally
Lipschitz in the time variable or μ > 0.

Then, for every δ > 0 either sup�̄T

(
u(t, x) − v(t, x) − δ

T−t

)
is attained on ∂0�T

or there exists (t̂, x̂) ∈]0, T ′] × � where

T ′ = T − 2δ(‖u‖∞ + ‖v‖∞) (4.2)

such that sup
(
u(t, x) − v(t, x) − δ

T−t

)
is attained at (t̂, x̂) and

e
δ

(T−t̂)2
+F(t̂,x̂,u(t̂,x̂))−G(t̂,x̂,v(t̂,x̂))

μ(t̂, x̂) ≤ ν(t̂, x̂). (4.3)

Proof Consider

w(t, x) := u(t, x) − v(t, x) − δ

T − t
.

This function is upper semi-continuous and bounded from above on the compact set
�T and it is locally Lipschitz in the time variable. Since w(t, z) tends to −∞ as
t → T−, there exists a point (t0, z0) ∈ [0, T [×�̄, such that

M := sup
�T

w = w(t0, z0).
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By construction this maximum cannot be achieved on ]T ′, T [×�̄. We can assume
that this maximum of w on �T is not attained on ∂0�T . The set {(t, x) ∈
�̄T , w(t, x) = M} is then a compact subset contained in ]0, T ′] × �. Consider
for small ε > 0, the function defined on ]0, T [×�2 by

wε(t, x, y) := u(t, x) − v(t, y) − δ

T − t
− 1

2ε
|x − y|2·

This function is upper semi-continuous and bounded from above in [0, T [×�
2
by a

uniform constant C , and it tends to −∞ as t → T−, so it reaches its maximum on
[0, T [×�

2
at some point (tε, xε, yε) ∈ [0, T [×�

2
i.e.

Mε := sup
t∈[0,T [×�

2
wε = u(tε, xε) − v(tε, yε) − δ

T − tε
− 1

2ε
|xε − yε|2·

Observe that M ≤ Mε ≤ C , which implies that any limit point of (tε) is in [0, T [. It
follows from [12, Proposition 3.7] that |xε−yε|2 = o(ε) and that there is a subsequence

(tε j , xε j , yε j ) converging to (t̂, x̂, x̂) ∈ [0, T [×�
2
where (t̂, x̂) is a maximum point

of w on �T and
lim
j→∞ Mε j = M . (4.4)

To simplify notation we set for any j ∈ N, (t j , x j , y j ) = (tε j , xε j , yε j ). Extracting
and relabelling wemay assume that

(
u(t j , x j , y j )

)
j and

(
v(t j , x j , y j )

)
j converge. By

the semicontinuity of u and v,

lim
j→∞ u(t j , x j , y j ) ≤ u(t̂, x̂), lim

j→∞ v(t j , x j , y j ) ≥ v(t̂, x̂). (4.5)

On the other hand (4.4) implies that:

lim
j→∞ u(t j , x j , y j ) − lim

j→∞ v(t j , x j , y j ) − δ

T − t̂
= u(t̂, x̂) − v(t̂, x̂) − δ

T − t̂
,

lim
j→∞ u(t j , x j , y j ) − lim

j→∞ v(t j , x j , y j ) = u(t̂, x̂) − v(t̂, x̂).

Together with (4.5), this yields

lim
j→∞ u(t j , x j ) = u(t̂, x̂), lim

j→∞ v(t j , y j ) = v(t̂, x̂). (4.6)

From our assumption we conclude that (t̂, x̂) ∈]0, T [×� and

M = u(t̂, x̂) − v(t̂, x̂) − δ

T − t̂
· (4.7)

Applying the parabolic Jensen–Ishii’s maximum principle Theorem 3.3 [the tech-
nical assumption (2.3) being satisfied thanks to (†)] to the functions U (t, x) :=
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u(t, x)− δ
T−t , v and the penality functionφ(t, x, y) := 1

2ε |x−y|2 for any fixed ε = ε j ,
we find approximate parabolic second order jets (τ j , p

±
j , Q±

j ) ∈ R×R
2n ×S2n such

that
(

τ j + δ

(T − t j )2
, p+

j , Q+
j

)
∈ P̄2,+u(t j , x j ),

(
τ j , p

−
j , Q−

j

)
∈ P̄2,−v(t j , y j )

with p+
j = −p−

j = 1
ε j

(x j − y j ) and Q+
j ≤ Q−

j (see [12, p.17] for the classical deduc-
tion of this inequality from Theorem 3.3 using the form of the flat space penalization
function and compare [3] for the difficulties in curved space).

