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Intrinsic Capacities on Compact Kihler
Manifolds

By Vincent Guedj and Ahmed Zeriahi

ABSTRACT.  We study fine properties of quasiplurisubharmonic functions on compact Kiihler manifolds.
We define and study several intrinsic capacities which characterize pluripolar sets and show that locally
pluripolar sets are globally “quasi-pluripolar”

1. Introduction

Since the fundamental work of Bedford and Taylor [4, 5], several authors have developed
a “Pluripotential theory” in domains of C” (or of Stein manifolds). This theory is devoted to
the fine study of plurisubharmonic (psh) functions and can be seen as a nonlinear generalization
of the classical potential theory (in one complex variable), where subharmonic functions and
the Laplace operator A are replaced by psh functions and the complex Monge-Ampere operator
(dd°)". Here d, d° denote the real differential operators d := 3 + 3,d = ﬁ[ﬁ — 0] so that
dd¢ = 7;;35 ; the normalization being chosen so that the positive measure (ddc% log[1+iz[[%1)"
has total mass 1 in C". We refer the reader to [3, 7, 26] for a survey of this local theory.

Our aim here is to develop a global Pluripotential theory in the context of compact Kéhler
manifolds. It follows from the maximum principle that there are no psh functions (except con-
stants) on a compact complex manifold X. However, there are usually plenty of positive closed
currents of bidegree (1, 1) (we refer the reader to [15, Ch. 3], for basic facts on positive currents).
Given w areal closed smooth form of bidegree (1, 1) on X, we may consider every positive closed
current o’ of bidegree (1, 1) on X which is cohomologous to w. When X is Kihler, it follows
from the “dd°-lemma” that @’ can be written as ' = w + dd®yp, where ¢ is a function which
is integrable with respect to any smooth volume form on X. Such a function ¢ will be called
w-plurisubharmonic (w-psh for short). It is globally defined on X and locally given as the sum
of a psh and a smooth function. We let PSH (X, w) denote the set of w-psh functions. Such
functions were introduced by Demailly, who call them quasiplurisubharmonic (qpsh). These are
the main objects of study in this article.

There are several motivations to study gpsh functions on compact Kihler manifolds. First of
all they arise naturally in complex analytic geometry as positive singular metrics of holomorphic
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line bundles (see Section 5) whose study is central to several questions of complex algebraic geom-
etry. Solving Monge-Ampere equations associated to w-psh functions has been used to produce
metrics with prescribed singularities (see [13]). It is also related to the existence of canonical
metrics in Kihler geometry (see [37]). Important contributions have been made by Kolodziej
in this direction [28] using techniques from local Pluripotential theory. Quasiplurisubharmonic
functions have also been used in [21] to define a notion of w-polynomial convexity and study the
fine approximation of positive currents by rational divisors. Last but not least, such functions are
of constant use in complex dynamics in several variables (see [17, 18, 22, 23, 33]).

It seems to us appropriate to develop a theory of qpsh functions of its own rather than view
these functions as particular cases of the local theory. Although, the two theories look quite
similar, there are important differences which make the “compact theory” both simpler and more
difficult than the local one. Here are some examples:

» There is no pluriharmonic functions (except constants) on a compact manifold, hence
each w-psh function ¢ is canonically associated (up to normalization) to its curvature cur-
rent w, := w+dd°p > 0. This yields compactness properties of subsets of PSH(X, w)
(see Section 2) which are quite useful (e.g., in complex dynamics, see Section 7.2).

* Integration by parts (of constant use in such theories) is quite simple in the compact
setting since there is no boundary. As an illustration, we obtain transparent proofs of
Chern-Levine-Nirenberg type inequalities (see Example 2.8 and Section 3). A successful
application of this simple observation has been made in complex dynamics in [23].

* On the other hand, one loses homogeneity of Monge-Ampére operators in the compact
setting. They do have uniformly bounded mass (by Stokes theorem), but there is no
performing “comparison principle,” which is a key tool in the local theory. This is a
source of difficulty when, for example, one wishes to solve Monge-Ampeére equations
on compact manifolds (see [28, 24]).

We shall develop our study in a series of articles. In the present one we define and study several
intrinsic capacities which we shall use in our forthcoming articles.

Let us now describe more precisely the contents of the article.

In Section 2 we define w-psh functions and gather useful facts about them (especially compacity
results such as Proposition 2.7). For locally bounded w-psh functions ¢ we define the complex
Monge-Ampere operator w;, in Section 3. We establish Chern-Levine-Nirenberg inequalities
(Proposition 3.1) and study the “Monge-Ampere capacity” Cap,, (Definition 3.4). As in the local
theory, w-psh functions are quasicontinuous with respect to Cap,, (Corollary 3.8). The capacity
Cap,, is comparable to the local Monge-Ampere capacity of Bedford and Taylor (Proposition 3.10)
and moreover, enjoys invariance properties (Proposition 3.5). In Section 4 we define a relative
extremal function hZ‘,w and establish a useful formula (Theorem 4.2)

Cap},(E) = [X (—h%Eo) (0+ddn,)" .

This is the global version of the fundamental local formula of Bedford-Taylor [5], Cap(E, w) =
Jo(ddu)".

In Section 5 we study yet another capacity (the Alexander capacity T,,, Definition 5.7) which
is defined by means of a (global) extremal function (Definition 5.1). When w is a Hodge form,
it can be defined as well in terms of Tchebychev constants: These are the contents of Section 6
(Theorem 6.2) where we further give a geometrical interpretation of T,, when X = CP” is
the complex projective space and w is the Fubini-Study Kihler form (Theorem 6.4), following
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Alexander’s work [1]. In Section 7 we show that locally pluripolar sets can be defined by w-
psh functions when  is Kahler: This is our version of a result of Josefson (Theorem 7.2). We
then give an application in complex dynamics which illustrates how invariance properties of
these capacities can be used. Finally, in an Appendix we show how to globally regularize w-psh
functions, following ideas of Demailly.

This article lies at the border of complex analysis and complex geometry. We have tried to
make it accessible to mathematicians from both sides. This has of course some consequences
for the style of presentation. We have included proofs of some results which may be seen as
consequences of results from the local pluripotential theory. We have spent some efforts defining,
regularizing and approximating positive singular metrics of holomorphic line bundles, although
some of these facts may be considered as classical by complex geometers. Altogether we hope the
article is essentially self contained. Our efforts will not be vain if for instance we have convinced
specialists of the (local) pluripotential theory that the right point of view in studying the Lelong
class £(C") of psh functions with logarithmic growth in C" is to consider gpsh functions on the
complex projective space CP". We also think this article should be useful to people working in
complex dynamics in several variables where pluripotential theory has become an important tool.

Warning. In the whole article positivity (like e.g., in positive metric and positive current) has
to be understood in the weak (french, i.e., nonnegativity) sense of currents, except when we talk
of a positive line bundle L, in which case it means that L admits a smooth metric whose curvature
is a Kdhler form.

2. Quasiplurisubharmonic functions

In the sequel, unless otherwise specified, L?-norms will always be computed with respect to
a fixed volume form on X, which is a compact connected Kiihler manifold. Let w be a closed real
current of bidegree (1, 1) on X. We say that a function ¢ is w-upper semi-continuous (w-u.s.c.)
if ¢ + v is u.s.c. for any local potential ¥ of w = ddyr.

Definition 2.1. Set
PSH(X,w):={p € L'"(X,RU{~0}) /dd¢p > —w and ¢is w-usc.}.

The set PSH (X, w) is the set of “w-plurisubharmonic” functions.

Observe that PSH (X, w) is nonempty if and only if there exists a positive closed current
of bidegree (1, 1) on X which is cohomologous to w. One then says that the cohomology
class {w} is pseudoeffective. In the sequel we always assume this property holds. The set
PSH(X, w) (essentially) only depends on the cohomology class {w} [see Proposition 2.3 (3)],
and its size depends on positivity properties of {w} (see Remark 2.5). We will usually choose a
smooth representative w of this cohomology class. Since w-psh functions are locally given as the
difference of a psh function and a local potential of w, this will guaranty that w-psh functions are
u.s.c. on X, hence globally bounded from above. We endow PSH (X, w) with the L!-topology.
Observe that PSH (X, w) is a closed subspace of L!(X).

Example 2.2. The most fundamental example which may serve as a guideline to everything
that follows is the case where X = CIP" is the complex projective space and w = wrg is the
Fubini-Study Kéhler form. There is then a 1-to-1 correspondence between PSH (CP”, wrs) and
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the Lelong class
L(C") = [vf € PSH(C") /¥(2) < %IOg[l +12?] + cw]

which is given by the natural mapping

¥(x) — 3log[1 + [x|?] if xeCr

Ve L(C") px) = Foy :

©) limyecrnos (w(y) — Llog[1+ Iylz]) if xe€Hx,
where Hy, denotes the hyperplane at infinity. One can easily show that this mapping is bicontin-
uous for the Llloc topology.

The Lelong class £(C") of plurisubharmonic functions with logarithmic growth in C" has
been intensively studied in the last 30 years. It seems to us that the properties of £(C") are more
easily seen when £(C") is viewed as PS H (CP", wrgs). Furthermore, we shall see hereafter that
the class PSH (X, w) of w-psh functions enjoys several properties of £L(C") when w is Kihler.
We start by observing (Propositionx 2.3 (1) and 2.3 (2) below) that PSH (X, w) and PSH (X, o)
are comparable if w, ' are both Kibhler.

Proposition 2.3.
() Ifw1 < wy then PSH(X, w1) C PSH(X, an).
2)YA e R, PSH(X, Aw) = A- PSH(X, w).

(3) If ' is cohomologous to w, @’ = w + dd®x, then

PSH(X,w')=PSH(X,w) +x .

4) Ifgp, ¥y € PSH(X, w) then

pt¥

5 log[e” +e¥] e PSH(X, 0).

max(p, ¥) ,

Proof. Assertions (1), (2), (3) follow straightforwardly from the definition. Observe that
Proposition 2.3 (4) says that P SH (X, ) is a convex set which is stable under taking maximum and
also under the operation (g, ) > log[e® +eY 1. These are all consequences of the corresponding
local properties of psh functions. We nevertheless give a proof, in the spirit of this article. That
(¢ + ¥)/2 € PSH(X, w) follows by linearity. The latter assertion is a consequence of the
following computation

e’ dd®p + eV ddyr + Vdp - ) Ad(9 - )

dd®logle® +e¥] =
g ev + eV [e(p + e‘/,]Z

’

using that df A d€f > 0. This computation makes sense if for instance ¢, ¥ are smooth. The
general case follows then by regularizing ¢, ¥ (see Appendix). Finally, observe that max (g, ) =
lim j~!log[e/? + e/¥} € PSH(X, w).

