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STABILITY OF SOLUTIONS TO COMPLEX MONGE–AMPÈRE
EQUATIONS IN BIG COHOMOLOGY CLASSES

Vincent Guedj and Ahmed Zeriahi

Abstract. We establish various stability results for solutions of complex Monge–Ampère

equations in big cohomology classes, generalizing results that were known to hold in the
context of Kähler classes.

1. Introduction

Let (X,ω) be a compact Kähler manifold of complex dimension n ∈ N
∗. Recall that

a (1, 1)-cohomology class is big if it contains a Kähler current, i.e., a positive closed
current which dominates a Kähler form.

Fix a non-negative Radon measure μ whose total mass μ(X) equals vol(α), the
volume of α.

The systematic study of complex Monge–Ampère equations in big cohomology
classes has been initiated in [BEGZ10]. It has been shown there that there exists a
unique positive closed current Tμ ∈ α with full Monge–Ampère mass such that

Tnμ = μ

if and only if μ is a non pluripolar measure on X, i.e., does not charge pluripolar sets.
The purpose of this note is to study the stability properties of the solution Tμ to

this complex Monge–Ampère equation, i.e., to study the continuity properties of the
mapping

μ �→ Tμ.

We can not expect this mapping to be continuous for the weakest topologies, i.e.,
when the set of non pluripolar measures (resp. the set of positive currents with full
Monge–Ampère masses) is endowed with the weak topology of Radon measures (resp.
of positive currents), as the Monge–Ampère operator T �→ Tn is not continuous either
for this weak topology (this observation was made, in a local context, by Cegrell and
Kolodziej in [CK94]). On the other hand, we have the following:

Proposition A. Let μj , μ be non pluripolar measures with total mass μj(X) =
μ(X) = vol(α). If ‖μj − μ‖ → 0, then

Tμj → Tμ in the weak sense of currents.

Here ‖μj − μ‖ denotes the total variation of the signed measure μj − μ.
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Fix θ ∈ α a smooth closed (1, 1)−form on X representing the big cohomology class
α. It follows from the ddc-lemma that any positive closed current T ∈ α decomposes
as T = θ + ddcϕ, for some θ-plurisubharmonic function ϕ. We let PSH(X, θ) denote
the set of all such functions and observe that there is a unique ϕμ ∈ PSH(X, θ) such
that supX ϕμ = 0 and Tμ = θ + ddcϕμ. In the sequel we let

MA(ϕ) := 〈(θ + ddcϕ)n〉

denote the (non pluripolar) complex Monge–Ampère measure of ϕ ∈ PSH(X, θ). The
equation Tnμ = μ is thus equivalent to the Monge–Ampère equation

MA(ϕμ) = μ.

Since the weak convergence of currents Tμ is equivalent to the L1-convergence of
their normalized potentials ϕμ, Proposition A can be reformulated as

(‖μj − μ‖ → 0) =⇒
(
‖ϕμj − ϕμ‖L1(X) → 0

)
.

It is natural to try and estimate quantitatively how fast this convergence holds.
Our second result yields a quantitative stability property “in energy”:

Theorem B. There exists Cn > 0 such that if 0 ≥ ψ,ϕ1, ϕ2 ∈ E1(X, θ) are normalized
by supX ϕ1 = supX ϕ2, then

∫

X

|ϕ1 − ϕ2|MA(ψ) ≤ Cn ·B2 · I(ϕ1, ϕ2)2
−n

,

where B = max{1, |E(ϕ1)|, |E(ϕ2)|, |E(ψ)|}.

We refer the reader to the first section for the definition of the class E1(X, θ) of
θ-psh functions ϕ which have finite energy E(ϕ) > −∞. We recall here that the
symmetric expression

I(ϕ1, ϕ2) :=
∫

(ϕ1 − ϕ2)(MA(ϕ2) −MA(ϕ1)) ≥ 0

is used to define the important notion of “convergence in energy.” Theorem B implies
in particular a quantitative estimate on how “convergence in energy” implies “conver-
gence in capacity.” Related results were previously obtained in [BBGZ09], the latter
being a great source of inspiration for this note.

Let us also stress that when the underlying cohomology class is Kähler, a weaker but
quite elegant stability result was previously obtained by Blocki in [Bl03]. We briefly
explain in Section 4 how our result can be used to derive more standard stability
estimates in this vein.

Our last result yields the strongest property of stability, assuming stronger prop-
erties on the corresponding measures.

Theorem C. Assume μ = MA(ϕμ) = fμω
n, ν = MA(ϕν) = fνω

n, where the densi-
ties 0 ≤ fμ, fν are in Lp(ωn) for some p > 1 and ϕμ, ϕν ∈ PSH(X, θ) are normalized



STABILITY IN BIG COHOMOLOGY CLASSES 1027

by supX ϕμ = supX ϕν = 0. Then

‖ϕμ − ϕν‖L∞(X) ≤Mτ‖fμ − fν‖τL1(X),

where Mτ > 0 only depends on upper bounds for the Lp norms of fμ, fν and

τ <
1

2n(n+ 1) − 1
.

The existence of a unique normalized θ-psh function ϕμ with minimal singularities
such that (θ + ddcϕμ)n = μ when μ has Lp-density, p > 1, has been established in
[BEGZ10, Theorem 4.1], generalizing Kolodziej’s celebrated result [Kol98].

It is likely that the exponent τ we obtain here is not sharp. When α is a Kähler
class, a better exponent was obtained by Kolodziej in [Kol03] and later on improved
by Dinew–Zhang in [DZ10] (see also [Hiep10] for some other generalization).

