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Intrinsic Capacities on Compact K ihler 
Manifolds 

By Vincent  Gued j  and  A h m e d  Zer iahi  

ABSTRACT. We study fine properties o f  quasiplurisubharmonic functions on compact Kiihler manifolds. 
We define and study several intrinsic capacities which characterize pluripolar sets and show that locally 

pluripolar sets are globally " quasi-pluripolar." 

1. I n t r o d u c t i o n  

Since the fundamental work of Bedford and Taylor [4, 5], several authors have developed 
a "Pluripotential theory" in domains of C n (or of Stein manifolds). This theory is devoted to 
the fine study of plurisubharmonic (psh) functions and can be seen as a nonlinear generalization 
of the classical potential theory (in one complex variable), where subharmonic functions and 
the Laplace operator A are replaced by psh functions and the complex Monge-Amp~re operator 

i -- (ddC) n. Here d, d c denote the real differential operators d := 0 + 0, d c := ~ - [a  - a] so that 

i 0 ~ ,  the normalization being chosen so that the positive measure (dd c �89 log[1 + Ilz112]) n dd c = 

has total mass 1 in C n. We refer the reader to [3, 7, 26] for a survey of this local theory. 

Our aim here is to develop a global Pluripotential theory in the context of compact Kahler 
manifolds. It follows from the maximum principle that there are no psh functions (except con- 
stants) on a compact complex manifold X. However, there are usually plenty of positive closed 
currents of bidegree (1, 1) (we refer the reader to [ 15, Ch. 3], for basic facts on positive currents). 
Given co a real closed smooth form of bidegree (1, 1) on X, we may consider every positive closed 
current co' of bidegree (1, 1) on X which is cohomologous to 09. When X is K~ihler, it follows 
from the "ddC-lemma '' that co t can be written as co' = co + ddC~o, where q9 is a function which 
is integrable with respect to any smooth volume form on X. Such a function ~0 will be called 
w-plurisubharmonic (w-psh for short). It is globally defined on X and locally given as the sum 
of a psh and a smooth function. We let P S H ( X ,  co) denote the set of w-psh functions. Such 
functions were introduced by Demailly, who call them quasiplurisubharmonic (qpsh). These are 
the main objects of study in this article. 

There are several motivations to study qpsh functions on compact K~Jaler manifolds. First of 
all they arise naturally in complex analytic geometry as positive singular metrics of holomorphic 
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line bundles (see Section 5) whose study is central to several questions of complex algebraic geom- 
etry. Solving Monge-Amp~re equations associated to og-psh functions has been used to produce 
metrics with prescribed singularities (see [13]). It is also related to the existence of canonical 
metrics in K~ihler geometry (see [37]). Important contributions have been made by Kolodziej 
in this direction [28] using techniques from local Pluripotential theory. Quasiplurisubharmonic 
functions have also been used in [21 ] to define a notion of og-polynomial convexity and study the 
fine approximation of positive currents by rational divisors. Last but not least, such functions are 
of constant use in complex dynamics in several variables (see [17, 18, 22, 23, 33]). 

It seems to us appropriate to develop a theory of qpsh functions of its own rather than view 
these functions as particular cases of the local theory. Although, the two theories look quite 
similar, there are important differences which make the "compact theory" both simpler and more 
difficult than the local one. Here are some examples: 

�9 There is no pluriharmonic functions (except constants) on a compact manifold, hence 
each o9-psh function t# is canonically associated (up to normalization) to its curvature cur- 
rent o9~ := o9 +ddC~o >_ O. This yields compactness properties of subsets of P S H ( X ,  o9) 
(see Section 2) which are quite useful (e.g., in complex dynamics, see Section 7.2). 

�9 Integration by parts (of constant use in such theories) is quite simple in the compact 
setting since there is no boundary. As an illustration, we obtain transparent proofs of 
Chern-Levine-Nirenberg type inequalities (see Example 2.8 and Section 3). A successful 
application of this simple observation has been made in complex dynamics in [23]. 

�9 On the other hand, one loses homogeneity of Monge-Amp~re operators in the compact 
setting. They do have uniformly bounded mass (by Stokes theorem), but there is no 
performing "comparison principle," which is a key tool in the local theory. This is a 
source of difficulty when, for example, one wishes to solve Monge-Amp~re equations 
on compact manifolds (see [28, 24]). 

We shall develop our study in a series of articles. In the present one we define and study several 
intrinsic capacities which we shall use in our forthcoming articles. 

Let us now describe more precisely the contents of the article. 

In Section 2 we define o9-psh functions and gather useful facts about them (especially compacity 
results such as Proposition 2.7). For locally bounded og-psh functions tp we define the complex 
Monge-Amp~re operator o9~ in Section 3. We establish Chern-Levine-Nirenberg inequalities 
(Proposition 3.1) and study the "Monge-Amp~re capacity" Capc o (Definition 3.4). As in the local 
theory, o9-psh functions are quasicontinuous with respect to Cap, o (Corollary 3.8). The capacity 
CaPo ~ is comparable to the local Monge-Amp~re capacity of Bedford and Taylor (Proposition 3.10) 
and moreover, enjoys invariance properties (Proposition 3.5). In Section 4 we define a relative 
extremal function h~,~o and establish a useful formula (Theorem 4.2) 

Cap*(E) = fx ( - h*E'~ (w + ddCh*E'w)n o 

This is the global version of the fundamental local formula of Bedford-Taylor [5], Cap(E, to) = 
fn(ddCu*E) ". 

In Section 5 we study yet another capacity (the Alexander capacity T~o, Definition 5.7) which 
is defined by means of a (global) extremal function (Definition 5.1). When o9 is a Hodge form, 
it can be defined as well in terms of Tchebychev constants: These are the contents of Section 6 
(Theorem 6.2) where we further give a geometrical interpretation of T~o when X = C~ n is 
the complex projective space and 09 is the Fubini-Study Kahler form (Theorem 6.4), following 
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Alexander's work [1]. In Section 7 we show that locally pluripolar sets can be defined by og- 
psh functions when to is K~ihler: This is our version of a result of Josefson (Theorem 7.2). We 
then give an application in complex dynamics which illustrates how invariance properties of 
these capacities can be used. Finally, in an Appendix we show how to globally regularize og-psh 
functions, following ideas of Demailly. 

This article lies at the border of complex analysis and complex geometry. We have tried to 
make it accessible to mathematicians from both sides. This has of course some consequences 
for the style of presentation. We have included proofs of some results which may be seen as 
consequences of results from the local pluripotential theory. We have spent some efforts defining, 
regularizing and approximating positive singular metrics of holomorphic line bundles, although 
some of these facts may be considered as classical by complex geometers. Altogether we hope the 
article is essentially self contained. Our efforts will not be vain if for instance we have convinced 
specialists of the (local) pluripotential theory that the right point of view in studying the Lelong 
class/~(C n) of psh functions with logarithmic growth in C n is to consider qpsh functions on the 
complex projective space C~ n. We also think this article should be useful to people working in 
complex dynamics in several variables where pluripotential theory has become an important tool. 

Warning, In the whole article positivity (like e.g., in positive metric and positive current) has 
to be understood in the weak (french, i.e., nonnegativity) sense of currents, except when we talk 
of apositive line bundle L, in which case it means that L admits a smooth metric whose curvature 
is a K~le r  form. 

2. Quasiplurisubharmonic functions 

In the sequel, unless otherwise specified, LP-norms will always be computed with respect to 
a fixed volume form on X, which is a compact connected Kiihler manifold. Let o9 be a closed real 
current of bidegree (1, 1) on X. We say that a function ~0 is og-upper semi-continuous (og-u.s.c.) 
if~0 + ap is u.s.c, for any local potential ~ ofo9 = ddC~. 

Definition 2.1. Set 

PSH(X,  og) := {~0 e Ll(X, RU{-o~})/ddC~o > -o9 and ~0is og-u.s.c.} . 

The set PSH(X,  o9) is the set of "og-plurisubharmonic" functions. 

Observe that PSH(X,  o9) is nonempty if and only if there exists a positive closed current 
of bidegree (1, 1) on X which is cohomologous to o9. One then says that the cohomology 
class {o)} is pseudoeffective. In the sequel we always assume this property holds. The set 
PSH(X,  o9) (essentially) only depends on the cohomology class {o)} [see Proposition 2.3 (3)], 
and its size depends on positivity properties of {o)} (see Remark 2.5). We will usually choose a 
smooth representative o) of this cohomology class. Since og-psh functions are locally given as the 
difference of a psh function and a local potential of ~o, this will guaranty that og-psh functions are 
u.s.c, on X, hence globally bounded from above. We endow PSH(X,  o9) with the Ll-topology. 
Observe that P SH (X, o)) is a closed subspace of L I (x) .  

Example 2.2. The most fundamental example which may serve as a guideline to everything 
that follows is the case where X = C]? n is the complex projective space and o9 --- toES is the 
Fubini-Study K~ihler form. There is then a 1-to-1 correspondence between P SH (CP n, tOES) and 
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{ 1 } 
/~(C n) := ~ E P S H ( C  n) / ~(z)  <_ ~ log [1 + Izl 2] + cg, 

which is given by the natural mapping 

~p(x) - �89 log [1 + Ixl 2] if x e C n 
Z3(C n) E ~0(x) 

F--~yeC,~x ( a p ( y ) -  �89 + lY12]) if x ~ Hoo, 

where Hoo denotes the hyperplane at infinity. One can easily show that this mapping is bicontin- 
uous for the L~o c topology. 

The Lelong class/~(C n) of plurisubharmonic functions with logarithmic growth in C n has 
been intensively studied in the last 30 years. It seems to us that the properties of/Z(C n) are more 
easily seen when/Z(C n) is viewed as P S H ( C ~  n , 09FS). Furthermore, we shall see hereafter that 
the class P S H ( X ,  09) of w-psh functions enjoys several properties of Z~(C n) when co is K/ihler. 
We start by observing (Propositionx 2.3 (1) and 2.3 (2) below) that P S H ( X ,  09) and P S H ( X ,  J )  
are comparable if 09, 09' are both Kahler. 

Propos i t ion  2.3. 

(1) I[091 < o~ then P S H ( X ,  o91) C P S H ( X ,  o92). 

(2) VA E l~*+, P S H ( X ,  A09) = A . P S H ( X ,  w). 

(3) If09 t is cohomologous to09, 09t = 09 + ddCg, then 

P S H ( X ,  o)I) = P S H ( X ,  o9) + X .  

(4)/f~o, ~ E P S H ( X ,  o)) then 

~0+r 
max(cp, ~r) , 

2 
- - ,  log [e ~ + e r E P S H ( X ,  co). 

Proof.  Assertions (1), (2), (3) follow straightforwardly from the definition. Observe that 
Proposition 2.3 (4) says that P SH (X, 09) is a convex set which is stable under taking maximum and 
also under the operation (~0, ~)  ~ log [e ~ + e ~ ]. These are all consequences of the corresponding 
local properties of psh functions. We nevertheless give a proof, in the spirit of this article. That 
(~0 + ~p)/2 ~ P S H ( X ,  o9) follows by linearity. The latter assertion is a consequence of the 
following computation 

dd c log[e ~~ + e r ] = e ~~ ddC~o + e ~ ddC~ 
e ~o + e~" 

er162 d(~o - ~r) /x dC (~o - ~ ) 
+ 

[e~ + eO ]2 

using that d f / x  dCf > O. This computation makes sense if for instance ~0, ~p are smooth. The 
general case follows then by regularizing ~0, ~ (see Appendix). Finally, observe that max(~o, ~)  = 
lim j -1  log[eJ~O W e j~] E P S H ( X ,  o9). [] 

It follows from Proposition 2.3 (3) that P S H ( X ,  09) essentially depends on the cohomology 
class {o9}. In the same vein we have the following. 
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Proposition 2,4. Let  7~oj}(X) denote the set o f  positive closed currents co' o f  bidegree (1, 1) 
on X which are cohomologous to co. Then 

P S H ( X ,  co) ~_ T~o~I(X) �9 ~ . 