1t follows from Proposition 2.3 (3) that P S H (X, w) essentially depends on the cohomology
class {w}. In the same vein we have the following.
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Proposition 2.4. Let T,,)(X) denote the set of positive closed currents ' of bidegree (1, 1)
on X which are cohomologous to w. Then

PSH(X,0) ~ Ti(X) O R .

Proof. The mapping
®:¢ e PSH(X,w) - wp := o +dd°p € Tipy(X)

is a continuous affine mapping whose kernel consists of constants mappings: Indeed, w, = wy
implies that ¢ — v is pluriharmonic hence constant by the maximum principle. Moreover, ¢ is
surjective: If @’ > 0 is cohomologous to  then o’ = w + dd‘y for some ¢ € L'(X, R) -this is
the celebrated dd°-lemma on Kihler manifolds (see e.g., Lemma 8.6, Chapter V1 in [15]). Thus,
¢ coincides almost everywhere with a function of PSH (X, ) and o’ = $(g). O

Remark 2.5. Thesize of PSH (X, ) is therefore related to that of 7(,)(X) hence only depends
on the positivity of the cohomology class {w}. The more positive {w}, the bigger PSH (X, w).

When {w} is Kidhler then PSH (X, w) is large: Ife.g., x is any C2-function on X then ey €
PSH(X, w) for £ > 0 small enough. We will see (Theorem 7.2) that PSH (X, w) characterizes
locally pluripolar sets when {w} is Kahler. It follows from Proposition 2.3 that PSH (X, w) and
PSH(X, &) have the same “size” if {w} and {w'} are both Kihler classes.

Note, on the other hand, that PSH (X, ) ~ R when w is cohomologous to [ E], the current
of integration along the exceptional divisor of a smooth blow up. Indeed, letz : X — X be ablow
up with smooth center ¥, codimc ¥ > 2 (see e.g., [15, Chapter 2] for the definition of blow-ups).
Let E = 7~ 1(Y) denote the exceptional divisor and w = [E] be the current of integration along
E.Ifg € PSH(X, [E]) thendd(pon~') > 0in X \ Y. Since codimc ¥ > 2, p o7 ~! extends
trivially through Y has a global psh function on X. By the maximum principle ¢ o ~! is constant
hence so is ¢. Alternatively there is no positive closed current of bidegree (1, 1) on X which is
cohomologous to [E] except [E] itself.

It follows from previous proposition that any set of “normalized” w-psh functions is in 1-to-1
correspondence with 7{,}(X) which is compact for the weak topology of currents. This is the
key to several results to follow: Normalized w-psh functions form a compact family in L!(X).

Proposition 2.6. Assume w is smooth. Let (p;) € PSH(X, )N,

(1) If () is uniformly bounded from above on X, then either ¢; converges uniformly to
—o0 on X or the sequence (¢;) is relatively compact in LY(X).

Q) Ifg; — ¢ in LY(X), then ¢ coincides almost everywhere with a unique function
¢* € PSH(X, ). Moreover,

supp* = lim supg; .
X Joto x

(3) In particular, if ¢; is decreasing, then either ¢; — —00 orp = limg; € PSH(X, ).
Similarly, if ¢; is increasing and uniformly bounded from above then ¢ := (limg;)* € PSH
(X, w), where -* denotes the upper-semi-continuous regularization.

Proof.  This is a straightforward consequence of the analogous local result for sequences of
psh functions. We refer the reader to [15, Ch. 1], for a proof. Note, that Proposition 2.6 (2) is a
special case of a celebrated lemma attributed to Hartogs. ]
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The next result is quite useful (see [39, 40] for a systematic use).

Proposition 2.7. Assume w is smooth. The family

Fo:={p € PSH(X,w)/ supy = 0}
X

is a compact subset of PSH (X, w).
If u is a probability measure such that PSH (X, w) C LY(u) then

Fu = {(p € PSH(X,w)/ f (pd,u=0}
X

is a relatively compact subset of PSH(X, w). In particular, there exists C,, such that Vo €
PSH(X, w),

—Cu +supg 5/ pdp < supg .
X X X

Proof. 1t follows straightforwardly from Proposition 2.6 (1) that Fy is a relatively compact
subset of PSH (X, w). Moreover, Fy is closed by Hartogs lemma [Proposition 2.6 (2)].

Let (p)) € f}f. Then ; := ¢; — supy ¢; € Fo which is relatively compact. Assume
first u is smooth. Then ( f x ¥jdu) is bounded: This is because if ¥;, — ¥ in LY(X) then
¥4 — Y in the weak sense of (negative) measures hence f x Vidu — fx Ydp > —oo.
Now [y ¥jdu = [y 9jdu — [y supy ¢jdp = —supy @; thus (supy ;) is bounded and we
can apply the previous proposition to conclude that (¢;) is relatively compact (it cannot converge
uniformly to —oo since [y ¢; du = 0).

When u is not smooth, it only remains to prove that ( f x ¥jdu) is bounded. Assume on
the contrary that | x ¥jdu — —oo. Extracting a subsequence if necessary we can assume
fX Yidu < -2/, Set ¢ = ijl 2‘jwj. This is a decreasing sequence of w-psh func-
tions, hence ¥ € PSH(X, w) or y = —oo. Now it follows from the previous discussion that
[x ¥jdV = —C if dV denotes some smooth probability measure on X. Thus, [y, ¥ dV > —oo
hence ¥ € PSH (X, w). We obtain a contradiction since by the Monotone convergence theorem,

Sxvdu=3,51277 [y ¥jdp = —oo. O

Example 2.8. 1t was part of our Definition 2.1 that w-psh functions are integrable with respect
to a fixed volume form. Therefore PSH (X, w) C L(u) for every smooth probability measure
@ on X. More generally, if u is a probability measure on X such that

w=0+dd(S), 2.n
where © is smooth and S is a pesitive current of bidimension (1, 1) on X, then PSH (X, w) C

L' () for any smooth w. Indeed, let ¢ in PSH(X, w), ¢ < 0. If ¢ is smooth, it follows from
Stokes theorem that

0< / (—p)dp = / (-9)® + [ (~¢)dd°S
X X X

Collglly: +/;(S/\(—ddc<p)

1A

A

Collellp +/ SAw < +00,
X
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where the last inequality follows from § > 0 and —dd“¢p < w. The general case follows by
regularizing ¢ (see Appendix).

Probability measures satisfying (2.1) naturally arise in complex dynamics (see [23]). Observe
also that Monge-Ampére measures arising from the local theory of Bedford and Taylor [5] do
satisfy (2.1): If u is psh and locally bounded near e.g., the unit ball B of C", we can extend it to
C" as a global psh function with logarithmic growth considering

u(z) if zeB
U(z) ;== { max(u(z),Alog" |z| —supglu|—1) if ze(1+¢B\B
Alogt |z] —supglu| =1 if zeC"\(1+¢)B
where log™ |z| := max(log |z|, 0) and with A large enough. We assume A = 1 for simplicity.
Now ¢ :=U — % log[1 + |z|%] + C extends as a bounded function in P.SH(CP", w), where w is

the Fubini-Study Kihler form on CP”, so ¢ > 0 if C > 01s large enough. To conclude note that,
setting w, := w + dd g > 0, we get a)g = (dd‘u)" in B and

n—1
w(';, =" +dd‘S, where S=¢ Zwé A" >0,
j=0

The Monge-Ampere operator w, will be defined in the next section.

Example 2.9. If u is a probability measure on X = CP" and w denotes as before the Fubini-

Study Kihler form, then
o= [ log(———”x arll ) du(y)
CPr Ml - 1yl

defines a w-psh function on CP". Such functions have been considered by Molzon, Shiffman,
and Sibony [32, 31] in order to define capacities on CP". However, they do not characterize
pluripolar sets when n > 2.

3. Monge-Ampére capacity

In this section we introduce the global Monge-Ampere capacity (see Definition 3.4). The
definition only makes sense when the cohomology class {w} has strong positivity properties. To
simplify our exposition we assume throughout this section that w is a Kéhler form.

Let T be a positive closed current of bidegree (p, p) on X,0 < p < n = dim¢ X. Itcan be
thought of as a closed differential form of bidegree (p, p) with measure coefficients whose total
variation is controlled by

Tl :=f TA@" P .
X

We refer the reader to [ 15, Ch. 3] for basic properties of positive currents. Given¢ € PSH(X, w)
we write ¢ € L1(T) if ¢ is integrable with respect to each (measure) coefficient of 7. This is
equivalent to ¢ being integrable with respect to the trace measure T A "~ 7. In this case, the
current ¢ T is well defined, hence so is

wp AT =0 AT +dd*(oT) .

This is again a positive closed current on X, of bidegree (p + 1, p + 1). Indeed, positivity is a
local property which is stable under taking limits. One can locally regularize ¢ and approximate
w, A T by the currents wy, A T which are positive since w,, are smooth positive forms.



614 Vincent Guedj and Ahmed Zeriahi

When ¢ € PSH(X,w) N L®(X) then ¢ € ALI(T) for any positive closed current T of
bidegree (p, p). One can thus inductively define wé AT, 1<j<n-—p,forge PSHX,w)N

L*®(X). For T = 0 and j = n one obtains the complex Monge-Ampére operator, ). It follows

from the local theory that the operator ¢ — a)f}, is continuous under monotone sequences (see [5]).

The proof of these continuity properties is simpler in our compact setting. We refer the reader
to [24] where this is proved in a more general global context.

Proposition 3.1 (Chern-Levine-Nirenberg inequalities).  Let T be a positive closed current
of bidegree (p, p) on X and ¢ € PSH(X, w) N L*(X).

Then ||lw, A T|| = ||T||. Moreover, ify € PSH(X,w) N LY(T), then ¢ € LY(T A w,)
and

WL Tnap < WLt + [25up ¥+ supy ~ inf g IIT ]
Proof. By Stokes theorem, [, dd°¢ AT A " P~ = 0, hence
Hwe AT :=/ wy AT APl =/ T AP =T .
X X

Consider now ¢ € LY(T). Since T has measure coefficients, this simply means that ¥ is
integrable with respect to the total variation of these measures. Assume first v < 0, ¢ > 0 and
@, ¥ are smooth. Then

¥ 112t T ray) = /}((—w)T Aoy A" PN = |9y + fx(—vf)T A ddp na P
Now it follows from Stokes theorem that
j (=)T A ddép A" P71 = f oT A (—ddY) A" P!
X X

sfgoT/\w”"’fsupgo/T/\w”“’,
X x Jx

where the next to last inequality follows from T A @" 7 > 0 and —ddy < w. This yields

N L (T Awp) < N1l Lt ey +31;P(P||T|| .