Notations. In the whole article we fix

• (X,ω) a compact Kähler manifold equipped with a Kähler form ω,
• α ∈ H1,1(X,R) a big cohomology class,
• θ a smooth closed (1, 1)-form representing α.

2. Preliminary results on big cohomology classes

We briefly recall here some material developed in full detail in [BEGZ10].

2.1. Quasi-psh functions. Recall that an upper semi-continuous function

ϕ : X → [−∞,+∞[

is said to be θ-psh iff ϕ is locally the sum of a smooth and a psh function, and
θ + ddcϕ ≥ 0 in the sense of currents, where dc is normalized so that

ddc =
i

π
∂∂.

By the ddc-lemma any closed positive (1, 1)-current T cohomologous to θ can con-
versely be written as T = θ + ddcϕ for some θ-psh function ϕ which is furthermore
unique up to an additive constant.

The set of all θ-psh functions ϕ on X will be denoted by PSH(X, θ) and endowed
with the weak topology, which coincides with the L1(X)-topology. By Hartogs’ lemma
ϕ �→ supX ϕ is continuous in the weak topology. Since the set of closed positive
currents in a fixed cohomology class is compact (in the weak topology), it follows
that the set of ϕ ∈ PSH(X, θ) normalized by supX ϕ = 0 is compact.

We introduce the extremal function Vθ defined by

(2.1) Vθ(x) := sup{ϕ(x)|ϕ ∈ PSH(X, θ), sup
X
ϕ ≤ 0}.



1028 V. GUEDJ AND A. ZERIAHI

It is a θ-psh function with minimal singularities in the sense of Demailly, i.e., we have
ϕ ≤ Vθ + O(1) for any θ-psh function ϕ. In fact it is straightforward to see that the
following ‘tautological maximum principle’ holds:

(2.2) sup
X
ϕ = sup

X
(ϕ− Vθ),

for any ϕ ∈ PSH(X, θ).

2.2. Ample locus and regularity of envelopes. The cohomology class α = {θ} ∈
H1,1(X,R) is said to be big iff there exists a closed (1, 1)-current

T+ = θ + ddcϕ+

cohomologous to θ such that T+ is strictly positive (i.e., T+ ≥ ε0ω for some ε0 > 0).
By Demailly’s regularization theorem [Dem92] one can then furthermore assume that
T+ has analytic singularities, that is there exists c > 0 such that locally on X we have

ϕ+ = c log
N∑

j=1

|fj |2 mod C∞,

where f1, . . . , fN are local holomorphic functions. Such a current T is then smooth on
a Zariski open subset Ω, and the ample locus Amp (α) of α is defined as the largest
such Zariski open subset (which exists by the Noetherian property of closed analytic
subsets).

Note that any θ-psh function ϕ with minimal singularities is locally bounded on
the ample locus Amp (α) since it has to satisfy ϕ+ ≤ ϕ + O(1). Note that ϕ+ does
not have minimal singularities unless α is a Kähler class.

In case α = {θ} ∈ H1,1(X,R) is a Kähler class, plenty of smooth θ-psh functions
are available. When α is both big and nef (i.e., α belongs to the closure of the cone
of Kähler classes), a good regularity theory is available thanks to [BEGZ10]. However
for a general big class the existence of even a single θ-psh function with minimal
singularities that is also C∞ on the ample locus Amp (α) is unknown.

On the other hand we have the following regularity result of Berman–Demailly on
the ample locus [BD09]:

Theorem 2.1. The function Vθ has locally bounded Laplacian on Amp (θ).
In particular the Monge–Ampère measure MA(Vθ) has L∞-density with respect to

Lebesgue measure. More specifically we have θ ≥ 0 pointwise on {Vθ = 0} and

MA(Vθ) = 1{Vθ=0}θ
n.

Since Vθ is quasi-psh this result is equivalent to the fact that the current θ+ddcVθ
has L∞

loc coefficients on Amp (α) and shows in particular (by using the Riesz transform
and Morrey inequality) that Vθ is in fact C2−ε on Amp (α) for each ε > 0.
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2.3. Full Monge–Ampère mass. In [BEGZ10] the non-pluripolar product

(T1, . . . , Tp) �→ 〈T1 ∧ · · · ∧ Tp〉

of closed positive (1, 1)-currents is shown to be well-defined as a closed positive
(p, p)-current putting no mass on pluripolar sets. In particular given ϕ1, . . . , ϕn ∈
PSH(X, θ) we define their mixed Monge–Ampère measure as

MA(ϕ1, . . . , ϕn) = 〈(θ + ddcϕ1) ∧ · · · ∧ (θ + ddcϕn)〉.

It is a non-pluripolar positive measure whose total mass satisfies
∫

X

MA(ϕ1, . . . , ϕn) ≤ vol(α),

where the right-hand side denotes the volume of the cohomology class α. If ϕ1, . . . , ϕn
have minimal singularities then they are locally bounded on Amp (α), and the product

(θ + ddcϕ1) ∧ · · · ∧ (θ + ddcϕn)

is thus well-defined by Bedford–Taylor [BT82]. Its trivial extension to X coincides
with MA(ϕ1, . . . , ϕn), and we have

∫

X

MA(ϕ1, . . . , ϕn) = vol(α).

In case ϕ1 = · · · = ϕn = ϕ, we simply set

MA(ϕ) = MA(ϕ, . . . , ϕ)

and say that ϕ has full Monge–Ampère mass iff
∫
X

MA(ϕ) = vol(α). We let

E(X, θ) :=
{
ϕ ∈ PSH(X, θ) |

∫

X

MA(ϕ) = vol(α)
}

denote the set of θ-psh functions with full Monge–Ampère mass. Note that θ-psh
functions with minimal singularities have full Monge–Ampère mass, but the converse
is not true.