Proof .  The mapping 

: ~o E P S H ( X ,  co) ~-~ cor := co + ddC~o E 7{~o}(X) 

is a continuous affine mapping whose kernel consists of constants mappings: Indeed, co~ = cor 
implies that ~0 - ~ is pluriharrnonic hence constant by the maximum principle. Moreover, ep is 
surjective: If co r >_ 0 is cohomologous to co then co~ = co + ddC~o for some ~o ~ LI (X ,  ~ )  -this is 
the celebrated ddC-lemma on K~hler manifolds (see e.g., Lemma 8.6, Chapter VI in [15]). Thus, 
~0 coincides almost everywhere with a function of P S H ( X ,  co) and co' = ~(~o). [] 

R e m a r k  2.5. The size of P S H  (X, co) is therefore related to that of 7/o~} (X) hence only depends 
on the positivity of the cohomology class {co}. The more positive {co}, the bigger P S H ( X ,  co). 

When {co} is Kahler then P S H ( X ,  co) is large: If e.g., X is any C2-function on X then eX 
P S H ( X ,  co) for e > 0 small enough. We will see (Theorem 7.2) that P S H ( X ,  co) characterizes 
locally pluripolar sets when {09} is K/ihler. It follows from Proposition 2.3 that P S H ( X ,  co) and 
P S H ( X ,  col) have the same "size" if {co} and {col} are both K/ihler classes. 

Note, on the other hand, that P S H ( X ,  co) ~_ ]~ when co is cohomologous to [E], the current 
of integration along the exceptional divisor of a smooth blow up. Indeed, let zr : X ~ ~7 be a blow 
up with smooth center Y, codimc Y > 2 (see e.g., [15, Chapter 2] for the definition of blow-ups). 
Let E = zr -1 (Y) denote the exceptional divisor and co = [E] be the current of integration along 
E. If~o 6 P S H ( X ,  [E]) thenddC(~oozr -1) >_ 0in )~ \ Y. Since codimc Y > 2, ~00Y1-1 extends 
trivially through Y has a global psh function on X. By the maximum principle ~0 o zr-1 is constant 
hence so is ~0. Alternatively there is no positive closed current of bidegree (1, 1) on X which is 
cohomologous to [E] except [E] itself. 

It follows from previous proposition that any set of"normalized" co-psh functions is in 1-to-I 
correspondence with 7~o} (X) which is compact for the weak topology of currents. This is the 
key to several results to follow: Normalized co-psh functions form a compact family in L 1 (X). 

Proposition 2.6. Assume co is smooth. Let  ( ~o j ) E P S H ( X , w) I~ . 

(1) I f  (~Oj ) is uniformly bounded from above on X,  then either ~j converges uniformly to 
- o o  on X or the sequence (~oj ) is relatively compact in LI(x ) .  

(2) I f  ~oj ~ ~o in L I(X) ,  then ~o coincides almost everywhere with a unique function 
~o* ~ P S H ( X ,  co). Moreover, 

sup ~o* = lira sup ~oj. 
X j--+ +cxz X 

(3) In particular, i f  ~o j is decreasing, then either ~o j ~ - c ~  or ~o = lim ~oj ~ P S H (X, co). 
Similarly, i f  ~oj is increasing and uniformly bounded from above then ~o := (lim ~oj)* ~ P S H 
( X,  co), where .* denotes the upper-semi-continuous regularization. 

Proof .  This is a straightforward consequence of the analogous local result for sequences of 
psh functions. We refer the reader to [15, Ch. 1], for a proof. Note, that Proposition 2.6 (2) is a 
special case of a celebrated lemma attributed to Hartogs. [ ]  
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The next result is quite useful (see [39, 40] for a systematic use). 

Proposit ion 2.7. Assume oJ is smooth. The family 

.TO := {r E P S H ( X , w ) /  suptp = 0 }  
x 

is a compact subset o f  PSH(X ,  w). 

I f #  is a probability measure such that P S H ( X, w) C Ll(/.t) then 

. T v : = { ~ o ~ P S H ( X , w ) / f x ~ O d # = O  } 

is a relatively compact subset o f  P S H ( X , w ) .  In particular, there exists C u such that u 
PSH(X ,  w), 

- C  u + sups0 < J qgdlz < supcp. 
x .Ix x 

Proof. It follows straightforwardly from Proposition 2.6 (1) that .To is a relatively compact 
subset of  P S H ( X ,  09). Moreover, .To is closed by Hartogs lemma [Proposition 2.6 (2)]. 

Let (~oj) ~ .Tff. Then ~kj :=  ~0j - suPx ~oj E .T0 which is relatively compact. Assume 

first Iz is smooth. Then ( fx  #J dlz) is bounded: This is because if ~Pjk --+ ~P in LI(X) then 
~pjk/z ~ ~ #  in the weak sense of (negative) measures hence f x  CtAd# --+ f x  7tdlz > -oo .  
Now f x  ~tj dlz = f x  ~oj dtz - f x  suPx ~0j d/z = - suPx ~0j thus (supx 9 j )  is bounded and we 
can apply the previous proposition to conclude that (g j)  is relatively compact (it cannot converge 
uniformly to - o o  since f x  ~oj dlz = 0). 

When # is not smooth, it only remains to prove that ( fx  r dtz) is bounded. Assume on 
the contrary that f x  ~tj  dlz ~ -oo.  Extracting a subsequence if necessary we can assume 
f x  #J dlz < - 2  j . Set ~ = Y~j>__I 2 - J ~ J  �9 This is a decreasing sequence of w-psh func- 
tions, hence ~p ~ PSH(X ,  w) or ~ -- - o o .  Now it follows from the previous discussion that 
f x  ~kj dV  > - C  if dV  denotes some smooth probability measure on X. Thus, f x  ~k dV  > - o o  
hence 6" ~ PSH(X ,  09). We obtain a contradiction since by the Monotone convergence theorem, 

fx ~/ d# = Z j > I  2- j  f x  ~J d# = -oo.  [] 

Example  2.8. It was part of  our Definition 2.1 that w-psh functions are integrable with respect 
to a fixed volume form. Therefore PSH(X ,  w) C L 1 (/z) for every smooth probability measure 
/z on X. More generally, if # is a probability measure on X such that 

Iz = 0 + ddC(S) , (2.1) 

where O is smooth and S is a positive current of  bidimension (1, 1) on X, then PSH(X ,  w) C 
L l ( # )  for any smooth w. Indeed, let 9 in PSH(X ,  w), ~o < O. If~0 is smooth, it follows from 
Stokes theorem that 

0 < f x  (-~o) d#  = f x ( - ~ o ) O + f x ( - ~ o ) d d C S  

< ColkOllL~ +fxSA(-ddC~) 

< ColkollLl +fxS W < 
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where the last inequality follows from S > 0 and -ddC~o < w. The general case follows by 
regularizing ~0 (see Appendix). 

Probability measures satisfying (2.1) naturally arise in complex dynamics (see [23]). Observe 
also that Monge-Amp~re measures arising from the local theory of Bedford and Taylor [5] do 
satisfy (2.1): If  u is psh and locally bounded near e.g., the unit ball B of C n, we can extend it to 
C n as a global psh function with logarithmic growth considering 

u(z) if z E B 

U ( z ) : =  m a x ( u ( z ) , A l o g + l z l - s u p s l u l - 1 )  if  z 6 ( I + e ) B \ B  

A l o g + l z l - s u p B l u l - 1  if z 6 C n \ ( l + e ) B  

where log + Izl := max(log Izl, 0) and with A large enough. We assume A = 1 for simplicity. 
Now ~o := U - 1 log[1 + Izl 2] + C extends as a bounded function in PSH(C~ Dn, o9), where co is 
the Fubini-Study K ~ l e r  form on C ~  n, so ~0 > 0 if C > 0 is large enough. To conclude note that, 

n = (ddCu)n in B and setting o9~ := 09 + ddC~o > O, we get o9~ 

n- - I  

ogtpn = (.on %. ddC S, where S = ~o y ~  ogJ /x o g n - l - j  _> 0 . 

j=0 

n will be defined in the next section. The Monge-Amp~re operator o9~o 

Example  2.9. I f / z  is a probability measure on X -- C]? n and o) denotes as before the Fubini- 
Study K~ihler form, then 

~ o u ( x ) : = f c ~ l o g ( i  ' IxAyII  
/~-I ~ I-~-II) dl~(y) 

defines a w-psh function on CI? n. Such functions have been considered by Molzon, Shiffman, 
and Sibony [32, 31] in order to define capacities on C]? n. However, they do not characterize 
pluripolar sets when n > 2. 

3. Monge-Amp~re capacity 

In this section we introduce the global Monge-Amp~re capacity (see Definition 3.4). The 
definition only makes sense when the cohomology class {w} has strong positivity properties. To 
simplify our exposition we assume throughout this section that o9 is a K~ihler form. 

Let T be a positive closed current of  bidegree (p, p)  on X, 0 < p < n = d i m c  X. It can be 
thought of  as a closed differential form of bidegree (p, p)  with measure coefficients whose total 
variation is controlled by 

IITII := . L  T A o9 n-p 
/ 1  

o 

We refer the reader to [15, Ch. 3] for basic properties of  positive currents. Given ~o E P S H ( X ,  o)) 
we write ~o ~ L I ( T )  if ~o is integrable with respect to each (measure) coefficient of T. This is 
equivalent to ~0 being integrable with respect to the trace measure T A ogn-p. In this case, the 
current ~0T is well defined, hence so is 

o9~0 A T := o) A T + ddC(qgT) . 

This is again apositive closed current on X, of bidegree (p + 1, p + 1). Indeed, positivity is a 
local property which is stable under taking limits. One can locally regularize ~0 and approximate 
o9~ A T by the currents o9~ A T which are positive since o9,p~ are smooth positive forms. 
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When q) ~ P S H ( X ,  o9) N L~176 then ~o ~ L I (T )  for any positive closed current T of 

bidegree (p, p). One can thus inductively define o) j A T, 1 < j < n - p, for ~o e P S H ( X ,  co) O 
n It follows L~176 For T = 0 and j = n one obtains the complex Monge-Amp~re operator, O)~o. 

n is continuous under monotone sequences (see [5]). from the local theory that the operator ~o ~ o)e 
The proof of these continuity properties is simpler in our compact setting. We refer the reader 
to [24] where this is proved in a more general global context. 

Proposition 3.1 (Chern-Levine-Nirenberg inequalities). Let T be a positive closed current 
ofbidegree (p, p) on X andq) ~ P S H ( X ,  o9) n L ~ ( X ) .  

Then IIo)~ A TII = IITII. Moreover, i f  ~ ~ P S H ( X ,  o9) n LI (T) ,  then ~p ~ L I (T  A o)~) 
and 

II~Plltl(T^,o~) ___ II~llzl(T) + [2 sup~p + supq) - - i~f  q)] IlZll �9 
X X 

Proof. By Stokes theorem, f x ddC~~ A T A o) n-p-1 = 0, hence 

IIo)~ A TII := fxW~ A T A o)n-p-I = f x  T A o)n-P := IITII . 

Consider now ap ~ LI (T) .  Since T has measure coefficients, this simply means that ~p is 
integrable with respect to the total variation of these measures. Assume first ~ < 0, ~0 > 0 and 
~o, ~ are smooth. Then 

f x ( - ~ ) T  A w~o A O) n - p - 1  = II~PllLl(r~ + fx(-*)z A ddCq) A O) n-p-1 . [[~][LI(TA~o~) :~__-. 

NOW it follows from Stokes theorem that 

1 1 

fx T on-, 
where the next to last inequality follows from q)T A o) n-p > 0 and -dd%p <_ o9. This yields 

II~PllL~(r^,o~) -< Ii~PlILI(r) + sup~011TII. 
x 

The general case follows by regularizing ~0, ~ ,  observing that o)e = w~o, where q)f = q) _ infx q) > 
0, and decomposing ~ = ~ '  + supx ~ with ~t  = ~ _ suPx ~p < 0. [ ]  

R e m a r k  3.2. The fact that the L l_norm of ~p with respect to the probability measure T A o2~ A 
o) n-p-1 is controlled by its Ll -norm with respect to T A o) n-p is similar to the phenomenon 
already encountered in Example 2.8: One can write 

T Ao)e /kO) n - p - 1  = T Ao) n-p +ddCS, S = (q) - i.~f~0)T AO)  n - p - 1  > O. 