The general case follows by regularizing ¢, ¥, observing that w, = w,s where ¢’ = ¢ —infx ¢ >
0, and decomposing ¢ = ¢’ + supy ¥ with ' = ¥ —supy ¢ < 0. O

Remark 3.2.  The fact that the L' -norm of y with respect to the probability measure T A w, A
"~ P~ is controlled by its L!-norm with respect to T A w"~P is similar to the phenomenon
already encountered in Example 2.8: One can write

TAwy A" P 1 =T A" P +dd°S, S = (¢ —iI)l(f(p)T A" Pl >0.

This type of estimates is usually referred to as “Chern-Levine-Nirenberg inequalities,” in reference
to [8] where simpler -but fundamental- L™ -estimates were established (with ¢ = constant).
Estimates involving the L!-norm of  were first proved in the local context by Cegrell [6] and
Demailly [12].

A straightforward induction yields the following.
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Corollary 3.3. Letvy,¢p € PSH(X,w) with0 < ¢ < 1. Then
05/ ¥ |w)y 5[ |1/f|w"+n[1+25up1/f]/ o .
X X X X

Following Bedford-Taylor [5] and Kolodziej [29] we introduce the following Monge-Ampére
capacity.

Definition 3.4. Let K be a Borel subset of X. We set

Cap,,(K) := sup {/ wy,/9 € PSH(X,0),0<¢ < 1} .
K

Note that this definition only makes sense when the cohomology class {w} is big, i.e., when
{w}" > 0, and when it admits locally bounded potentials ¢. This implies, by a regularization
result of Demailly [12], that {w} is big and nef. In order to avoid technicalities, we are assuming
throughout this section that {w} is Kéhler.

Proposition 3.5.
(1) IFK C K’ ¢ X are Borel subsets then

Vol (K) := / w" < Cap,(K) < Cap,, (K') < Cap,(X) = Vol,(X) .
K

(2) IfK j are Borel subsets of X thenCap,, (UK ;) < ZCapw(Kj). Moreover, Cap,,(UK ) =
limCapw(Kj) ifK; C Kjy1.
(3) If w1 < o then Cap,, () < Cap,,(). Forall A > 1, Cap,(-) < Capy,()

A" Cap,,(-). In particular, if w, " are two Kéhler forms then there exists C > 1 such that
1
C

IA

Cap,, () < Cap, () < C-Cap,(-) .

4 If f : X - X is holomorphic then for all Borel subset K of X,
Cap,,(f(K)) < Cap s« (K) .
In particular, Cap,,( f(K)) = Cap,(K) for every w-isometry f.
Proof. That Vol, () < Cap,,(-) is a straightforward consequence of the definition (since wp =

). Tt then follows from Stokes theorem that [, w}; = [, o" forevery ¢ € PSH(X, w)NL™(X),
thus Vol, (X) = Cap, (X).

Property (2) is a straightforward consequence of the definitions.

If ) < wz then PSH(X, 1) C PSH(X, w2) hence Cap,, (-) < Cap,,, (-). Fix A > L. If
Y e PSH(X, Aw) issuchthat0 < ¢r < 1then /A € PSH(X, w) with0 < y/A <1/A < 1.
Moreover, (Aw + dd )" = A™(w + dd°(y/A))". This shows Cap,,(-) < A" Cap,,(-).

In particular, if @, @’ are both Kihler then A~ lw < @ < Aw for some constant A > 1,
hence C~! Cap,(-) < Cap,(-) < C-Cap,(-) with C = A",

It remains to prove (4). It follows from the change of variables formula that if ¢ €
PSH(X, w) with0 < ¢ < 1 then

[ o[ rrop= [ (rro+dao n) < Cuppy)
f(K) K K
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sincepo f € PSH(X, f*w) with0 < go f < 1. Weinfer Cap,,(f(K)) < Cap ., (K). When f
is a w-isometry, i.e., f € Aut(X) with f*w = w, then the mapping ¢ — ¢ o f is an isomorphism
of {u € PSH(X,w) /0 < u < 1}, whence Cap,,(f(K)) = Cap f+,,(K) = Cap, (K). U

Let PSH™ (X, w) denote the set of negative w-psh functions. A setissaidtobe PSH (X, w)-
polar if it is included in the —oo locus of some function ¥ € PSH(X, w), ¥ # —o00. As we
shall soon see, the sets of zero Monge-Ampére capacity are precisely the PSH (X, w)-polar sets.
We start by establishing the following:

Proposition 3.6. If P is a PSH(X, w)-polar set, then Cap,(P) = 0. More precisely, if
Y € PSH™ (X, w) then

Cap,(¢ < —1) < % [f (=) +nVolw(X)], Vt>0.
X

Proof. Fixg e PSH(X,w)suchthat0 < ¢ < 1. Fixt > Oandset K, = {x € X /¥ (x) <
—t}. By Chebyshev’s inequality,

f w), < / (~g/nat < [ / (—w>w"+nVolw(X)] ,
K X tLUx

where the last inequality follows from Corollary 3.3. Taking supremum over all ¢’s yields the
claim. O

Observe that the previous proposition says that Cap,(P) = 0, where
Cap},(E) := inf{Cap,(G) /G open with E C G},
is the outer capacity associate to Cap,,.

Our aim is now to show that w-psh functions are quasicontinuous with respect to Cap,,
(Corollary 3.8). We first need to show that decreasing sequences of w-psh functions converge “in
capacity.”

Proposition 3.7. Lety, y; € PSH(X, w) N L*(X) such that (y ;) decreases toy. Then for
eachs > 0,

Cap,({¥j >y +8H — 0.
Proof.  We can assume w.l.o.g. that Vol,(X) = 1and 0 < ¥j—¢ <1 Fixé > 0and

¢ € PSH(X,w), 0 < ¢ < 1. By Chebyshev inequality, it suffices to control f, (y; — Vg
uniformly in ¢. It follows from Stokes theorem that

/(‘/fj — ¥ay, =/(1/fj - 10)0)/\60;—1 —/ d(yrj — ) /\dcgo/\w;’l )
X X X

Now by Cauchy-Schwartz inequality,

1/2 1/2
< (/ dfi nd°f; /\w;“) (/ d(p/\d"qo/\w;’,"l) ,
X b'¢

where we set f; := ¥; — ¢ = 0. Moreover,

/ af; /\dc(p/\a);’}"1
X

]dgoAde/\wz_I=/ga(—dd”(p)/\a);_ls/ww/\w;"lsl,
X X X
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since ww;_l >0, —dd“¢p < w and ¢ < 1. Similarly

/dfj/\dcfj/\wz_lz—_/ —fidd° fj A& 5/ fiwg Ayt
X X X

Altogether this yields

IA

1/2
/x(‘/” —Pord) ! + (fij — ¥y Awg'1>

12
ﬁ(/;((llfj—llf)(w-Fww)/\wg_l) ,

/X W5 - Pyl

IA

where the last inequality follows from the elementary inequalities 0 < a < /a < 1 and \/a +

Vb <V2/a ¥b.

Going on replacing at each step a term w, by w -+ wy,, we end up with

1/2"
f W — )l <2 (/ W — P+ ww)") .
X X

The majorant being independent of ¢ and converging toQ as j — +oo (by dominated convergence
theorem), this completes the proof. ]

Corollary 3.8 (Quasicontinuity). Letg € PSH(X, w). For each ¢ > 0 there exists an open
subset O, of X such that Cap,,(O;) < ¢ and ¢ is continuous on X \ O.

Proof. Fort > 0 large enough, the set O; = {¢ < —t} has capacity < &£/2 by Proposi-
tion 3.6. Working in X \ O; we can thus replace ¢ by ¢; = max(p, —t) which is bounded on X.
Regularizing ¢ (see Appendix), we can find a sequence ¥; of smooth Aw-psh functions which
decrease to ¢; on X, for some A > 1. By Proposition 3.7, the set O; = {y; > ¢ + 1/j} has
capacity < e27/~Lif k j is large enough. Now v ; uniformly converges to ¢ = ¢ on X \ O,
O, = Uj>10j, s0 ¢ is continuous on X \ O, and Cap,,(0;) < ¢. O

Example 3.9. The capacity Cap,,(-) does not distinguish between “big sets.” Assume indeed
there exists an ample divisor D such that [D] ~ kw, k € N. Then there exists ¢ € PSH(X, w)
such that dd°¢ = k~![D] — w. Note that ¢ € C®(X \ D), ¢? € C%X) and {¢ = —00} =
D. Replacing ¢ by ¢ — supy ¢ if necessary, we may assume supy ¢ = 0. Consider ¢, =
max(¢, —c) € PSH(X, w) N C%(X). Then ¢, = ¢ outside some neighborhood V, = {¢ < —c}
of D. Since 0 < 1 + ¢ < land w14y, = wy = 0in X \ V1, we get

Cap,(X) = / (@14¢)" ‘—‘/ (@14¢)" < Cap, (V1) ,
X Vi

hence Cap,, (V1) = Cap,,(X).

As a concrete example take X = CP” and @ = wrs, D being some hyperplane Ho “at
infinity” (k = 1). Set @[z : t] = loglt| — %log[llzll2 + |¢]?] where z denotes the Fuclidean
coordinates in C" = CP" \ Hy and Hy = (t = 0). Observe that supeps ¢ = 0. One then

computes
CP'\ V| = [zeC"/|zl §\/e2—1] .

Thus, the capacity of the complement of any Euclidean ball of radius smaller than /e — 1 equals
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The definition of Cap,, mimics the definition of the relative Monge-Ampére capacity intro-
duced by Bedford and Taylor in [5). Fix U = {U,} a finite covering of X by strictly pseudoconvex
open subsets of X, U, = {x € X /ga(x) < 0}, where g, is a strictly psh smooth function de-
fined in a neighborhood of Uy. Fix § > 0 such that f® = {Mg} is still a covering of X, where
L{g = {x € X /0o (x) < —8). For a Borel subset K of X, we set

Capgr(K) := Y _ Cappr (K NUS, Us) ,
[+3

where
Cappr(E, Q) :=sup [f (ddcu)"/u e PSH(Q),0<u< 1]
E

is the capacity studied by Bedford and Taylor. The next proposition is due to Kolodziej [29]. We
include a slightly different proof.

Proposition 3.10. There exists C > 1 such that

1
ral Cap,(-) < Capgr(-) < C-Cap, ().