A crucial point is that the non-pluripolar Monge–Ampère operator is continuous
along monotonic sequences of functions with full Monge–Ampère mass. In fact we
have (cf. [BEGZ10] Theorem 2.17):

Proposition 2.2. The operator

(ϕ1, . . . , ϕn) �→ MA(ϕ1, . . . , ϕn)

is continuous along monotonic sequences of functions with full Monge–Ampère mass.
If

∫
X

(ϕ− Vθ)MA(ϕ) is finite, then

lim
j→∞

(ϕj − Vθ)MA(ϕj) = (ϕ− Vθ)MA(ϕ),

for any monotonic sequence ϕj → ϕ.
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2.4. Weighted energies. Let ψ ∈ PSH(X, θ) be a θ-psh function with minimal
singularities. Its Aubin–Mabuchi energy is

E(ψ) :=
1

n+ 1

n∑

j=0

∫

X

(ψ − Vθ)〈(θ + ddcψ)j ∧ (θ + ddcVθ)n−j〉.

One can check [BEGZ10] that its Gâteaux derivatives are given by

E′(ψ) · v =
∫

X

vMA(ψ)

showing in particular that the functional ψ �−→ E(ψ) is non-decreasing.

Definition 2.3. We let E1(X, θ) denote the class of all θ-plurisubharmonic functions
ϕ such that

E(ϕ) := inf
ψ≥ϕ

E(ψ) > −∞,

where the infimum is taken over all θ-psh functions ψ with minimal singularities.

Alternatively a function ϕ belongs to E1(X, θ) if and only if it belongs to E(X, θ)
and ϕ ∈ L1(X,MA(ϕ)).

More generally, given χ : R → R a convex increasing function such that χ(−∞) =
−∞, one considers, for ψ with minimal singularities,

Eχ(ψ) :=
1

n+ 1

n∑

j=0

∫

X

χ(ψ − Vθ)〈(θ + ddcψ)j ∧ (θ + ddcVθ)n−j〉.

This weighted energy is again non-decreasing [BEGZ10, Proposition 2.8], hence the
following:

Definition 2.4. We let Eχ(X, θ) denote the class of all θ-plurisubharmonic functions
ϕ such that

Eχ(ϕ) := inf
ψ≥ϕ

Eχ(ψ) > −∞,

where the infimum is taken over all functions ψ with minimal singularities.

One can easily check that these classes exhaust the class of functions with full
Monge–Ampère mass [BEGZ10, Proposition 2.11],

E(X, θ) =
⋃

χ

Eχ(X, θ).

We finally introduce the symmetric expression

I(ϕ,ψ) :=
∫

X

(ϕ− ψ)(MA(ψ) − MA(ϕ)) ≥ 0,

where the non-negativity can be deduced from the following formula

(2.3) I(ϕ,ψ) =
n−1∑

j=0

∫

Ω

d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ 〈(θ + ddcϕ)j ∧ (θ + ddcψ)n−1−j〉.

Definition 2.5. A sequence of functions ϕj ∈ E1(X, θ) converges in energy towards
ϕ ∈ E1(X, θ) if I(ϕj , ϕ) → 0 as j → ∞.

This notion is introduced in [BBGZ09] where it is shown that convergence in energy
implies continuity of the complex Monge–Ampère operator.
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2.5. Monge–Ampère capacity. As in [GZ05, BEGZ10] define the Monge–Ampère
(pre)capacity as the upper envelope of all measures MA(ϕ) with ϕ ∈ PSH(X, θ),
Vθ − 1 ≤ ϕ ≤ Vθ, i.e.,

(2.4) Cap(B) := sup
{∫

B

MA(ϕ), ϕ ∈ PSH(X, θ), Vθ − 1 ≤ ϕ ≤ Vθ on X
}
.

for every Borel subset B of X.
By definition, a positive measure μ is absolutely continuous with respect the

capacity Cap iff for a Borel set B ⊂ X, Cap(B) = 0 implies μ(B) = 0. This means
exactly that μ is non-pluripolar in the sense that μ puts no mass on pluripolar sets.
Since Cap is σ-subadditive, it is in turn equivalent to the existence of a non-decreasing
right-continuous function F : R+ → R+ such that

μ(B) ≤ F (Cap(B))

for all Borel sets B. Roughly speaking the speed at which F (t) → 0 as t→ 0 measures
“how non-pluripolar” μ is.

Definition 2.6. Fix β > 0. We say that μ satisfies the condition H(β) if there exists
Cβ > 0 such that for all Borel sets B ⊂ X,

μ(B) ≤ CβCap(B)β+1.

If this holds for all β > 0, we say that μ satisfies the condition H(∞).

Such conditions were introduced by Kolodziej in [Kol98] who showed that mea-
sures μ = MA(ϕ) satisfying the condition H(β) are such that ϕ is continuous if the
cohomology class α is Kähler. He further observed that if μ = fωn has density in Lp

for some p > 1, then μ satisfies condition H(∞).
These results were later on extended to the case of big cohomology classes in

[EGZ09, Zh06, BEGZ10, EGZ11].
Recall that the complex Monge–Ampère operator ϕ �→ MA(ϕ) is discontinuous for

the L1-topology. One needs to require a stronger notion of convergence of potentials:

Definition 2.7. A sequence (ϕ
) of θ-plurisubharmonic functions converges in capacity
towards ϕ if for all ε > 0,

Cap ({|ϕ
 − ϕ| > ε}) → 0 as �→ +∞.

