
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 22, Number 3, July 2009, Pages 607–639
S 0894-0347(09)00629-8
Article electronically published on February 6, 2009

SINGULAR KÄHLER-EINSTEIN METRICS

PHILIPPE EYSSIDIEUX, VINCENT GUEDJ, AND AHMED ZERIAHI

Introduction

Thirty years ago, in a celebrated article [Y], S. T. Yau (and independently T.
Aubin [A]) solved the Calabi conjecture by studying complex Monge-Ampère equa-
tions on a compact Kähler manifold.

Since then, complex Monge-Ampère equations have been extremely useful in
Kähler geometry (see for instance [DP]) and in the dynamical study of rational
mappings (see [S] and references therein).

Two major developments in the theory of complex Monge-Ampère equations
occurred in the last decade. In the local theory, a deeper analysis of the image of
the complex Monge-Ampère operator [Ce], [K1] has followed the pioneering work
of E. Bedford and B. A. Taylor [BT]. In the global theory a new proof of the
C0-estimate [K1], [K2] has allowed one to treat complex Monge-Ampère equations
with more degenerate R.H.S.

In [GZ1], [GZ2], two of us revisited and extended the results of [BT], [Ce] on
complex Monge-Ampère operators to compact Kähler manifolds. In the present
article, we use these methods to study complex Monge-Ampère equations with
degenerate L.H.S. We first define, in the spirit of [Ce], [GZ2], weak solutions to
degenerate complex Monge-Ampère equations and then prove, using ideas of [K1],
[K2], that these solutions are bounded:

Theorem A. Let X be a compact Kähler manifold, ω a semi-positive (1, 1)-form
such that

∫
X

ωn > 0 and 0 ≤ f ∈ Lp(X, ωn), p > 1, a density such that
∫

X
fωn =∫

X
ωn. Then there is a unique bounded function ϕ on X such that ω + ddcϕ ≥ 0

and
(ω + ddcϕ)n = fωn with sup

X
ϕ = −1.

Furthermore, ϕ is continuous provided there exists a decreasing sequence ϕj of
continuous ω-psh functions with limϕj = ϕ and f �→ ϕ is a continuous map from
Lp(X, ωn) to L∞(X).

When ω has algebraic singularities, then µ can be assumed to have Lp density
(p > 1) with respect to the Lebesgue measure.

When for every ω-psh ϕ there is a decreasing sequence of continuous ω-psh
functions converging to ϕ pointwise, we will say (X, [ω]) enjoys the continuous
approximation property. We believe it holds in great generality but the problem
turned out to be more subtle than expected; hence we leave this as an open problem
for further research.
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With this L∞-estimate, it is possible to adapt classical ideas of [Y] and [Ts] and
prove

Theorem B. Let X be projective algebraic complex manifold, ω a smooth semi-
positive closed (1, 1)-form that is positive outside a complex subvariety S ⊂ X. Let
Ω be a Kähler form on X. Assume furthermore that ωn = DΩn where D−ε is in
L1(Ωn) and that [ω], [Ω] ∈ NSR(X).

Let σ1, ..., σp (resp. τ1, ..., τq) be holomorphic sections of some line bundle (resp.
of some other line bundle). Assume k, l ∈ R≥0 and F ∈ C∞(X, R) are fixed so that∫

X

1
|τ1|2l + . . . + |τq|2l

Ωn < ∞ and
∫

X

|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn =

∫
X

ωn.

Then the unique bounded function ϕ such that ω + ddcϕ ≥ 0 and

(ω + ddcϕ)n =
|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn, with sup

X
ϕ = −1,

is smooth outside B = S ∪
⋂

i{σi = 0} ∪
⋂

i{τi = 0}.
This result should be compared with [Y], Theorem 8, p. 403. Yau’s result is

stronger in many respects, most notably in the absence of any projectivity/rational-
ity assumption and a more precise regularity theory. On the other hand, the con-
dition on the poles of the L.H.S. is less optimal than here. We expect the projec-
tivity/rationality assumptions to be superfluous.

Observe that the condition on the singularity in the L.H.S. is precisely the condi-
tion that the singular metric associated to l(τi) has a trivial multiplier ideal sheaf,
or if q = 1, that the pair (X, l(τ1)) is klt (see Definition 6.7). The possibility of
solving complex Monge-Ampère equations with Lp-R.H.S. was first established by
S. Kolodziej [K1], [K2], and the connection with the singularities of the Minimal
Model Program (MMP for short) has been a strong incentive to our work.

From an algebraic geometer’s perspective, these results may be viewed as a
version of [Y] for normal Kähler spaces.

As a by-product, S. T. Yau constructed Kähler-Einstein metrics on smooth
canonically polarized manifolds and Ricci-flat metrics on what is now known as
Calabi-Yau manifolds. It had been soon realized [Kö] that this also yields Kähler-
Einstein metrics on Kähler orbifolds, hence on the canonical models of surfaces of
general type, since they have isolated quotient singularities.

In higher dimension, in spite of the development of the MMP during the 1980s—
culminating with [Mo] and the proof of the existence of canonical models for general
type 3-folds [Ka]—there was no satisfying analog of these Kähler-Einstein metrics.

For smooth minimal general type projective manifolds, H. Tsuji proved [Ts] that
an appropriate Kähler-Ricci flow starting with an arbitrary Kähler datum exists in
infinite time, converges towards a current representing the canonical class which is
smooth outside the exceptional locus of the map to the canonical model, and defines
a Kähler-Einstein metric there1. The conjecture made there that the current has
continuous (or even bounded) local potentials partly motivated our work.

The article [Ts] has been revisited in the recent preprint [CN] and in [TZ] (we
learned of them when finishing the present work), where a very satisfactory proof of
convergence towards a current with bounded potentials is given. The independent

1Although his idea was rather compelling, the details of the proof for convergence were some-
what hard to follow.
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work [TZ] uses a slightly weaker version of Theorem A and does not give any detail
on the proof. These details have been indeed provided subsequently in [Zha]. On
the other hand, the three approaches tend to emphasize different aspects of the
problem and seem to complement each other nicely.

In this article we give a more general theory of singular Kähler-Einstein metrics
as a consequence of the following result:

Theorem C. Let (V, ∆) be a projective klt pair such that KV + ∆ is an ample
Q-divisor. Then there is a unique semi-Kähler current in [KV + ∆] with bounded
potentials, which satisfies a global degenerate Monge-Ampère equation on V and
defines a smooth Kähler-Einstein metric of negative curvature on (V − ∆)reg.

Let (V, ∆) be a projective klt pair such that KV + ∆ ∼= 0 (Q-linear equivalence
of Q-Cartier divisors). Then in every ample class in NSR(V ) there is a unique
semi-Kähler current with bounded potentials, which satisfies a global degenerate
Monge-Ampère equation on V and defines a Ricci flat metric on (V − ∆)reg.

The precise formulation and Monge-Ampère equations are to be found in Theo-
rems 7.5 and 7.8 below.

A large part of the MMP is now confirmed to work in higher dimension. Based
on ideas of [Sho], developped further on by [HMcK], the preprint [BCHM] has
achieved a full proof of the finite generation of the canonical ring for any projective
manifold. Using this, we obtain

Corollary D. Let X be a projective manifold of general type and let V = Xcan be
the unique model of X with only canonical singularities and KV ample. Then KV

contains a unique singular Kähler-Einstein metric ωKE of negative curvature.

Note that we do not assume that the singularities are quotient singularities nor
that X has a smooth minimal model (a strong restriction present in [Ts], [TZ],
[CN]). On the other hand if π : X → Xcan is a resolution of singularities, then
[π∗ωKE ] ∼= KX + F where F ≥ 0 and = 0 iff π is crepant and X is a smooth
minimal model.

The problem of constructing a singular Kähler-Einstein metric on a canonically
polarized projective variety with canonical singularities Xcan had already been con-
sidered in [Sg]2, with a different approach. Theorem 5.6 in [Sg] there and its proof
imply that given π : X → Xcan a log-resolution, there is a closed positive current
TKE in π∗KXcan

with zero Lelong numbers such that TKE is smooth on π−1(Xreg
can)

and defines a KE metric there. This construction agrees with ours, and our contri-
bution is that TKE has a bounded potential coming from Xcan.

One may also try to construct these singular KE metrics unconditionnally in
an approach to the finiteness of the canonical ring [Siu2]. Needless to say, it is a
substantially harder task.

Let us state yet another corollary:

Corollary E. Let X be a projective variety with only canonical singularities such
that KX ∼Q 0 and let A ∈ NSR(X) be an ample class. Then A contains a unique
singular Ricci-flat metric ωCY with bounded potentials.

The local potentials of ωCY are continuous provided (V, A) satisfies the continu-
ous approximation property.

2We apologize for having overlooked this reference in the first circulated version of this work.
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610 PHILIPPE EYSSIDIEUX, VINCENT GUEDJ, AND AHMED ZERIAHI

For the applications, the regularity theory of singular Kähler-Einstein metrics
still needs to be developped more thoroughly.

Notation and organization of the paper

In the entire paper, X will denote a compact Kähler manifold of dimension n,
ω a smooth closed form of bidegree (1, 1) which is non-negative and big, i.e. the
smooth measure ωn is not identical to zero. For convenience we normalize ω so
that

V olω(X) :=
∫

X

ωn = 1.

V will denote a normal complex space. A resolution of V will be a locally
projective bimeromorphic holomorphic morphism π : X → V , X being smooth,
such that π : π−1(V reg) → V reg is an isomorphism. A resolution π is a log-
resolution iff π−1(V sing) is a divisor with simple normal crossings. Assume we
have a coherent ideal sheaf I ⊂ OV . A log-resolution of (V, I) is a projective
bimeromorphic holomorphic morphism π : X → V , X being smooth, such that
π : π−1((V − Z(I))reg) → (V − Z(I))reg is an isomorphism with the additional
property that the ideal sheaf π−1I.OX

3 satisfies π−1I.OX = OX(−
∑

γEE) ⊂ OX

where γE ∈ N is a positive integer attached to an exceptional divisor E of π.
A pair is a pair (V, ∆) with V a normal complex space and ∆ a Q-Weil divisor

∆ =
∑

i diEi where 0 ≤ di ≤ 1 are rational numbers and (Ei)i is a finite family of
pairwise distinct irreducible codimension 1 subvarieties of V . A log-resolution of a
pair is a log-resolution of the ideal IN∆ where N is an integer such that Ndi ∈ N.4

All these flavors of log-resolutions exist by [Hi], [BM] if the variety (resp. pair)
under consideration is open in (resp. a restriction to an open subset of) a compact
variety (pair). The resolution can then be assumed to be a projective morphism.

The paper is organized as follows. In Section 1 we define, following [GZ2], the
set E1(X, ω) of ω-psh functions with finite self-energy and produce weak solutions
to complex Monge-Ampère equations (ω + ddcϕ)n = µ in the class E1(X, ω) (see
Proposition 1.4). This is our first basic observation: weak solutions are easy to
produce in E1(X, ω).