Proof. Let E be a Borel subset of X. Since Cap,,(E NUS) < Cap,,(E) < 2 o Cap, (E nUd),
it is sufficient to show that if 2 = {x € X / g(x) < 0} is a smooth hyperconvex subset of X, then
there exists C > 1 such that for all E C 5,

1
ECapw(E) < Capgr(E, Q) < C - Cap,(E),

where 25 = {x € X / o(x) < —8}.

It is an easy and well known fact in the local theory that the capacities Cap(-, 2) and
Cap(-, ') are comparable when ' C Q (see e.g., Theorem 6.5 in [12]). Therefore we can
assume (passing to a finer covering if necessary) that = dd°y near Q. Fix C; > 0 such
that —C; < ¢ < Cion Q. Fix p €¢ PSH(X,w) suchthat) < ¢ < 1 on X and setu =
QRC) Y@+ ¥ +Cy). Thenu € PSH(R2) and 0 < u < 1, hence

/E oy = (2C1)" /E (dd°u)" < (2C1)" Capgr(E, Q),

which yields Cap,,(E) < (2Cy)" Capgr(E, Q). Observe that we have not used here that w is
Kihler.

For the reverse inequality we consider x € C*(X) suchthat x =0in X\ Qand x <0
in Q. Replacing x by ey if necessary, we can assume y € PSH(X, w). This is because w is
Kihler (and this is the only place where we shall use this crucial assumption). Fix ¢ > 0 so small
that x < —e on Q. Letnow u € PSH(S2) be such that 0 < # < 1 on 2. Consider

uz_f;clcl in Qs
P = max (5L I +1) in @\ 9
1 in X\Q

Observe that 0 < u’ := (u — V¥ + C1)/(2+2Cy1) < (1 4+2C1)/(2+2Cy) < 1 in Q. Therefore
9 € PSH(X, 2w) since 2x(x) +1 < —1 < u’ in Q5, while 2x(x) + 1 =1 > u’ on 32. Note,
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n n
f © __ Ldde) < / 2ot dde
e \242C; “Je\e

2 n
Capy,, e (E) < (;) Cap_,(E)

alsothat 0 < ¢ < 1 thus for E C Qs,

1 oo\
ErsT /E (dd‘u)

IA

hence Capg,(E, ) < 4"(1 + C1)"e ™" Cap,,(E). O

Since locally pluripolar sets are precisely the sets of zero relative capacity [5], we obtain the
following:

Corollary 3.11. Cap,(P) =0 < Capyr(P) =0 < Pis locally pluripolar.

We shall show later on that locally pluripolar sets are PSH (X, w)-polar when w is Kihler
(see Theorem 7.2).

The following two results are direct consequences of the corresponding results of Bedford
and Taylor [4, 5].

Theorem 3.12 (Dirichlet Problem). Letg € PSH(X, w) N L*(X). Let B be a small ball
in X. Then there exists ¢ € PSH(X, ») suchthat$ = ¢ in X \ B, ¢ > ¢ and (w;)" = 0 in B.
Moreover, if 91 < @3 then ¢ < ¢».

Theorem 3.13 (Comparison principle). Letg, ¥ € PSH(X, w) N L°°(X). Then

o 5/ w? .
/w«/f} V= Joeny ¢

Many results in this section hold when  is merely a smooth semi-positive form such that
{w}" > 0, as the following example shows.
g p

Example 3.14. letn:X — ):( be the blow up of X along a smooth center Y of codimension
> 2. Let @ be a Kihler form on X and set w = 7*®. Then w is a smooth semi-positive form on
X such that w|g = 0, where E denotes the exceptional divisor. Clearly

PSH(X,w) =n*PSH(X,®),

hence w-psh functions do not separate points of E. However, the Monge-Ampere capacity Cap,,(-)
is well-defined and enjoys all previous properties.

4, The relative extremal function

We assume in this section, as in Sections 3 and 7, that w is a Kihler form. We now introduce
a substitute for the relative extremal function which has revealed so useful in the local theory [5]:
If E is a Borel subset of X, we set

hew(x) :=sup{p(x) /¢ € PSH(X,w), p <Oand ¢ < -1} .

We let h} , denote its upper-semi-continuous regularization, which we call the relative -
plunsubharmomc extremal function of the subset E C X. It enjoys several natural properties; we
list some of them below. The proofs follow from standard arguments together with Theorem 7.2:



620 Vincent Guedj and Ahmed Zeriahi

* The function h*E ® is w-psh. It satisfies —1 < h » < 0onX and h’& w=—lonE\P,
where P is plunpolar

e IfE C X and P C X is pluripolar, then h};.\,, = hj.

» If (E;) increases towards E C X, then h}j decreases towards A%,

» If (K;) is a sequence of compact subsets decreasing towards K, then h*,‘(j increases
(a.e.) towards A

As in the local theory, the complex Monge-Ampere of the relative extremal function of a
subset E C X vanishes outside E, except perhaps on the set {h}, = 0} which, in the local theory,
lies in the boundary of the domain.

Proposition 4.1.  When the open set Qg := {x € X [ h} ,(x) < 0} is nonempty, then

(@1, = (0 + a3, )" =0 in 26 \E.

Proof.  Assume that Qg := {h?% Eow < 0} is nonempty. It follows from Choquet’s lemma that
there exists an increasing sequence ¢; of w-psh functions such that ¢; = —1on E, ¢; < Oon
X, and h}‘z,w = (limg;)*. Leta € Qg \E and fix a small ball B C Qg centered at point a. Let

@ p denote the functions obtained by applying Theorem 3.12, so that (wq, Y*=0in B.

If B is chosen small enough, then @; 9j < 0in B, hence ¢; < Oon X, while §; = ¢; = —1on
E. This can be seen by showing that 0p — 0 as the radius of the ball B shrinks to 0. Therefore
lim / ¢; = h} .o hence (wh';s )" = 0inaneighborhood of a, which prove our claim. ]

We now establish an important result which expresses the capacity in terms of the relative
extremal function for any subset. It will show in particular that the set function Cap}, is a capacity
in the sense of Choquet which is outer regular. For simplicity, we write h g for hg .

Theorem 4.2. Let E C X be any Borel subset, then
Cap}(E) = / (—hg)w). . @)
X E
The Monge-Ampére capacity satisfies the following continuity properties:

(1) If (E;) j>o0 is an increasing sequence of arbitrary subsets of X and E := Uj>oE j then
Cap;(E) = lim Cap} (Ej).
Jj=+o0

(2) If (K ) j>0 Is a decreasing sequence of compact subsets of X and K 1= N;>0K ; then
Cap,(K) = Cap;,(K) = lim Cap,(K;).
j—>+oo

In particular, Cap}, (-) is an outer regular Choquet capacity on X .

Proof.  We first establish (+) when E = K C X is compact. Observe that in the definition of
the capacity, it is enough to restrict ourselves to w-psh functions ¢ such that —1 < ¢ < 0. Let
¢ be such a function. The pluripolar set N := {hx < hY%} is of measure O for the measure Wy
Since —1 < ¢, we have K C N U {h}, < ¢}, hence the comparison principle yields

o <f " / “’Z* .
f <o) 0= iy <o M
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This shows Cap,,(K) < fQK w;";( since {h} < ¢} C Q. It follows from Proposition 4.1 that

Capw(K) < f (a);;K)" — L (a)h*K)n ,

Qk
whence equality.

Recall that K N {h} > —1} C {hg < h}} is of measure O for “’Z;(’ SO

Can, (0 = [ (i)' = [ (-mi)" = [ (~Rwi,)"

where the last equality follows from the fact that the equilibrium measure (wpx, )" is supported on
K U {hy =0}

We assume now that E = G C X is an open subset. Let (K;) be an exhaustive sequence
of compact subsets of G which increases to G. Since h}j J hg on X, it follows from classi-
cal convergence results that (—h’;(j)w;l‘* — (—h’&)wza in the weak sense of measures on X,

K;
J

therefore

[ horar, = tim [ (=ky)p, = lm Cap,(K)) = Cap,(@)

This proves (+) when E C X is an open subset.

Finally, let E C X be any subset. By definition of the outer capacity, there is a sequence
of open subsets (0;);>1 of X containing E such that Cap}, (E) = lim, 1o Cap,(0O;). We can
assume w.l.0.g. that the sequence (O;)j> is decreasing.

By a classical topological lemma of Choquet, there exists an increasing sequence () j>1
negative w-psh functions on X s.t. u; = —1 on E with u; t h% almost everywhere on X. We
set foreach j € N, Gj := O0; N{u; < —1 + 1/j}. Then (G;) is a decreasing sequence of
open subsets of X such that E C G; C Ojanduj —1/j < hg; < hg, so hg; 1 h% almost
everywhere on X. We infer (—h¢ j)wZGj - (—h’g)sz in the weak sense of measures on X,

thus

[ (=niyoty = im_ [ (=15 o

On the other hand, we have by construction Cap}(E) < limj, 1 Cap}(G;) <
limj_, 400 Cap},(O;) = Cap},(E). Therefore using (+) for open subsets, we get

/ (- h})wh. = Cap}(E).
X E

Observe that (1) follows straightforwardly from this formula. Indeed, if (E;) increases
towards E, then h‘,}j decreases towards 7}, hence (—hfgj)(wh’;; D (—h’g)(wh,E Y, so that
J

Cap}(E) = f (—hE)wh, =lim f (= h% ){(wpr )" = lim Cap}(E)) .
b’ E b'e P

It remains to prove (2). Let (K ;) be a decreasing sequence of compact subsets of X which
converges to K. We claim that h’;(j 1 h} almost everywhere on X. Indeed, the extremal function

h’;(j increases almost everywhere to a w—psh function k such that k < h% on X. We want to
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prove thathy < hon X. Letu € PSH(X, w) suchthatuy <Oon X andujx < —1. Fixe >0
and consider the open subset G, := {u < —1 4 ¢}. Then K C G, thus K; C G, for j large
enough. This yields u — ¢ < hg i for j large enough, hence u < h on X. Therefore hxy < h on
X as claimed.

Since (—hg j)w;:* converges weakly to (—h’;()a)z, on X, we infer
Kj K

Capw(K)z/;((—h}})w;,‘} Z,HTOO X(—h’;(j)w;l'}j =j_lewCapw(Kj).

From this last property, taking a decreasing sequence (K ;) j>0 of compact subsets such that
K =Nj>0K;and K;41 C K;? for any j € N we obtain Cap},(K) = lim;_, 1 Cap,(K;) =
Cap,,(K). 0

5. Alexander capacity

We now introduce another capacity which is defined by means of a global extremal function.
It is closely related to the projective capacity introduced by Alexander in [1].

5.1. Global extremal functions

Definition 5.1. Let K be a Borel subset of X. We set

Vi =supl{p(x) /¢ € PSH(X,w), ¢ <0on K} .