Applying the parabolic viscosity differential inequalities, we obtain for all j ∈ N,

e
τ j+ δ

(T−t j )
2 +F(t j ,x j ,u(t j ,x j ))

μ(t j , x j ) ≤ (ddcQ+
j )n

≤ (ddcQ−
j )n

≤ eτ j+G(t j ,y j ,v(t j ,y j ))ν(t j , y j ),

which implies that

e
δ

(T−t j )
2 +F(t j ,x j ,u(t j ,x j ))−G(t j ,y j ,v(t j ,y j ))

μ(t j , x j ) ≤ ν(t j , y j ),

Letting j → +∞ and using (4.6) (4.7) , we obtain the inequality (4.3). ��
Theorem 4.2 Assume that μ(z) ≥ 0 is a continuous non negative volume form on
�. Let u be a bounded subsolution to the parabolic complex Monge–Ampère equa-
tion (4.1) and v a bounded supersolution to the parabolic complex Monge–Ampère
equation (4.1) in �T . Then

max
�T

(u − v) ≤ max{max
∂0�T

(u − v), 0},

where u (resp. v) has been extended as an upper (resp. a lower) semicontinuous
function to �̄T .

Proof Step 1. Assume that μ > 0 in �T and that v is locally Lipschitz in the time
variable. Fix δ > 0. Apply Lemma 4.1 with μ = ν, F = G. It follows that either

sup
�̄T

{
u(t, x) − v(t, x) − δ

T − t

}
= sup

∂0�̄T

{
u(t, x) − v(t, x) − δ

T − t

}

or

e
δ

(T−t̂)2
+F(t̂,x̂,u(t̂,x̂))−F(t̂,x̂,v(t̂,x̂)) ≤ 1

which implies F
(
t̂, x̂, u(t̂, x̂)

) − F
(
t̂, x̂, v(t̂, x̂)

)
< 0 hence u(t̂, x̂) < v(t̂, x̂). In

either case, every (t, x) ∈ �̄T satisfies
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u(t, x) − v(t, x) − δ

T − t
< max{0, sup

∂0�̄T

(u − v)}.

Since δ can be choosen arbitrary small, we infer:

u − v ≤ max{0, sup
∂0�̄T

(u − v)}.

Step 2. Still assuming that μ > 0 in �T , let us remove the assumption that v is
locally Lipschitz in the time variable. Fix δ > 0. Either

sup
�̄T

{
u(t, x) − v(t, x) − δ

T − t

}
= sup

∂0�̄T

{
u(t, x) − v(t, x) − δ

T − t

}

or

sup
�̄T

{
u(t, x) − v(t, x) − δ

T − t

}
> sup

∂0�̄T

{
u(t, x) − v(t, x) − δ

T − t

}

Suppose we are in the second case. Fix s̄ ∈ R such that

sup
�̄T

{
u(t, x) − v(t, x) − δ

T − t

}
> s̄ > sup

∂0�̄T

{
u(t, x) − v(t, x) − δ

T − t
)

}
.

Since s̄ > sup∂0�̄T
(u(t, x)−v(t, x)− δ

T−t ), we have ∂0�̄T ⊂ {w(t, x) < s̄}. Since
{w(t, x) < s̄} is open and contains {0} × �̄, we can find η > 0 such [0, η] × �̄ ⊂
{w(t, x) < s̄} so that every (t, x) ∈ [0, η] × �̄ ∪ ∂0�̄T satisfies

u(t, x) − v(t, x) − δ

T − t
< s̄.

We now apply Lemma 3.5 to v. Then, by Dini-Cartan’s lemma we have

lim
k→∞ sup

�̄T

{

u(t, x) − vk(t, x) −
(

δ

T − t

)
= sup

�̄T

(u(t, x) − v(t, x)) − δ

T − t

}

and similarly

lim
k→∞ sup

[0,η]×�̄∪∂0�̄T

{
u − vk − δ

T − t

}
= sup

[0,η]×�̄∪∂0�̄T

{
u − v − δ

T − t

}
.

Hencewe can assume that for k large enough themaximumofwk(t, x) := u(t, x)−
vk(t, x) − δ

T−t is not attained on [0, η] × �̄ ∪ ∂0�T . Choose k large enough so that
the supersolution property of vk is valid for η/2 < t < T ′. Lemma 4.1 applied to
ũ(t, x) = u(t + η, x), ṽ(t, x) = vk(t + η, x), yields
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F
(
t̂, x̂, u(t̂, x̂)

) − Fk (
t̂, x̂, vk(t̂, x̂)

) + δ

T 2 ≤ log(μk/μ)(t̂, x̂), (4.8)

where (t̂, x̂) = (t̂k, x̂k) ∈]0, T [×� is a point where the function wk(t, x) takes its
maximum in �T .

Since F and μ are uniformly continuous in [0, T ′] × � × [−K , K ] with K =
max(‖u‖∞, ‖v‖∞), it follows that, for k large enough, we have

F
(
t̂, x̂, u(t̂, x̂)

) − F
(
t̂, x̂, vk(t̂, x̂)

) ≤ − δ

2T 2 . (4.9)

From thiswegetu(t̂, x̂) < vk(t̂, x̂).Hence sup�̄T
wk(t, x) < 0 and sup�̄T

(u(t, x)−
v(t, x) − δ

T−t ) ≤ 0.
In particular, whether we are in the first or the second case, we infer

sup
�̄T

(
u(t, x) − v(t, x) − δ

T − t

)
≤ max

(

0, sup
∂0�̄T

u(t, x) − v(t, x) − δ

T − t

)

≤ max

(

0, sup
∂0�̄T

u(t, x) − v(t, x)

)

,

and for every (t, x) ∈ �T we have

u(t, x) − v(t, x) − δ

T − t
≤ max

(

0, sup
∂0�̄T

(u(t, x) − v(t, x)

)

.