The continuity of the solutions is studied in Section 2 (see Theorem 2.1) by using
ideas from [K1], [K2], [K3] and [GZ1]. This, together with Propositions 3.1 and
3.3, yields Theorem A. We actually expect the solutions to be Hölder-continuous,
as Theorem 3.5 indicates. We indeed establish further regularity results in Section
3, especially Theorem 3.6, by using ideas of [Y], [Ts]. This yields Theorem B.

In Section 4 we solve Monge-Ampère equations of the type (ω + ddcϕ)n = etϕµ,
t > 0 (see Theorem 4.1 and Proposition 4.4) by a fixed point method. Here again
the use of class E1(X, ω) makes life easier and allows us to reduce our analysis to
previously studied Monge-Ampère equations (ω + ddcϕ)n = µ′.

3 π−1I.OX is locallly the ideal sheaf of OX generated by the family of holomorphic functions
(π∗fI)I , where (fI)I are local generators of I. The set Z(I) is the analytic subvariety defined by
I.

4The MMP is conjectured to work for Q-factorial dlt pairs provided V is projective algebraic.
This seemingly technical extension of the MMP is known as log-MMP. log-MMP works in di-
mension ≤ 3. The philosophy of the log-MMP is to define the canonical divisor of a pair to be
K(V,∆) := KV +∆ and to try to prove the same theorems for pairs and for varieties. See [BCHM]

for the strongest results in this direction.
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In Section 5 we recall some basic facts on some of the singularities encountered
in the MMP, and in Section 6 we explain what sort of measures µ we need to
consider in order to produce Kähler-Einstein metrics. An important observation is
Lemma 6.4, which shows that it is necessary to restrict to the case of log-terminal
singularities (see Definition 5.3).

In section 7 we show how our results from Sections 2, 3, 4 allow us to produce
singular Kähler-Einstein metrics (see Theorems 7.5, 7.8, 7.12). This is where we
prove Theorem C.

1. Weak solutions to Monge-Ampère equations

In this section ω will denote a smooth semi-positive closed (1, 1)-form which is
big, i.e. satisfies

∫
X

ωn > 0. For any Kähler form Ω on X and for all ε > 0, the
form ωε := ω + εΩ is again Kähler on X.

We are going to extend several results that are known to hold true when ω is
Kähler to the present more general setting.

Recall that the set of ω-plurisubharmonic functions (ω-psh for short) is

PSH(X, ω) := {ϕ ∈ L1(X, R ∪ {−∞}) / ddcϕ ≥ −ω and ϕ is u.s.c.}.

We refer the reader to [GZ1] for basic properties of ω-psh functions. The following
subclass has been extensively studied in [GZ2]:

Definition 1.1. We let E1(X, ω) denote the set of ω-psh functions with finite self-
energy: this is the set of functions ϕ ∈ PSH(X, ω) for which there exists a sequence
ϕj ∈ PSH(X, ω) ∩ L∞(X) such that

ϕj ↘ ϕ and sup
j

∫
X

(−ϕj)(ω + ddcϕj)n < +∞.

This class of functions is studied in [GZ2] when ω is a Kähler form. We leave it
to the reader to check that the basic properties of this class of functions proved in
[GZ2] when ω is Kähler apply with no modification to the present case. In particular
the complex Monge-Ampère operator (ω + ddcϕ)n is well-defined for ϕ ∈ E1(X, ω),
and it is continuous on decreasing sequences of functions in E1(X, ω).

We shall need a slightly more general continuity result, which takes into account
the dependence in ω:

Proposition 1.2. Fix Ω a Kähler form on X, and let (εj) be a sequence of positive
real numbers decreasing to zero. Let ϕj ∈ E1(X, ω+εjΩ) be a sequence of functions
which decrease pointwise towards ϕ and such that

sup
j≥1

∫
X

|ϕj |(ω + εjΩ + ddcϕj)n < +∞.

Then ϕ ∈ E1(X, ω), and (ω + εjΩ + ddcϕj)n → (ω + ddcϕ)n.

Proof. Set ωj := ω + εjΩ. We can assume w.l.o.g. that ϕ ≤ ϕj ≤ 0. Set

ϕK := max(ϕ,−K) ∈ PSH(X, ω) and ϕK
j := max(ϕj ,−K) ∈ PSH(X, ωj).

Observe that, K being fixed, (ϕK
j )j is uniformly bounded and decreases towards

ϕK as j goes to infinity. Therefore (ωj + ddcϕK
j )n → (ω + ddcϕK)n, by a classical
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result of E. Bedford and A. Taylor [BT]. Moreover the sequence of positive measures
(−ϕK

j )(ωj + ddcϕK
j )n has uniformly bounded mass, since by Lemma 2.3 in [GZ2],

0 ≤
∫

X

(−ϕK
j )(ωj + ddcϕK

j )n ≤ 2n

∫
X

(−ϕj)(ωj + ddcϕj)n ≤ 2nM,

where M := supj

∫
X

(−ϕj)(ωj + ddcϕj)n < +∞.
Since ϕj is u.s.c., a standard argument yields that any cluster point ν of the

sequence (−ϕK
j )(ωj +ddcϕK

j )n satisfies 0 ≤ (−ϕK)(ω+ddcϕK)n ≤ ν. In particular

0 ≤
∫

X

(−ϕK)(ω + ddcϕK)n ≤ lim inf
j→+∞

∫
(−ϕK

j )(ωj + ddcϕK
j )n ≤ 2nM

is bounded from above uniformly with respect to K. Since ϕK decreases towards
ϕ, this shows ϕ ∈ E1(X, ω).

It remains to show that (ωj + ddcϕj)n → (ω + ddcϕ)n. Since (ωj + ddcϕK
j )n →

(ω + ddcϕK)n for any fixed K, it is enough to get an upper bound on the mass of
(ωj + ddcϕK

j )n in (ϕj ≤ −K) which is uniform in j. This follows from Chebyshev
inequality, namely∫

(ϕj≤−K)

(ωj + ddcϕj)n ≤ 1
K

∫
X

(−ϕj)(ωj + ddcϕj)n ≤ M

K
.

This yields the desired result. �

The Monge-Ampère capacity Capω(·) has been studied in [GZ1],

Capω(K) := sup
{∫

K

ωn
u / u ∈ PSH(X, ω), 0 ≤ u ≤ 1

}
,

where K is a Borel subset of X. Here—and in the sequel—we use the notation
ωu := ω + ddcu ≥ 0. In this article we are interested in measures which are
dominated by the Monge-Ampère capacity in the following way:

Definition 1.3. A probability measure µ on X satisfies condition H(α, A, ω) if for
all Borel subset K of X,

µ(K) ≤ ACapω(K)1+α.

It has been shown by S. Kolodziej that when ω is Kähler, a probability measure
µ which satisfies H(α, A, ω) can be written as the Monge-Ampère measure of some
continuous ω-psh function. This is still true when ω is merely semi-positive and big,
and the proof will occupy us until the end of Section 2. We start by observing—
following [GZ2]—that µ is the Monge-Ampère of a function ϕ which is not too
singular.

Proposition 1.4. Let µ be a probability measure on X which satisfies condition
H(α, A, ω). Then there exists a unique function ϕ ∈ E1(X, ω) s.t.

µ = (ω + ddcϕ)n and sup
X

ϕ = −1.

Proof. Fix Ω a Kähler form on X, and set ωj := ω + εjΩ, where εj > 0 decreases
to 0. We start by showing that E1(X, ωj) ⊂ L1(µ).

Fix ϕ ∈ E1(X, ωj). We can assume without loss of generality that supX ϕ = −1.
It follows from Propositions 3.6 and 2.7 in [GZ1] that there exists a constant C =
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C(ω, Ω) > 0 independent of j such that Capωj
(ϕ < −t) ≤ C/t for all t > 0. Since

Capω(·) ≤ Capωj
(·), the measure µ satisfies H(α, A, ωj). We infer

(1) 0 ≤
∫

X

(−ϕ)dµ =
∫ +∞

t=1

µ(ϕ < −t)dt ≤ AC1+α

α
< +∞,

with an upper bound which is independent of j.
The main result in [GZ2] guarantees in this case that there exists a unique

function ϕj ∈ E1(X, ωj) such that

(ωj + ddcϕj)n = λjµ and sup
X

ϕj = −1,

where λj =
∫

X
(ω + εjΩ)n > 1 decreases to 1 as j goes to infinity.

The normalization supX ϕj = −1 implies that the sequence (ϕj) is relatively
compact in L1(X) (see Proposition 2.7 in [GZ1]). Let ϕ be a cluster point of (ϕj).
Relabelling if necessary, we assume ϕj → ϕ in L1(X). Note that ϕ ∈ PSH(X, ω)
and supX ϕ = −1 (by Hartogs’ lemma; see Proposition 2.7, [GZ1]). We are going
to show that ϕ ∈ E1(X, ω) and ωn

ϕ = µ.
Set Φj := (supl≥j ϕl)∗, where u∗ denotes the upper-semi-continuous regular-

ization of u. Then Φj ∈ PSH(X, ωj) with Φj ≥ ϕj , hence Φj ∈ E1(X, ωj) (see
Proposition 3.2 in [GZ2]), and Φj decreases towards ϕ. For l ≥ j, we have

(ωj + ddcϕl)n ≥ (ωl + ddcϕl)n = λlµ ≥ µ.

It follows therefore from an inequality due to J. -P. Demailly [Dem1] that

(ωj + ddcΦj)n ≥ µ.

Now by (1) and Lemma 2.3 in [GZ2],

0 ≤
∫

X

(−Φj)(ωj + ddcΦj)n ≤ 2n

∫
X

(−ϕj)(ωj + ddcϕj)n = 2nλj

∫
X

(−ϕj)dµ

is uniformly bounded with respect to j thanks to (1).
We infer from Proposition 1.2 that ϕ ∈ E1(X, ω) and (ωj + ddcΦj)n →

(ω+ddcϕ)n. Thus (ω+ddcϕ)n ≥ µ, but these are two probability measures, whence
µ = (ω + ddcϕ)n. The uniqueness of ϕ follows from Theorem 3.3 in [GZ2]. �

2. Continuous solutions

The goal of this section is to prove the following result:

Theorem 2.1. Let µ be a probability measure on X which satisfies condition
H(α, A, ω). Then there exists a unique bounded function ϕ ∈ PSH(X, ω) such
that

µ = (ω + ddcϕ)n and sup
X

ϕ = −1.

Moreover ||ϕ||L∞(X) ≤ C, where C only depends on α, A and ω.
Furthermore ϕ is continuous provided (X, [ω]) satisfies the continuous approxi-

mation property.

Definition 2.2. Let X be a compact Kähler manifold and ω a smooth semi-positive
closed (1, 1)-form. We say (X, [ω]) satisfies the continuous approximation property
if for every ω-psh bounded function ϕ there is a decreasing sequence of continuous
ω-psh functions such that lim ϕj = ϕ pointwise.
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It follows from Demailly’s regularisation theorem that if X is smooth and [ω]
Kähler, then (X, [ω]) satisfies the continuous approximation property; see [BK] for
a simple proof.