If a sequence (ϕj) of E1(X, θ) converges to ϕ ∈ E1(X, θ) in capacity, then MA(ϕj)
weakly converges towards MA(ϕ) [GZ07, DH]. This generalizes previous continuity
statements, as monotonic convergence implies convergence in capacity.

3. Weak stability properties

In this section we establish the weakest stability property, i.e., Proposition A stated
in the introduction.
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3.1. Unstability. We start by observing that one can not expect stability in gen-
eral. Recall [BEGZ10] that if μ is a non-negative Radon measure which vanishes on
pluripolar sets and whose total mass equals vol(α), then there exists a unique positive
closed current Tμ ∈ α with full Monge–Ampère mass and such that

〈Tnμ 〉 = μ.

The current Tμ decomposes as Tμ = θ + ddcϕμ, where ϕμ ∈ PSH(X, θ) is uniquely
determined, once normalized by supX ϕμ = 0.

One can not expect the operator μ �→ ϕμ (or equivalently μ �→ Tμ) to be continuous,
as its inverse operator ϕ �→ 〈(θ+ddcϕ)n〉 is not either. Here is a variation on a classical
local example [Ceg83] of such discontinuous behavior:

Example 3.1. The functions

ψj(z1, z2) :=
1
2j

log
[
|zj1 + zj2|2 + 1

]

are smooth and plurisubharmonic in C
2. They form a locally bounded sequence which

converges in L1
loc(C

2) towards

ψ(z1, z2) = log max[1, |z1|, |z2|].
Observe that the Monge–Ampère measures (ddcψj)2 vanish identically, while (ddcψ)2

is the Lebesgue measure on the real torus {|z1| = |z2| = 1}.
One can globalize this example, working on X = CP

2 equipped with its Fubini-
Study Kähler form θ = ωFS . Set

ϕj [z] =
1
2j

log
[
|zj1 + zj2|2 + |z0|2j

]
− log ‖z‖,

where [z] = [z0 : z1 : z2] denotes the homogeneous coordinates in CP
2 and (z0 = 0)

denotes the hyperplane at infinity, CP
2 = C

2 ∪ (z0 = 0).
The functions ϕj are θ-psh and smooth in CP

2 \ Sj , where Sj denotes the finite
set of points at infinity {z0 = 0 = zj1 + zj2}. The ϕj ’s converge in L1(CP

2) towards

ϕ(z1, z2) = log max[|z0|, |z1|, |z2|] − log ‖z‖,
whose Monge–Ampère measure is again the Lebesgue measure on the torus.

This example is not so satisfactory since the Monge–Ampère measures MA(ϕj) are
all supported on the (pluripolar) hyperplane at infinity. We thus propose a slightly
more elaborate construction where the approximants are uniformly bounded:

Example 3.2. Using the same notations as in previous example, we set

Φj := log
[
eϕj + e−K

]
,

where K > 0 is a large constant. The reader will easily check that

θ + ddcΦj =
eϕjθϕj + e−Kθ

eϕj + e−K
+
eϕj−Kdϕj ∧ dcϕj

[eϕj + e−K ]2
≥ 0,

so that Φj are uniformly bounded θ-psh functions on CP
2. We use here the shortcuts

θ = ωFS and θu := θ + ddcu.
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A similar computation can be made for Φ := log
[
eϕ + e−K

]
, showing in particular

that

MA(Φ) ≥ e−2
√

3

[
e−

√
3 + e−K

]2σT

dominates a multiple of the (normalized) Lebesgue measure σT on the real torus
T = {|z0| = |z1| = |z2|}.

This multiple can be made arbitrarily close to 1 by choosing K large enough. On
the other hand, MA(Φj) can be computed explicitly by using that (ddcψj)2, ddcψj ∧
dψj , dd

cψj ∧ dcψj are all zero in C
2. One can this way verify that any cluster point

of MA(Φj) is different from MA(Φ), although Φj converges toward Φ.

3.2. Proof of Proposition A. We now prove a qualitative property of stability
under a weak domination assumption. Let μj , μ be non negative Radon measures on
X which do not charge pluripolar sets and whose total mass equals vol(α).

Proposition A’. If the measures μj = fjν are all absolutely continuous with respect
to a fixed non pluripolar measure ν and fj → f in L1(ν), then

Tμj → Tμ in the weak sense of currents,

where μ = fν.

This result can be seen as a generalization of a local result of Cegrell–Kolodziej
[CK06] who asked for fj to be uniformly bounded.

Proof. We let ϕj , ϕ denote the normalized Monge–Ampère potentials,

μj = (θ + ddcϕj)n, μ = (θ + ddcϕ)n, with sup
X
ϕj = sup

X
ϕ = 0.

We assume that μj = fjν, μ = fν, where ν vanishes on pluripolar sets and fj → f in
L1(ν), and we are going to show that in this case (ϕj) converges in L1(X) towards ϕ.

By weak compactness, we can assume-up to extracting-that ϕj → ψ ∈ PSH(X, θ),
with supX ψ = 0. Extracting again, we can also assume that there exists g ∈ L1(ν)
such that

fj ≤ g for all j ∈ N.

Since the measure gν does not charge pluripolar sets, it follows from [BEGZ10, Propo-
sition 3.2] that there exist χ : R → R a convex increasing weight and C > 0 such that
χ(−∞) = −∞ and for all j ∈ N,

∫
(−χ)(ϕj − Vθ)gdν ≤ C.