Since δ can be chosen arbitrary small, we conclude once again that

u − v ≤ max

{

0, sup
∂0�̄T

(u − v)

}

.

Step 3. Assume that μ(t, x) = ν(t, x) ≥ 0 and the subsolution u is locally uni-
formly Lipschitz in t .

More precisely we assume that t �−→ u(t, z) is C-Lipschitz in t in some subset
[0, T ′] ⊂ [0, T [ uniformly in z ∈ �. The idea is to perturb μ by adding an arbitrary
small positive term.

Consider for η > 0 small enough, the positive volume form μ̃ := μ + ηβn , where
β = ddcρ > 0 is the standard Kähler form on � i.e. ρ(z) := |z|2 − R2, where
R > 1 is large enough so that ρ < 0 in �. Then fix ε > 0 and consider the function
ψ(t, z) := u(t, z)+ερ(z). This is an upper semi-continuous function in�T . We claim
that ψ is a subsolution to the equation

e∂tψ(t,·)+F(t,ψt ,·)μ̃(t, ·) ≤ (ddcψt )
n, (4.10)

in [0, T ′] × � for an appropriate choice of η in terms of ε.
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Indeed since ρ is C2, any parabolic upper test function θ for ψ at any point (t0, z0)
can be written as θ(t, z) := θ̃ (t, z)+ ερ(z), where θ̃ is a parabolic upper test function
for u at the point (t0, z0). From the viscosity inequality for u we know that ddc θ̃t0 ≥ 0
and

(ddc θ̃t0)
n
z0 ≥ e∂t θ̃ (t0,z0)+F(t0,z0,θ̃ (t0,z0))μ(t0, z0).

Therefore ddcθt0(z0) = ddcθ̃t0(z0) + εβ ≥ 0 and then

(ddcθt0)
n
z0 ≥ (ddcθ̃t0)

n + εnβn ≥ e∂t θ(t0,z0)+F(t0,θ(t0,z0),z0)μ(t0, z0) + εnβn,

since θ ≤ θ̃ and F in non decreasing in the second variable.
Now set M := sup�T ′ u and A := sup{F(t, z, M); 0 ≤ t ≤ T ′, z ∈ �}. Since u is

C-Lipschitz in t uniformly in z and u ≤(t0,z0) θ , it follows from Taylor’s formula that
∂tθ(t0, z0) ≤ C . Then

e∂t θ(t0,z0)+F(t0,z0,θ(t0,z0)) ≤ eC+A.

Therefore if we choose η := εne−A−C , we obtain the inequality

(ddcθt0)
n
z0 ≥ e∂t θ(t0,z0)+F(t0,z0,θ(t0,z0))(μ(t0, z0) + ηβn),

which proves our claim.
Since μ̃ ≥ μ, the function v is also a supersolution to the parabolic equation

associated to (F, μ̃). We can apply the comparison principle of the first part and
conclude that u(t, z) + ερ(z) − v(t, z) ≤ max∂0�T (u − v)+ + O(ε). Letting ε → 0
we obtain the conclusion of the theorem.

Step 4. Finally assume that μ(z) = ν(z) ≥ 0 does not depend on t . Regularizing
u in the time variable only according to Lemma 3.5, we obtain a decreasing sequence
uk of k-Lipschitz functions in t converging to u. We know by (3.1) that U = uk is a
subsolution to the parabolic Monge–Ampère equation associated to (Fk, μ) i.e.

e∂tU (t,·)+Fk (t,·,Ut )μ ≤ (ddcUt )
n,

where Fk(t, z, r) := inf |s−t |≤1/k F(s, z, r) on [A/k, T − A/k] × �. Observe that μ
does not change after regularization in the time variable since it does not depend on t .

Using the perturbation argument of Step 3,we see that the functionψk := uk(t, z)+
ερ(z) satisfies the differential inequality

e∂tψ(t,·)+Fk (t,·,ψt )(μ + ηβn) ≤ (ddcψt )
n,

where η := εne−A−k on [A/k, T − A/k] × �.
We now regularise v in the time variable only according to Lemma 3.5 and argue

as in Step 2 to conclude that, in the second case,

Fk
(
t̂, x̂, uk(t̂, x̂)+ερ(t̂, x̂)

)−Fk
(
t̂, x̂, vk(t̂, x̂)

)
+ δ

T 2 ≤ log(μ/μ̃)(t̂, x̂), (4.11)
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where (t̂, x̂) = (t̂k, x̂k) ∈]0, T [×� is a point where the function uk(t, x)+ ερ(t, x)−
vk(t, x)) − δ

T−t achieves its maximum. Since F is uniformly continuous in [0, T ′] ×
� × [−K − 2εR2, K ] and μ ≤ μ̃ with K = max(‖u‖∞, ‖v‖∞), it follows that for k
large enough,

F(t̂, x̂, uk(t̂, x̂) + ερ(t̂, x̂)) − F(t̂, x̂, vk(t̂, x̂)) ≤ − δ

2T 2 . (4.12)

This yields:

uk(t̂, x̂) + ερ(t̂, x̂) < vk(t̂, x̂)

and for all (t, x) ∈ �̄T

uk(t, x) + ερ(t, x) − vk(t̂, x̂) − δ

T − t
< 0.