The authors believe the approximation property is satisfied if X is a resolution
of singularities of a normal projective variety with canonical singularities and [ω] ∈
NS(X) is the pull-back of an ample A class of V . If so, one says that (V, A) enjoys
the continuous approximation property.

It follows from Proposition 1.4 that we already know the existence of a unique
solution ϕ ∈ E1(X, ω) to this Monge-Ampère equation. We need to show it is
continuous. The following result is the key to everything to follow.

Lemma 2.3. Let ϕ, ψ ∈ E1(X, ω) be two negative functions. Then for all s > 0
and 0 ≤ t ≤ 1,

tnCapω(ϕ − ψ < −s − t) ≤
∫

(ϕ−ψ<−s−tψ)

ωn
ϕ.

Proof. Fix u ∈ PSH(X, ω) with 0 ≤ u ≤ 1. For δ > 0 we set t = δ/(1+δ). Observe
that 0 ≤ t ≤ 1 and

{ϕ − ψ < −s − t} ⊂
{

ϕ <
ψ + δu

1 + δ
− s − t

}
⊂ {ϕ − ψ < −s − tψ}.

Set ϕ̃ := (ψ + δu)/(1 + δ) − s − t ∈ PSH(X, ω). Observe that

tn
∫

(ϕ−ψ<−s−t)

ωn
u ≤

∫
(ϕ−ψ<−s−t)

[
1

1 + δ
ωψ +

δ

1 + δ
ωu

]n

≤
∫

(ϕ<ϕ̃)

[ω + ddcϕ̃]n.

It follows from the comparison principle in class E1(X, ω) that∫
(ϕ<ϕ̃)

[ω + ddcϕ̃]n ≤
∫

(ϕ<ϕ̃)

[ω + ddcϕ]n ≤
∫

(ϕ−ψ<−s−tψ)

[ω + ddcϕ]n.

Taking the supremum over all u’s yields the desired result. �

We will also need the following elementary observation:

Lemma 2.4. Let f : R+ → R+ be a decreasing right-continuous function such that
lim+∞ f = 0. Assume there exists α, B > 0 such that f satisfies

(H(α, B)) tf(s + t) ≤ B[f(s)]1+α, ∀s > 0, ∀0 ≤ t ≤ 1.

Then there exists S∞ = S∞(α, B) ∈ R+ such that f(s) = 0 for all s ≥ S∞.

Proof. Fix s0 > 0 large enough so that f(s0)α < 1/2B. We define a sequence
(sj) ∈ RN

+ by induction in the following way. If f(s0) = 0, we stop here; otherwise
we set

s1 := sup
{

s > s0 / f(s) >
1
2
f(s0)

}
.

Observe that s1 ≤ 1 + s0 thanks to (H(α, B)) and by definition of s0.
Since f is right-continuous, we get f(s1) ≤ f(s0)/2. If f(s1) = 0, we stop here;

otherwise we go on by induction, setting

sj+1 := sup
{

s > sj / f(s) >
1
2
f(sj)

}
.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SINGULAR KÄHLER-EINSTEIN METRICS 615

At each step f(sj+1) ≤ f(sj)/2 and sj+1 ≤ 1 + sj . However the sequence (sj) does
not grow too fast. It follows indeed from (H(α, B)) that if s ∈]sj , sj+1[,

(s − sj)f(s) ≤ Bf(sj)1+α ≤ 2Bf(s)f(sj)α,

since f(sj)/2 ≤ f(s) ≤ f(sj) on the interval [sj , sj+1]. We infer

sj+1 − sj ≤ 2Bf(sj)α ≤ 2B2−jαf(s0)α ≤ 2−jα.

Thus the sequence (sj) is bounded from above, with limit

S∞ = s0 +
∑
j≥0

(sj+1 − sj) ≤ s0 +
2Bf(s0)α

1 − 2−α
≤ s0 +

1
1 − 2−α

.

�

Remarks 2.5. Observe that the starting time s0(f, α, B) is invariant under dilatation
f �→ λf , which transforms B into B/λα. Note also that if f(0)α < 1/2B, then we
can take s0 = 0; hence we get in this case

S∞ ≤ 2B

1 − 2−α
[f(0)]α.

To see how previous lemmas can be used, we first prove that the unique solution
ϕ ∈ E1(X, ω) given by Proposition 1.4 is bounded.

A uniform bound on the solution. Let ϕ ∈ E1(X, ω) be the unique function such
that µ = (ω + ddcϕ)n and supX ϕ = −1. Set

f(s) := [Capω(ϕ < −s)]1/n.

Observe that f : R+ → R+ is a right-continuous decreasing function with lim+∞ f =
0. Since µ = ωn

ϕ satisfies H(α, A, ω), it follows from Lemma 2.2 applied to the func-
tion ψ ≡ 0 that f satisfies (H(α, B)) with B = A1/n.

It follows from Propositions 2.7 and 3.6 in [GZ1] that f(s) ≤ C1/s1/n for some
constant C1 which only depends on ω. We can thus take a starting time s0 =
2n/αCn

1 A1/α (see the proof of Lemma 2.3) and get f(s) = 0 for s ≥ S∞ := s0 +
(1 − 2−α)−1: this shows that the sets (ϕ < −s) are empty if s ≥ S∞; hence

(2) ||ϕ||L∞(X) ≤ 2n/αCn
1 A1/α +

1
1 − 2−α

.

We are now going to use a refinement of the previous reasoning in order to show
that ϕ is actually continuous if the continuous approximation property holds.

Proposition 2.6. Let ϕ, ψ ∈ E1(X, ω) be two functions such that supX ϕ =
supX ψ = −1 and fix ε > 0. Assume ωn

ϕ = µ satisfies H(α, A, ω) and ψ is bounded.
There exists C = C(α, A, ω, ||ψ||L∞(X)) > 0 such that

sup
X

(ψ − ϕ) ≤ ε + C [Capω(ϕ − ψ < −ε)]α/n
.

This inequality can be interpreted as follows. Assume ψ is also a solution to a
Monge-Ampère equation ωn

ψ = µ′, where µ′ also satisfies H(α, A, ω). Then we can
interchange the roles of ϕ and ψ and get an upper bound on ||ϕ − ψ||L∞(X). The
proposition then tells us that if ϕ and ψ are close in capacity, they are close in
L∞-norm.
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Proof. Set M := ||ψ||L∞(X). Observe that when t ≥ 0, (ϕ − ψ < −s − tψ) ⊂
(ϕ− ψ < −s + tM); hence it follows from Lemma 2.3 that for all s > 0, 0 ≤ t ≤ 1,

(3) tnCapω(ϕ − ψ < −s − t) ≤ (1 + M)n

∫
(ϕ−ψ<−s)

ωn
ϕ,

using the obvious substitutions s �→ s − Mt, t �→ (1 + M)t. Since µ = ωn
ϕ satisfies

H(α, A, ω), we infer

tnCapω(ϕ − ψ < −s − t) ≤ A(1 + M)nCapω(ϕ − ψ < −s)1+α.

Consider
f(s) := [Capω(ϕ − ψ < −s − ε)]1/n

, s > 0.

Then f satisfies the condition (H(α, B)) of Lemma 2.3 with B = (1 + M)A1/n.
Assume f(0) = [Capω(ϕ − ψ < −ε)]1/n < 1

(2B)1/α . It follows in this case from
Remarks 2.5 that f(s) = 0 for s ≥ S∞, where

S∞ ≤ 2B

1 − 2−α
[Capω(ϕ − ψ < −ε)]α/n .

Therefore the sets {ϕ − ψ < −s − ε} are empty for s > S∞; hence

sup
X

(ψ − ϕ) ≤ ε + S∞ ≤ ε +
2(1 + M)A1/n

1 − 2−α
[Capω(ϕ − ψ < −ε)]α/n

.

Thus we can take here C ≥ 2B/(1 − 2−α).
If f(0) = [Capω(ϕ − ψ < −ε)]1/n ≥ (2B)−1/α, then

sup
X

(ψ − ϕ) ≤ − inf
X

ϕ ≤ C2(α, A, ω),

by (2); hence it suffices to take C ≥ 2BC2 to conclude. �

Proof of Theorem 2.1. Let ϕ ∈ E1(X, ω) be the unique solution to the normalized
Monge-Ampère equation µ = (ω + ddcϕ)n, supX ϕ = −1 (see Proposition 1.4). It
follows from (2) that ϕ is bounded.

If (X, [ω]) enjoys the continuous approximation property, let ϕj be a decreasing
sequence of ω-psh functions decreasing pointwise to ϕ. Since supX ϕ = −1, we can
assume ϕj ≤ 0. Since ϕ is bounded and ϕj ≥ ϕ, the functions ϕj are uniformly
bounded on X.

Observe that ϕj converges towards ϕ in capacity (see Proposition 3.7 in [GZ1]);
hence lim Capω(ϕ − ϕj < −ε) = 0, for all ε > 0. It follows therefore from Proposi-
tion 2.6 (applied with ψ = ϕj) that for all ε > 0,

lim
j→+∞

||ϕ − ϕj ||L∞(X) = lim
j→+∞

sup
X

(ϕj − ϕ) ≤ ε.

Thus (ϕj) converges uniformly towards ϕ; hence ϕ is continuous. �

3. More regularity

3.1. Measures with density. We now turn to the study of the complex Monge-
Ampère equation

(ω + ddcϕ)n = µ,

when µ = fωn is a measure with density 0 ≤ f ∈ Lp(ωn), p > 1.
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Proposition 3.1. Assume µ = fωn is a probability measure with density 0 ≤ f ∈
Lp(X), for some p > 1. Then for any α > 0, there exists Aα > 0 such that µ
satisfies H(α, Aα, ω).

Proof. It is enough to establish H(α, Aα, ω) for compact subsets, by regularity of
µ and Capω. Let K be a compact subset of X. It follows from Hölder’s inequality
that

0 ≤ µ(K) ≤ ||f ||Lp(ωn) [Volω(K)]1/q ,

where 1/p + 1/q = 1. Note that ||f ||Lp(ωn) = 1 since we assume µ is a probability
measure. We claim that

(4) Volω(K) ≤ Cω exp
[
−γω(Capω(K))−1/n

]
,

for some constants Cω, γω > 0 that only depend on ω. We will be done if we can
prove (4) since we can then check by elementary computations that exp(−x−δ) is
dominated from above by Aαxα, for all x ∈ [0, 1].

The set of functions F0 := {ϕ ∈ PSH(X, ω) / supX ϕ = 0} is compact in L1(X)
(see Proposition 2.7 in [GZ1]). These functions have Lelong numbers ν(ϕ, x) ≤ νω

bounded from above by a uniform constant. It follows therefore from Skoda’s
uniform integrability theorem [Z] that

sup
ϕ∈F0

∫
exp

[
− 2ϕ

νω + 1

]
ωn ≤ C2 < +∞.