This type of  estimates is usually referred to as "Chern-Levine-Nirenberg inequalities," in reference 
to [8] where simpler -but fundamental- L~-est imates were established (with ~ = constant). 
Estimates involving the L 1.norm of  if/were first proved in the local context by Cegrell [6] and 
Demailly [12]. 

A straightforward induction yields the following. 
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Let  ~ ,  ~o E P S H ( X ,  o9) with 0 < ~o < 1. Then 

o<_ fx t 109  <_ fx laP109n + n [ 1  + 2sup@] f 09n. 
X dX 
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Following Bedford-Taylor [5] and Kolodziej [29] we introduce the following Monge-Amp~re 
capacity. 

Def in i t ion  3.4. Let K be a Borel subset of X. We set 

I l K  n } Cap~o(K) := sup 09<.o / ~0 ~ P S H ( X ,  09), 0 <_ ~0 <_ 1 . 

Note that this definition only makes sense when the cohomology class {09} is big, i.e., when 
{09}n > 0, and when it admits locally bounded potentials ~0. This implies, by a regularization 
result of Demailly [12], that {09} is big and neff In order to avoid technicalities, we are assuming 
throughout this section that {09} is K~ihler. 

Proposition 3.5. 

(1) I l K  c K ~ c X are Borel subsets then 

:= f 09n < Capoj(K) < Capo ' (K')  < Cap,o(X) = Volo~(X). Volvo(K) 
3K 

(2) l f K  j are Borel subsets o f X  thenCap~o(UK j)  < ~ Capw(Kj).  Moreover, Capoj(UKj) = 
limCapo,(Kj) i f K j  C Kj+I. 

(3) If091 < 092 then Captor(.) < Capm(.).  For all A > 1, Cap,o(.) < CaPao,(.) < 
A n Cap,o(.). In particular, if09, cot are two Kiihlerforms then there exists C > 1 such that 

1 
Cap,o(.) _< CaP,o,(.) _< C .  CaP,o(.). 

(4) I f  f : X ~ X is holomorphic then for all Borel subset K o f  X ,  

Capco(f(K))  _< Capf.~o(K) �9 

In particular, Capon(f (K))  = Cap~o(K) for  every 09-isometry f . 

Proof .  That Volvo(.) < Cap,o(.) is a straightforward consequence of the definition (since wo = 
09). It then follows from Stokes theorem that f x  o~ = f x  (-on for every ~o ~ P S H  (X, 09) M L~176 (X), 
thus Volvo(X) = Cap~o(X). 

Property (2) is a straightforward consequence of  the definitions. 

I fwl  < 092 then P S H ( X ,  o91) C P S H ( X ,  o92) hence Cap~ol(.) < Cap~( . ) .  Fix A > 1. If 
ap ~ P S H ( X ,  A09) is such that 0 < 7t < 1 then ~p/A ~ P S H ( X ,  w) with 0 < ~r/A < 1 /A  < 1. 
Moreover, (A09 + ddC~r) n = An(09 -F ddC(~t/A)) n. This shows CapaoJ(. ) < A n Capco(.). 

In particular, if 09, J are both K ~ l e r  then A-109 < 09 / < A09 for some constant A > 1, 
hence C -1 Capon(. ) < Capco,(. ) < C �9 Capon(.) with C = A n. 

It remains to prove (4). It follows from the change of variables formula that if ~0 
P S H ( X ,  o9) with 0 < ~0 < 1 then 

f, n < f o09,o = ( f ' 09  + ddC(~o o f ) ) n  < Capf,o~(K) (K) 09~0 -- 
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since~pof 6 P S H ( X ,  f ' 0 9 ) w i t h 0  < q~of < 1. Wein fe rCapw(f (K) )  < Capf .w(K) .  When f 
is a 09-isometry, i.e., f ~ Aut(X) with f ' 09  = w, then the mapping ~o w+ r o f is an isomorphism 
of  {u ~ P S H ( X ,  o9) / 0 < u < 1}, whence Cap~o(f(K)) = Capf.~o(K ) = Cap~o(K ). [ ]  

Let P S H -  (X, o9) denote the set of  negative 09-psh functions. A set is said to be P S H ( X ,  09)- 
polar if it is included in the - c ~  locus of  some function r E P S H ( X ,  w), r ~ - o 0 .  As we 
shall soon see, the sets of  zero Monge-Amp&e capacity are precisely the P S H (X, 09)-polar sets. 
We start by establishing the following: 

Proposition 3.6. I f  P is a P S H ( X ,  w)-polar set, then CapofiP ) = O. More precisely, f f  
r E P S H - ( X ,  o9) then 

1% ] 
Capoj(r < - t )  < t (_r + n Volvo(X) , Yt > O. 

Proof .  Fix ~0 ~ P S H ( X ,  09) such that 0 < ~0 < 1. Fix t > 0 and set Kt = {x E X / r  < 
- t } .  By Chebyshev's inequality, 

fK f~ l[fx ] 09~o < (_r -< t (-r + n Voloo(X) 
t 

where the last inequality follows from Corollary 3.3. Taking supremum over all ~0's yields the 
claim. [ ]  

* p Observe that the previous proposition says that CaP,o( ) = 0, where 

Cap*(E)  :=  inf{CaP~o(G ) / G  open with E C G},  

is the outer capacity associate to Cap~ o. 

Our aim is now to show that 09-psh functions are quasicontinuous with respect to Capo ~ 
(Corollary 3.8). We first need to show that decreasing sequences of  09-psh functions converge "in 
capacity." 

Proposition 3.7. 
each ~ > O, 

Let  r  Cj ~ P S H  (X, 09) M L ~176 (X) such that ( r  decreases to r  Then for 

Cap~o({r j > r + 8}) ---> O. 

Proof .  We can assume w.l.o.g, that Volvo(X) = 1 and 0 < Cj - r < 1. Fix 3 > 0 and 
~0 ~ P S H ( X ,  09), 0 < ~0 < 1. By Chebyshev inequality, it suffices to control f x ( r  - r 
uniformly in r It follows from Stokes theorem that 

fx ( r  - r = ( r  - r A 09~-1 - d ( r  - r  A dCq9 A 09~o �9 

Now by Cauchy-Schwartz inequality, 

dfjAd~gA <_ d f jmdCf jA09~o  - I  . d fAdC~oAw~o -1 , 

where we set f j  :=  Cj - r >_ 0. Moreover, 

fx A A 4 '  = ddc ) A 4 -1 < fx A 4 -1 < 1, 
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since ~0c@ -1 > 0, -ddCq9 < ~o and ~0 < 1. Similarly 

fx s n-l d f j A d C f j A o 9 ~ - l =  _ f j d d C f j A o 9 ~  l <  f j o o r  . 

Altogether this yields 

s - ~ ) o ~  
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f x  ( f x ) 1 / 2  n-1 _~_ (1/f j -- ~ )(.0~. A r -1 <- O h  - ~p)o>/x % 

(Ix )'" < ~ (~/j -- ~)(0) + r A 0)~ -1 , 

where the last inequality follows from the elementary inequalities 0 < a < ~ _< 1 and V~  + 

4~_< 4~+b. 
Going on replacing at each step a term w~0 by o) + w~, we end up with 

n ( f x )  1/2n 
(1/tj - -  1/t)O)~0 _< 2 (~/rj - -  r  Jr- 0 ) ~ )  n . 

The majorant being independent of  ~o and converging to 0 as j --~ + ~  (by dominated convergence 
theorem), this completes the proof. [ ]  

C o r o l l a r y  3.8 (Quasicontinuity). Let  q9 ~ P S H ( X ,  ~o). For each e > 0 there exists an open 
subset O e o f  X such that CaP ~o ( O e ) < e and ~o is continuous on X \ 0 ~ . 

Proof .  For t > 0 large enough, the set O1 = {~o < - t }  has capacity < e /2  by Proposi- 
tion 3.6. Working in X \ O1 we can thus replace ~0 by ~0t = max(cp, - t )  which is bounded on X. 
Regularizing ~0 (see Appendix), we can find a sequence apj of  smooth Aco-psh functions which 
decrease to ~ot on X, for some A > 1. By Proposition 3.7, the set Oj = {7% > ~ot + 1/j} has 

capacity < e2 - j - 1  if kj is large enough. Now 7zkj uniformly converges to r = ~0t on X \ Oe, 
Oe = Uj>_I O j,  SO ~0 is continuous on X \ Os and Cap~o(Os) < e. [ ]  

E x a m p l e  3.9. The capacity Cap,o(-) does not distinguish between "big sets." Assume indeed 
there exists an ample divisor D such that [D] --~ kw, k 6 N. Then there exists ~o 6 P S H ( X ,  o~) 
such that ddC~o = k - l [D]  - o). Note that q9 6 C~ \ D), e ~~ E C~ and {~p = -cx~} = 
D. Replacing ~o by ~o - suPx ~o if necessary, we may assume supx ~o = 0. Consider ~Oc = 
max(~o, - c )  E P S H ( X, w) N C~ Then qgc - ~o outside some neighborhood Vc = {q9 < - c }  
of D. Since 0 _< 1 + ~ol < 1 and ~o1+~ol = oJ~ = 0 in X \ V1, we get 

Capo/X)=fx(~Ol+~,)n=fv (o~l+~01)n -< Cap~o (VD,  
1 

hence Cap~o(V1) = CapofiX). 

As a concrete example take X = C~ n and 09 = ~OFS, D being some hyperplane H ~  "at 
infinity" (k = 1). Set ~o[z : t] = log It[ - 1 log[[lz[[2 + [t[2] where z denotes the Euclidean 
coordinates in C n = C]P n \ Hoo and H ~  = (t = 0). Observe that supcy. ~p = 0. One then 
computes 

Clan \v1  = [ z E C n / I z [  < e2x/~--l] . 

Thus, the capacity of  the complement of  any Euclidean ball of  radius smaller than 4~e  2 - 1 equals 
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The definition of Cap, o mimics the definition of the relative Monge-Amp~re capacity intro- 
duced by Bedford and Taylor in [5]. Fix/d = {Ha } a finite covering of X by strictly pseudoconvex 
open subsets of  X, Ha = {x ~ X / O~(x) < 0}, where 06 is a strictly psh smooth function de- 
fined in a neighborhood of ~-~. Fix 3 > 0 such that L/~ = {H i } is still a covering of X, where 
Lt~ = {x ~ X / • (x) < -3} .  For a Borel subset K of X, we set 

where 

CaPBT(K) := Z CapsT (K N/.g~, b/~) , 
c~ 

CaPeT(E, f2) := sup { f~  (ddcu)n / u 6 PSH(~2), O < u < l } 

is the capacity studied by Bedford and Taylor. The next proposition is due to Kolodziej [29]. We 
include a slightly different proof. 

Proposition 3.10. There exists C >_ 1 such that 

1 
Cap~(.) _< C a p s r ( . )  _< C .  Cap~( . ) .  

P r o o f  Let E be aBorel  subset of  X. Since Cap~o(E N/d ~) < CaPon(E) _< Y-~.a Capo~(E NL/~), 
it is sufficient to show that if f2 = {x ~ X / O(x) < 0} is a smooth hyperconvex subset of  X, then 
there exists C _> 1 such that for all E C f26, 

1 
Capw(E ) < C a p n r ( E ,  g2) < C �9 Cap,o(E) ,  

where ~2~ = {x ~ X / 0(x)  < -6} .  

It is an easy and well known fact in the local theory that the capacities Cap(., ~2) and 
Cap(., f2') are comparable when f2' c fl  (see e.g., Theorem 6.5 in [12]). Therefore we can 
assume (passing to a finer covering if necessary) that co = ddC~l, near f2. Fix C1 > 0 such 
t h a t - C 1  < ~P < C l O n  f2. Fix~o 6 PSH(X ,  09) such t ha t0  < ~0 < 1 o n X a n d s e t u  = 
(2C1)-1(~o + ~O + C1). Then u ~ PSH(~2) and 0 < u < 1, hence 

fe "--(2c,)"L (ddcu)n < (2c1)nCapsT(E'g2) 09go -- , 

which yields Cap,o(E) < (2C1) n C a p n r ( E ,  fl). Observe that we have not used here that 09 is 
Kahler. 