We can then let ε decrease to 0, then let k go to +∞ arguing as in the last part of
Step 2, to conclude that

sup
�̄T

(
u(t, x) − v(t, x) − δ

T − t

)
≤ max

(

0, sup
∂0�̄T

u(t, x) − v(t, x) − δ

T − t

)

≤ max

(

0, sup
∂0�̄T

u(t, x) − v(t, x)

)

.

Letting δ decrease to 0, we conclude the proof. ��
Remark 4.3 As the proof shows, the comparison principle is valid under more general
conditions than those stated in the theorem, in particular: when the volume form
μ(t, z) > 0 depends on (t, z) and does not vanish on �T .

Remark 4.4 An important case for applications is when F is strongly increasing in
the last variable, meaning that there exists α > 0 such that for any (t, z), the function
r �−→ F(t, z, r) − αr is non decreasing in R. Then we can prove a more precise
comparison principle. Namely assume that μ(t, z) > 0 and ν(t, z) ≥ 0 are two
continuous volume forms in �T , u is a subsolution to the parabolic complex Monge–
Ampère equation associated to (F, μ) and v is a supersolution to the parabolicMonge–
Ampère equation associated to (F, ν), then

max
�T

(u − v) ≤ max{M0, (1/α) log γ }

where M0 := max∂0�T (u − v)+ and γ := max�T ν/μ. This follows from the funda-
mental inequality (4.3).

Remark 4.5 A change of variables in time leads to the more general twisted parabolic
complex Monge–Ampère equation

eh(t)∂tϕ+F(t,z,ϕ)μ(t, z) − (ddcϕt )
n = 0, (4.13)

where h > 0 is positive continuous function in [0, T [.
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The comparison principle holds for the more general parabolic complex Monge–
Ampère equation (4.13). This follows from the change of variables

u(s, z) := ϕ(t, z), with, t = γ (s)

where γ is a positive increasing function in [0, S[ with values in [0, T [ such that
γ (0) = 0.

Indeed observe that ∂su = γ ′(s)∂tϕ(t, z) for (s, z) ∈ [0, S[×�. Thus if we set
γ ′(s) = h(t), then ϕ is a solution to the twisted parabolic complex Monge–Ampère
equation (4.13) if and only if u is a solution to the parabolic complex Monge–Ampère
equation

e∂su+G(s,z,u)ν(s, z) − (ddcus)
n = 0,

where G(s, z, r) := F(γ (s), z, r) and ν(s, z) := μ(γ (s), z).
Since r �−→ G(t, z, r) in non decreasing, we can apply the comparison principle

proved above and obtain the claim. Observe that the equation γ ′(s) = h(t)means that
the inverse function g(t) = γ −1(t) = s satisfies g′(t) = 1/h(t) and g(0) = 0, thus γ

is uniquely determined by h.

5 Existence of solutions

We now study the Cauchy–Dirichlet problem for the parabolic complex Monge–
Ampère equation

e∂tϕ+F(t,·,ϕ)μ − (ddcϕt )
n = 0, in �T , (5.1)

with Cauchy–Dirichlet conditions,

ϕ(t, z) = ϕ0(z), (t, ζ ) ∈ ∂0�, (5.2)

where μ(z) ≥ 0 is a continuous volume form in �, ϕ0 : � −→ R is continuous in �̄

and plurisubharmonic in � and F : [0, T [×� × R �−→ R is a continuous function
non decreasing in the last variable.

We assume that� is a strictly pseudoconvex domain and let ρ be a defining function
for � which is strictly plurisubharmonic in a neighborhood of �, with −1 ≤ ρ < 0
in �.

5.1 Existence of sub/super-solutions

We first introduce the notions of sub/super-solution for the Cauchy–Dirichlet problem:

Definition 5.1 Let ϕ0 be a Cauchy–Dirichlet data function for the parabolic Monge–
Ampère equation (5.2).

1. We say that an upper semi-continuous function u : [0, T [×� −→ R is a subso-
lution to the Cauchy–Dirichlet problem (5.2) if u is a subsolution to the parabolic
equation (5.1) in �T which satisfies u ≤ ϕ0 on the parabolic boundary ∂0�T .

123



Degenerate complex Monge–Ampère flows 955

2. We say that a lower semi-continuous function v : [0, T [×� −→ R is a supersolu-
tion to the Cauchy–Dirichlet problem (5.2) if v is a supersolution to the parabolic
equation (5.1) in �T which satisfies v ≥ ϕ0 on the parabolic boundary ∂0�T .