This definition mimics the definition of the so-called “Siciak’s extremal function” usually
defined for Borel subset of X = CP” that are bounded in C" = X \ Hy, where Hy, denotes
some hyperplane at infinity. This function was introduced and studied by Siciak in [35, 36]
(see also [38]). One can indeed check that this definition coincides with the classical one if one
chooses @ = [Hco] to be the current of integration along the hyperplane Hy,. Similarly one
could consider the case where w = [ D] is the current of integration along a positive divisor D on
X and let D play the role of infinity. This approach has been used by some authors working in
Arakelov geometry to define capacities on projective varieties (see [30, 9] and references therein).
However, this forces them to consider only compact subsets of X \ D and leads to less intrinsic
notions of capacities.

In the sequel we assume that w is smooth (but not necessarily positive).

Theorem 5.2. Let K be a Borel subset of X.
(1) K is PSH(X, w)-polar iff supy V,"{"w = 400 iﬁV,’éyw = +400.

(2) If X is not PSH(X, w)-polar then V,"{"w € PSH(X, w) and satisfies VI’;,(D = 0 in the
interior of K, (wv;é w)” =0in X\ K and

/_ (v )" = / " = Vol (X) .
’ X

K

Proof.  Assume supy V,’;, » = 100. By alemma of Choquet (see Lemma 4.23 in [15, Ch. 1]),
we can find an increasing sequence of functions ¢; € PSH(X, w) such that ¢; = 0 on K and
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Vl"{‘,w = (lim /" ¢;)*. Extracting a subsequence if necessary, we can assume supy ¢; > 2/, Set
¥;j = @j — supy @;. These functions belong to Fy which is a compact subfamily of PSH (X, ®)
(Corollary 2.7). Recall that if 4 is a smooth volume form on X then there exists Cy, such that
[¥jdu = —Cy forall j. Set := 3,5, 27/y;. Then ¢ € PSH(X,w) as a decreasing
limit of functions in PSH (X, w) with fx Yvdu > —C, > —oo. Now for every x € K we get
Yx)=— ijl 2~ supy ¢; = —oo hence K C {¢ = —oo},i.e, K is PSH(X, w)-polar.

Conversely assume K is PSH(X, w)-polar, K C {y = —oo} for some ¢ € PSH(X, w).
Thenforallc e R, ¢ +c € PSH(X, w) and ¥ +c¢ < 0on K. Therefore Vg ,, > ¥ +c,Vc € R.
This yields Vg o = 400 on X \ {{ = —oo} hence V;;,w = 400 on X since {y = —oo} has
zero volume. We have thus shown the following circle of implications: Kis PSH(X,w) —
polar = Vg  =+00= supy Vg , =+00 = K is PSH(X, ») — polar.

Assume now that K is not PSH (X, w)-polar. Then V,}‘, w € PSH(X, w) [see Proposi-
tion 2.6 (2)] and clearly satisfies VI’;, » = 0in the interior of K. If we show that (wv;é w)” =0in

X \ K then
_/?(wv;;w)n = /x (wv;;‘w)n = /X“’n ’

as follows from Stokes theorem. Letg; € PSH (X, w) be anincreasing sequence suchthatg; = 0
on K and VE » = (lim /" ¢;)*. Fix B asmall ballin X \K. Letg ; be the solution of the Dirichlet
problem with boundary values ¢;. Then ¢; € PSH(X,w), ¢; = ¢; in X \ B (in particular,
¢; = 0 on K hence ¢; < Vg ) and the sequence (¢;) is again increasing (Theorem 3.12).
Since (wqu)" = 0in B and (lim /' ¢;) = VI? »» it follows from the continuity of the complex
Monge-Ampére on increasing sequences that (wv;'w)" = 0 in B. As B was an arbitrarily small

ball in X \ K we infer (wy; )" =0in X \ K. O
The following corollary has to be related to Proposition 2.7.

Corollary 5.3. Let K be a Borel subset of X and set

Fk = {p € PSH(X,w) / supp = 0} .
K

Then Fx is relatively compact iff K is not PSH(X, w)-polar.
Proof. Observe that Vg ,(x) = sup{p(x) /¢ € Fg}. Thus, if F is relatively compact then
it is uniformly bounded from above, hence supy Vi , < 400, i.e., K is not PSH (X, w)-polar.

Assume conversely that K is not PSH (X, w)-polar. Let (¢;) € F, }? . Thengp; < Vg o» <
supy Vk,» < 400 hence (¢;) is uniformly bounded from above. It follows from Proposition 2.6
that (¢;) is relatively compact. Indeed, it can not converge uniformly to —oo since supg ¢; = 0
(see Proposition 2.6).

Proposition 5.4. Let K be a Borel subset of X.

(D IfK’' C K then Vx4 < Vg < Vg/ 4 and supy Vx , = 0. Furthermore Vx, , = 0
whenw > 0.

2) If w1 < w) then VK,w1 < VKJDZ'

(3) Forall A > 0, Vg a0 = A Vi .
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4) Ifo' = w+ dd°y then

—-X +ir§fx +Vko = Vkw < Vko+supx —x.
X

(5) If f : X — X is holomorphic then

Vikywo f < Vi fro .

In particular, if f is a w-isometry then Vyx) .o = VK o-

Proof. That K — Vg, is decreasing follows straightforwardly from the definition. Observe
that 0 € PSH(X, w) when w > 0, hence Vx, = 0 in this case. When w is smooth (but
not positive), considering Vy , will be a useful way of constructing a positive closed current
wyp ~w with minimal singularities (see Section 6).

Assertions (2), (3), (4) are simple consequences of Proposition 2.3. The last assertion results
from the following observation: If ¢ € PSH(X, w) is such that ¢ < O on f(K),thengo f
belongs to PSH (X, f*w) and satisfiesp o f <Oon K. O

Example 5.5. Assume X = CP", w is the Fubini-Study Kihler form and let Bg denote the
Euclidean ball centered at the origin and of radius R in C* ¢ CP". Then for x € C*,
v [lx]| 1 2y 1 2.
Br.w(x) = max ( log == + —2—log[1 + R?] - Elog[l +IxI*);0) .

Indeed, set Yr := max(% log[1 + ||x||2], ¢R), wWhere g = %log[l + R¥+ log %. Recall
that the usual Siciak’s extremal function of By is log* “%”. Therefore %log[l +|1xI21 < ¢r =
¥ for ||x|| = R. On the other hand, if ||x|| < R then 1 + |jx||*> > (1 + RZ)U%QE hence
%log[l +11x])?] > @g in Bg.

Nowletu € PSH(CP", w) suchthatu < 0in Bg. Thenv = u+ % log[1+ l1x|12] € £(C™).
Sincev < 1 log[1+R?}in Bg weinferv < % 10g[1+R2]+10g+ “%L' = Yg inC"\ Bg. Moreover,
v < % log[1+]Ix]|%} = ¥g in Bg hence v < ¥rg in C*. This shows VBg.w = 1//R—-% log[l+|]x|]2]
on CP".

Proposition 5.6.
(1) IfE is an open subset, then Vg = V.
(2) Let E be a Borel subset and P a PSH(X, w)-polar set. Then

Veup = VE .
(3) Let (E;) be an increasing sequence of Borel subsets and set E = UE;. Then Vg’ o=
lim N\ VE*,-‘ » if @ is Kéhler.

(4) Let K; be a decreasing sequence of compact subsets of X and set K = NK;. Then
Vk; .0 /' Vi) hence Vg, 7 Vg , ace.

(5) Fix E C X a nonpluripolar set. Then there exists G; a decreasing sequence of open
subsets, E C G, such that Vg = lim Vg .

Proof. We write here Vg for Vg, since w is fixed and no confusion can arise.
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Let E be an open subset of X. Observe that Vg < 0 on E, hence V; < 0 on E which is
open. Therefore VE* < Vg, whence equality. This proves (1).

Letw e PSH(X, w), w <0, and fix P C {w = —oo}. Fix E a Borel subset of X. Clearly
Veup < VE hence Vi, p < V. Conversely let ¢ € PSH(X, w) be such that ¢ < O on E. Then
Ve > 0,¢:. := (1 —¢e)p+ecw € PSH(X, w) satisfies ¥, < Oon E U P, hence ¢, < Vgyup.

Letting ¢ — O we infer ¢ < Vgyp on X \ P, hence ¢ < Vi p on X. Thus, Vg < VZ p.

Let E; be an increasing sequence of subsets of X andset E = U;>1 E;. Letv 1= lim \ ng_
[the limit is decreasing by Proposition 5.4 (1)]. If E is PSH (X, w)-polar then so are all the E ; S,
hence V) = +00 = lim ng. Soletus assume E isnot PSH (X, w)-polar. Thenv € PSH(X, w)
since v > ng » 7= —00 [see Proposition 2.6 (3)]. Observe that v = 0 on the set E \ N, where
N =Uj>1{Vg; < Vg‘j }. The latter is called a negligible set. It follows from the local theory [5]
together with Theorem 7.2 that N is P S H (X, w)-polar. Therefore VE* <v< Vg\ N= VE* by (2).

Let K; be a decreasing sequence of compact subsets and set K = N; K ;. Clearly lim ~
Vk, < Vk. Fixe > Oand let ¢ € PSH(X, w) be such that ¢ < 0 on K. Then {9 < ¢} is
an open set which contains all X }s, for j > j, large enough. Thus, ¢ — ¢ < 0 on K}, hence
¢ —¢& < lim /' Vk;. Taking the supremum over all such ¢’s and letting ¢ — 0 yields the reverse
inequality Vg < lim 7 Vk;. The conclusion on the convergence of the upper semi-continuous
regularizations follows now from Proposition 2.6.

It remains to prove (5). By Choquet’s lemma, there exists an increasing sequence ¢; €
PSH(X, w)suchthatg; <Oon E and Vg = (sup; ¢;)*. Set G; := {¢; < 1/j}. This defines a
decreasing sequence of open subsets containing E. Observe that ¢; — 1/j < Vi; < VE, hence
limg; < lim V5, < V. Therefore V; = lim V(’;"j. O

5.2. Alexander capacity
Definition 5.7. Let K be a Borel subset of X. We set

To(K) :=exp(—sup Vg ) .
X

This capacity characterizes again P.SH (X, w)-polar sets:

Proposition 5.8. Let P be a Borel subset. Then T,(P) = 0 iff P is PSH(X, w)-polar.
Moreover, ify € PSH(X, w) then

Tolp < —t) < Cyexp(—t), Yt e R,
where Cy, = exp(— supy ¢).