This shows that ∫
(−χ)(ϕj − Vθ)MA(ϕj) ≤ C,

hence [BEGZ10, Proposition 2.10] insures that ψ ∈ Eχ(X, θ).
The functions ψj := (supl≥j ϕl)∗ ∈ PSH(X, θ) decrease to ψ and satisfy

MA(ψj) ≥
(

inf
l≥j

fl

)
ν.

We infer MA(ψ) ≥ μ = fν, when equality since these measures have the same mass
vol(α).
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This shows that MA(ψ) = MA(ϕ), hence these normalized potentials have to be
equal, by the uniqueness in [BEGZ10, Theorem 3.1]. �

We finally observe that Proposition A and Proposition A’ are equivalent. Indeed if
μj = fjν and μ = fν, then by definition

‖μj − μ‖ = ‖fj − f‖L1(ν),

so that Proposition A’ is a particular case of Proposition A.
Conversely, if μj , μ are non pluripolar measures of the same mass vol(α) such that

‖μj − μ‖ → 0, then

ν := μ+
∑

j≥0

2−jμj

is a well defined non pluripolar Radon measure with respect to which μj , μ are
absolutely continuous, thus the hypotheses of Proposition A’ are satisfied.

4. Stability in energy

4.1. Case of a Kähler class. Our starting point is the following result that is a
refinement of [BBGZ09, Lemma 3.12]:

Lemma 4.1. There exists κn > 0 such that if 0 ≥ ϕ1, ϕ2, ψ1, ψ2 ∈ E1(X, θ) satisfy
E(ϕi) ≥ −B, E(ψi) ≥ −B, then

(4.1)
∣
∣
∣
∣

∫

X

(ϕ1 − ϕ2)(MA(ψ1) − MA(ψ2))
∣
∣
∣
∣ ≤ κnB

2
+I(ϕ1, ϕ2)2

−n

I(ψ1, ψ2)2
−n

and

(4.2)
∫

X

d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ Tn−1 ≤ κnB
2
+I(ϕ1, ϕ2)2

−(n−1)
,

where B+ := max(1, B) and

Tn−1 :=
n−1∑

j=0

(θ + ddcψ1)j ∧ (θ + ddcψ2)n−1−j .

A particular case of the second inequality was obtained when α is a Kähler class
(which generalized results obtained by Blocki [Bl03] for bounded functions).

Proof. Observe that the first inequality follows from the second one using Stokes
formula and Cauchy–Schwarz inequality. We also note that it suffices to establish
(4.2) when ψ1 = ψ2 =: ψ, the general case follows by considering ψ = (ψ1 + ψ2)/2.

Set u := ϕ1 − ϕ2, v := (ϕ1 + ϕ2)/2 and for each p = 0, . . . , n− 1,

bp :=
∫

X

du ∧ dcu ∧ θpv ∧ θn−p−1
ψ ,

where θv := θ + ddcv. Our goal is to bound b0 from above, since

b0 =
1
n

∫
d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ Tn−1,

as ψ = ψ1 = ψ2.
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Using Stokes theorem we obtain

bp =
∫

X

du ∧ dcu ∧ θp+1
v ∧ θn−p−2

ψ +
∫

X

du ∧ dcu ∧ ddc(ψ − v) ∧ θpv ∧ θn−p−2
ψ

= bp+1 −
∫

X

du ∧ dc(ψ − v) ∧ ddcu ∧ θpv ∧ θn−p−2
ψ

= bp+1 −
∫

X

du ∧ dc(ψ − v) ∧ θϕ1 ∧ θpv ∧ θ
n−p−2
ψ

+
∫

X

du ∧ dc(ψ − v) ∧ θϕ2 ∧ θpv ∧ θ
n−p−2
ψ ,

recall that ddcu = θϕ1 − θϕ2 .
Observe that θϕi ≤ 2θv, hence Cauchy–Schwarz inequality and (2.3) yield

∣
∣
∣
∣

∫

X

du ∧ dc(ψ − v) ∧ θϕi ∧ θpv ∧ θ
n−p−2
ψ

∣
∣
∣
∣ ≤ 2b1/2p+1I(ψ, v)

1/2.

It follows from [BBGZ09, Lemma 2.7] that I(ψ, v) ≤ anB+, where an > 1 is a
uniform constant, thus

(4.3) bp ≤ bp+1 + 2(anB+)1/2
√
bp+1 = h(bp+1),

where h(t) := t+ 2(anB+)1/2
√
t, for t ≥ 0, is monotone increasing in t. Thus

b0 ≤ hn−1(bn−1) ≤ hn−1(I(ϕ1, ϕ2)),

since

bn−1 ≤
n−1∑

j=0

∫
du ∧ dcu ∧ θjϕ1

∧ θn−1−j
ϕ2

= I(ϕ1, ϕ2).

Here hn−1 := h ◦ · · · ◦ h denotes the (n− 1)th-iterate of the function h.
Observe that h(t) ≤ C1

√
t for 0 ≤ t ≤ 1, where C1 := 1 + 2(anB+)1/2. We infer

that if 0 ≤ t ≤ C−2n

1 then hn−1(t) ≤ C2
1 t

2−(n−1)
. Therefore

b0 ≤ C2
1I(ϕ1, ϕ2)2

−(n−1)
if I(ϕ1, ϕ2) ≤ C−2n

1 .

When I(ϕ1, ϕ2) is relatively large, i.e., when I(ϕ1, ϕ2) > C−2n

1 , we use [BBGZ09,
Lemma 2.7] again to bound from above b0 ≤ anB+, thus obtaining

b0 ≤ anB+C
2
1I(ϕ1, ϕ2)2

−(n−1)
.