Observe that sub/supersolutions to the parabolic complexMonge–Ampère equation
we are interested in always exist:

Lemma 5.2 1. The constant function v ≡ sup� ϕ0 is a supersolution to the Cauchy–
Dirichlet problem (5.2) with Cauchy–Dirichlet data ϕ0.

2. The Cauchy–Dirichlet problem for the parabolic equation (5.1) with initial data
ϕ0 admits a subsolution u in ]0, T [×�, which is continuous in [0, T [×� and
satisfies u ≤ v in [0, T [×�.

Proof Thefirst statement is obvious. To prove the second one,we consider the function
defined for t ∈ [0, T [ by

B(t) :=
∫ t

0
b+(s)ds, where b(t) := sup{F(t, z, ϕ0(z)); z ∈ �}. (5.3)

Choose A > 0 large enough so that A(ddcρ)n ≥ μ in �. The function

(t, z) �→ u(t, z) := Aρ(z) + ϕ0(z) − B(t)

is a subsolution to Cauchy–Dirichlet problem for the parabolic complex Monge–
Ampère equation (5.2) which clearly satisfies u ≤ v. ��
Remark 5.3 Observe that the supersolution given above is bounded, while the sub-
solution u is continuous in [0, T [×�, hence locally bounded. When (t, z) �−→
F(t, z, ϕ0(z)) is bounded from above on [0, T [×�, there exists a globally bounded
subsolution. Indeed set

B := sup{F(t, z, ϕ0(z)); 0 ≤ t < T, z ∈ �},

and let A > 1 be so large that An(ddcρ)n ≥ eBμ. Then

u(t, z) := Aρ(z) + ϕ0(z),

does the job.

Consider the upper envelope

ϕ := sup{u ; u ∈ S, u ≤ u ≤ v}, (5.4)

where S is the family of all subsolutions to the Cauchy–Dirichlet problem for the
parabolic equation (5.1) with the Cauchy–Dirichlet condition (5.2), and u, v are the
sub/super-solutions from Lemma 5.2.
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Lemma 5.4 Given any non empty family S0 of bounded subsolutions to the parabolic
equation (5.1) which is bounded above by a continuous function, the usc regularization
of the upper envelope φS0 := supφ∈S0

φ is a subsolution to (5.1) in �T .
If S is the family of all subsolutions to the Cauchy–Dirichlet problem (5.2), its

envelope φS coincides with the upper envelope ϕ given by the formula (5.4) and is a
discontinuous viscosity solution to (5.1) in �T .

Moreover for any (t, z) ∈ [0, T [×�,

ϕ∗(t, z) − ϕ∗(t, z) ≤ sup
∂0�T

(ϕ∗ − ϕ∗)+. (5.5)

Proof The first statement follows from the standard method of Perron (see [12,24]).
Observe that the family S of all subsolutions to the Cauchy–Dirichlet problem (5.2)
is not empty since u ∈ S and bounded from above by v, thanks to Lemma 5.2 and
Theorem 4.2.

The fact that ϕ is a discontinuous viscosity solution to (5.1) in �T follows by the
general argument of Perron as in the degenerate elliptic case (see [12,14]). ��

5.2 Barriers

In order to prove that the above (a priori discontinuous) viscosity solution is a con-
tinuous viscosity solution and satisfies the Cauchy–Dirichlet condition, we need to
construct appropriate barriers.

Definition 5.5 Fix (t0, x0) ∈ ∂0�T and ε > 0.

1. We say that an upper semi-continuous function u : �T −→ R is an ε-subbarrier
for the Cauchy problem (5.2) at the point (t0, x0), if u is a subsolution to the
parabolic complex Monge–Ampère equation (5.1) such that u ≤ ϕ0 in ∂�T and
u∗(t0, x0) ≥ ϕ0(x0) − ε.

2. We say that a lower semi-continuous function v : �T −→ R is an ε−superbarrier
to the Cauchy problem (5.2) at the boundary point (t0, x0) if v is a supersolution to
the parabolic equation (5.1) such that v ≥ ϕ0 in ∂0�T and v∗(t0, x0) ≤ ϕ(x0)+ ε.

Definition 5.6 We say (ϕ0, μ) is admissible whenever for all ε > 0 we can find
ψ0 ∈ C0(�̄) ∩ PSH(�) such that ϕ0 ≤ ψ0 ≤ ϕ0 + ε and C = Cε ∈ R such that
(ddcψ0)

n ≤ eCμ in the viscosity sense.

In other words a Cauchy data ϕ0 is admissible with respect to μ if it is the uniform
limit on � of continuous psh functions whose Monge–Ampère measure is controlled
byμ. In particular if (ddcϕ0)

n ≤ eCμ in the viscosity sense then (ϕ0, μ) is admissible.
We also note the following useful criterion:

Lemma 5.7 If μ > 0 then (ϕ0, μ) is admissible.