Proof.  The first assertion follows from Theorem 5.2. Let ¢ € PSH(X,w), t € R and set
K, ={p <—t}. Thenp+t <0onK;hencep+t < VIZ’w. We infer supy ¢ +¢ < supy V;hw
which yields T,,(K;) < exp(— supy ¢) exp(—t).

The following proposition is an immediate consequence of Proposition 5.4. It shows that
capacities T, T,y are comparable if w, »’ are both Kihler. Further they enjoy nice invariance
properties.
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Proposition 5.9.
(1) For all Borel subsets K’ C K C X, T,(K') < T,(K) < T,(X) = 1.
) Ifwy < wp thenT, (1) = Ty, (). Forall A > 0, T, () = [Tw(~)]A. In particular, if w
and o’ are both Kahler then there exists C > 1 such that
[To()I€ < T () < [Tu(IVE .
3)Ifo' = w+dd°x then

éTw(') STy() =C-Tu(),

where C = exp(supy x —infx x) > 1.

@ If f : X — X is a holomorphic map then Tf+,(-) < T, o f(-). In particular, if f is a
w-isometry then Ty, o f = T,,.

Remark 5.10. Following Zeriahi [40] one can prove that for all @ < 2/v(X, w) there exists
Cy > 0 such that

Vol () < Co T ()%,

where v(X, w) = sup{v(p, x) /¢ € PSH(X, w), x € X} and v(gp, x) denotes the Lelong number
of ¢ at point x. In particular, it follows from Proposition 5.8 that Vo € PSH(X, w) with
supy ¢ =0,

Vol (¢ < —1t) < Cyexp(—at), Vt eR.

Such inequalities are quite useful in complex dynamics [20, 22] and in the study of the complex

Monge-Ampere operator [28].

Example 5.11. Assume X = CP", » is the Fubini-Study Kihler form and Bg, is the Euclidean
ball centered at the origin and of radius R in a chart C* C CP". We have explicitly computed the
extremal function in this case (Example 5.5). This yields

R
VI+R

Observe that T,,(Bg) ~ R as R — 0. This shows the optimality of the rate of decreasing in
Proposition 5.8.

T(BR) =

The capacity T, in Example 5.11 has to be related to the capacity Tg» which measures
compact subsets of the unit ball B” of C". It is defined as follows: Given K a Borel subset of C”,
Tyr (K) := exp(— supg: Lg), where

Lk (z) =sup{v(z) /v e L(C"), supv < 0}
K

is the Siciak’s extremal function of K and £(C") denotes the Lelong class of psh functions with
logarithmic growth in C” (see Example 2.2). Let w = wrs denote the Fubini-Study Kihler form
on CP". One easily checks that

1
Vk.w —logx/i <Lg - ilog [1 + |z|2] < Vg, in C.
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We infer straightforwardly supg. Lx < log N2+ supcpr Vi, hence Tpr(K) > 27127 (K).
We also have a reverse inequality. Indeed, V¢ € PSH(CP", w), supcpr ¢ < supgs ¢ + C1,
where C| = supgpn Vi, » = log +/2. Therefore

sup Vg .o < sup Vg, + log V2 < supLg +log2,
CPp» Br B

which yields

%Tw(K) < T (K) < 2T,(K) .

Example 5.12. Assume again X = CP" and w is the Fubini-Study Kihler form. Consider the
totally real subspace RP" of points with real coordinates (the closure of R* C C” in CP"*). Then

1 " <
msTw(RP)_l.

Indeed, set Brr := R" N B”". It follows from the discussion above that
T (RP") = 2 T (Bie)
Now there is an explicit formula for L’gw (Lundin’s formula, see [27]),
ben @) = sup {log* |h(< z,& >)| /|l =1}, z € C",

where h(¢) = ¢ + ¢2 — 1. A simple computation yields |2(¢)| < logllz| + v/|z|* + 1] for
¢ =<z,§ > with ||§]] = 1. We infer

Lpg, (2) < log [lZI + /1212 + 1] <log[l ++2] in B,

which yields the desired inequality.

Observe that the minorant is independent of the dimension n. This has been used recently
in complex dynamics by Dinh and Sibony [18], who also considered this capacity.

Remark 5.13. 1t follows from Proposition 5.6 that T, is a generalized capacity in the sense of
Choquet which is outer regular.

6. Tchebychev constants

In this section we consider the case where {w} = ¢} (L) is the first Chern class of a holomor-
phic line bundle L on X.

Recall that a holomorphic line bundle L on X is a family of complex lines {L,},cx together
with a structure of complex manifold of dimension 1 + dim¢ X such that the projection map
7 : L — X taking Ly on x is holomorphic. Moreover, one can always locally trivialize L:
There exists an open covering {{/,} of X and biholomorphisms & : 71Uy — U, x C which
take L, = m~!(x) isomorphically onto {x} x C. The line bundle L is then uniquely (i.e., up to
isomorphism) determined by its transition functions gog € O*(Ueg), Uap := Uy N Ug, where

8ap = (Pa 0 CDEI)HX}XC .
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Note that the gog’s satisfy the cocycle condition gag - ggy - gya = 1, hence define a class
[{g«p}] € HY(X, O*). The first Chern class of L is the image c1(L) € H*(X,Z) of [{gap}]
under the mapping ¢; : H!(X, ©*) — H?(X, Z) induced by the exponential short exact sequence
0>-Z—->0—->0">0.

We let I'(X, L) denote the set of holomorphic sections of L on X: s € I'(X, L) is a collection
s = {5} of holomorphic functions s, on I, satisfying the compatibility condition 5, = gug5s on
Uyp. Similarly a (singular) metric ¥ of L on X isa collection ¢ = {y/} of functions ¥, € L'Uy)
satisfying Vo = Vg +10g |gap| in Uyg. The metric is said to be smooth if the /s are C*°-smooth
functions. A smooth metric always exists. The metric i is said to be positive if the ¥, s are psh
functions. In particular, if s = {54} is a holomorphic section of L on X, then ¢ = {¢y := log |sa{)}
is a positive (singular) metric of L on X. Note that we make here a slight abuse of terminology:
Differential geometers usually call “metric’ the nonnegative (usually smooth and nonvanishing)
quantities eV = {e~ V).

Given a (singular) metric ¥ = {y} of L on X, we consider its curvature ®y := ddy, in
Uy, . This yields a globally well-defined, real closed current on X since dd€ log |gagl = 0 in Uyg.
It is a standard consequence of de Rham’s isomorphism that this current represents the image
of the first Chern class of L under the mapping i : H 2(X,Z) - H*(X,R) (induced by the
inclusion i : Z — R). The line bundle L is said to be pseudoeffective (resp. positive) if it admits
a (singular) positive metric (resp. a smooth metric whose curvature is a Kihler form).

Fix h = {hy} a smooth metric of L on X and set w := ®;. Then PSH(X, w) is in 1-
to-1 correspondence with the set of positive singular metrics of L on X. Indeed, if v is such a
metric then ¢ := ¢ — h is globally well defined on X and such that dd°¢p > —w. Conversely if
¢ € PSH(X, w) then ¢ = {y, := ¢ + hy} defines a positive singular metric of L on X. We can
thus rephrase the pseudoeffectivity property as follows:

L is pseudoeffective <= PSH(X,w) # 0.

Given L a pseudoeffective line bundle, it is interesting to know whether L admits a positive
metric which is less singular than any another. This notion has been introduced in [16] and
happens to be related to very special extremal functions.

Propeosition 6.1. Let (L, h) be a pseudoeffective line bundle on X equipped with a smooth
metric h. Set w := ©®. Then

hmin :=h + V;,w
is a positive singular metric of L on X with “minimal singularities.” More precisely, if  is a
positive singular metric of L on X, then there exists a constant Cy, such that y < hyin + Cy.

Proof.  Let ¢ be a positive singular metric of L on X. Then ¢ — h is a globally well defined
w-psh function. It is u.s.c. hence bounded from above on X: We let Cy, denotes its maximum.
Thenyy —h — Cy < 0on X, hence ¢ —h < Vg  + Cy, which yields ¢ < hpin + Cy. O

In the sequel we assume L is positive and & has been chosen so that w := ©, is a Kihler
form. Fors € I'(X, L"), we let ||s]| v» denote the norm of s computed with respect to the metric
Nh: Ttis defined in Uy by ||s||ns := |sale™N ha | The definition is independent of « thanks to the
compatibility conditions.

For a given Borel subset K of X, we define its Tchebychev constants

Myo(K) := inf{supllsl]m,/s e N(X, L"), suplsllnk = 1] .
K X
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Note that an obvious rescaling argument shows that My, remains unchanged if we replace % by
h + C so that it really depends on w = ©®p, rather than on 4. Consider

T/ (K) := inf [Myo,(K)YV .
N=1

Theorem 6.2. Let K be a compact subset of X. Then
To(K) = T,(K) .

Proof. The core of the proof consists in showing that
1
Vk,w(x) = Sup{ﬁlog”S”Nh(x)/N > 1,5 € I(X, L") and sup|ls||na < 1} .
X

Note that for any of the sections s involved in the supremum, ¢ := N~!log||s||y belongs to
PSH(X, w) and satisfies ¢ < 0 on K. Therefore ¢ < Vi 4.

Conversely, fix xo € X and a < Vg ., (x0). Fix ¢ € PSH(X, w) such that supg ¢ < 0 and
¢(xp) > a. Regularizing ¢ (see Appendix) and translating, we can assume ¢ € PSH(X, w) N
C®(X), supg ¢ < 0 and ¢(x9) > a. Fix ¢ > 0. Let B = B(xp, r) be a small ball on which
¢ > a. We choose B so small that the oscillation of 4 is smaller than £ on B. Let x be a test
function with compact support in B and such that x = 1 in B(xg, r/2). We can assume w.l.o.g.
that B C Uy, for some ag but BNifg = @ for all B # ap. This insures that x is a smooth section
of LN forall N > 1.