Set γω := 2/(νω + 1) > 0 and let

V ∗
K,ω(x) := (sup{ϕ(x) / ϕ ∈ PSH(X, ω), ϕ ≤ 0 on K})∗

denote the Siciak extremal function of K (see Section 5.1 in [GZ1]). Then

V olω(K) ≤
∫

X

exp
(
−γωV ∗

K,ω

)
ωn ≤ C2Tω(K)γω ,

where Tω(K) := exp(− supX V ∗
K,ω) denotes the Alexander capacity of K. It follows

now from Theorem 7.1 in [GZ1] that

Tω(K) ≤ e exp
[
−Capω(K)−1/n

]
,

which yields (4). �

It follows therefore from Theorem 2.1 that there exists a unique continuous
function ϕ ∈ PSH(X, ω) such that

µ = fωn = (ω + ddcϕ)n, with sup
X

ϕ = −1,

when 0 ≤ f ∈ Lp(ωn), p > 1, with
∫

X
fωn = 1.

Actually we will be interested in measures with Lp-density with respect to a
positive definite volume form dλ, while the smooth measure ωn may vanish along
a divisor. This does not make much difference, as follows from Hölder’s inequality:

Lemma 3.2. Let V be an n-dimensional compact normal Kähler space and let Ω
be a smooth Kähler form on V . Let π : X → V be a resolution, ω = π∗Ω, and let
dλ be a positive definite smooth volume form on X.

If µ = f1dλ, with f1 ∈ Lp(X, dλ) for some p > 1, then there exists p′ > 1 such
that µ = fωn and f ∈ Lp′

(X, ωn).
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Proof. Observe that ωn = Edλ for some smooth density E ≥ 0 which vanishes
along the exceptional locus of π; thus

µ = f1dλ = fωn, where f = f1/E.

Fix local coordinates (zi)1≤i≤n on a polydisk D ⊂ X and a local embedding
F : V → Cm. Note that E is comparable to

∣∣ ∂F
∂z1 ∧ . . . ∧ ∂F

∂z1

∣∣2 �
∑r

i=1 |fi|2, fi

being holomorphic on D. Therefore E ∈ L∞
loc(D) and E−α ∈ L1

loc(D, dλ) for some
0 < α < 1.

Choose 0 < α′ < α such that 1
p + 1

α = 1
α′ . Then fα′

= fα′

1 E−α′
is the product

of a function in Lp/α′
(dλ) and a function in Lα/α′

(dλ); hence it is in L1
loc(D, dλ) by

Hölder’s inequality. A second application of Hölder’s inequality yields∫
D

f1+εωn =
∫

D

f εf1dλ ≤
(∫

D

f εqdλ

)1/q (∫
D

fp
1 dλ

)1/p

< +∞,

where q denotes the conjugate exponent to p. This shows that f ∈ Lp′
(ωn) if

p′ = 1 + ε > 1 is chosen so small that εq < α′. �
3.2. Hölder continuity.

Proposition 3.3. Assume ωn
ϕ = fωn, ωψ = gωn, where ϕ, ψ ∈ PSH(X, ω) are

bounded and f, g ∈ Lp(ωn), p > 1. Then for all 0 < γ < 2/(2 + nq),

||ϕ − ψ||L∞(X) ≤ C||ϕ − ψ||γL2(ωn),

where q = p/(p − 1) denotes the conjugate exponent to p.

Proof. Fix ε > 0 and α > 0 to be chosen later. It follows from (2) and Propositions
2.6, 3.1 that

||ϕ − ψ||L∞(X) ≤ ε + C1 [Capω(|ϕ − ψ| > ε)]α/n
.

Applying the refined version of Lemma 2.3 which involves the uniform bound on
||ϕ||L∞(X), ||ψ||L∞(X) (see inequality (3)), we obtain

Capω(|ϕ − ψ| > ε) ≤ C2

εn+2/q

∫
X

|ϕ − ψ|2/q(f + g)ωn.

It follows thus from Hölder’s inequality that

Capω(|ϕ − ψ| > ε) ≤ C3||f + g||Lp

εn+2/q

[
||ϕ − ψ||L2(ωn)

]2/q
.

Choose now ε := ||ϕ − ψ||γL2 where 0 < γ < 2/(2 + nq). Then

Capω(|ϕ − ψ| > ε) ≤ C4 [||ϕ − ψ||L2 ]2/q−γ(n+2/q) .

We infer

||ϕ − ψ||L∞(X) ≤ ||ϕ − ψ||γL2 + C5||ϕ − ψ||γ
′

L2 , where γ′ =
α

n
[2/q − γ(n + 2/q)] .

We finally choose α > 0 so large that γ ≤ γ′ and adjust the value of the constant
C: this yields the desired estimate. �

Being able to control the L∞-norm of ϕ − ψ by its L2-norm is a powerful tool.
If for instance ψ = ϕj , ϕ satisfy the assumptions of Proposition 3.3—with ϕj being
uniformly bounded—and ϕj → ϕ in L1, then ϕj → ϕ in L2(ωn); hence (ϕj) actually
uniformly converges towards ϕ. This yields the continuity of the map

f ∈ Lp(ωn) �→ ϕ ∈ C0(X),
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where ϕ is the unique ω-psh solution to (ω + ddcϕ)n = fωn, supX ϕ = −1. Thus
Theorem A is proved.

We now give an application of this estimate, which requires the manifold X to be
a rational homogenous manifold, i.e. X = G/P where G is a complex semi-simple
algebraic group and P a parabolic subgroup.5

Theorem 3.4. Assume X is a rational homogeneous manifold. If µ = fωn is a
probability measure with density 0 ≤ f ∈ Lp(ωn), p > 1, then the unique solution
ϕ ∈ PSH(X, ω) ∈ C0(X) to the normalized Monge-Ampère equation

(ω + ddcϕ)n = µ = fωn, sup
X

ϕ = −1,

is Hölder continuous of exponent γ > 0, for all γ < 2/(2+nq), where q = p/(p−1)
is the conjugate exponent to p.

Proof. Let K be the maximal compact subgroup of G. Then, K acts transitively
on X. Furthermore, we may assume w.l.o.g. that ω is fixed by K. One can
regularize ω-psh functions by averaging over the Haar measure of K. This is very
similar to the way one regularizes psh functions in Cn by using convolutions with
an approximation of the identity for the convolution product. We refer the reader
to [Hu] and the Appendix of [G] for more details.

Let ϕh be the ω-psh function which is the translate of ϕ by an element of K
which is at distance h from the identity. We use the notation ϕh by analogy with
the Cn-situation, where ϕh(x) = ϕ(x + h). Since ϕ is bounded, it has gradient in
L2; hence

||ϕh − ϕ||L2 ≤ C|h|,
by using Cauchy-Schwarz inequality in a local chart. We can thus apply Proposition
3.3 to obtain that

||ϕh − ϕ||L∞ ≤ C ′|h|γ ,

for all γ < 2/(2+nq). Since ϕh(x) � ϕ(x+h) in a local chart, this precisely means
that ϕ is Hölder-continuous of exponent γ. �

3.3. Regularity on the smooth locus.

Theorem 3.5. Let X be a projective algebraic complex manifold, ω0 a smooth semi-
positive closed (1, 1)-form that is positive outside a complex subvariety S ⊂ X, and
fix Ω to be a Kähler form on X. Assume that ωn

o = DΩn, where D−ε is in L1(Ωn),
and that [ω0], [Ω] ∈ NSR(X).

Let σ1, ..., σp (resp. τ1, ..., τq) be holomorphic sections of some line bundle L
(resp L′) on X. Fix k ∈ R≥0, l ∈ R≥0 and F ∈ C∞(X, R). Assume that∫

X

1
|τ1|2l + . . . + |τq|2l

Ωn < ∞ and
∫

X

|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn =

∫
X

Ωn.

Then the unique bounded function ϕ ∈ PSH(X, ω0) such that

(ω0 + ddcϕ)n =
|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn and sup

X
ϕ = −1

is smooth outside B = S ∪
⋂

i{σi = 0} ∪
⋂

i{τi = 0}.

5In particular, the cohomology class of ω is Kähler and ω itself can be supposed to be Kähler
without loss of generality.
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Remark 3.6. This result should be compared with [Y], Theorem 8. Yau’s result is
stronger in many respects (there is no projectivity/rationality assumption and it
gives a more precise regularity theory); on the other hand the conditions on the
poles of the L.H.S. are less optimal than here.

We expect the projectivity/rationality assumptions to be superfluous. We also
expect that a finer regularity theory might be developed for singular KE metrics
depending on a finer analysis of the klt singularities involved.

The rest of this subsection will be devoted to the proof of Theorem 3.5. For
the reader’s convenience, we will treat two special cases before tackling the general
case.6

Preliminary considerations. Thanks to Lemma 3.2—here we use that D−ε ∈ L1—
and Theorem 2.1, for every t ∈ [0, 1] there is a unique continuous function ϕt ∈
PSH(X, ω0 + tΩ) such that

(ωo + tΩ + ddcϕt)n = Ct
|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn and sup

X
ϕt = −1,

where Ct > 0 is an adequate normalization constant and ‖ϕt‖C0(X) is uniformly
bounded by a constant independant of t ≥ 0.

We cannot use [Y], Theorem 8, p. 403, right away to ensure that (ϕt) is smooth
outside B for t > 0, since our integral condition is stronger than his. However we
can use [Y], Theorem 3, p. 365, to conclude that, in case

⋂
i{τi = 0} = ∅, (ϕt) is

smooth outside B and ddcϕt is a form whose coefficients are globally bounded on
X. Since this does not imply ellipticity if

⋂
i{σi = 0} �= ∅, this does not imply

higher regularity on the whole of X.
The required uniformity in t > 0 is not proved in [Y]. To deal with this case, we

use a nice trick due to H. Tsuji [Ts].

The simplest case. First, assume
⋂

i{σi = 0} ∪
⋂

i{τi = 0} = ∅. Hence the family
of equations under consideration can be rewritten as

(ωo + tΩ + ddcϕt)n = Cte
F Ωn,

F being smooth.
Tsuji’s trick is as follows. By Kodaira’s lemma, there exists E, an effective

Cartier divisor of X, such that [ωo] = [κε]+ε[E] where [κε] is ample; hence we may
choose a representative κε which is a Kähler form for every ε > 0 small enough. We
may actually assume E contains B and use a family of E such that

⋂
Supp(E) = B,

by Nakamaye’s theorem on base loci [Na].
Actually, despite the notation, it will NOT be necessary to let ε decrease to 0,7

and we will fix once for all such an ε > 0.
Let σ ∈ H0(X,OX(E)) be the canonical section vanishing on E with the appro-

priate multiplicity. We can fix a smooth hermitian metric on this line bundle such
that the Poincaré Lelong equation holds:

ωo = κε + ε[E] − εddc log |σ|2.

6 Notice that apart from the C0-estimate with degenerate L.H.S., the methods used here are
standard and are in [Y], [Ts] and [Kö]. Higher regularity in [TZ] is treated along similar lines
given the L∞-estimate the authors announce.

7This technical device could be useful to study finer regularity results.
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SINGULAR KÄHLER-EINSTEIN METRICS 621

The function φt := ϕt − ε log |σ|2 is smooth in X \ E and is a classical solution
to the PDE

(κε + tΩ + ddcφt)n = eFε,t(κε + tΩ)n,

where (Fε,t)1≥t>0 is uniformly bounded in the C∞(X)-topology of functions and
κt = κε + tΩ is uniformly bounded in the C∞-topology of Kähler forms on X.