In both cases we can bound from above b0 by κnB2
+. �

When the underlying cohomology class α is Kähler, one can use the classical
Poincaré inequality to deduce from Lemma 4.1 a quantitative stability inequality. In-
deed assume that θ = ω is a Kähler form onX and, for simplicity, that MA(ϕi) = fiω

n

are absolutely continuous with respect to Lebesgue measure, with L2-densities.
We can apply the inequality (4.2) with ψ1 = ψ2 = 0 and obtain a gradient estimate

in terms of the energy deviation: for any ϕ1, ϕ2 ∈ E1(X,ω) satisfying E(ϕi) ≥ −B,
∫

X

d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ ωn−1 ≤ κnB
2
+I(ϕ1, ϕ2)1/2

n−1
,
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where

I(ϕ1, ϕ2) =
∫

(ϕ1 − ϕ2)(f2 − f1)ωn ≤ ‖ϕ1 − ϕ2‖L2‖f1 − f2‖L2

if MA(ϕi) = fiω
n have L2-densities.

We normalize the potentials ϕi so that
∫
X
ϕ1ω

n =
∫
X
ϕ2ω

n = 0. It follows then
from elementary arguments (see [GZ07]) that the ϕi’s are uniformly bounded from
above on X and their energies are uniformly bounded from below, since

∫
(−ϕi)MA(ϕi) =

∫
(−ϕi)fiωn ≤ ‖ϕi‖L2‖fi‖L2 ,

while Poincaré’s inequality yields

‖ϕ1 − ϕ2‖2
L2(X) ≤ δn

∫

X

d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ ωn−1,

for some uniform constant δn > 0. We have thus proved the following stability
property:

Proposition 4.2. Let (X,ω) be a compact Kähler manifold. Let ϕ1, ϕ2 ∈ E1(X,ω)
be solutions of (ω+ ddcϕi)n = fiω

n, where
∫
X
fiω

n =
∫
X
ωn, fi ∈ L2(X) and

∫
(ϕ1 −

ϕ2)ωn = 0. Then

‖ϕ1 − ϕ2‖L2(X) ≤ C‖f1 − f2‖1/(2n−1)
L2(X) ,

where C > 0 is a uniform constant.

This result can be seen as a quantitative version of Proposition A’ when ν = ωn.
Its purpose is to illustrate, in a simple setting, how Lemma 4.1 can be used to obtain
quantitative stability properties. As we shall see in the sequel, similar inequalities will
continue to hold in more general contexts.

4.2. The general case. We now go back to our original situation, when the coho-
mology class {θ} ∈ H1,1(X,R) is merely big. We start by establishing an important
particular case of Theorem B:

Proposition 4.3. There exists C > 0 such that for every 0 ≥ ϕ,ψ ∈ E1(X, θ)
normalized by supX ϕ = supX ψ,

‖ϕ− ψ‖L1(X) ≤ C ·B2 · I(ϕ,ψ)1/2
n

,

where B := max{1, |E(ϕ)|, |E(ψ)|}.

Proof. We can assume without loss of generality that ν = ωn is normalized so that
ν(X) :=

∫
X
ωn = vol(α). If ϕ ≡ ψ there is nothing to prove, so we assume in the

sequel that ϕ �= ψ. Reversing the roles of ϕ,ψ, we can assume that ν(ϕ < ψ) > 0.
Set Qt := {x ∈ X |ϕ(x) > ψ(x)− t}. We can find arbitrarily small t > 0 such that

ν(Qt) < vol(α), otherwise ϕ ≥ ψ on X. Observe also that ν(Qt) > 0 for all t > 0,
otherwise ϕ ≤ ψ − t contradicting our normalizing assumption, thus for arbitrarily
small t > 0,

0 < a :=
ν(Qt)
vol(α)

< 1.
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We also set b := 1 − a = ν(X \Qt)/vol(α) ∈]0, 1[ and decompose

‖ϕ− ψ‖L1(ν) =
∫

Qt

(ϕ− ψ)dν +
∫

X\Qt

(ψ − ϕ)dν +O(t).

We are going to bound from above each of these integrals by establishing estimates
that are independent of t and then let t decrease to zero.

It follows from [BEGZ10] that there exists uniquely determined functions u, v ∈
PSH(X, θ) with minimal singularities such that

MA(u) = a−11Qt ν, MA(v) = b−11X\Qt
ν and sup

X
u = sup

X
v = 0.

We also set

U := a1/nu+ (1 − a1/n)Vθ and V := b1/nv + (1 − b1/n)Vθ.

Observe that U, V ∈ PSH(X, θ) again have minimal singularities and are still nor-
malized by supX U = supX V = 0 (by the tautological maximum principle). Moreover

MA(U) ≥ aMA(u) while MA(V ) ≥ bMA(v),

therefore

a

∫
(ϕ− ψ)MA(u) + b

∫
(ψ − ϕ)MA(v) ≤

∫
(ϕ− ψ)(MA(U) − MA(V )).

It follows from Lemma 4.1 that the latter is bounded from above by

κnB
2I(ϕ,ψ)2

−n

I(U, V )2
−n

,

where B = max(1,−E(ϕ),−E(ψ),−E(U),−E(V )).
Since I(U, V ) is controlled from above if we can bound from below the energies of

U and V (see [BBGZ09, Lemma 2.7]), it remains to estimate the latter.
This is in principle very easy, as U and V have minimal singularities, however

we want to make clear that the corresponding bounds are independent of t (i.e.,
independent of a and b). Since MA(u) = gωn has density in L2 (even L∞), It follows
from [BEGZ10, Theorem 4.1] that

‖u− Vθ‖L∞(X) ≤ c‖g‖1/n
L2 ≤ c′a−1/n,

since g = a−11Qt . Therefore

‖U − Vθ‖L∞(X) = a1/n‖u− Vθ‖L∞(X) ≤ c′′.