Proof This follows from classical results on approximation of plurisubharmonic func-
tions. Indeed, any psh function in �, continuous up to the boundary can be approxi-
mated uniformly in � by psh functions in � that are smooth up to the boundary (see
[2,17,27]).
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Therefore given ε > 0, we can find a function ψ0 psh in �, smooth up to the
boundary such that ϕ0 ≤ ψ0 ≤ ϕ0 + ε in �. If μ > 0 on {0} × �̄, there is a constant
C > 0 such that (ddcψ0)

n ≤ eCμ pointwise in � , hence in the sense of viscosity in
� [14]. ��
Example 5.8 If μ(z) ≡ 0 vanishes identically on some open set D ⊂ � where ϕ0 is
not a maximal psh function (i.e. where the Monge–Ampère measure (ddcϕ0)

n is not
zero) then (ϕ0, μ) is not admissible.

Indeed (ϕ0, μ) is admissible if and only if ϕ0 is the uniform limit (in � hence in
particular on D) of a sequence of continuous psh functions ψ j such that

(ddcψ j )
n ≤ C jμ

for some C j > 0. In particular ψ j has to be maximal in D, hence so is ϕ0.

Proposition 5.9 Assume that (ϕ0, μ) is admissible. For all ε > 0 and (t0, x0) ∈ ∂0�T ,
there exists a continuous function U (resp. V) in [0, T [×�, which is an ε−subbarrier
(resp. ε-superbarrier) to the Cauchy–Dirichlet problem (5.2) at (t0, x0).

Proof Fix ε > 0 and (t0, z0) ∈ ∂0�T .
1. We first construct ε-subbarriers. There are two cases:
1.1. Assume t0 = 0 and z0 ∈ �. Fix ε > 0 and define the following function

U (t, z) := ϕ0(z) + ερ(z) − B(t) − Mt, (t, z) ∈ [0, T [×�,

where B(t) is the C1 positive function defined by the formula (5.3) and M > 0 is a
large constant to be chosen later. Recall that B ′(t) ≥ F(t, z, ϕ0(z)) in [0, T [×�.

The function U is continuous in [0, T [×�, it is plurisubharmonic in the space
variable z ∈ � and C1 in the time variable t ∈ [0, T [. Moreover it satisfies the
inequality (ddcUt )

n ≥ εn(ddcρ)n in the pluripotential sense in � for any fixed t ∈
[0, T [. Observe that

∂tU (t, z) + F (t, z,U (t, z)) ≤ F (t, z, ϕ0(z)) − C ′(t) − M ≤ −M,

pointwise in �T .
If we choose M = M(ε) > 1 large enough so that εn(ddcρ)n ≥ e−Mμ, then U

satisfies the inequality

(ddcUt )
n ≥ e∂tU (t,·)+F(t,·,Ut )μ,

in the pluripotential sense in �, for each t . Moreover it follows from [14] that the
function U satisfies the differential inequality

(ddcUt )
n ≥ e∂tU (t,·)+F(t,·,Ut )

in the viscosity sense in�T . Therefore the functionU is a viscosity subsolution to the
Cauchy–Dirichlet problem (5.2).
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SinceU (0, ·) = ϕ0+ερ ≤ ϕ0 in�,U (0, z0) = ϕ0(z0)+ερ(z0) andρ ≥ −1,we see
thatU (0, z0) ≥ ϕ0(z0)−ε. HenceU is an ε−subbarrier at any point (0, z0) ∈ {0}×�.

1.2. If t0 > 0 and x0 ∈ ∂�, we argue as in the proof of Lemma 5.2. We consider,
for t ∈ [0, T [,

B(t) :=
∫ t

t0
b+(s)ds, where b(t) := sup{F(t, z, ϕ0(z)); z ∈ �}.

This is C1 function in [0, T [ satisfying B(t0) = 0 and B ′(t) ≥ F(t, z, ϕ0(z)) for
any (t, z) ∈ [0, T [×�. Choosing A > 1 large enough so that μ ≤ An(ddcρ)n , the
function

(t, x) ∈ [0, T [×� �→ U (t, x) := ϕ0(x) + Aρ(x) − B(t) ∈ R

is a subbarrier at any point (t0, x0) ∈ [0, T [×∂�.
We have not used the admissibility of the Cauchy–Dirichlet data to construct sub-

barriers.
2.Constructing superbarriers is amore delicate task that requires besides the admis-

sibily some pluripotential tools. We also consider two cases:
2.1. Fix ε > 0 and use that (ϕ0, μ) is admissible to obtain a psh function ψ0 in �

continuous up to the boundary such that ϕ0 − ε ≤ ψ0 ≤ ϕ0 in �. The maximal psh
function ψ̄0 solving the Dirichlet problem

(ddcψ̄0)
n = 0 and ψ̄0|∂� = ψ0|∂�

is continuous and plurisubharmonic [6]. It can be used as a subbarrier at any (t0, z0) ∈
∂0� such that t0 ≥ 0 and z0 ∈ ∂�. The fact that it is a viscosity supersolution follows
from [14,30].

2.2. Assume t0 = 0 and z0 ∈ �. Set for t ∈ [0, T [

�(t) :=
∫ t

0
γ+(s)ds, where γ (t) := − inf{F(t, z, ψ0(z)); z ∈ �}.