We can use the result of the calculation in [Y], Section 2. The important formula
is (2.22), p. 351, and in a subsidiary fashion (2.21). In these formulae, at each point
p ∈ X − E, an adequate system of normal coordinates for κt is constructed and
comparing the notation here and there, we substitute n for m, κt for gij̄ , κt +ddcφt

for g′
ij̄

, φt for φ and Fε,t for F . The operator ∆ is the Laplace operator (with the
analyst’s sign) of κt and ∆′ the Laplace operator of κt + ddcφt. Also Rīill̄ = Rt

īill̄
is the holomorphic bissectional curvature of κt expressed in the above system of
normal coordinates.

Since κt is uniformly bounded in the C2-topology of Kähler forms, then certainly
there are constants C = Cε independent of t such that (2.21) holds and C ′ also
independent of t such that C ′ > inf Rt

īill̄
.

After these substitutions are made, (2.22), p. 351, reads:

eCφt∆′(e−Cφt(n + ∆φt)) ≥ ∆(Fε,t) − n2C ′ − Cn(n + ∆φt) + e−
Fε,t
n−1 (n + ∆φt)

n
n−1 .

We can fix constants Ci independent of t such that

∆Fε,t ≥ C1 and e−Fε,t/n−1 ≥ C3 > 0.

Thus setting y = n + ∆φt yields

eCφt∆′(e−Cφt(n + ∆φt)) ≥ C5 + C6y + eC7y
n

n−1 .

Now by definition

e−Cφt(n + ∆φt) = |σ|+Cεe−Cϕt(n + ∆ϕt + ε∆ log |σ|2).
For each t > 0 the functions ϕt, ε∆ log |σ|2 and ∆ϕt are bounded on X. Hence

the positive function e−Cφt(n + ∆φt) is continuous on X, vanishes on E and is
smooth on X − E. Its maximum is achieved at some point pt �∈ E. It follows from
the maximum principle that

0 ≥ C5 + C6y + eC7y
n

n−1 at point y = y(pt).

Therefore y ≤ C8 with a constant independent of t > 0. Now e−Cφt(pt) =
|σ(pt)|+Cεe−Cϕt(pt). Using the uniform C0-estimate for ϕt, we get 0 ≤ (n+∆φt) ≤
C9e

+Cφt . Since |ϕt| and ε∆ log |σ|2 are uniformly bounded by a constant indepen-
dent of t > 0, we infer

(n + ∆ϕt) ≤ C10|σ|−Cε = C10|σ|−Cεε.

This yields a t-independent C0- estimate of ddcϕt on the compact subsets of X−E.8

Standard arguments of the theory of complex Monge-Ampère equations give an
interior estimate of ϕt in Ck,α

loc (X−E) for every k ≥ 2, α ∈]0, 1[ which is independent
of t > 0 (see for instance Theorem 5.1, p. 15, in [B2]). Hence the family (ϕt)t>0 is
precompact in every Ck,α

loc (X−E). Its cluster values are cluster values in C0(X−E);
hence they are all equal to ϕ|X−E . This implies ϕ ∈ Ck,α

loc (X − E), hence that
ϕ ∈ C∞(X − E).

8Note that C = Cε and that εCε might blow up as ε goes to 0.
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Case where
⋂

i{τi = 0} = ∅.9 We study here the equation

(ωo + tΩ + ddcϕt)n = Ct(|σ1|2k + . . . + |σp|2k)eF Ωn.

The first few steps of the preceding argument can be repeated without changes.
Next we apply formula (2.22) in [Y] as earlier, except that we set F = Fε,t +
log ||s||(2k), where ||s||(2k) := |σ1|2k + . . . + |σp|2k. This yields

eCφt∆′(e−Cφt(n + ∆φt)) ≥ ∆Fε,t + ∆ log ||s||(2k) − n2C ′ − Cn(n + ∆φt)

+
(

e−Fε,t

||s||(2k)

)1/(n−1)

(n + ∆φt)
n

n−1 .

We recall the two preceding inequalities and observe two new ones that are
available:

∆Fε,t ≥ C1 and e−Fε,t/n−1 ≥ C3 > 0;

∆ log ||s||(2k) ≥ C2 and C4 ≥ ||s||(2k).

Setting as earlier y = n + ∆φt, we get

eCφt∆′(e−Cφt(n + ∆φt)) ≥ C5 + C6y + eC7y
n

n−1 .

After this point, the proof is entirely the same as before.

Remark 3.7. In order to carry out the second-order a priori estimate, one needs
information that only depend on supX F and infX ∆F . This is pointed out in [Y],
p. 351, and it is the basis for the proof of [Y], Theorem 3.

3.4. Formal reduction of the general case to the second case using smooth
orbifolds. In order to carry out the present argument, which in essence is just
a change of variables z � ζ = z1/m, we need to use analysis on certain smooth
orbifolds. We will not give complete definitions since they are in the recent reference
[BGK], Section 2, pp. 560–564; see also [MO] and the references therein.

Let (X, ∆) be a smooth orbifold pair. By this we mean that we have the prime
decomposition ∆ =

∑
i(1 − m−1

i )Ei where mi ∈ N∗ is an integer. We assume
that supp(∆) is a simple normal crossing divisor. Then, a classical construction
surveyed in [BGK] enables one to construct an orbifold [X, ∆] with a 1-morphism
of orbifolds c : [X, ∆] → X with the following properties:

• c is the reduction to the coarse moduli space of [X, ∆].
• cX−Supp(∆) : U := [X, ∆]×X (X −Supp(∆)) → X −Supp(∆) is an isomor-

phism. Hence U is an open suborbifold of [X, ∆] which is an old-fashioned
manifold).

• For every open polydisk D ⊂ X with local coordinates z1, . . . , zn such that
Supp(∆) = {

∏p
j=1 zj = 0} [X, ∆] ×X D = [D′/Gloc].

In this formula, the local isotropy group is Gloc =
∏p

j=1 Z/mjZ, mj is
the integer multiplicity of the divisor Eij

such that Eij
∩D = {zj = 0}, Gloc

acts on the polydisk D′ by (ζ1, ..., ζp).(z′1, ..., z
′
n) = (ζ1z

′
1, ..., ζpz

′
p, z

′
p+1, ...).

10

The orbifold 1-morphism [D′/Gloc] → D is induced by κloc : (z′1, .., z
′
n) �→

((z′1)m1 , ...).
• For sufficiently divisible s, c∗O[X,∆](sK[X,∆]) = OX(s(KX + ∆)).

9It suffices to consider this case for constructing singular KE metrics on algebraic varieties
with canonical singularities

10The usual isomorphism of Z/mZ with the group of m-th root of unity is used.
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It is possible to define all the basic concepts of Kähler geometry on orbifolds
such as smooth functions, Kähler metrics, etc. The principle is to think of κ−1

loc as
a (multivalued) smooth coordinate chart.

A continuous function on [X, ∆] is a continuous function on X. A Radon measure
on [X, ∆] is a Radon measure on X.

A smooth function f on [X, ∆] is a continuous function on X such that for every
local chart κ∗

locf is smooth. In particular f is Hölder continuous.
A Kähler metric Ω[X,∆] on [X, ∆] is a Kähler metric ΩX−Supp(∆) on X−Supp(∆)

with the property that κ∗
locΩ extends to a smooth Kähler metric on D′. In partic-

ular, it also extends as a closed Kähler current on X with Hölder potentials.
The pull back of a Kähler form on X to [X, ∆] is a semi-positive closed (1, 1)-form

that is actually cohomologous to a Kähler class11.
Observe that κ∗

locdzl = mil
(z′l)

mil
−1dz′l; hence a smooth volume form on [X, ∆]

can be interpreted as a volume form v on X − Supp(∆) such that

v is comparable to
∏n

l=1(
√
−1dzl ∧ dz̄l)∏p

l=1 |zl|2(1−1/mil
)

.

In case the pair (X, l−1(τ1)) is an orbifold pair, the equation

(5) (ωo + ddcϕt)n = Ct
|σ1|2k + . . . + |σp|2k

|τ1|2l
eF Ωn

X

can be interpreted on [X, ∆] as an equation of the form

(c∗ωo + ddcϕt)n = Ct(|σ1|2k + . . . + |σp|2k)eF Ωn
[X,∆].

The method used to analyze the case where
⋂

i{τi = 0} = ∅ extends with almost
no changes to the orbifold case. Hence the unique continuous solution of equation
(5) is smooth outside its singular locus if (X, 1

l (τ1)) is an orbifold pair.
Under the more general hypothesis that

∫
X
|τ1|−2l < ∞ and 1

l (τ1) is a divisor
with simple normal crossings, then we can construct an orbifold pair (X, ∆) with
0 ≤ 1

l (τ1) ≤ ∆ and we are back to the previous case.
For the most general case, consider the ideal I generated by the ti and fix

µ : X ′ → X a log-resolution of (X, I). Then we are back to the previous case, with
an equation on X ′ . This ends the proof of Theorem 3.5.

In certain rare circumstances, there is a finite smooth covering Y → X such
that Y/G = X and [Y/G] = [X, ∆] and the argument we use here reduces to a
G-equivariant argument on Y .

Remarks 3.8. If we start with ωo Kähler and the log-resolution is non-trivial, µ∗ωo

is not Kähler anymore.
This method that dates back to [Kö] can be used to prove a variant of [Y],

Theorem 7, p. 399, where the divisor of σ2 is a simple normal crossing divisor,
under the sole assumption that

∫
M

|σ2|−2k2 < ∞.
Now, it could not have been used to prove Theorem 8, p. 403, in 1978 since

log-resolutions force the use of Monge-Ampère equations with degenerate L.H.S.,
for which the C0-estimate proved here was not available then.

11Here no reference can be given. But it is easy to extend the gluing methods for Kähler forms
developed in [Dem3] and [Pa] to orbifolds. Hence [DP] extends to Kähler orbifolds.
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4. More Monge-Ampère equations

As we aim at constructing singular Kähler-Einstein metrics, it is important to
consider Monge-Ampère equations of the type

(ω + ddcϕ)n = etϕµ,

where µ is a probability measure which satisfies condition H(α, A, ω) (see Definition
1.3), and t is a real parameter. The case t = 0, treated in Theorem 2.1, will
correspond to Ricci-flat metrics (see Section 6). We focus here on the case t > 0.

Theorem 4.1. Let µ be a probability measure which satisfies condition H(α, A, ω)
and fix t > 0. There exists a unique function ϕt ∈ PSH(X, ω) ∩ L∞(X) such that

(ω + ddcϕt)n = etϕtµ.

Furthermore ϕt is continuous provided (X, [ω]) enjoys the continuous approximation
property.

Proof. The uniqueness easily follows from the comparison principle as we explain
in Proposition 4.3 below. We are going to prove the existence by a fixed point
method.

Fix ψ ∈ E1(X, ω) such that
∫

X
ψdµ = 0, and let us consider the equation

(MA(ψ)) (ω + ddcϕ)n = etψ−cψµ,

where the constant cψ := log[
∫

X
etψdµ] is chosen so that

1 =
∫

X

(ω + ddcϕ)n = e−cψ

∫
X

etψdµ.