For the reverse inequality we consider X 6 C~176 such that X = 0 in X \ ~2 and X < 0 
in f~. Replacing X by eX if necessary, we can assume X e PSH(X ,  09). This is because 09 is 
K~thler (and this is the only place where we shall use this crucial assumption). Fix e > 0 so small 
that X < - e  on ~2a. Let now u 6 PSH(f2) be such that 0 < u < 1 on f2. Consider 

u-•-]-Cl in f28 
2+2C1 

[ u - ~ + C t  2 ) ~0(x) = max ~ 2~UCt , zX (x) + 1 in g2 \ f28 

1 in X \ ~  

Observe that 0 < u'  :=  (u - ~ + C1)/(2 + 2C1) < (1 + 2C1)/(2 + 2C1) < 1 in g2. Therefore 
~o ~ P S H ( X ,  209) since 2X(x) + 1 < - 1  < u'  in f2~, while 2X(X ) + 1 - 1 > u'  on 092. Note, 
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also that 0 < ~o < 1 thus for E C f2~, 

1 
(2 + 2C1)n fE  (ddcu)n 

)" - -  + ddC q9 < co + ddC ~o 
= 2 + 2C1 -- (!)n 
< Cap2~o/e(E) < Cap~o(E) 

hence CapBT(E, f2) < 4n(1 + c1)nE - n  Capo~(E ). [] 

Since locally pluripolar sets are precisely the sets of  zero relative capacity [5], we obtain the 
following: 

Corollary 3.11. Cap~o(P) = 0 r162 CapBT(P ) = 0 r Pis  locally plul~polar. 

We shall show later on that locally pluripolar sets are P S H ( X ,  w)-polar when o9 is K~ihler 
(see Theorem 7.2). 

The following two results are direct consequences of  the corresponding results of  Bedford 
and Taylor [4, 5]. 

Theorem 3.12 (Dirichlet Problem). Let  ~o ~ P S H ( X,  co) N L ~ (  X) .  Let  B be a small ball 
in X.  Then there exists ~ ~ P S H ( X ,  09) such that ~ = ~o in X \ B,  ~ > ~o and (wr n = 0 in B. 
Moreover, i f  ~ol <_ ~o2 then ~1 <_ ~2. 

Theorem 3.13 (Comparison principle). Let~o, ~ E P S H ( X ,  o)) fq L ~ ( X ) .  Then 

Many results in this section hold when w is merely a smooth semi-positive form such that 
{w} n > 0, as the following example shows. 

E x a m p l e  3.14. Let Jr : X --+ X be the blow up of X along a smooth center Y of  codimension 
> 2. Let (5 be a K~ihler form on ~7 and set 09 = :r*ff~. Then co is a smooth semi-positive form on 
X such that wle - O, where E denotes the exceptional divisor. Clearly 

PSH(X, 09) = ,r* PSH(2,  co), 

hence w-psh functions do not separate points of  E. However, the Monge-Amp&e capacity Capc o (-) 
is well-defined and enjoys all previous properties. 

4. The relative extremal function 

We assume in this section, as in Sections 3 and 7, that 09 is a K~ihler form. We now introduce 
a substitute for the relative extremal function which has revealed so useful in the local theory [5]: 
I f  E is a Borel subset of  X, we set 

hE,~o(X) := sup {~0(x)/~0 ~ P S H ( X , w ) ,  ~o <_ 0 a n d  ~OlE < --1} . 

We let h~,~o denote its upper-semi-continuous regularization, which we call the relative o)- 
plurisubharmonic extremal function of the subset E C X. It enjoys several natural properties; we 
list some of them below. The proofs follow from standard arguments together with Theorem 7.2: 
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The " * " * * = �9 functaonhE,ojlsw-psh. It satisfies--1 < hE,co < OonXandhE,co -1  o n E \ P ,  
where P is pluripolar. 

�9 If  E C X and P C X is pluripolar, then hE\ P *  =-- h*E. 

�9 If  (Ej) increases towards E C X, then h~j decreases towards h~. 

�9 If  (Kj) is a sequence of compact  subsets decreasing towards K, then h* increases Kj 
(a.e.) towards h,~. 

As in the local theory, the complex Monge-Amp~re of the relative extremal function of a 
subset E C X vanishes outside E,  except perhaps on the set {h~ = 0} which, in the local theory, 
lies in the boundary of  the domain. 

Proposition 4.1. Whentheopenset~2e :=  {x ~ X /h*E,co(x) < O} isnonempty, then 

(w~. )n = (o9 + ddCh*E co)n = 0 in f2e \-E . 

Proof. Assume that g2e := {h~,co < 0} is nonempty. It follows from Choquet 's  lemma that 
there exists an increasing sequence ~oj of  w-psh functions such that ~oj = - 1 on E, ~0j < 0 on 

X ,  * and h e co = (lim ~0j)*. Let a 6 f2E \ E and fix a small ball B C f2E centered at point a. Let 

~oj = (~oj) s denote the functions obtained by applying Theorem 3.12, so that (o9ffj)n = 0 in B. 
I f  B is chosen small enough, then ~ <  0 in B, hence ~) < 0 on X, while ~) = ~0j = - 1  on 
E.  This can be seen by showing that 0B ~ 0 as the radius of  the ball B shrinks to 0. Therefore 
lim ,7  ~') = h~,co, h e n c e  (o9h*g,w) n ~- 0 in a neighborhood of a,  which prove our claim. [ ]  

We now establish an important result which expresses the capacity in terms of the relative 
extremal function for any subset. It will show in particular that the set function Cap* is a capacity 
in the sense of  Choquet which is outer regular. For simplicity, we write hE for hE,co. 

T h e o r e m  4.2. Let E C X be any Borel subset, then 

Cap~(E)  = f x  ( -  h ~ ) c o ~ .  

The Monge-Amp~re capacity satisfies the following continuity properties: 

(1) I f  ( E j ) j >O is an increasing sequence o f  arbitrary subsets of  X and E : =  U j >o E j then 

Capco(E) = lim C a p * ( E j ) .  
j ~+oc  

(t) 

(2) I f  (Kj)j>_O is a decreasing sequence o f  compact subsets of  X and K : =  Nj>_oK j then 

Capco(K) = Cap*(K)  = lim Capco(Kj) .  
j~+oo  

In particular, Cap* (.) is an outer regular Choquet capacity on X. 

Proof. We first establish (t) when E = K C X is compact. Observe that in the definition of 
the capacity, it is enough to restrict ourselves to w-psh functions ~0 such that - 1  < ~0 < 0. Let 

n ~p be such a function. The pluripolar set N := {hr  < h~:} is of  measure 0 for the measure %o. 
Since - 1  < ~p, we have K C N U {h~ < ~p}, hence the comparison principle yields 

f n<L  n<L  n tp - -  <r o9tp - -  <~o} o 9 h ~  " 



Intrinsic Capacities on Compact Ktihler Manifolds 621 

This shows Capon(K) < fa~  w ~  since {h~ < ~0} C ilK. It follows from Proposition 4.1 that 

Cap(~ < f a  (O)~K)n = fK (Wh*x)"' 
K 

whence equality. 

Recall that K fq {h~ > -1}  C {hK < h~} is of measure 0 for w" h~ ' SO 

s163 s = - , 
* n  

Capo)(K) = (WhK) = ( _  , , n 

where the last equality follows from the fact that the equilibrium measure (Wh~)n is supported on 
K u {h~ = 0}. 

We assume now that E = G C X is an open subset. Let (Kj) be an exhaustive sequence 
of compact subsets of G which increases to G. Since h* Kj $ hG on X, it follows from classi- 

cal convergence results that (--h*rj)w~,Kt ~ t(--h*G j~wnha in the weak sense of measures on X, 

therefore 

fx j--++oc~lim = j---).+c~lim Capo~(Kj)=Capo~(G).  

This proves (t) when E C X is an open subset. 

Finally, let E C X be any subset. By definition of the outer capacity, there is a sequence 
of open subsets (Oj)j>l of X containing E such that Cap*(E) = l i m j ~ + ~  Cap(o(Oj). We can 
assume w.l.o.g, that the sequence (Oj)j>_l is decreasing. 

By a classical topological lemma of Choquet, there exists an increasing sequence (Uj)j>I 
negative w-psh functions on X s.t. uj = - 1  on E with uj "r h*e almost everywhere on X. We 
set for each j ~ N, Gj := Oj (q {uj < -1  -4- 1/j}. Then (G j) is a decreasing sequence of 
open subsets of X such that E C Gj C Oj and uj - 1/j <_ ha t <_ hE, so ha  t 1' h~ almost 

t -h* ~w n in the weak sense of measures on X, everywhere on X. We infer (-hcj)w~c t ~ ~ E, he 
t h u s  

~ ( - h * '  n = l i m  / t h* ~w n 
f 

E)O)h* e t - -  a t] hG t " j~+oo JX 

On the other hand, we have by construction * < " * Cap~o(E) _ hmj~+ooCaP~o(G j) 
l imj_ ,+~ Cap*(Oj) = Cap*(E). Therefore using (r for open subsets, we get 

f x  h*E)w~, e = Cap*(E) .  

< 

Observe that (1) follows straightforwardly from this formula. Indeed, if (E j) increases 
* ' h*  " c o  �9 ' "  towards E, then her decreases towards h~, hence (--h*Et)(tOh*ej) n --+ ~-- E)t hE/ , so that 

f x  * n f x  * n Cap*(E) = (--hE)Ogh, E = lim ( -- hej)(Wh*t ) = l imCap*(E j ) .  

It remains to prove (2). Let (K j) be a decreasing sequence of compact subsets of X which 
converges to K. We claim that h~t t h~ almost everywhere on X. Indeed, the extremal function 

h* increases almost everywhere to a oJ-psh function h such that h < h~: on X. We want to Kj 
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prove that h K < h on X. Let u ~ P S H ( X ,  w) such that u < 0 on X and UIK ~ --1. Fix e > 0 
and consider the open subset Ge := {u < - 1  + e}. Then K C G~, thus Kj  C Ge for j large 
enough. This yields u - e <_ hKj for j large enough, hence u < h on X. Therefore hK < h on 
X as claimed. 

Since (--hKj)O9~*Kj converges weakly to ( - h ~ ) o g ~  on X, we infer 

f x  * n = h* ~ogn Capw(K) = (--hK)ogh, K J--~+~176 f ( - -  Kj] h*Kj. = j---~+oclim Capw(Kj) . 

From this last property, taking a decreasing sequence (Kj ) j>o of compact subsets such that 
K = Aj>oK j and g j+ l  C K}  for any j 6 N we obtain Cap*(K) = limj~+or CaPoj(Kj) = 

CaP~o(K). [ ]  

5. Alexander capacity 

We now introduce another capacity which is defined by means of a global extremal function. 
It is closely related to the projective capacity introduced by Alexander in [1]. 

5.1. Global extremal functions 

Def in i t i on  5.1. Let K be a Borel subset of X. We set 

Vg,oj := sup {~O(X) / ~0 6 P S H ( X ,  09), ~0 < 0 on K} . 

This definition mimics the definition of the so-called "Siciak's extremal function" usually 
defined for Borel subset of X = C~ n that are bounded in C n = X \ Hoo, where H ~  denotes 
some hyperplane at infinity. This function was introduced and studied by Siciak in [35, 36] 
(see also [38]). One can indeed check that this definition coincides with the classical one if one 
chooses 09 = [Hoo] to be the current of integration along the hyperplane Hoo. Similarly one 
could consider the case where o9 = [D] is the current of integration along a positive divisor D on 
X and let D play the role of infinity. This approach has been used by some authors working in 
Arakelov geometry to define capacities on projective varieties (see [30, 9] and references therein). 
However, this forces them to consider only compact subsets of X \ D and leads to less intrinsic 
notions of capacities. 