Observe that � is C1 in [0, T [ and satisfies �′(t) + F(t, z, ψ0(z)) ≥ 0 for all (t, z) ∈
[0, T [×�. Thus

V (t, z) := ψ0(z) + Ct + �(t),

is a continuous function in [0, T [×�,C1 in t and psh in z.Moreover for any t ∈ [0, T [,
it satisfies

(ddcVt )
n = (ddcψ0) ≤ eCμ ≤ e∂t V+F(t,·,Vt )μ,

in the pluripotential sense in �. As above we infer that V is a subsolution to the
parabolic equation (5.2).
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Since V (0, z) = ψ0(z) ≥ ϕ0(z) − ε, it follows that V is an ε-superbarrier to the
Cauchy problem (5.2) at any parabolic boundary point (0, z0) ∈ �T . ��

Note that one cannot expect the existence of superbarriers when μ = 0 and ϕ0 is
not maximal.

5.3 The Perron envelope

We are now ready to show the existence of solutions to the Cauchy–Dirichlet problem
for degenerate complex Monge–Ampère flows:

Theorem 5.10 Assume μ > 0 or μ = μ(z) is independent of t and (ϕ0, μ) is admis-
sible. Then the Cauchy-Dirichlet problem for the parabolic complex Monge–Ampère
equation (5.1) with Cauchy–Dirichlet condition (5.2) admits a unique viscosity solu-
tion ϕ(t, z) in infinite time.

Proof It follows from Proposition 5.9 that there is at least a subsolution u and a
supersolution v = 0 to theCauchy problem for the parabolic complexMonge–Ampère
equation (5.1) with Cauchy–Dirichlet condition (5.2), which satisfy the inequality
u ≤ v in R

+ × �. We can thus consider the upper envelope ϕ of those subsolutions
u that satisfy u ≤ u ≤ v in R+ × � as defined in 5.4.

Fix T > 0 large and observe that the restriction of ϕ∗ to �T is a subsolution to
the parabolic complex Monge–Ampère equation (5.1), while the restriction of ϕ∗ to
�T is a supersolution to the same parabolic complex Monge–Ampère equation. By
Lemma 5.4, they satisfy the inequalitiy (5.5) and then by semi-continuity there exists
(t0, x0) ∈ ({0} × �) ∪ ([0, T ] × ∂�) such that

max
(t,x)∈�T

{ϕ∗(t, x) − ϕ∗(t, x)} = ϕ∗(t0, x0) − ϕ∗(t0, x0).

Fix ε > 0 arbitrary small. By Proposition 5.9, there exists a continuous
ε−subbarrier U and an ε−superbarrier V to the Cauchy–Dirichlet problem (5.2) in
�T at the parabolic boundary point (t0, x0) ∈ ∂0�T such thatU (t0, x0) ≥ ϕ0(x0)− ε

and V (t0, x0) ≤ ϕ0(x0) + ε. Since U0 ≤ ϕ0 ≤ V0 in �, it follows from the compari-
son principle that U ≤ ϕ∗ ≤ ϕ ≤ ϕ∗ ≤ V in [0, T ] × �. Hence U = U∗ ≤ ϕ∗ and
ϕ ≤ V ∗ = V is [0, T ] × �. At the boundary point (t0, x0) we have

ϕ0(x0) − ε ≤ U (t0, x0) ≤ ϕ∗(t0, x0) ≤ ϕ∗(t0, x0) ≤ V (t0, x0) ≤ ϕ0(x0) + ε.

We infer that for all (t, x) ∈ [0, T [×�,

ϕ∗(t, x) − ϕ∗(t, x) ≤ ϕ∗(t0, x0) − ϕ∗(t0, x0) ≤ 2ε.

Since T > 0 was arbitrary large, this implies that ϕ∗ ≤ ϕ∗ inR+ ×�, hence ϕ∗ = ϕ∗
in R+ × �.

The same reasoning as above shows that ϕ(0, ·) = ϕ0 in�. This proves that ϕ = ϕ∗
is a continuous solution to the Cauchy–Dirichlet problem (5.2) in R+ ×� with initial
data ϕ0. ��
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Remark 5.11 When μ vanishes identically in a non empty open set D ⊂ � where
ϕ0 is not maximal (in particular (ϕ0, μ) is not admissible), then there is no viscosity
solution to the above Cauchy–Dirichlet problem by Corollary 3.10.

6 Long term behavior of the flows

We assume in this last section that F = F(z, r) is time independent. It follows from
Theorem 5.10 that the complex Monge–Ampère flow

e∂tϕ+F(·,ϕ) μ(z) − (ddcϕt )
n = 0 (6.1)

admits a unique solution for all times (i.e. makes sense in R
+ × �) and for every

Cauchy–Dirichlet data ϕ0 ∈ C0(∂�) ∩ PSH(�) such that (ϕ0, μ) is admissible: we
always assume such is the case in the sequel.

Our aim in this final section is to analyze, the asymptotic behavior of this flowwhen
t → +∞. By analogy with the Kähler-Ricci flow, the model case is when

F(z, r) = h(z) + αr, (t, z) ∈ � × R.