Observe that µψ := etψ−cψµ satisfies condition H(α, Aψ, ω), where Aψ =
exp(t supX ψ−cψ). It follows therefore from Theorem 2.1 that there exists a unique
bounded function ϕ ∈ PSH(X, ω) which is a solution to (MA(ψ)) and normalized
by

∫
X

ϕdµ = 0. We use here this linear normalization rather than the non-linear
sup-normalization: they are comparable thanks to Proposition 2.7 in [GZ1], which
shows that

−Mµ ≤
∫

X

udµ − sup
X

u ≤ 0,

for all functions u ∈ PSH(X, ω) and for some uniform constant Mµ > 0. Since∫
X

ψdµ = 0, we infer

(6) 0 ≤ Eω(ϕ) :=
∫

X

|ϕ|ωn
ϕ = e−cψ

∫
X

|ϕ|etψdµ ≤ 2MµetMµ ,

by observing that cψ ≥ 0 since t ≥ 0, and∫
X

|ϕ|dµ ≤
∫

X

|ϕ − sup
X

ϕ|dµ + sup
X

ϕ ≤ 2Mµ,

since
∫

X
ϕdµ = 0.

The important fact here is that the energy Eω(ϕ) of ϕ is bounded from above by
a constant M0 := 2MµetMµ which is independent of ψ. We have thus defined an
operator

T : ψ ∈ CM �→ ϕ ∈ CM0
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which associates to ψ ∈ CM the unique solution ϕ ∈ CM0 to (MA(ψ)), where

CM :=
{

ψ ∈ E1(X, ω) /

∫
X

ψdµ = 0 and Eω(ψ) ≤ M

}
.

It follows from [GZ2] that E1(X, ω) is convex. So is the subset of functions ψ ∈
E1(X, ω) such that

∫
X

ψdµ = 0. The set CM is not convex, but it is relatively
compact in L1(X) and its closed convex hull ĈM is contained in CκnM for some
uniform constant κn which only depends on the dimension of X: this follows from
easy computations (see Proposition 2.10 in [GZ2]). Therefore T maps the compact
convex set ĈM into itself if M is large enough.

We claim that T is continuous. Let (ψj) ∈ CN
M be a sequence of functions

which converges in L1(X) towards ψ ∈ CM . We need to show that ϕj := T (ψj)
converges in L1(X) towards T (ψ). Since the set {u ∈ PSH(X, ω) /

∫
X

udµ = 0}
is relatively compact in L1(X) (see Proposition 2.7 in [GZ1]), we can assume—
relabelling if necessary—that (ϕj) converges in L1(X) towards a function ϕ ∈
PSH(X, ω). We show in Lemma 4.2 below that (ϕj) converges in L1(µ) towards
ϕ. In particular

∫
X

ϕdµ = 0 and, passing to a subsequence if necessary, we can
assume that etψj(x) → etψ(x) for µ almost every point x. Set

ϕ̂j :=

(
sup
l≥j

ϕl

)∗

and ψ̌j := inf
l≥j

ψl.

Observe that (ϕ̂j) decreases towards ϕ, while (etψ̌j ) increases towards etψ at µ
almost every point. The energy of ϕ̂j is controlled by that of ϕj since ϕ̂j ≥ ϕj

(see Lemma 2.3 in [GZ2]), and Eω(ϕj) ≤ M0 by (5); therefore ϕ ∈ E1(X, ω) and
(ω+ddcϕ̂j)n → (ω+ddcϕ)n. It follows from an inequality of J. -P. Demailly [Dem1]
that

(ω + ddcϕ̂j)n ≥ etψ̌j−ĉj µ,

where ĉj := supl≥j cψl
. Observe that ĉj → cψ; thus

(ω + ddcϕ)n ≥ etψ−cψµ.

Since these are two probability measures, there is actually equality; hence ϕ = T (ψ):
this shows that T is continuous.

We can now invoke the Schauder fixed point theorem, which yields a fixed point
ϕ = T (ϕ), ϕ ∈ CM . The function ϕ is automatically bounded (by Theorem 2.1,
since etϕ−cϕµ satisfies H(α, A′, ω)); hence Φ := ϕ − t−1cϕ is the solution we were
looking for. �

Lemma 4.2. The functions ϕj = T (ψj) (respectively etψj ) converge in L1(µ) to-
wards ϕ (respectively etψ).

Proof. We first show that (ϕj) converges to ϕ in L1(µ). Observe that the sequence
(ϕj) is uniformly bounded: this follows from Theorem 2.1 since (ω+ddcϕj)n satisfies
H(α, Aj , ω), where Aj = et supX ψj−cψj A ≤ etMµA is bounded from above. It
follows then from standard arguments that

∫
X

ϕjdµ →
∫

X
ϕdµ (see e.g. the proof

of Lemma 5.2 in [Ce]).
Fix ε > 0 and let G be an open set of X such that ϕ is continuous on X \G and

Capω(G) ≤ ε (see Corollary 3.8 in [GZ1]). By Hartogs’ lemma, ϕj ≤ ϕ + ε on the
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compact set X \ G, if j ≥ jε. Observe that∫
X\G

|ϕ − ϕj |dµ ≤ 2ε +
∫

X\G

[ϕ − ϕj ]dµ ≤ 3ε,

if j ≥ j′ε. On the other hand since µ satisfies H(α, A, ω), we get∫
G

|ϕ − ϕj |dµ ≤ 2Mµ(G) ≤ 2MAε1+α,

where M = supj ||ϕj ||L∞(X). This shows that ||ϕ − ϕj ||L1(µ) → 0.
The proof for (etψj ) is similar: it suffices to note that the functions uj :=

etψj−t supX ψj are ω-psh and uniformly bounded. One can then apply the rest of
the argument. �

Proposition 4.3. Let ϕ, ψ ∈ E1(X, ω) and t > 0 be such that

(ω + ddcϕ)ne−tϕ = (ω + ddcψ)ne−tψ.

Then ϕ ≡ ψ.

Proof. It follows from the comparison principle (see [GZ2]) that∫
(ϕ<ψ)

(ω + ddcψ)n ≤
∫

(ϕ<ψ)

(ω + ddcϕ)n =
∫

(ϕ<ψ)

et(ϕ−ψ)(ω + ddcψ)n.

Since et(ϕ−ψ) < 1 on (ϕ < ψ), we infer ϕ ≥ ψ for ν almost every point, where
ν = (ω +ddcψ)n. Reversing the roles of ϕ, ψ yields ϕ = ψ for ν almost every point.
Therefore (ω + ddcϕ)n = (ω + ddcψ)n; hence ϕ−ψ = c is constant by Theorem 3.4
in [GZ2]. Finally c = 0 since etc = 1 and t > 0. �

When KX is nef and big, H. Tsuji constructed in [Ts]—using Kähler-Ricci flow
techniques—a function ψ ∈ PSH(X, ω) such that∫

X

etψdµ = 1, ψ ∈ C∞(X \ E) and (ω + ddcψ)n = etψµ in X \ E,

where E is the exceptional locus of the map associated to the base point free linear
system |NKX |, N ∈ N big enough and the current TKE = ω + ddcψ defines a
Kähler-Einstein metric. This function coincides with our solution thanks to the
following unicity result.

Proposition 4.4. Let µ be a probability measure and t > 0. Let ϕ, ψ ∈ PSH(X, ω)
be such that

∫
X

etϕdµ =
∫

X
etψdµ = 1. Assume ϕ ∈ E1(X, ω) is a global solution

to the complex Monge-Ampère equation (ω + ddcϕ)n = etϕµ, while ψ ∈ C0(X \ E)
satisfies (ω + ddcψ)n = etψµ only in X \ E.

Then ψ ∈ E1(X, ω) and ψ ≡ ϕ.

Proof. Set ψj := max(ψ,−j) ∈ PSH(X, ω)∩L∞(X). Observe that the probability
measures (ω + ddcψj)n converge in X \ E towards the measure ν = etψµ. Since
ν(X) = ν(X \ E) = 1, it follows that (ω + ddcψj)n converges to ν on all of X.

Fix ε > 0 and set vε := (ψ + εv)/(1 + ε) ∈ PSH(X, ω), where v ∈ PSH(X, ω),
v ≤ 0, is such that ev is continuous and (v = −∞) = E. It follows from Lemma
2.3 that for all s > 0,

Capω(ψj < −s − 1) ≤
∫

(ψj<−s)

(ω + ddcψj)n ≤
∫

(vε≤−s/(1+ε))

(ω + ddcψj)n.
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Observe that evε is continuous on X; hence the sublevel sets (vε ≤ c) are compact.
We infer, letting j → +∞,

Capω(ψ < −s − 1) ≤
∫

(vε≤−s/(1+ε))

etψdµ.

Letting ε go to zero and using that µ(X) = 1 yields

Capω(ψ < −s − 1) ≤
∫

(ψ<−s)

etψdµ ≤ e−s.

Therefore the capacity of the sublevel sets of ψ decreases fast as s → +∞; hence by
Lemma 5.1 in [GZ2] we get ψ ∈ E1(X, ω). Since e−tϕ(ω+ddcϕ)n ≡ e−tψ(ω+ddcψ)n,
it follows from Proposition 4.3 that ϕ ≡ ψ. �

Theorem 4.5. Let X be a projective algebraic complex manifold, ω0 a smooth
semi-positive closed (1, 1)-form that is Kähler outside a complex subvariety S ⊂ X,
and fix Ω to be a Kähler form on X. Assume that ωn

o = DΩn, where D−ε is in
L1(Ωn), and that [ω0], [Ω] ∈ NSR(X).

Let σ1, ..., σp (resp. τ1, ..., τq) be holomorphic sections of some line bundle L
(resp L′) on X. Fix k ∈ R≥0, l ∈ R≥0 and F ∈ C∞(X, R). Assume that∫

X

1
|τ1|2l + . . . + |τq|2l

Ωn < ∞ and
∫

X

|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF Ωn =

∫
X

Ωn.

For each t > 0, the unique function ϕ ∈ PSH(X, ω0) ∩ L∞(X) such that

(ω0 + ddcϕ)n =
|σ1|2k + . . . + |σp|2k

|τ1|2l + . . . + |τq|2l
eF+tϕ Ωn

is smooth outside B = S ∪
⋂

i{σi = 0} ∪
⋂

i{τi = 0}.

Proof. The proof of Theorem 3.5 applies here almost verbatim. �

Remark 4.6. We will apply Theorem 4.1 in Section 6 to construct singular Kähler-
Einstein metrics on manifolds of general type. This will follow from the resolution of
(ω+ddcϕ)n = etϕµ for large enough values of t > 0. The Monge-Ampère equations

(ω + ddcϕ)n = e−tϕµ, t > 0,

can also be solved with a similar method, but only for small values of t < tX .
The critical exponent tX depends on the manifold X and may be too small to pro-
duce Kähler-Einstein metrics when c1(X) > 0: even smooth manifolds of positive
scalar curvature do not necessarily admit Kähler-Einstein metrics (see [T]). Since
technical details are much more involved in this case, we postpone this study to a
forthcoming article.