In the sequel we assume that 09 is smooth (but not necessarily positive). 

Theorem 5.2. Let  K be a Borel subset o f  X.  

(1) K is P S H ( X,  o9)-polar i f f  suPx V*g,,o = +oo i f f  V~,,o - +ce .  

(2) I l K  is not P S H ( X ,  o9)-polar then V* * K,o~ ~ P S H ( X ,  o9) and satisfies V~,o~ = 0 in the 

interior o f  K,  (o9v;c, ) n = 0 in X \ K and 

(wV;,,o)n = f x  wn = Vol,o(X) . 

Proof .  Assume suPx Vt~,o ~ = +c~. By a lemma of Choquet (see Lemma 4.23 in [15, Ch. 1]), 
we can find an increasing sequence of functions ~oj ~ P S H ( X ,  o9) such that ~0j = 0 on K and 
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V~,o~ = ( l i m / z  ~oj)*. Extracting a subsequence if necessary, we can assume supx ~0j > 2 j .  Set 
~pj = ~oj - suPx ~0j. These functions belong to .To which is a compact subfamily of  P S H ( X ,  09) 
(Corollary 2.7). Recall that i f / z  is a smooth volume form on X then there exists Ciz such that 
f r d/~ > -Ciz  for all j .  Set ~k : =  Z j > I  2-J~ j"  Then ~p ~ P S H ( X ,  09) as a decreasing 

limit of  functions in P S H ( X ,  o9) with f x  !k d/z > - C u  > - o o .  Now for every x c K we get 

~,t(X) = --  E j > I  2 - j  supx qgj -~- --(X) hence K C {lp = - o e ] ,  i.e., K is P S H ( X ,  09)-polar. 

Conversely assume K is P S H ( X ,  09)-polar, K C {~P = - c ~ ]  for some ~ ~ P S H ( X ,  o9). 
Then for all c ~ ~,  ~ + c ~ P S H ( X,  w) and ap + c < 0 on K. Therefore VK,o~ > 7t + c, u ~ ~.  
This yields Vr,o~ = + o r  on X \ {~p = -o~}  hence V/~,o ~ *  -- + c ~  on X since {Tt = - c ~ }  has 
zero volume. We have thus shown the following circle of  implications: K is P S H ( X ,  o9) - 
polar ~ V* VK,o) K,o~ ------ + c ~  ~ supx ----- +cx~ ~ K is P S H ( X ,  o9) polar. 

Assume now that K is not P S H ( X ,  09)-polar. Then V* r,~o ~ P S H ( X ,  09)[see Proposi- 
tion 2.6 (2)] and clearly satisfies V~,o~ = 0 in the interior of  K. If  we show that (Wv;c.) n = 0 in 

X \ K then 

f~(O09v~,~o)n ~" fx(09V~,o~)n ~ fx09n , 

as follows from Stokes theorem. Let 9j  ~ P S H  (X, o9) be an increasing sequence such that qgj = 0 

on K and V/~,o ~ = ( l i m / z  ~oj)*. Fix B a small ball in X \ K. Let ~j  be the solution of the Dirichlet 
problem with boundary values ~0j. Then q~j ~ P S H ( X ,  w), q;j = ~oj in X \ B (in particular, 
~j = 0 on K hence q~j < VK,o~) and the sequence (q~j) is again increasing (Theorem 3.12). 
Since (094j)n = 0 in B and ( l i m / z  q;j) = V/~,o~ ' it follows from the continuity of  the complex 
Monge-Amp~re on increasing sequences that (Wv;~.) n = 0 in B. As B was an arbitrarily small 

ball in X \ K we i n fe r  ( 0 9 v ~ , o )  n = 0 in X \ K .  [ ]  

The following corollary has to be related to Proposition 2.7. 

C o r o l l a r y  5.3,  Let  K be a Borel subset o f  X and set 

5 K  := {~0 a P S H ( X ,  o9)/ sups0 = 0} .  
K 

Then .T K is relatively compact i f f  K is not P S H ( X,  09)-polar. 

Proof .  Observe that Vr,o~(X) = sup{~0(x) / ~0 ~ .TK ]. Thus, if .TK is relatively compact  then 
it is uniformly bounded from above, hence supx VK,o~ < +cxz, i.e., K is not P S H ( X ,  09)-polar. 

Assume conversely that K is not P S H ( X ,  09)-polar. Let (~oj) ~ .TK N. Then ~0j < VK,co < 
supx Vr,o~ < + c ~  hence (g j)  is uniformly bounded from above. It follows from Proposition 2.6 
that (~oj) is relatively compact. Indeed, it can not converge uniformly to - c ~  since suPK ~oj = 0 
(see Proposition 2.6). [ ]  

Proposition 5.4. Let  K be a Borel subset o f  X.  

(1) I l K  ~ C K then Vx,~o <_ VK,~o < VK,,oj and suPx Vx,~o = O. Furthermore Vx,~o -- 0 
when 09> O. 

(2) I f  wl <_ o92 then VK,Wl < VK,o~2. 

(3) For all A > O, VK,Ao~  = A . VK,o~. 
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(4) I f  w' = 09 + ddCx then 

- X  + inf )r + VK,oJ < VK,oy <_ VK,w + sup X - X �9 
X 

(5) I f  f : X --+ X is holomorphic then 

Vf(g),oj o f < VK,f*w. 

In particular, i f  f is a w-isometry then Vf(K),~o = VK,o~. 

P r o o f  That K w-~ VK,~o is decreasing follows straightforwardly from the definition. Observe 
that 0 6 P S H ( X ,  09) when w > 0, hence Vx,oJ - 0 in this case. When 09 is smooth (but 
not positive), considering V~,oj will be a useful way of constructing a positive closed current 
Wv~.~ ~ w with minimal singularities (see Section 6). 

Assertions (2), (3), (4) are simple consequences of Proposition 2.3. The last assertion results 
from the following observation: If ~o 6 P S H ( X ,  to) is such that tp < 0 on f ( K ) ,  then ~o o f 
belongs to P S H ( X ,  f ' w )  and satisfies ~0 o f _< 0 on K. [ ]  

Example  5.5. Assume X = CW, w is the Fubini-Study K ~ l e r  form and let BR denote the 
Euclidean ball centered at the origin and of radius R in C n C CIW. Then for x ~ C n, 

( ~_ 1 1 ) 
VBR,oJ(x) = max log + ~ log [1 + R 2] - + [ ~ log[1 Ixl12]; 0 . 

Indeed, set err := max( 1 log[1 + Ilxl12], ~0R), where ~0R = �89 log[1 + R 2] + log I1_~. Recall 

that the usual Siciak's extremal function of BR is log + I_~. Therefore �89 log[1 + Ilxll 2] ___ ~oR = 

lPR for Ilxll >_ R. On the other hand, if Ilxll < R then 1 + Ilxll 2 > (1 + g 2 ) l ~  hence 

1 log[1 + Ilxll 2] > ~oR in BR. 2 

Now let u ~ P S H ( C ~ ,  to) such that u < 0 in BR. Then v = u + 1 log[1 + I lxll 2] ~ Z:(cn). 
Sincev < �89 < 1 l og [ l+R2]+ log+  Ix-~RI = ~ R i n C n \ B R .  Moreover, 

v < �89 log[ l+l lx l l  2] = ~PR in BR hence v < lPR inCn. This shows VBR,~o = ~PR--�89 Iog[l+llX[I 2] 
on CW.  

Proposition 5.6. 
(1) I rE  is an open subset, then VE = V~. 

(2) Let E be a Borel subset and P a P S H ( X ,  co)-polar set. Then 

=_ 

(3) Let (E j) be an increasing sequence of  Borel subsets and set E = tAEj. Then V~,o~ = 
lim x~ V~j,~ i f  w is Kiihler. 

(4) Let Kj be a decreasing sequence of  compact subsets of  X and set K = AKj.  Then 

VKj,~o 7 VK,o~, hence V~j,~ o 7 V~,co a.e. 

(5) Fix E C X a nonpluripolar set. Then there exists Gj a decreasing sequence of  open 
subsets, E C G j, such that V~ = lim V3 j . 

P r o o f  We write here lie for VE,o~ since w is fixed and no confusion can arise. 
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Let E be an open subset of  X. Observe that VE < 0 on E,  hence V~ < 0 on E which is 
open. Therefore V~ < Ve, whence equality. This proves (1). 

Let w ~ PSH(X ,  o9), w < O, and fix P C {w = -or  Fix E a Borel subset of  X. Clearly 
VEup < VE hence V~u p < V~. Conversely let ~o e PSH(X,  o9) be such that ~o < 0 on E. Then 
Ve > 0, lpe := (1 - e)tp + ew ~ PSH(X,  09) satisfies ~e < 0 on E U P,  hence ~e < VEUP. 
Letting e ~ 0 we infer ~o < Veul, on X \ P ,  hence ~0 < V~u P on X. Thus, V~ < V~u p. 

Let Ej be an increasing sequence of subsets of  X and set E = I..Jj> 1 Ej. Let v :=  lim "~ V~i 

[the limit is decreasing by Proposition 5.4 (1)]. If  E is PSH(X,  og)-polar then so are all the E)s ,  

hence V~ -- +cx~ = lim V~j. So let us assume E is not PSH(X,  og)-polar. Then v ~ PSH(X ,  o9) 

since v > V~,co ~ - c ~  [see Proposition 2.6 (3)]. Observe that v = 0 on the set E \ N,  where 
N = Uj>I {VEj < V~j ].  The latter is called a negligible set. It follows from the local theory [5] 

together with Theorem 7.2 that N is PSH(X,  co)-polar. Therefore V~ < v < V~\ N = V~ by (2). 

Let Kj be a decreasing sequence of compact subsets and set K = Aj Kj.  Clearly lim /7' 
VKj < VK. Fix e > 0 and let tp E PSH(X,  o9) be such that ~o < 0 on K. Then {~0 < e} is 
an open set which contains all K~s, for j > je large enough. Thus, ~o - e < 0 on K j, hence 

~o - e < l i m / 7  Vxj. Taking the supremum over all such ~o's and letting e ~ 0 yields the reverse 
inequality VK < l i m / z  VK~. The conclusion on the convergence of the upper semi-continuous 
regularizations follows now from Proposition 2.6. 

It remains to prove (5). By Choquet 's  lemma, there exists an increasing sequence tpj 
PSH(X,  09) such that ~oj < 0 on E and V~ = (supj ~oj)*. Set a j  :=  {~0j < l / j} .  This defines a 
decreasing sequence of open subsets containing E. Observe that ~oj - 1/j < VG~ < VE, hence 
lim ~0j < lim VGj < VE. Therefore V~ = lim V* [ ]  - -  - -  Gj" 

5.2. Alexander capacity 

Definition 5. 7. Let K be a Borel subset of  X. We set 

T. (K)  := e x p ( -  sup V/~,o2). 
X 

This capacity characterizes again PSH(X,  o9)-polar sets: 

Proposition 5.8. Let P be a Bore1 subset. Then To~(P) = 0 i f f  P is PSH(X ,  o9)-polat:. 
Moreover, i f  ~o ~ PSH(X ,  o9) then 

T~o(~0 < - t )  < C~0 e x p ( - t ) ,  Vt ~ R ,  

where C~ = e x p ( -  supx ~o). 

Proof. The first assertion follows from Theorem 5.2. Let ~o e PSH(X,  o9), t ~ 1~ and set 
Kt = {~o < - t } .  Then ~0 + t < 0 on Kt hence ~o + t < V~t,o J. We infer suPx ~o + t < suPx V~,,o J 
which yields Tto(Kt) < e x p ( -  supx ~o) e x p ( - t ) .  [ ]  

The following proposition is an immediate consequence of  Proposition 5.4. It shows that 
capacities T~o, Toj are comparable if oJ, w' are both K/Jhler. Further they enjoy nice invariance 
properties. 
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Proposition 5.9. 

(1) ForMlBorelsubsets  K '  C K C X,  To,(K') < To,(K) < To,(X) = 1. 