The situation is simple when α > 0 (negative curvature), more involved when α = 0
(Ricci flat case), often intractable when α < 0 (positive curvature).

6.1 Negative curvature

We first make a strong assumption on F [corresponding to the model case F(z, x) =
αx + h(z) with α > 0] so as to obtain a good control on the speed of convergence of
the flow, starting from any admissible initial data ϕ0:

Theorem 6.1 Assume that the function r �→ F(·, r) − αr is increasing for some
α > 0. Then the complex Monge–Ampère flow ϕt starting at ϕ0 uniformly converges,
as t → +∞, to the solution ψ of the Dirichlet problem for the degenerate elliptic
Monge–Ampère equation

(ddcψ)n = eF(z,ψ)μ(z) in �, with ψ|∂� = ϕ0.

More precisely

||ϕt − ψ ||L∞(�) ≤ e−αt ||ϕ0 − ψ ||L∞(�)

The existence of the solution ψ is well known in this case (see [10]).

Proof Consider

u(t, z) := eαtϕ(t, z).

Then u is a solution to the parabolic complex Monge–Ampère equation

eh(t)∂t u+G(t,·,ut )μ = (ddcut )
n,
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where h(t) := e−αt and

G(t, z, r) := F(z, e−αt r) − αre−αt + nαt.

We let the reader check that v(t, z) := eαtψ(z) is a solution to the same parabolic
complexMonge–Ampère equation. Our hypothesis on F implies that r �−→ G(t, z, r)
in non decreasing.We can thus apply the comparison principle (seeRemark 4.5),which
yields the desired bound. ��

6.2 The general case

We now show that the convergence holds in full generality, without any control on the
speed of convergence:

Theorem 6.2 The complexMonge–Ampère flowϕt startingatϕ0 uniformly converges,
as t → +∞, to the solution ψ of the Dirichlet problem for the degenerate elliptic
Monge–Ampère equation

(ddcψ)n = eF(z,ψ)μ(z) in �, with ψ|∂� = ϕ0.

Proof We are going to use Theorem 6.1 by considering the perturbedMonge–Ampère
flows associated to the functions F(z, r) + ε(r − c), where ε > 0 is small and c is a
carefully chosen constant.

We first establish an upper bound. Set M0 := sup�̄ ϕ0. Since the constant M0 is a
supersolution to the Monge–Ampère flow associated to (F, μ) with boundary value
M0, it follows from the comparison principle that

ϕ(t, z) ≤ M0 in R
+ × �.

Fix ε > 0 and set Fε(z, r) := F(z, r) + ε(r − M0). Let ϕε(t, z) be the solution of
the complex Monge–Ampère flow associated to (Fε, μ) with Cauchy–Dirichlet data
ϕε
0 = ϕ0 i.e.

(ddcϕε
t )

n = e∂tϕ
ε+F(z,ϕε)+ε(ϕε−M0)μ(z). (�)ε

Observe that ϕ is a subsolution to the flow (�)ε since ϕ ≤ M0. The comparison
principle therefore implies ϕ ≤ ϕε in R+ × �.

Let uε be the solution of the degenerate elliptic Monge–Ampère equation
(ddcuε)n = eF(z,uε)+ε(uε−M0)μ(z) with Dirichlet data uε|∂� = ϕ0|∂� ([10]). It fol-
lows from the stability of the solutions to the Dirichlet problem for the complex
Monge–Ampère operator that uε uniformly converges to u in � as ε → 0 (see [19]).

Fix δ > 0 and choose ε such that u− δ ≤ uε ≤ u+ δ. It follows from Theorem 6.1
that limt→∞ ϕε

t (z) = uε(z) uniformly in �. Therefore there exists Tδ > 1 so that for
t ≥ Tδ and z ∈ �, ϕt (z) ≤ u(z) + 2δ. This is the desired upper bound.

We now establish a lower bound. Observe first that the family (ϕt ) is uniformly
bounded from below. Indeed let ρ be a strongly psh defining function for� and choose
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B > 1 such that

Bn(ddcρ)n ≥ eF(z,0)μ(z)

pointwise in �. Since ρ ≤ 0, the function ψ(t, z) := Bρ(z) is a subsolution to the
parabolicMonge–Ampère equation (ddcψt )

n = e∂tψ+F(z,ψ)μ(z). It therefore follows
from the comparison principle that

Bρ(z) − ϕ(t, z) ≤ max
�̄

(Bρ − ϕ0)+ in R+ × �.

Thus ϕ is uniformly bounded from below by a constant m0 in R+ × �.
We now consider the perturbed Monge–Ampère flow associated to (Fε, μ) with

Cauchy–Dirichlet data ϕε
0 = ϕ0, where Fε(z, r) := F(z, r) + ε(r − m0). Observe

that ϕ is a supersolution of this new perturbed flow since ϕ ≥ m0. Arguing as above
shows the existence of T ′

δ > 1 such that

ϕt (z) ≥ u(z) − δ for t ≥ T ′
δ

and z ∈ �. This proves that ϕt → u uniformly in �. ��
Acknowledgments We thank Cyril Imbert for useful discussions.
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