5. Singularities in Mori theory

The singular locus of the normal complex space of pure dimension n is a codi-
mension ≥ 2 analytic subvariety denoted by V sing. Let V reg = V − V sing and let
j : V reg → V be the natural open immersion.
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5.1. Log terminal singularities. Since this material may not be familiar to com-
plex analysts or differential geometers, we briefly recall some basic facts on some
of the singularities encountered in the Minimal Model Program (MMP for short).
See [KM] for a detailled account in the algebraic case, the analytic theory being
also surveyed there in less detail.

The sheaf of holomorphic functions OV is the subsheaf of the sheaf of continuous
functions on V consisting of the functions whose restriction to V reg is holomorphic.
Actually, by Hartogs’ theorem, any holomorphic function on V reg extends to V ,
which means that j∗OV reg = OV .

Every meromorphic n-form α on V reg extends to V ; i.e. let π : X → V be
a resolution of singularities of V , then the meromorphic n-form π∗α defined on
π−1V reg extends to a meromorphic n-form on X. Let ωV reg be the canonical sheaf
of the smooth variety V reg. The sheaf ωV = j∗ωV reg is a coherent analytic sheaf
on V .

More generally every meromorphic pluricanonical form on V reg extends to V

and ω
[q]
V = j∗ω

q
V reg , q > 0, is a coherent analytic sheaf on V .

Definition 5.1. Say V is 1-Gorenstein iff one of the following equivalent condi-
tions holds:

(1) Every x ∈ V has an open neighborhood U such that Ureg carries a holo-
morphic n-form with an empty zero divisor.

(2) ωV is a rank one locally free sheaf.
(3) Every x ∈ V has an open neighborhood U such that ωUreg is isomorphic to

OV reg |U .
A local section of ωV defining a holomorphic n-form without zeroes on V reg will
be called a local generator of ωV . If furthermore V is Cohen-Macaulay, V is said
to be Gorenstein.

Say V is Q-Gorenstein iff one of the following equivalent conditions is satisfied:
(1) Every x ∈ V has an open neighborhood U such that Ureg carries a holo-

morphic pluricanonical form with an empty zero divisor.
(2) For every x ∈ V , there exists Nx ∈ N and an open neighborhood U of x

such that ω
[Nx]
U is a rank one locally free sheaf.

(3) For every x ∈ V there is Nx ∈ N and an open neighborhood U of x such
that ωNx

Ureg is isomorphic to OV reg |U .

A local section of ω
[N ]
V defining a holomorphic pluricanonical form without zeroes

on V reg will be called a local generator of ω
[N ]
V .

For every x ∈ V , the smallest Nx fulfilling condition (3) near x is called the local
index of V at x. The l.c.m. of all local indices, if finite, is called the index of V .

Definition 5.2. Say V has only canonical singularities iff V is Q-Gorenstein,
of finite index N and one of the following equivalent conditions is fulfilled:

(1) Let π : X → V be a resolution. Let α be a local generator of ω
[N ]
V . The

meromorphic pluricanonical form π∗α is holomorphic.
(2) Let π : X → V be a resolution. For every m ∈ N, π∗ω

[Nm]
X = ω

[Nm]
V .

(3) (Assuming V is an algebraic variety) Let π : X → V be a resolution. Then
KX

∼= π∗KV +
∑

aEE with aE ≥ 0 where ∼= means numerical equivalence
of Q-Cartier divisors and the sum runs over the exceptional divisors of π.
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SINGULAR KÄHLER-EINSTEIN METRICS 629

Observe that it is enough to check the first two conditions for some resolution.
In the third condition NaE is the order of vanishing of π∗α along the divisor E.

Definition 5.3. Say V has only log-terminal singularities iff V is Q-Gorenstein,
of finite index N and the following holds. Let π : X → V be a log-resolution and
let α be a local generator of ω

[N ]
V ; then the pole along any component E of exc(π)

of the meromorphic N -canonical form π∗α on X is of order ≤ N − 1.
When V is algebraic, an equivalent formulation is: let π : X → V be a log-

resolution. Then KX
∼= π∗KV +

∑
E

aEE with aE > −1.

The importance of the class of canonical singularities12 comes from a theorem
due to M. Reid [R1] (see also [Deb], p. 174):

Theorem 5.4. Let X be a projective algebraic manifold of general type whose
canonical ring R =

⊕
n∈N

H0(X, ωn
X) is of finite type. Then the canonical model of

X, Xcan := Proj(R), has only canonical singularities. If N = Index(Xcan), then
ω

[N ]
Xcan

is ample.

The finiteness of the canonical ring for varieties of general type is known in
dimension 3 [Ka]. In higher dimension, Y. Kawamata has proved that it is a
consequence of the existence of minimal models. Xcan is a uniquely defined singular
birational model of X. The minimal models of X in the sense of the MMP are
crepant terminalizations of Xcan and do not enjoy the above unicity since they
may be related by non-trivial flops.

Examples 5.5. Let S be a normal algebraic surface. The following are equivalent:

(1) S has only canonical singularities.
(2) S is locally analytically isomorphic to X = C2/G, G ⊂ SL2(C) a finite

subgroup.
(3) The exceptional divisors of the minimal resolution πmin of S have simple

normal crossings, their components are (−2) smooth rational curves, their
incidence graphs are of type A − D − E (Du Val singularities).

The log-terminal surface singularities are precisely the singularities of the form
X = C2/G, G ⊂ GL2(C) a finite subgroup.

Examples 5.6. In higher dimension, quotient singularities are still log-terminal.
Fix n > 0 and let H ⊂ CPn+1 be a smooth degree d hypersurface. The affine cone
over H has only canonical singularities iff d ≤ n + 1.

In particular, the ordinary double point x2 + y2 + z2 + t2 = 0 has only canonical
singularities but it is not a quotient singularity.

The hypersurface singularities of type A − D − E are canonical.

12On the other hand, the class of log-terminal singlarities of varieties is less important. Indeed
let X be a complex projective normal variety with log-terminal singularities. Then there is a
Deligne Mumford stack X → X which is etale in codimension one and has only Gorenstein
canonical singularities. At the expense of working with this canonical cover, one could avoid the
consideration of log-terminal singularities for varieties.
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5.2. Normal Kähler spaces.

Plurisubharmonic functions. Let V be a normal analytic space of pure dimension
n. A plurisubharmonic (psh) function ϕ on V is an upper-semi-continuous function
on V with values in R ∪ {−∞}, which is not locally −∞, and extends to a psh
function in some local embedding V → CN . The function ϕ is strongly psh (resp.
C0, resp. C∞) iff it extends to a strongly psh function (resp. C0, resp. C∞) in some
local embedding. A continuous function is psh iff its restriction to V reg is so [FN].
A bounded psh function on V reg extends to V .

A pluriharmonic function f on V is a real-valued continuous function such that
one of the following equivalent conditions holds:

• f is locally the real part of a holomorphic function.
• Given a local embedding V → CN , f extends locally to a pluriharmonic

function on CN .
• f |V reg is pluriharmonic.

Semi-Kähler currents.

Definition 5.7. A semi-Kähler, resp. Kähler, resp. smooth Kähler, potential on V
is a family (Ui, ϕi)i∈I where (Ui) is an open covering of V and ϕi is a psh function,
resp. a strongly psh function, resp. a C∞-smooth strongly psh function, on Ui such
that ϕi − ϕj is pluriharmonic on Ui ∩ Uj .

Define an equivalence relation on semi-Kähler potentials requiring that (Ui, ϕi) ∼
(Vj , ψj) iff ϕi − ψj is pluriharmonic on Ui ∩ Vj .

Definition 5.8. A smooth Kähler metric Ω on V is a ∼-equivalence class of smooth
Kähler potentials. A semi-Kähler (resp. Kähler) current on V is a ∼-equivalence
class of semi-Kähler (resp. Kähler) potentials.

A semi-Kähler current Ω is said to have L∞
loc (resp. C0, resp. Hölder continuous)

potentials iff, given a potential (Ui, ϕi)i∈I for Ω, each ϕi is L∞
loc (resp. C0, resp.

Hölder continuous).

We will on occasion drop the requirement that the local potentials of Ω are psh,
replacing it by the requirement that they are locally the sum of a smooth and a
psh function. The current Ω will then be called a quasi-positive closed current on
V .

If it has locally bounded potentials, Ω is fully determined by the closed (1, 1)-
form Ωreg on Vreg defined on Ui by Ωreg = ddcϕi.

Let Ω be a smooth Kähler metric on V with Kähler potential (Ui, ϕi). An upper-
semi-continuous function ϕ : X → R∪−∞ is said to be Ω-psh iff ∀i ϕi +ϕ is psh on
Ui. The semi-Kähler current whose potential is (Ui, ϕ+ϕi) is denoted by Ω+ddcϕ.

Example 5.9. Let V = C2/±1. Let (x, y) be the usual affine coordinates on C2,
(u, v, w) those on C3. The formulas u = x2, v = y2, w = xy realize V as the
closed subscheme of C3 whose equation is uv − w2 = 0. We have two ‘natural’
Kähler metrics on V . The first one is smooth with potential ϕ1 = |u|2 + |v|2 + |w|2,
induced by the euclidean Kähler metric of C3; the second one is the Kähler current
whose potential is ϕ2 = |u|+ |v|. On V reg it is the quotient of the euclidean metric
restricted to C2 − {0}. Near 0, ddcϕ2 � ddcϕ1.
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The metric ddcϕ2 is an example of an orbifold Kähler metric on V . The results
of [Y] extend without major modifications to Kähler orbifolds. For instance, in
each Kähler class of a nodal K3 surface there is a unique Ricci flat orbifold metric.

Chern-Weil forms and hermitian metrics. Let PHV be the sheaf of real-valued
pluriharmonic functions on V . By definition, a closed (1,1)-form on V is a section
of the sheaf C∞

V /PHV . We have the exact sequence:

C∞(V ) → Γ(V, C∞
V /PHV )

[ . ]−→ H1(V,PHV ) → 0.

A class in H1(X,PHX) will be called Kähler if it is in the [ . ] image of a
smooth Kähler metric.

Remark 5.10. Assume X is smooth. A class [ω] in H1(X,PHX) will be called
numerically base point free iff there exists a proper surjective holomorphic mapping
X → Y , Y normal, such that [ω] is the pull back of a Kähler class on Y . This is in
principle a stronger condition than being cohomologous to a smooth semi-positive
closed (1, 1)-form, although no counterexample seems to be known.

If X is projective and [ω] ∈ NSR(X), [ω] is numerically a base point free class
iff it is semi-ample.

In the non-big case (i.e.
∫

X
ωn = 0), it is straightforward to construct semi-

Kähler classes that are not numerically base point free (e.g. on complex tori).

Let L be a holomorphic line bundle on V . The notion of smooth hermitian
metric on (V, L) is defined as in the smooth case. Let h be such a metric on (V, L).