We similarly get a uniform bound from above on ‖V − Vθ‖L∞(X). Therefore

−c′′′ ≤ E(U), E(V ) ≤ 0,

hence the proof is complete. �
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We observe the following easy consequence of the previous estimates:

Lemma 4.4. There exists Cn > 0 such that for any 0 ≥ ϕ,ψ, u ∈ E1(X, θ) normalized
by supX ϕ = supX ψ,

∫

X

(ϕ− ψ)MA(u) ≤ Cn ·B2 · I(ϕ,ψ)1/2
n

,

where B := max{1, |E(ϕ)|, |E(ψ)|, |E(u)|}.
Proof. We decompose

∫

X

(ϕ− ψ)MA(u) =
∫

X

(ϕ− ψ)(MA(u) − MA(Vθ)) +
∫

X

(ϕ− ψ)MA(Vθ)

and observe that Lemma 4.1 allows to bound from above the first term while the
second one is controlled by Proposition 4.3, since MA(Vθ) has a bounded density
with respect to ωn by Theorem 2.1. �

We can now prove Theorem B:

Theorem 4.5. There exists Cn > 0 such that if 0 ≥ ψ,ϕ1, ϕ2,∈ E1(X, θ) are nor-
malized by supX ϕ1 = supX ϕ2, then

∫

X

|ϕ1 − ϕ2|MA(ψ) ≤ Cn ·B2 · I(ϕ1, ϕ2)2
−n

,

where B = max{1, |E(ϕ1)|, |E(ϕ2)|, |E(ψ)|}.
Proof. Set ϕ := sup{ϕ1, ϕ2}. Observe that supX ϕ = supX ϕ1 = supX ϕ2 and |ϕ1 −
ϕ2| = 2(ϕ− ϕ1) − (ϕ2 − ϕ1), thus

∫

X

|ϕ1 − ϕ2|MA(ψ) = 2
∫

X

(ϕ− ϕ1)MA(ψ) −
∫

X

(ϕ2 − ϕ1)MA(ψ).

The second term on the right-hand side is bounded from above by the desired quantity
thanks to Lemma 4.4.

We estimate the first one by using the same lemma, obtaining
∫

X

(ϕ− ϕ1)MA(ψ) ≤ Cn ·D2 · I(ϕ,ϕ1)1/2
n

,

where D := max{1, |E(ϕ)|, |E(ϕ1)|, |E(ψ)|}.
Now |E(ϕ)| ≤ |E(ϕ1)|, since 0 ≥ ϕ ≥ ϕ1. It therefore suffices to show that

I(ϕ,ϕ1) ≤ I(ϕ2, ϕ1). Recall that

I(ϕ,ϕ1) =
∫

X

(ϕ− ϕ1)(MA(ϕ1) − MA(ϕ)).

and observe that MA(ϕ) = MA(ϕ1) on the plurifine open set {ϕ1 > ϕ2} (see [BT87,
GZ05, BEGZ10]). Thus the measure MA(ϕ1) − MA(ϕ) is carried by the Borel set
{ϕ2 ≥ ϕ1} where ϕ− ϕ1 = ϕ2 − ϕ1. Therefore

I(ϕ,ϕ1) =
∫

X

(ϕ2 − ϕ1)(MA(ϕ1) − MA(ϕ)).

In the same way, we obtain

I(ϕ,ϕ2) =
∫

X

(ϕ1 − ϕ2)(MA(ϕ2) − MA(ϕ)).
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Adding the two identities yields

I(ϕ,ϕ1) + I(ϕ,ϕ2) = I(ϕ1, ϕ2),

hence, I(ϕ,ϕ1) ≤ I(ϕ1, ϕ2). �

Remark 4.6. We let the reader verify that Proposition 4.3 is a particular case of
Theorem 4.5. The latter has the following interesting consequence: if we let ψ be any
θ-psh function such that Vθ − 1 ≤ ψ ≤ Vθ , then Chebyshev inequality, together with
Theorem 4.5, shows that for all ε > 0,

Cap({|ϕ1 − ϕ2| > ε}) ≤ Cn
ε
B2I(ϕ1, ϕ2)2

−n

.

This yields a quantitative estimate on how “convergence in energy” implies “conver-
gence in capacity.”

5. Strong stability

Let μ = fμω
n be a non-negative Radon measure which is absolutely continuous with

respect to a fixed volume form ωn, with density in Lp for some p > 1. When μ(X) =
vol(α), it has been shown in [BEGZ10] that the complex Monge–Ampère equation

〈(θ + ddcϕμ)n〉 = μ = fμω
n,

has a unique solution ϕμ ∈ PSH(X, θ) with minimal singularities such that supX ϕ =
0. This is a generalization to the case of big cohomology classes of a celebrated result
of Kolodziej [Kol98] (which itself generalized Yau’s celebrated C0 a priori estimate
[Yau78]).

In this section we prove Theorem C from the introduction, establishing a quantita-
tive continuity property of the mapping fμ �→ ϕμ. Since measures with Lp densities,
p > 1, satisfy conditions H(β) for all β > 0, Theorem C is actually a consequence of
the following more general result:

Theorem 5.1. Fix β > 0 and assume μ, ν are non-negative Radon measures which
satisfy the condition H(β) and are normalized so that

μ(X) = ν(X) = vol(α).