(2)/f091 < o92 then To,l(.) > T~( . ) .  For all A > O, Tao,(.) = [To,(-)] a. In particular, if09 
and 09' are both Kiihler then there exists C >_ 1 such that 

[To,(.)] r < To,,(-) < [To,(.)] 1/c . 

(3) If09' = o9 + ddCx then 

1 
-~ T,o (. ) <_ To,,(.) < C . To,(.), 
(_, 

where C = exp(suPx X - infx X) > 1. 

(4) I f  f : X -+ X is a holomorphic map then Tf*w(.) < To, o f (.). In particular, i f  f is a 
w-isometry then To, o f = To,. 

R e m a r k  5.10. Following Zeriahi [40] one can prove that for all ot < 2 / v ( X ,  w) there exists 
Ca > 0 such that 

Vol o,(.) _< Ca To, (. ) a , 

where v ( X, w) = sup{v(~o, x)  / ~o ~ P S H ( X, w ), x e X} and v ( ~o, x)  denotes the Lelong number 
of ~ at point x. In particular, it follows from Proposition 5.8 that V~o e P S H ( X ,  09) with 
supx ~0 = 0, 

Vol o,(~0 < - t )  < Ca exp(-ott) ,  Yt 6 l~. 

Such inequalities are quite useful in complex dynamics [20, 22] and in the study of the complex 
Monge-Amp~re operator [28]. 

E x a m p l e  5.11. Assume X = C]~ n , (2) is the Fubini-Study K/ihler form and BR is the Euclidean 
ball centered at the origin and of radius R in a chart C n C C~ n. We have explicitly computed the 
extremal function in this case (Example 5.5). This yields 

R 
T o , ( B R )  = - -  

,l-f +R2 

Observe that To,(BR) "~ R as R ~ 0. This shows the optimality of the rate of decreasing in 
Proposition 5.8. 

The capacity To, in Example 5.11 has to be related to the capacity T•, which measures 
compact subsets ofthe unit ball •n of Cn. It is defined as follows: Given K a Borel subset of C n, 
TB,(K)  := e x p ( -  sup~, LK),  where 

LK(Z) = s u p { v ( z ) / v  ~/~(cn), supv < 0 / 
K 

is the Siciak's extremai function of K and/~(C n)  denotes the Lelong class of psh functions with 
logarithmic growth in C n (see Example 2.2). Let w = COFS denote the Fubini-Study Kahler form 
on C1 rn. One easily checks that 

1 
VK,O, - log ~"2 < LK -- ~ log [1 + [Z[ 2] < VK,w in C n . 

z - 
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We infer straightforwardly sup~n LK <_ log ~/2 + suPc~  VK,o, hence T~ (K) > 2-1/2To,(K). 
We also have a reverse inequality. Indeed, u ~ PSH(CF n, o9), supep~ ~o _< s u p ~  ~o + C1, 
where C1 = suPcp~ V~o ,  = log ~/2. Therefore 

which yields 

sup VK,o, <_ sup VK,o, + log ~/2 < sup LK + log 2, 
C~n ~n I~n 

1 
-~TO,(K) <_ T~,(K) <_ 2TO,(K). 

Example 5.12. Assume again X = C ~  n and w is the Fubini-Study Kiihler form. Consider the 
totally real subspace ~ n  of points with real coordinates (the closure of  I~ n C C n in Cli~n). Then 

1 
3(1 + x/~) < To,(NI?") < 1.  

Indeed, set Br~, :=  Nn N ~n. It follows from the discussion above that 

r ~ ( I I ~ )  > 1 
_ 

Now there is an explicit formula for L* (Lundin's formula, see [27]), BRn 

L*BR,(Z) = sup{ log  + Ih(< z ,~  >)1/11~11 = 1}, z ~ C n , 

where h ( ( )  = ( + v/ (  2 - 1. A simple computation yields Ih(()l  < log[Izl + ~/Izl 2 + 1] for 
=< ,  z, ~ > with I1~11 = 1. We infer 

L B R n ( z ) < l o g [ l z l + ~ ]  < 1 o g [ 1 + ~ / - 2 ]  in B n , 

which yields the desired inequality. 

Observe that the minorant is independent of  the dimension n. This has been used recently 
in complex dynamics by Dinh and Sibony [18], who also considered this capacity. 

Remark 5.13. It follows from Proposition 5.6 that To, is a generalized capacity in the sense of  
Choquet which is outer regular. 

6. Tchebychev c o n s t a n t s  

In this section we consider the case where {w} = Cl (L) is the first Chern class of  a holomor- 
phic line bundle L on X. 

Recall that a holomorphic line bundle L on X is a family of  complex lines {Lx }x~x together 
with a structure of  complex manifold of  dimension 1 + d ime  X such that the projection map 
Jr : L ~ X taking Lx on x is holomorphic. Moreover, one can always locally trivialize L: 
There exists an open covering {Ha } of  X and biholomorphisms apa : 7r- 1 (Ha) --+ Ha x C which 
take Lx = z r - l (x )  isomorphically onto {x} x C. The line bundle L is then uniquely (i.e., up to 
isomorphism) determined by its transition functions gas ~ O*(H~S), HaS := L/a N H s, where 

g a s  : =  ( |  o 
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Note that the gag's  satisfy the cocycle condition gag " gg• �9 gva = 1, hence define a class 
[{gag}] 6 H i ( x ,  O*). The first Chern class of  L is the image Cl(L) ~ H2(X, Z) of  [{gag}] 
under the mapping Cl : H 1 (X, O*) -+ H 2 (X, Z) induced by the exponential short exact sequence 
0 ~ Z ~ O ~ O * ~ 0 .  

We let F (X, L) denote the set of  holomorphic sections of  L on X: s 6 F (X, L) is a collection 
s = {sa } of  holomorphic functions sa on/-/a satisfying the compatibility condition sa = gagsg on 
b/a~. Similarly a (singular) metric 7t of  L on X is a collection ~p = { ~Pa } of  functions ~.ka 6 L 1 (/ga) 
satisfying ~Pa = ~g + log Iga~l in Ha#. The metric is said to be smooth if the ~p~s are C~-smooth  
functions. A smooth metric always exists. The metric ~p is said to be positive if the ~Pa's are psh 
functions. In particular, i fs  = {sa } is a holomorphic section of L on X, then ~ = {~Pa := log Isal} 
is a positive (singular) metric of  L on X. Note that we make here a slight abuse of terminology: 
Differential geometers usually call "metric '  the nonnegative (usually smooth and nonvanishing) 
quantities e - ~  = {e -r }. 

Given a (singular) metric ~p = {~/ta} of L on X, we consider its curvature |162 := ddC~ta in 
Ha. This yields a globally well-defined, real closed current on X since dd c log Iga~l = 0 in Ha~. 
It is a standard consequence of de Rham's  isomorphism that this current represents the image 
of the first Chern class of  L under the mapping i : H2(X,  Z) ~ H2(X, R) (induced by the 
inclusion i : Z --+ ~) .  The line bundle L is said to be pseudoeffective (resp. positive) if it admits 
a (singular) positive metric (resp. a smooth metric whose curvature is a Kahler form). 

Fix h = {ha} a smooth metric of  L on X and set w := Oh. Then P S H ( X ,  w) is in 1- 
to- 1 correspondence with the set of positive singular metrics of  L on X. Indeed, if ~p is such a 
metric then ~o := ~ - h is globally well defined on X and such that ddC~o > - w .  Conversely if 
~o ~ P S H ( X ,  09) then ~ = {@a := ~0 + ha} defines a positive singular metric of  L on X. We can 
thus rephrase the pseudoeffectivity property as follows: 

L is pseudoeffective ,', ',, P S H ( X ,  o9) # 0 .  

Given L a pseudoeffective line bundle, it is interesting to know whether L admits a positive 
metric which is less singular than any another. This notion has been introduced in [16] and 
happens to be related to very special extremal functions. 

Proposition 6.1. Let ( L, h) be a pseudoe~ective line bundle on X equipped with a smooth 
metric h. Set| :=  Oh. Then 

hmin :=  h + V~,~o 

is a positive singular metric of  L on X with "minimal singularities." More precisely, i f  ~ is a 
positive singular metric of  L on X, then there exists a constant C~ such that 7t < hmin + C~p. 

P r o o f  Let ~p be a positive singular metric of  L on X. Then ~p - h is a globally well defined 
w-psh function. It is u.s.c, hence bounded from above on X: We let Cr denotes its maximum. 
Then ~ - h - Cr _< 0 on X, hence lp - h < V~,co + C~, which yields ~ < hrnin + C~p. [ ]  

In the sequel we assume L is positive and h has been chosen so that w := Oh is a K~aler 
form. For s 6 F (X, L At), we let I ls I I Nh denote the norm of s computed with respect to the metric 
Nh: It is defined in b/a by I lslluh := ISa le -uh~ �9 The definition is independent of  ot thanks to the 
compatibility conditions. 

For a given Borel subset K of X, we define its Tchebychev constants 

MNo>(K) := inf { s u p l l s l t N h / s ~  F(X, LN), supllsllNh = 1 } .  
K X 
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Note that an obvious rescaling argument shows that Mdo~ remains unchanged if we replace h by 
h + C so that it really depends on o9 = Oh rather than on h. Consider 

T~o(K) :=  inf [MN~o(K)] l/N . 
N_>I 

Theorem 6.2. Let K be a compact subset of  X. Then 

To~(K) = T~(K).  

Proo f  The core of  the proof consists in showing that 

{1 } 
gg,o~(x) = sup ~ log [[SIINh(X)/N > 1, S E l '(X, L N) and sup IlsllNh <-- 1 . 

K 

Note that for any of  the sections s involved in the supremum, ~o :=  N -1 log llsllNh belongs to 
PSH(X,  w) and satisfies ~0 < 0 on K. Therefore ~0 < V/(,o,. 

Conversely, fix xo e X and a < VK,o~(xo). Fix q9 e PSH(X,  w) such that SupK ~o < 0 and 
~o(x0) > a. Regularizing ~o (see Appendix) and translating, we can assume ~o e PSH(X,  to) A 
C~176 supK ~o < 0 and ~0(x0) > a. Fix e > 0. Let B = B(xo, r) be a small ball on which 
~o > a. We choose B so small that the oscillation of  h is smaller than e on B. Let X be a test 
function with compact support in B and such that X - 1 in B(xo, r/2). We can assume w.l.o.g. 
that B C L/~ 0 for some ao but B A L/~ = 0 for all/~ ~ or0. This insures that X is a smooth section 
of  LN for all N > 1. 

Let 7/1 be a smooth positive metric of  L Nt ~ K~; on X (this is possible if N1 is chosen large 
enough since L is positive). Let 7/2 be a positive metric of  L N2 on X which is smooth in X \ {x0 } and 
with Lelong number u(7/2, x0) > n = dime X (this is again possible if N2 is large enough, since 
L is ample). Observe that OX is a smooth O-closed (0, 1)-form with values in L N (for all N > 1). 
Alternatively it is a smooth O-closed (n, 1)-form with values in L N | K~. Applying H6rmander's 

L2-estimates (see e.g., [15, Ch. VIII]) with weight 7/N :=  (N -- N1 - N2)(~o + h) + 7/1 + 7/2, 
we find a smooth section f of  L N such that O f  = 8X and 

f x  lfl2e-2(N-NI-N2)(~o+h)-2~,-2~2 dVo~ < Cl f x  l~XI2e-2~N dVoj . 