Let ; be a smooth positive metric of LN ® K % on X (this is possible if N is chosen large
enough since L is positive). Let ¢, be a positive metric of L™ on X whichis smoothin X\ {xo} and
with Lelong number v(y2, xo) > n = dimg X (this is again possible if N, is large enough, since
L is ample). Observe that F) ) x is a smooth 9-closed (0, 1)-form with values in LY (forall N > 1).
Alternatively it is a smooth 3-closed (7, 1)-form with values in LY @ K%. Applying Hérmander’s
L2-estimates (see e.g., [15, Ch. VIII]) with welght Yn = (N — N1 — No))(p+h) + ¥ + ¥,
we find a smooth section f of L such that 3 f = dx and

/ |f|26—2(N—Nl—NZ)(‘P+h)—2‘/’I‘2'l’2 dv, < C / 1§X|2e—2¢w dv, .
X X

Note that 3 has support in B \ B(xg, r/2) where ¥y is smooth so that both integrals are finite.
Since v(y, x0) > n, this forces f(xg) = 0. Thesecond integral is actually bounded from above
by C2e~2N@=8) where C5 is independent of N, since —¢ < —a on B and the oscillation of A is
smaller than ¢ on B. Therefore s := x — f € I'(X, LV) satisfies s(x9) = 1 and

f se 2N+ gy < Cyem2N@-0)
X

where C3 is independent of N. Now ¢ < 0 in a neighborhood of K, so the mean-value inequality
applied to the subharmonic functions |s |? yields for all x in K,

|s|2e_2Nh(x) < Ca/ ‘s|2(y)e—2N[§0+h](y)eZN[h(y)—h(x)-Hp(y)]d)‘(y)
B(x,8)

< C4e—2N(a—£)

if 8 is so small that | supg, 5 ¢| > 0is bigger than the oscillation of & on B(x, §). Therefore § :=

C; 2N @05 ¢ (X, L) satisfies supy |1S||va < 1 and N~" log ||S}iwk(x0) = a—e— <4,
Letting N - +00, & — 0 and a — Vi ,(xo) completes the proof of the equality.
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To conclude observe that by rescaling one gets

—log T,,(K) = sup Vg
X
1
= Sup{l_v‘supl()g”S”Nh/N >1,SeT(X,LY)and supliSlins = 1}
X K

1
= sup [‘ﬁ sgplog”SllNh/N > 1,8 € I'(X, L") and st;pllSHNh = 1}

=—logT/(K) . m

Projective capacity. We assume here that X = CP” is the complex projective space and v =
wrs is the Fubini-Study Kihler form. We give in this context a geometrical interpretation of
the capacity T,,. This will shed some light on the notion of projective capacity introduced by
Alexander [1].

Let & : C*+1\ {0} — CP” denote the canonical projection map. We let B"*! denote the
unit ball in (C"+1 Recall that the polynomially convex hull F of a compact set F of C**! js
defined as F := {x e C"*1 /|P(x)| < supy | P|, VPpolynomial}.

The following result gives an interesting interpretation of the capacity 7.
Theorem 6.3. Let K be a compact subset of CP". Then
To(K) = sup{r > 0/rB"*! c Ko},
where Ko = n~1(K) N B *!.
Proof. Let K, Ko be as in the theorem. Observe that K is a circled subset of 8B"+1: If

z € Ko then €z € Ko, V0 € [0, 27]. For such compacts, the polynomial hull 7(?) coincides with
the “homogeneous polynomial hull,”

Ko = {x e C** /1P(x)| < sup|P|, VP homogeneous polynomial} .
F

Indeed, one inclusion 7{\0 - f{\oh is clear, so assume zg € 7(\0}'. Let P = Z?:O Pj be a
polynomial of degree d decomposed into its homogeneous components. Observe that P;(x) =
2r)~! f02” P(e%x)e~79d0. Therefore supg, | Pjl < supg, |P| since Ky is circled. Fixt €
10, 1[. Then

d
; 1
P20 < )t/ 1Pj(ao)] < =

; sup | P} .
j=0 Ko

We infer tzp € I’('?). Letting + — 1~ and using that K¢ is closed we get zg € Ko, whence
— —
Ko =Ko .

Fix now z € C"t! such that ||z]] < T,(K). Let Pbea homogeneous polynomial of degree
d. Then

IP2)] = liz||?

P (i)’ < T,(K)* sup |P|. ©6.1)
Hzli

aBn+1
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Now set ¥ (z) = d log|P(z)| — log|lz|| and ¢ = ¢ — supg ¥. Then ¢ € PSH(X, w) with
supg ¢ < O0hence ¢ < Vg . Therefore

supg, | P|
T (K)¢ <exp( —dsu =—"0
w( p( C]P[n)‘p) Supa]Bn+l IPl
Together with (6.1) this yields | P(z)| < supg, | P| hence z € T(Bh = I’(?). Thus, K¢ contains the
ball centered at the origin of radius 7,,(X).

Conversely since 7,(K) = T, (K) (Theorem 5.1), one can find homogeneous polynom1als
P; of degree d; such that supyps+i ;PJ| Vdj . supy, |P;|V4 — T,(K). Assume rB**! C Ko.
Then

r% sup |Pj| = sup |P] < sup| 7|
aBnt! rRntl1

yields r < T,(K). ]

Remark 6.4. Sibony and Wong {34] have been first in showing that if a compact subset K of
CP” is large enough then the polynomial hull of K contains a full neighborhood of the origin in
Cnt1. They used the (complicated) notion of I'-capacity. Their approach has been simplified by
Alexander [1] who introduced a projective capacity which is comparable to 7, (see Theorem 4.4
in [1]). The proof given above is essentially Alexander’s (see also Theorem 4.3 in [36]).

This result has been used recently in complex dynamics (see [17, 23]).
Further capacities. In our definition of Chebyshev constants we have normalized holomorphic

sections s € I'(X, L") by requiring supy ||s||n» = 1. Given u a probability measure such that
PSH(X,w) C L'(w) and A € R, we could as well consider

MEAK) = {supnanh/seF(X LY), fxlognsuzvhdu:A}.

This normalization has the following pleasant property: If s € I'(X, L¥) and s’ € I'(X, LN ') are

so normalized then s - s’ € T'(X, LN*V') again satisfies [y logllss’|lv4nryn din = A. We infer
Mgty o < Ml - Ml so that
TA4(K) = inf [M AN = lim [MyA)]".
54 (K) = inf [ o (EK)] yim My (K))]

This yields a whole family of capacities which are all comparable to T, thanks to Proposition 2.7:
There exists C = C(u, A) > 1 such that

éTw(-) < THAQ) < CTu() .

The projective capacity of Alexander [1] is precisely T, 4 for X = CP", w = wrs, u = " and
A = [epr (loglzal —logll(zo, - .- , za)I]) @™ ([2]).

7. Comparison of capacities and applications

7.1. Josefson’s theorem

In this section we assume that e is Kéhler and normalized by Vol,(X) = 1. We first
prove inequalities relating T, and Cap,,. Then we prove (Theorem 7.2) a quantitative version
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of Josefson’s theorem that every locally pluripolar set is actually PSH (X, w)-polar. In the local
theory this result is due to El Mir [19]. We follow the approach of Alexander-Taylor {2].

Proposition 7.1. There exists A > 0 s.t. for all compact subsets K of X,

A 1
0| Gy < ™00 < |~ |

Proof. Set Mg = supy Vi . If Mg = +oo then K is PSH (X, w)-polar (Theorem 5.2) and
there is nothing to prove: T, (K) = Cap,(K) = 0. So we assume in the sequel My < 400
hence V;{‘,w € PSH(X,w). If My > 1thenug := MEIV,}‘,(D € PSH(X,w) withO < ug <1
on X. Since wvy =< Mgwy,, we get

1 1 .
M;l( N M;!( -/I; (wvz"") = _/I;(qu)n = Can(K)

whence T, (K) < exp(— Capw(K)_l/”).

IfO0 < Mg <1then0 < VI’; » < 1 hence Vg ,, — 1 coincides with the relative extremal
function kg ,, (see Proposition 3.14). We infer

1 =/ (w"i )" < Cap,(K) <Cap,(X) =1,
K R

while T,,(K) < T,,(X) = 1. Thus, in both cases T,(K) < e - exp(Capw(K)_l/").

We now prove the reverse inequality. We can assume Mg > 1, otherwise it is sufficient to
adjust the value of A. Let ¢ € PSH(X, w) be such that ¢ < O on K. Then ¢ < Mg on X,
hence w := MEI((/J — Mg) € PSH(X, w) satisfies supy w < 0 and w < —1 on K. We infer
w < h},w, hence

V;g' w— Mk

wg = * <0.

<
MK —_ K,w

Now supX(VI’g,w — Mg) = 0, so it follows from Proposition 2.7 that fX |V,’§,w ~ Mglo" < C
for some constant C; > 0 independent of K. We infer

Cap,K) = [ (an)" = [ [~hiu)(on,)
K ' X ’

1 n 8))
i |~V = M), )" < 12

using Corollary 3.3 and the fact that h}, » = —1 on K, except perhaps on a pluripolar set which
has zero (wh;( m)"-measure. This yields the desired inequality. d

It follows from the previous proposition and Corollary 3.8 that w-psh functions are quasi-
continuous with respect to the capacity T,.

Theorem 7.2. Locally pluripolar sets are PSH (X, w)-polar.

Proof.  More precisely, we are going to show the following: Consider 2 an open subset
of X, v e PSH (2 and P C {v=—o0}. Fix0 < & < 1/nand V; := Vg, , where
G, ={x € Q/v(x) < —t}. Then

1 ™ 1
@e(x) == g/l E[Vt(x) - S‘;P Vt] dt
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is a w-psh function such that P C {¢, = —o0}.

Indeed, since G; is open, we have V; € PSH (X, w) and V; = 0 on G, (see Proposition 5.6).
Observe that g, is a sum of negative w-psh functions hence it is either identically —oo or a well
defined Aw-psh function with A = &~! f1+°° t~U+8) gt = 1. Recall that —C + supy V; <
f x V1@" < supx V; (Proposition 2.7). Therefore fX pe@" > —C hence ¢, € PSH(X, w).

Fix x € Q such that v(x) < —1. Observe that V; — supy V; < 0 with V;(x) =0if x € G,
i.e., when |v(x)| > t. Therefore

wé‘(x)f__ [1+8

1 &) vV,
/ supy V; dt
£

Recall now that Cap,, is always dominated by Capgy hence Cap,(G;) < C1/t < 11if ¢ is large
enough. We infer from the previous proposition that

—sup V; < —[Cap, (G)]™V/" < ~Caot/7 |
X

which yields
__C2 lv(x)] dt _
e < —= | e < —G@IT G
Note that ¢, (x) = —oo whenever v(x) = —oo hence P C {¢, = —00}. J

7.2. Dynamical capacity estimates

Let f : CP* — CP”" be an holomorphic endomorphism. We let w denote again the
Fubini-Study Kihler form. Then f*w is a smooth positive closed (1, 1)-form of mass A =
fCP,, f*o A @"1 =: The first algebraic degree of f. Thus, A7\ f*w = w + ddp, where ¢ is a
smooth w-psh function on CP”. Iterating this functional equation yields

j—1
1, i «— 1 |
(/) 0 =w+dds, gf=217‘p°f'
l-‘:O

We assume A > 2. Thus, the sequence (g;) uniformly converges on CP” towards a continuous
function gy € PSH(X, ) called the Green function of f. We refer the interested reader to [33]
for a detailed study of the properties of the Green current Ty = w 4 dd°gy.