Let ϕμ, ϕν be their normalized Monge–Ampère potentials. Then

‖ϕμ − ϕν‖L∞(X) ≤Mτ‖μ− ν‖τ ,

where τ = γ/(2n − γ) with γ := β/[n+ β(n+ 1)].

When α is a Kähler class, Theorem C is due to Kolodziej [Kol03] who obtained a
better exponent τ (see [DZ10] for a sharp improvement of the exponent).

We need the following refinement of a statement proved in [EGZ09] in the context
of big and semi-positive cohomology classes:
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Proposition 5.2. Let ν be a non negative Radon measure which satisfies the condition
H(∞). Let μ = fν, where 0 ≤ f ∈ Lp(X, ν) with p > 1 and μ(X) = vol(α). Fix ϕ,ψ ∈
PSH(X, θ) such that supX ϕ = supX ψ and MA(ϕ) = μ. Then for any 0 < γ < 1

nq+1 ,

sup
X

(ψ − ϕ)+ ≤M‖(ψ − ϕ)+‖γL1(X,ν),

where M > 0 only depends on γ and a bound on the Lp−norm of f .

Here u+ = max(u, 0) denotes as usual the maximum of u and 0.
Let us stress that this relatively technical statement has interesting applications

(see e.g [DDGHKZ11] where it is used to establish Hölder-continuity properties of
Monge–Ampère potentials). It is an immediate consequence of the following slightly
more general (and more technical) result:

Proposition 5.3. Let ϕ,ψ be θ-plurisubharmonic functions such that

−M0 + Vθ ≤ sup{ϕ,ψ} ≤ Vθ,

for some M0 > 0. Assume that μ := (θ+ddcϕ)n satisfies the condition H(β) for some
β > 0. Then there exists A0 = A0(β,M0) such that for any r > 0 we have

sup
X

(ψ − ϕ)+ ≤ A0‖(ψ − ϕ)+‖γLr(μ) with γ =
βr

n+ β(n+ r)
.

Moreover if μ = fν, where ν a Borel measure and f ∈ Lp(ν), p > 1, then there exists
0 < A1 = A1(β,M0, p) such that

sup
X

(ψ − ϕ)+ ≤ A1‖f‖γqLp(ν)‖(ψ − ϕ)+‖γ
′

L1(ν), with γ′ =
β

qn+ β(nq + 1)
,

where 1/p+ 1/q = 1 and (ψ − ϕ)+ := max(ψ − ϕ, 0).

Although the proof is very close to that of Propositions 2.6 and 3.1 in [EGZ09], we
briefly sketch it for the convenience of the reader.

Proof. Observe first that (ψ − ϕ)+ = sup{ϕ,ψ} − ϕ on X. So up to replacing ψ by
sup{ϕ,ψ}, we can assume that ψ ≥ ϕ and ψ satisfies the condition −M0+Vθ ≤ ψ ≤ Vθ
on X.

Using the “big” comparison principle from [BEGZ10] and arguing exactly as in
Proposition 2.6 in [EGZ09], we conclude that there is a constant B0 > 0 such that
for any ε ∈]0, 1]

sup
X

(ψ − ϕ) ≤ ε+B0 (Cap({ψ − ϕ > ε})β/n .

The proof of [EGZ09, Proposition 2.6] (cf equation (3) p.616) shows that

εnCap({ψ − ϕ > ε}) ≤ (1 +M0)n
∫

{ψ−ϕ>ε/2}
dμ.

Chebyshev’s inequality then yields

Cap({ψ − ϕ > ε}) ≤ 2rε−(n+r)(1 +M0)n
∫

X

(ψ − ϕ)+
r
dμ,
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for r > 0 fixed. Therefore

sup
X

(ψ − ϕ) ≤ ε+B02βr/n(1 +M0)αε−β(n+r)/n

(∫

X

(ψ − ϕ)+
r
dμ

)β/n
.

Choosing ε := (‖ψ − ϕ‖Lr(μ)/N)γ , where N is an upper bound on ψ − ϕ and γ is as
in the statement of the proposition yields the desired inequality.

Now if μ = fν, where f ∈ Lp(ν) with p > 1, Hölder’s inequality yields
∫

X

(ψ − ϕ)r+dμ ≤ ‖f‖Lp(ν)

(∫

X

(ψ − ϕ)rqdν
)1/q

.

The conclusion follows by taking r := 1/q. �

Proof of Theorem 5.1. Since ϕ = ϕμ and ψ = ϕν have minimal singularities, ϕ−ψ
is bounded hence

I(ϕ,ψ) =
∫

X

(ϕ− ψ)(MA(ψ) − MA(ϕ)) =
∫

X

(ϕ− ψ)d(ν − μ)

≤ ‖ϕ− ψ‖L∞(X)‖μ− ν‖.
It follows from Proposition 5.3 that

‖ϕ− ψ‖L∞(X) ≤ Cβ

[
‖ϕ− ψ‖γL1(X,μ) + ‖ϕ− ψ‖γL1(X,ν)

]
.

with γ := β/[n+ β(n+ 1)]. Now Theorem 4.5 implies

‖ϕ− ψ‖L∞(X) ≤ C ′
β (‖ϕ− ψ‖L∞‖μ− ν‖)γ/2

n

,

thus
‖ϕ− ψ‖L∞(X) ≤ C ′′

β‖μ− ν‖τ

where τ := γ
2n−γ . �
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