Note that 0X has support in B \ B(xo, r/2) where 7/N is smooth so that both integrals are finite. 
Since v(7/2, x0) >_ n, this forces f(xo) = 0. Thesecond integral is actually bounded from above 
by C2e -2N(a-e), where C2 is independent of  N, since -~0 < - a  on B and the oscillation of  h is 
smaller than e on B. Therefore s :=  X - f 6 F(X, L N) satisfies s(xo) = 1 and 

f x  lSl2e-2U(~~ < , d Vo~ C3e-2N(a-e) 

where C3 is independent of  N. Now ~0 < 0 in a neighborhood of  K, so the mean-value inequality 
applied to the subharmonic functions [sa 12 yields for all x in K, 

IsI2e-2Nh(x) < C8 ; [sl2(y)e-2N[~~176 d~.(y) 
JB (x,~) 

< C4 e-2N(a-e) 

if 3 is so small that I sups(x,8) ~01 > 0 is bigger than the oscillation o fh  on B(x, 3). Therefore S :=  
log C4 C;1/2eN(a-e)S E I ' (X,  L N) satisfies supK I[S[INh < 1 a n d N  -1 log IIStlNh(XO) > a--e  2N " 

Letting N ~ +c~,  e ~ 0 and a ~ VK,~o(xo) completes the proof of  the equality. 
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To conclude observe that by rescaling one gets 

- log TO,(K) ---- sup VK.O, 
X 

/' I suplog IISlIah / N > 1, S E l"(X, L N) and sup IlSllNh = 1 
= sup N x - K 

suplog ]ISIINh / N > 1, S ~ F(X,  L N) and sup [[SIINh = 1 
= sup - - ~  K -- X 

---- - log T ' ( K ) .  [] 

Project ive capacity.  We assume here that X = C ~  n is the complex projective space and o2 = 
eOFS is the Fubini-Study Kahler form. We give in this context a geometrical interpretation of 
the capacity To,. This will shed some light on the notion of projective capacity introduced by 
Alexander [1]. 

Let Jr : C n+l \ {0} --+ C ~  n denote the canonical project~n map. We let B n+l denote the 
unit ball in C n+l. Recall that the polynomially convex hull F of  a compact set F of  C n+l is 
defined as F := {x 6 C n+I / Ie (x) l  < suPF Iel ,  u 

The following result gives an interesting interpretation of the capacity To,. 

T h e o r e m  6 . 3 .  Let K be a compact subset of  CI? n. Then 

TO,(K) = sup{r  > 0 / r ] ~  n+l C Ko} ,  

where K0 = rr-1 (K)  M 0]~ n + l  . 

Proof. Let K, Ko be as in the theorem. Observe that Ko is a circled subset of  o ~ n + l :  I f  
z 6 K0 then ei~ E Ko, VO E [0, 2zr]. For such compacts, the polynomial hull Ko coincides with 
the "homogeneous polynomial hull," 

~00 h := {x ~ C "+1 / [P(x)l  _ sup IPI, u  homogeneous polynomial} . 
F 

Indeed, one inclusion K'o C ~go h is clear, so assume zo ~ Agoh. Let P = E d : 0  Pj be a 
polynomial of  degree d decomposed into its homogeneous components. Observe that Pj (x) = 

(2zr)_ 1 f27r p(eiOx)e_ijodo. Therefore sUPK 0 Iejl <- suPK 0 IPI since K0 is circled. Fix t 
]0, 1[. Then 

d 
1 

sup IPI �9 IP(tzo)l <_ ~_ tJ le j ( zo ) l  <_ T-s7 Ko j=0 
A 

We infer tzo ~ Ko. Letting t ~ 1-  and using that K0 is closed we get z0 ~ K0, whence 

Fix now z ~ C n+1 such that I lzll _< Zo~(K). Let P be a homogeneous polynomial of  degree 
d. Then 

IP(z)I=IIzlId P(I~Z[]) <TO,(K)d sup I P I .  
OBn+l 

(6.1) 
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Now set ~P(z) = d -1 log IP(z)I - log Ilzll and 9 = lp - supK ~.  Then ~0 E P S H ( X ,  o9) with 
suPK ~0 < 0 hence 9 < VK,o~. Therefore 

T~o(K) d < exp ( - d sup~p) -- supK~ [P[ 
- c~" " sup0~,+~ IPI 

Together with (6.1) this yields ]P(z)I < supg 0 [el hence z 6 K0 h = Ko. Thus, Ko contains the 
ball centered at the origin of radius To~(K). 

Conversely since T~o (K) = T~ (K) (Theorem 5.1), one can find homogeneous polynomiMs 
Pj of degree dj such that sup0~,+l Iejl-1/dJ �9 supg 0 [pjll/dj ~ Zo~(K). Assume rB n+l C Ko. 
Then 

r dj sup I e j l  = sup I PjI <- suplPj[  
0 ~  n+l  rB n+l KO 

yields r < To~(K). [] 

R e m a r k  6.4. Sibony and Wong [34] have been first in showing that if a compact subset K of  
CY n is large enough then the polynomial hull of K0 contains a full neighborhood of  the origin in 
C n+l. They used the (complicated) notion of  F-capacity. Their approach has been simplified by 
Alexander [1] who introduced a projective capacity which is comparable to To~ (see Theorem 4.4 
in [1]). The proof given above is essentially Alexander's (see also Theorem 4.3 in [36]). 

This result has been used recently in complex dynamics (see [17, 23]). 

Further capacities. In our definition of  Chebyshev constants we have normalized holomorphic 
sections s ~ F (X, LN) by requiring supx I lsllNh = 1. Given tz a probability measure such that 
P S H ( X ,  09) C LI(/x) and A ~ ~,  we could as well consider 

tza { fX } MN',o~(K) := supIIsIINh/S ~ F(X,  LN), logllsllNhdtz = a . 
K 

This normalization has the following pleasant property: I f s  ~ F(X, L N) and s f ~ F(X, L N') are 
so normalized then s �9 s f ~ F(X, L N+N') again satisfies f x  log llss'[ [(N+N')h d t z =  A. We infer 

M~q,+AN,,w < MN,c otz,a . M~;A, SO t h a t  

~z,A 1/N �9 M ~ A 1IN 
T~'A(K)  := inf [MN,~o(K) ] = hm [ N'o~(K)] . 

N_>I ~v---~-t-~ ' 

This yields a whole family of  capacities which are all comparable to To~ thanks to Proposition 2.7: 
There exists C = C(/z, A) _> 1 such that 

1 /z,A 
-~ Toj(.) < T~ (.) < CTo~(.). 

The projective capacity of Alexander [ 1 ] is precisely T~' a for X = C~ n, 09 = WFS, # = w n and 

A = fc~,o (log [z,,I - log II(z0 . . . . .  Zn)ll) o)n([z]) �9 

7. C o m p a r i s o n  o f  capacit ies  and  appl icat ions  

7.1. Josefson's  theorem 

In this section we assume that w is K~ihler and normalized by Volo,(X) = 1. We first 
prove inequalities relating To, and Cap~,. Then we prove (Theorem 7.2) a quantitative version 
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of Josefson's  theorem that every locally pluripolar set is actually P S H ( X ,  w)-polar. In the local 
theory this result is due to E1Mir [19]. We follow the approach of  Alexander-Taylor [2]. 

Proposition 7.1. There exists A > 0 s.t. for all compact subsets K of  X, 

[ 2 ] [  1 ] < T~o(K) < e . exp  - . 
exp Ca (K)  - - CaPo~(K)l/n 

P r o o f  S e t M K  = suPx VK,o~. I f M g  = + o o t h e n K i s P S H ( X , w ) - p o l a r ( T h e o r e m 5 . 2 ) a n d  
there is nothing to prove: T~o(K) = Capo,(K) = 0. So we assume in the sequel MK < +oo 
hence V~,o~ ~ P S H ( X ,  09). If  MK > 1 then UK : =  M~ 1V~,o~ ~ P S H ( X ,  o9) with 0 < ug < 1 
on X. Since 09vk,o " < MK09uK, we get 

1 _ l fK(09V;r _ 
M E M E 

whence T~o(K) < e x p ( -  Capo~(K)-l/n). 

If  0 5 MK < 1 then 0 < VI~,~ o < 1 hence VK,oJ -- 1 coincides with the relative extremal 
function hK,~o (see Proposition 3.14). We infer 

= fK (('OVK'w)n ~ Cap~ -< Cap~ = 1 1, 

while ToAK) <_% To~(X) = 1. Thus, in both cases ToAK) < e . exp(Capoj(K)-l/n). 

We now prove the reverse inequality. We can assume MK > 1, otherwise it is sufficient to 
adjust the value of  A. Let ~o ~ P S H ( X ,  09) be such that ~o < 0 on K.  Then 9 < MK on X, 
hence w : =  MKI(9 -- MK) ~ P S H ( X ,  o9) satisfies supx w _< 0 and w < - 1  on K.  We infer 

w _< h~;,o ~, hence 

V* - MK _ h* < 0 WK .- -  K,w < K,w -- �9 
MK 

Now supx(Vt~,c o - MK) = 0, so it follows from Proposition 2.7 that f x  IVg,o~ - MKI ogn <-- C1 
for some constant C1 > 0 independent of  K. We infer 

~ .  0 9  * Capon(K) ( hK'w ) < [__ , n 

1 f V* C2 
< Jx - (  K , w -  MK)(09h*K~o) n < - - ,  
- -  M K  ' - -  MK 

using Corollary 3.3 and the fact that h~,co = - 1 on K,  except perhaps on a pluripolar set which 

has zero (09h.r.o)n-measure. This yields the desired inequality. [ ]  

It follows from the previous proposition and Corollary 3.8 that w-psh functions are quasi- 
continuous with respect to the capacity To~. 

Theorem 7.2. Locally pluripolar sets are P S H ( X, w)-polar. 

P r o o f  More precisely, we are going to show the following: Consider ~2 an open subset 
of  X, v E P S H - ( f 2 ) a n d  P C {v = - o o } .  F i x 0  < e < 1In and Vt :=  VG,,~o where 
G1 = {x ~ f2 / v(x) < - t } .  Then 

1 f + ~  1 ~oe(x) :=  - [Vt(x) - sup Vt] dt 
e t l+e x 
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is a og-psh function such that P C {~oe = - ~ } .  

Indeed, since Gt is open, we have Vt 6 P S H ( X ,  09) and Vt = 0 on Gt (see Proposition 5.6). 
Observe that ~0~ is a sum of negative og-psh functions hence it is either identically -cx~ or a well 
defined Aog-psh function with A = 6 -1 f + ~  t -(t+s) dt = 1. Recall that - C  + supx Vt < 
f x  Vtogn < suPX Vt (Proposition 2.7). Therefore f x  ~ ~ >- - C  hence ~os ~ P S H ( X ,  09). 

Fix x 6 f2 such that v(x)  < - 1 .  Observe that Vt - sup x Vt < 0 with Vt(x) = 0 i fx  6 Gt,  

i.e., when tp(x)l > t. Therefore 

1 flv(x)l supx Vt 
~os(x) < - -  i - -  dt  . 

- -  6 ,11 t l+e 

Recall now that Capo ~ is always dominated by CaPB T hence CaP~o(Gt ) < C1/ t  < 1 if t is large 
enough. We infer from the previous proposition that 

- sup V t < - [ C a p w ( G t ) ]  -1/n  < - C 2  t l /n  , 
x 

which yields 

- C 2  flo(x)l dt 
qge(X) < ' t l+e_ l /n  < -C31v(x)l 1/n-e + C4 �9 

6 ,/1 

Note that ~0e (x) = - c ~  whenever v(x)  = -cx~ hence P C {~0e = -cx~}. [] 

7.2. Dynamical capacity estimates 

Let f : C]? n --> C~  n be an holomorphic endomorphism. We let o9 denote again the 
Fubini-Study K ~ l e r  form. Then f * w  is a smooth positive closed (1, 1)-form of mass L = 
fc~. f*o9 A ogn-1 =: The first algebraic degree o f f .  Thus, L - l  f*o9 = o9 + ddC~o, where q9 is a 
smooth og-psh function on C~  n. Iterating this functional equation yields 

j -1  1 
1 " * f l  -~-f(fJ) o9 = o9 + dd c gj ,  gj  = E -fl~o o . 

l=0 

We assume L _> 2. Thus, the sequence (g j )  uniformly converges on CF  n towards a continuous 
function g f  E P S H ( X ,  o9) called the Green function of f .  We refer the interested reader to [33] 
for a detailed study of  the properties of  the Green current T f  = o9 + ddCgf.  

Dynamical volume estimates have revealed quite useful in establishing ergodic properties of  
the Green current Tf  (see [20, 22] and references therein). We establish herebelow very simple 
dynamical capacity estimates and show how to derive from them dynamical volume estimates. 