Dynamical volume estimates have revealed quite useful in establishing ergodic properties of
the Green current Ty (see [20, 22] and references therein). We establish herebelow very simple
dynamical capacity estimates and show how to derive from them dynamical volume estimates.

Proposition 7.3, There exists 0 < o < 1 such that for all Borel subsets K of X, forall j € N,
[0Tu(K)Y < To(f/(K)).
Proof.  This follows straightforwardly from Proposition 5.9:

Tu(f1(K)) 2 Ty ) = [Toi 1y E)]” 2 leTuBOP

where the first two inequalities follow from Proposition 5.9 (4) and 5.9 (2) and last one follows
from Proposition 5.9 (3) and the fact that A~/ (f/)*w = w + ddg;, where g; is uniformly
bounded. ]
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Corollary 7.4. Letg € PSH(X, w). Then the sequence (A7 ¢ o f7) is relatively compact in
LY(CP).

Proof. Setp; = A~/g o fJ. Observe that ¢; is uniformly bounded from above and that
¢j + g;j € PSH(CP", w). It follows from Proposition 2.6 that either ¢; converges uniformly
towards —oo or it is relatively compact in L1 (CP"). It is sufficient to show that for A > 0 large
enough, lim_, 00T, (p; < —A) < T,(X) = 1. Observe that f/(p; < —A) = {p < —AM}.
Therefore

[aTu(p; < —A)]" < T(p < —AN) < Cexp(— AN,

where the last inequality follows from Proposition 5.8. We infer
— 1
limj oo Tw(pj < —A) < Eexp(—A) <1

for A > —log a large enough. L]

Corollary 7.5. There exists C > 0 such that for all Borel subset K of CP" and for all j € N,

. oy %)
Vol, (f7(K)) = exp (_Vol (K)) )

In other words the volume of a given set can not decrease too fast under iteration. Such
volume estimates are used in complex dynamics to prove fine convergence results towards the
Green current T¢ (see [20, 22}). One may hope that dynamical capacity estimates will allow to
establish convergence results in higher codimension.

Proof. By the change of variables formula one gets

; 1 - 1 .
Voo (£/) = [ oz [ (7)== [ rs(e)Por

fiK _d,j K

where d; = A" denotes the topological degree of f and Jrs(f) stands for the jacobian of f with
respect to the Fubini-Study volume form. Observe that log |Jrs(f)| = u — v is a difference of
two gpsh functions u, v € PSH (X, Aw) for some A = A(X, f). Moreover, by the chain rule,

1 ) ity
7 log|Jrs(f7)] = 3 5 log | Irs(f) o ']

1=0

Since A ' log | Jrs(f) o f!| is relatively compact in L!(CP") (previous corollary), the concavity
of the log yields

1 . n
s [ st

v

204 1 .
_ J 7l
eX"(Volw(K) 3 e rs(f )"")

i\
X - .
P\ T Vol (K)

The conclusion follows by observing that o exp(—x /o) > exp(—2x/a), for all « > 0 and all
x> 1/e. O
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8. Appendix: Regularization of qpsh functions

It is well-known that every psh function ¢ can be locally regularized, i.e., one can find locally
asequence ¢; of smooth psh functions which decrease towards ¢ (see e.g., [15, Ch. 1]). Similarly
one can always locally regularize w-psh functions. It is interesting to know whether one can also
globally regularize w-psh functions.

When X is a complex homogeneous manifold (i.e., when Aut(X) acts transitively on X), it is
possible to approximate any w-psh function by a decreasing sequence of smooth w-psh functions
(see [21, 25]). In general however there is a loss of positivity: It will be possible to approximate
¢ € PSH(X, w) by a decreasing sequence of smooth functions ¢; but the curvature forms dd°g;
will have to be more negative than —@. How negative depends on the positivity of the cohomology
class {w}.

Considere.g., 7 : X — P? the blow up of P? at point p, E = 7~ (p) the exceptional divisor
and let w = [E] be the current of integration along E. Then PSH (X, ) =~ R (see Remark 2.5)
so every psh function has logarithmic singularities along E, hence is not smooth. Alternatively
E has self-intersection —1 so its cohomology class cannot be represented by smooth nonnegative
forms, not even by smooth forms with (very) small negativity.

Following Demailly’s fundamental work [10, 12, 16] (to cite a few) we show herebelow
that regularization with no loss of positivity is possible when @ is a Hodge form (i.e., a Kéhler
form with integer class). This yields a “simple” regularization process when X is projective.
We would like to mention that Demailly has produced over the last twenty years much finer
regularization results. We nevertheless think it is worth including a proof, since it is far less
technical than Demailly’s more general results (although our proof heavily relies on his ideas).
We thank P. Eyssidieux for his helpful contribution regarding that matter.

Theorem 8,1. Let L — X be a positive holomorphic line bundle equipped with a smooth
strictly positive metric h, and set w := © > 0.
Then for every ¢ € PSH (X, w), there exists a sequence ¢; € PSH(X, w) N C®(X) such

that ¢; decreases towards .

Proof. Lety € PSH(X,w). We can assume w.l.o.g. that ¢ < Oon X. Let ¢ = {fy :=
¢ + hy € PSH(U,)} denote the associated (singular) positive metric of L on X, where {U4,}
denotes an open over of X trivializing L (see Section 5).

Step 1. We consider the following Bergman spaces
Hjjo = {s er(x,L7)/ / |s|%e™2"1i0 dV,, < +oo} ,
b'e

where h; j, = (j — jo)¥ + Jjoh, jo a fixed large integer (to be specified later). Let al(j 'j°), ey

as(jj ) be an orthonormal basis of H j, and set
1 i 1
(j,Jo) |2 2
Y, = —log o) = — sup log|s|®,
JsJo 2] ; ' ) l 2] seBy o

where Bj j, denotes the unit ball of radius 1 centered at 0 in Hj j,. Clearly ¢ j, defines a
positive (singular) metric of L on X, equivalently ¢; j, 1= ¥ j, —h € PSH(X, w). If x € Uy
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and s = (s4} € H; j,, then |s¢|? is subharmonic in U, hence

2
|Sa(x)i2< _/ |Sa(x)|2 ZSUPB(xr)h]j()/ |s|2 —2hj, j, dv,

where r > 0 is so small that B(x, r) C U,. We infer

Cs—nlogr
;i) < (1= jo/j) sup «)+—J—g—. 8.1)

B(x,r)

There is also a reverse inequality which uses a deep extension result of Ohsawa-Takegoshi-
Manivel (see [14])': There exists jo € Nand C4 > 0 large enough so that Vx € X,V € N, there
exists s € I'(X, L7) with

f Is|%e 2000 dV,, < Cyls(x) [P0 ® .
X

Choose s so that the right-hand side is equal to 1, hence s € Bj, j,. Then

log C4

1
Vijo(x) = 2—j10g ls(0)|? = (1 )llf( )+ = h( ) —

©jjox) = (1 - ]J—o) o(x

since ¢ < 0 on X. It follows from (8.1) and (8.2) that ¢; — ¢ in LY(X).

We infer

log C4

px) - (8.2)

Step 2. We now show, following [16], that (¢;, j,); is almost subadditive. Let s € I'(X, Littiz)
with
f Is|?e~2Pi+iio dV,, < 1.
X

We may view s as the restriction to the diagonal A of X x X of asection § € I'(X x X, L{l ® Léz),
where L; = nLandx : XxX — X denotes the projection onto the i th factor,i = 1, 2. Consider
the Bergman spaces
Hjvhdo = {s elM(XxX,L{'®LY?)/
f ‘S|26—2hjl,jO/z(x)—Zhjz,jo/z(y) del (x)dVa,z(y) < +oo} ,
XxX

where w; = n*w. It follows from the thawa—Takegoshi-Manivel L%-extension theorem [16]
that there exists S € I'(X x X, L{‘ ® Léz) such that S|4 = s and

/ |S2e~iviv2 =2 02 dV,, dV,, < Cs / |s2e™2Rittizo dV,, < Cs
XxX X

where Cs only depends on the dimension n = dimgX. Observe that {o;: Ut do/D) (.
a,('j"’°/2) ()11, forms an orthonormal basis of Hj, j,. j,. thus

2 2
S(x’ y) — chl 120—1(111 JJo/ )(x)o,(JZ JJo/ )(y)
Lih
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with 3 jey, 1, |2 < Cs. It follows therefore from Cauchy-Schwarz inequality that
i1, J 2 2, Ji 2
s =10, )2 < Cs Y oM PP @)Y |2 0D )]
L L

which yields

log Cs J1 i
Pir+inje = $irjo/2 t TP jo/2 -

20i+j2) h+i it

Note, finally, that ¢ j,/2 < @;,j, since ¢ = ¢ —h < 0, therefore @; := ¢,; ; + 27772 1og Cs is
decreasing.

Step 3. It remains to make ¢; smooth. Indeed, it has all the other required properties: It is
decreasing and by Step 1 we have forall x € X,

" i Cg —nlogr
o(x) < §j(x) < (1— jo2 /) sup ¢+ —zj—g (8.3)
B(x,r)
sothat §; — g. Leto(y, ..., ok € T(X, L¥) be such that (o), is a basis of (X, L)
and set
N j log C
o @2 @hp2 s
9= 21+1 Og Z|Ul | te Z IUI | + 2j+2 -
l 1+Szj

Clearly ¢; € PSH(X, w). Moreover, ¢; € C*(X) because L? is very ample if j is large enough
(hence we can find, for every x € X, a holomorphic section of L? on X which does not vanish
at x). Finally, we can choose &; > 0 that decrease so fast to zero that (¢;) is still decreasing and
converges to . OJ

Corollary 8.2. Letw be a Kiihler form on aprojective algebraic manifold X. Then there exists
A > 1 such that for every ¢ € PSH(X, w), we can find 9; € PSH(X, Aw) N C®(X) which
decrease towards .

Proof. 1Llet¢ € PSH(X,w). Since X is projective, we can find a Hodge form «'. Then
C 1w < w < Ce&' for some constant C > 1. Since PSH(X, w) C PSH(X, Co"), it follows
from the previous theorem that we can find ¢; € PSH(X, Cw') NC*(X) that decrease towards
¢. Now the result follows from PSH (X, Cw’) C PSH(X, Aw) with A = Cc2. L]

Remark 8.3. When X is merely Kihler, the above result still holds but the proof is far more
intricate. We refer the reader to Demailly’s articles for a proof.
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