Proposition 7.3. There exists 0 < ot < 1 such that for all Borel subsets K o f  X ,  for all j E N, 

[otroj(K)] zj < T~o( fJ (K) ) .  

Proof .  This follows straightforwardly from Proposition 5.9: 

To, ( f J (K) )  _> T(fj) , ,o(K) = [Tx-j(fj),o~(K)] z' > [aT~o(K)l zj , 

where the first two inequalities follow from Proposition 5.9 (4) and 5.9 (2) and last one follows 
from Proposition 5.9 (3) and the fact that L - J ( f J ) * w  : o9 q- ddCgj, where gj is uniformly 
bounded. [ ]  
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Coro l l a ry  7.4. 
Ll (C]l~n). 

l,~ncent Guedj and Ahmed Zeriahi 

Let ~o ~ P S H ( X , w ). Then the sequence ( )~- J ~o o f J ) is relatively compact in 

P r o o f  Set ~oj = ~.--J~o o f J .  Observe that ~0j is uniformly bounded from above and that 
~oj + gj E PSH(C]P n, oJ). It follows from Proposition 2.6 that either tpj converges uniformly 
towards - o o  or it is relatively compact in L 1 (CDn). It is sufficient to show that for A > 0 large 
enough, limj~+ooTo~(goj < - A )  < Toj(X) = 1. Observe that fJ(~oj < - A )  = {~o < -A~.J}. 
Therefore 

[ctTo~(~oj < - A ) ]  x' < T~o(~0 < - A ) J )  < C e x p ( -  A)~J), 

where the last inequality follows from Proposition 5.8. We infer 

1 
l imj~+~Tw(goj < - A )  < - e x p ( - A )  < 1 

o( 

for A > - log ct large enough. [] 

Corollary 7.5. There exists C > 0 such that for all Borel subset K o f  C~  n and for all j ~ N, 

( c .  
Volvo ( I J ( K ) )  > exp Volvo(K)] " 

In other words the volume of a given set can not decrease too fast under iteration. Such 
volume estimates are used in complex dynamics to prove fine convergence results towards the 
Green current Tf (see [20, 22]). One may hope that dynamical capacity estimates will allow to 
establish convergence results in higher codimension. 

P r o o f  By the change of variables formula one gets 

ff ilk lfx 209n Volco (fJ K) = co n > -- (fY)*J' = ---, IJFS(f:)I , 

' K - d/  d/  

where dt = ) :  denotes the topological degree of f and J r s ( f )  stands for the jacobian of f with 
respect to the Fubini-Study volume form. Observe that log I J r s ( f ) l  = u - v is a difference of 
two qpsh functions u, v e P S H ( X ,  Aw) for some A = A(~., f ) .  Moreover, by the chain rule, 

j-1 1 1 
),--7 log IJFs(fJ) [  = Z ~" log I J F s ( f ) o  f l  I . 

1=0 

Since ~-t log IJFs( f )  o f t  I is relatively compact in L l (C]I ~n) (previous corollary), the concavity 
of the log yields 

1 
Volvo(K) fK [JFs(fJ)[2~ ) > exp \ Vol~o(K ) -~- f l~ wn 

( cl J ) 
_> e x p - V o l ~ )  " 

The conclusion follows by observing that a exp(-x/ot)  >_ exp(-2x/ot) ,  for all ot > 0 and all 
x > 1/e. [ ]  



Intrinsic Capacities on Compact K?ihler Manifolds 635 

8. Appendix: Regularization of qpsh functions 

It is well-known that every psh function ~o can be locally regularized, i.e., one can find locally 
a sequence ~0j of smooth psh functions which decrease towards ~0 (see e.g., [15, Ch. 1]). Similarly 
one can always locally regularize to-psh functions. It is interesting to know whether one can also 
globally regularize og-psh functions. 

When X is a complex homogeneous manifold (i.e., when Aut(X) acts transitively on X), it is 
possible to approximate any og-psh function by a decreasing sequence of  smooth to-psh functions 
(see [21, 25]). In general however there is a loss of positivity: It will be possible to approximate 
~o ~ PSH(X,  to) by a decreasing sequence of smooth functions ~0j but the curvature forms ddC~oj 
will have to be more negative than -co. How negative depends on the positivity of the cohomology 
class {to}. 

Consider e.g., rr : X --+ 1?2 the blow up off? 2 at point p, E = zr-  1 (p) the exceptional divisor 
and let to = [E] be the current of integration along E. Then PSH(X,  to) "~ R (see Remark 2.5) 
so every psh function has logarithmic singularities along E, hence is not smooth. Alternatively 
E has self-intersection - 1 so its cohomology class cannot be represented by smooth nonnegative 
forms, not even by smooth forms with (very) small negativity. 

Following Demailly's fundamental work [10, 12, 16] (to cite a few) we show herebelow 
that regularization with no loss of positivity is possible when to is a Hodge form (i.e., a K~hler 
form with integer class). This yields a "simple" regularization process when X is projective. 
We would like to mention that Demailly has produced over the last twenty years much finer 
regularization results. We nevertheless think it is worth including a proof, since it is far less 
technical than Demailly's more general results (although our proof heavily relies on his ideas). 
We thank P. Eyssidieux for his helpful contribution regarding that matter. 

Theorem 8.1. Let L --~ X be a positive holomorphic line bundle equipped with a smooth 
strictly positive metric h, andsetto := Oh > 0. 

Then for every ~o ~ P S H ( X, co), there exists a sequence ~o j E P S H ( X, to) M C~176 such 
that ~oj decreases towards ~. 

Proof. Let ~p 6 PSH(X,  co). We can assume w.l.o.g, that ~0 < 0 on X. Let @ = {@c~ := 
~o + ha ~ PSH(U~)} denote the associated (singular) positive metric of L on X, where {L/u} 
denotes an open over of  X trivializing L (see Section 5). 

Step 1. We consider the following Bergman spaces 

7-[j,jo := {s E F(X, LJ) / f x  lsl2e-2hjd~ dVw < +oo ] , 

where hj,jo = (j  - jo)@ + joh, j0 a fixed large integer (to be specified later). Let o'~ j'j~ . . . . .  

~rs(/'j~ be an orthonormal basis of ~'~J,Jo and set 

1 = sup log Isl 2 , ~tj,jo := ~ log [Crl(J'J~ 1 
/ l = 1  ~ sEBj,Jo 

where Bj,jo denotes the unit ball of radius 1 centered at 0 in 7-[j,jo. Clearly r defines a 
positive (singular) metric of L on X, equivalently ~oj,jo := ~j,Jo - h ~ PSH(X ,  o9). I f x  6/ ' /a  



636 Vincent Guedj and Ahmed Zeriahi 

and s = {sa} ~ HJ,Jo, then Is~l z is subharmonic inL/~ hence 

fB C2 e2 sups(x:) fx  C1 [sa(x)[ 2 < hj'Jo [siZe -2hj'jO dVw Is~(x)12 < ~-~ (x,r) -- - ~  

where r > 0 is so small that B ( x ,  r) C b/a. We infer 

q~j,jo(X) < (1 -- Jo/J) sup r + 
B(x,r) 

C3 - n log r 
(8.1) 

since ~0 _< 0 on X. It follows from (8.1) and (8.2) that qgj ---+ q9 in LI(x). 

S t e p  2. We now show, following [16], that (~Oj,jo)j is almost subadditive. Let s 6 F(X, L jl+jz) 
with 

fx  lsl2 e-2hjl+J2,Jo < . d V~o 1 

We may view s as the restriction to the diagonal A of  X • X of  a section S E F (X x X, L~ 1 | L~ 2), 
th where Li = Jr* L and Jr : X x X --~ X denotes the projection onto the i factor, i = 1, 2. Consider 

the Bergman spaces 

:=  { S ~ F ( X • 1 7 4  2) ql[ Jl,J2,Jo / 

fXxx[Sl2e-2hjl'Jo/2(x)-2hj2'Jo/2(Y) dVo~l(x)dVo~(y) < + o o } ,  

where wi = rr*w. It follows from the Ohsawa-Takegoshi-Manivel L2-extension theorem [16] 

that there exists S ~ F(X • X, L{ 1 | L~ z) such that SIA = s and 

fx• ISiXe-XhJl'J~176 dV~ dV~ < Cs fx lSl2e-2hjl+Jz'J~ dV~~ < C5 ' 

where C5 only depends on the dimension n = d i m c X .  Observe that {cr//l'j~ 
o.//1 ,jo/2)(Y)}h ,12 forms an orthonormal basis of  ~jl,J2,Jo, thus 

S(x, y) = ~ Cll,12cr:l jl'j~ (x)cr:h,jo/2) (y) 
Ii ,12 

toj,jo(X)>(l ~ )~o(x ) logC4 logC4 . . . .  > ~0(x) (8.2) 
- 2 j  - 2 j  

There is also a reverse inequality which uses a deep extension result of  Ohsawa-Takegoshi- 
Manivel (see [14]): There exists j0 ~ N and C4 > 0 large enough so that Yx ~ X, u  ~ N, there 
exists s ~ F(X, L j) with 

fx lslae-Xhj,jo < . C4ls(x)12e-2h:jo (x) dVw 

Choose s so that the right-hand side is equal to 1, hence s ~ Bj,jo. Then 

apj,jo(X)> l_~_710g[s(x)12=(1 jO)~(x)W Jh(x)  logC4 
- z j  Jo 2j 

We infer 
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with Y~ ]Cll,12 ] 2 < C5. It follows therefore from Cauchy-Schwarz inequality that 

[s(x)l 2 IS(x, x)[ 2 < C5 E _(Jl,j0/2), ,12 ~ [_(J2,J0/2)- ,12 
= - -  O i l  tX)l z..., ~ tY)l , 

It t2 

which yields 

log C5 j l  j2 
q)Jl+Ji,jo ~ 2 ( j l  + j2) + ~ ( P j l , J o / 2  + - -  " " J1 J2 j l  + j2  ~Oj2'J~ " 
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Note, finally, that q)j,jo/2 <-- q)J,Jo since q) = @ - h < 0, therefore ffj := ~02J,j0 + 2 - J - 2  log C5 is 
decreasing. 

Step 3. It remains to make ffj smooth. Indeed, it has all the other required properties: It is 
decreasing and by Step 1 we have for all x ~ X, 

C6 - n log r 
~o(x) < (~j(x) < (1 - jo2 - j )  sup ~p + (8.3) 

- -  -- B(x,r) 2J ' 

�9 ,t7(2 j) so that ~j ~ ~0. Let tr(~s)2j, . �9 " uj ~ F(X,  L2J)besuchthat ( t r l  ( 2 J ) ) l i s a b a s i s ~  
i 

and set 

2J +11 [ ~  " ej  ,v, " ] logC5274_2 : =  log IC')l IC')I + h. ~oj 
[_l=l l=l +s2j 

Clearly q)j ~ P S H  (X, w). Moreover, ~oj ~ Coo (X) because L 2j is very ample if j is large enough 

(hence we can find, for every x ~ X, a holomorphic section of L 2j on X which does not vanish 
at x). Finally, we can choose ej  > 0 that decrease so fast to zero that (q)j) is still decreasing and 
converges to ~0. [ ]  

C o r o l l a r y  8.2, Let  o9 be a Kiihler form on a projective algebraic manifold X. Then there exists 
A > 1 such that for every ~o ~ P S H ( X ,  o9), we can find qgj E P S H ( X ,  Ate) N C~176 which 
decrease towards ~o. 

Proof .  Let ~o ~ P S H ( X ,  o9). Since X is projective, we can find a Hodge form o9'. Then 
C-lo9 ' < o9 <_ C J  for some constant C _> 1. Since P S H ( X ,  o9) C P S H ( X ,  C J ) ,  it follows 
from the previous theorem that we can find ~0i ~ P S H ( X ,  Cog') fl Coo(X) that decrease towards 
~o. Now the result follows from P S H ( X ,  Co)') C P S H ( X ,  Aog) with A = C 2. [ ]  

R e m a r k  8.3. When X is merely K~ihler, the above result still holds but the proof is far more 
intricate. We refer the reader to Demailly's articles for a proof. 
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