Let s ∈ H0(U, L) be a nowhere zero local holomorphic section of L (a local
generator of L) defined over the open subset U ⊂ V . Set e−ϕs := ||s||2h, where ϕs

is a C∞-smooth function on U . The current ddcϕs is a smooth closed (1,1)-form on
V which does not depend on s; it is a semi-Kähler current if ϕs is psh.

More generally, let (Ui)i be an open covering of V and σi ∈ H0(Ui,OV (L)) a
local generator of L. Let ϕi = ϕσi

. The datum (Ui, ϕi) defines a smooth closed
(1,1)-form on V .

Definition 5.11. The Chern-Weil form of (V, L, h) (or of h) is the ∼-equivalence
class of the data (Ui, ϕi) constructed above. We will denote it by c1(L, h).

It is immediate that [c1(L, h)] is independent of h. Hence there is a linear
map c1 : Pic(V ) → H1(V,PHV ). The connection with the more widely known
smooth case is made by the observation that, if X is a compact Kähler manifold,
H1,1(X, R) = H1(X,PHX).

Proposition 5.12. Let V a compact normal complex analytic variety.
The space H1(V,PHV ) is finite dimensional.
Let L be a holomorphic line bundle on V . Every representative of c1(L) in

H1(V,PHV ) is the Chern-Weil form of a smooth hermitian on L.
If there exists a smooth hermitian metric h such that c1(L, h) is Kähler, then V

is projective-algebraic and L is ample.

Proof. The most difficult task is to show that, in the last assertion, V is Moishezon.
This follows from Siu’s solution of the Grauert-Riemenschneider conjecture [Siu].

�
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A singular metric on L is an expression h = e−ϕhsm, ϕ being a locally smooth
+ psh function and hsm a smooth hermitian metric. Its Chern-Weil form is the
quasi-positive current c1(L, hsm) + ddcϕ.

6. Adapted volume forms

6.1. Monge-Ampère equations on normal Kähler spaces. Let Ω be a smooth
Kähler metric on V . A classical result of P. Lelong states that if U is relatively
compact in V , then Ureg is of finite volume with respect to the smooth volume
form Ωn

reg.
This has been generalized by E. Bedford and B. A. Taylor in [BT], where the

authors study Monge-Ampère measures for locally bounded psh functions. Since
these measures do not charge proper analytic subsets, we obtain

Proposition 6.1. Let Ω be a semi-Kähler current with L∞
loc potentials on V . The

Monge-Ampère measure Ωn
reg is well defined on Vreg and satisfies

∫
Ureg Ωn

reg <
∞, for all relatively compact subsets U ⊂ V.

For any resolution π : X → V , the Monge-Ampère measure (π∗Ω)n is well
defined on X and satisfies π∗(π∗Ω)n = j∗Ωn

reg. Moreover if π̄ : X̄ → V is a
resolution dominating π (i.e. π̄ = π◦ψ for some bimeromorphic proper holomorphic
map ψ : X̄ ′ → X ′), then ψ∗(π̄∗Ω)n = (π∗Ω)n.

The measure π∗(π∗Ω)n is thus well defined on V and independent of the choice
of resolution. We will call it the Monge-Ampère measure of Ω and denote it
by Ωn. The mass of this measure only depends on the cohomology class of Ω, as
follows again from [BT]:

Lemma 6.2. Assume V is compact. Let Ω1, Ω2 be two semi-Kähler currents with
L∞

loc potentiel on V . If they are cohomologous, i.e. Ω1 = Ω2 + ddcϕ for some
ϕ ∈ L∞(X), then

∫
V

Ωn
1 =

∫
V

Ωn
2 .

We can now reformulate some of our previous results.

Theorem 6.3. Let V be an n-dimensional compact normal Kähler space and let
Ω be a smooth Kähler form on V . Then for every f ∈ Lp(V, Ωn), p > 1, such that∫

V
fΩn =

∫
X

Ωn, there is a unique ϕ ∈ L∞(V ) such that

(Ω + ddcϕ)n = fΩn and sup
V

ϕ = −1.

Proof. Let π : X → V be a resolution of V . We may define a semi-positive big
smooth form on X by ω = π∗Ω. By Theorem 2.1 and Proposition 3.1 we can solve
uniquely (ω + ddcϕ̄)n = f ◦ πωn where ϕ̄ is a continuous function on X such that
ω + ddcϕ̄ is semi-positive. Let F be a fiber of π and i : F → X the inclusion map.
The fiber F is connected by Zariski’s main theorem. Furthermore i∗ω + ddci∗ϕ̄ is
semi-positive on F . Since i∗ω = 0, it follows that i∗ϕ is a psh function on F . Hence
i∗ϕ̄ is constant. This implies that ϕ̄ = ϕ ◦ π where ϕ is a bounded u.s.c. function
on V . We do have (Ω + ddcϕ)n = fΩn. �
6.2. Adapted measures on log-terminal Kähler spaces. Let V be an n-
dimensional Gorenstein Kähler space and let Ω be a smooth Kähler form on V .
Fix x ∈ V and let α be a local generator of ωV defined over an open subset x ∈ U ;
then v = cnα ∧ ᾱ is a positive definite volume form on Ureg, for an appropriate
choice of the constant cn =

√
−1

n
(−1)

n(n+1)
2 .
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When V is merely Q-Gorenstein of finite index N , we choose β a local generator
of ω

[N ]
V defined over an open subset x ∈ U and we set

v = vβ =
(√

−1
Nn

(−1)N n(n+1)
2 β ∧ β̄

) 1
N

.

This is a positive definite volume form on Ureg.
Our next observation is that log-terminal singularities are the worst singulari-

ties we can allow in order to globally solve Monge-Ampère equations associated to
volume forms on V .

Lemma 6.4. For every U1 ⊂⊂ U ,
∫

Ureg
1

v < ∞ iff X is log-terminal.
If V is log-terminal, then the Radon measure µ = j∗v satisfies µ = fΩn with

f ∈ L1+ε(U1, Ωn) for some ε > 0.

Proof. Let π : X → V be a log-resolution. Write KX
∼= π∗KV +

∑
aEE. Since

exc(π) has simple normal crossings, at every P ∈ E = exc(π) there are local
coordinates (zi)i=1,...,n such that E is described by the equation z1 . . . zq = 0. Let
Ej be the divisor zj = 0. We have π∗v =

∏q
j=1 |zj |2aEj dλ where dλ is a Lebesgue

measure on X; hence the measure π∗v has finite mass near P iff ∀j, aEj
> −1.

Thus
∫

Ureg
1

v < ∞ iff ∀E, aE > −1.
Let f1 be the density of π∗v with respect to dλ. Since f1 is comparable to∏q

j=1 |zj |2aEj near P , it follows that f1 belongs actually to Lp(X, dλ) for some
p > 1 when X is log-terminal.

Let D = 1/f be the density of Ωn with respect to v. We will see here below
that D is bounded but it might have zeroes on E; hence f is unbounded in general.
However we will show that f ◦ π ∈ Lα(X, dλ) for α > 0 small enough; hence it
follows from Hölder’s inequality (as in the proof of Lemma 3.2) that∫

Ureg
1

f1+εΩn =
∫

π−1Ureg
1

fεf1dλ < +∞

if ε > 0 is small enough.
Fix x ∈ V and let i : Ux → Cm be a local embedding of a neighborhood Ux of x.

We consider the
(

m
n

)
n-forms on Ureg

x duI = dui1 ∧ . . . duin , where (ui) is a set

of affine coordinates on Cm. Observe that Ωn is comparable to
∑

I vduI .13 Since
β is a local generator at x of ω

[N ]
V , we have (duI)N = fIβ where fI ∈ OV,x is the

germ of a holomorphic function at x. Therefore Ωn is comparable to
∑

I |fI |
2
N v;

hence D is comparable to [
∑

I |fI |
2
N ]−1 near x.

The functions (fI) generate an ideal Ix ⊂ OV,x. Actually, the construction can
be globalized to provide a coherent ideal sheaf I ⊂ OV cosupported on V sing.

We may assume [Hi], [BM] that π : X → V is a log-resolution of (V, I), namely
a log-resolution of V with the additional property that the ideal sheaf π−1I.OX ,
which is the ideal sheaf of OX generated by the family of holomorphic functions
(π∗fI)I , satisfies π−1I.OX = OX(−

∑
NbEE) ⊂ OX where N.bE ∈ N is a positive

multiplicity attached to any exceptional divisor of π.
In local coordinates near P ∈ X, π∗D is comparable to

∏
j |zj |2bEj ; hence

π∗(f1D
−ε) is comparable to

∏
j |zj |2(aEj

−εbEj
). It follows that for every relatively

13Note that the formula for vβ makes sense even if β is not a local generator.
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compact subset U1 ⊂⊂ U, f ∈ L1+ε(U1, Ωn) iff ∀E, π(E) ∩ U �= ∅ ⇒ aE − εbE >
−1. �

Definition 6.5. Assume V has only log-terminal singularities. A positive definite
adapted measure on V is a positive Radon measure locally of the form ef .v where
f is a bounded measurable function. A positive definite adapted measure has C0,
Cα, C∞ density if f is such.

Remark 6.6. It follows from Lemma 6.4 that if V is Q-Gorenstein but has non-log-
terminal singularities, v is a volume form on V reg but does not extend to a measure
on V .

6.3. Adapted volume forms for klt Kähler pairs. We will be briefer since
pairs are mainly of interest to MMP practitioners. The key definition for us will be

Definition 6.7. A pair (V, ∆) is klt iff KV + ∆ is Q-Cartier and if for any log-
resolution π : X → V of (V, ∆), we have the numerical equivalence of Cartier
divisors:

N(KX + ∆′) ∼= π∗N(KV + ∆) +
∑

E exc.

NaEE

with aE > −1, ∆′ the proper transform of ∆ in X (same multiplicities) and N is
an integer such that N(KV + ∆) is Cartier.

Thus a variety V has only klt singularities iff (X, ∅) is klt.
Let β be a local generator of OV (N(KV + ∆)). Then βV reg can be viewed as a

meromorphic N -canonical form with a pole of order Ndi on Ei where ∆ =
∑

i diEi

is the decomposition of ∆ into prime divisors. Thus vβV reg defines a volume form
with poles on V reg; namely vβV reg is comparable to

∏
i |σi|−2didλ, where σi denotes

the canonical section of O(Ei). If vβV reg is a finite measure, then di < 1, but the
converse is not true. We have the following staightforward extension of Lemma 6.4:

Lemma 6.8. Let j′ : V −
⋃

i Ei → V be the canonical inclusion. Then j′∗vβ is a
well defined Radon measure on V iff (X, ∆) is klt.

The definition of an adapted measure for a klt pair is left to the reader.

7. Singular Kähler-Einstein metrics

7.1. Singular Ricci curvature.

The smooth case. The link between Monge-Ampère equations and Kähler-Einstein
metrics is provided by the following classical

Lemma 7.1. Let X be a complex manifold, let h be a smooth hermitian metric on
ωX and let Ω be a Kähler form such that Ωn = v(h). The Ricci curvature divided
by 2π of Ω is the Chern-Weil form −c1(KX , h).

Adapted measures and hermitian metrics on the canonical sheaf. Assume V is com-
pact with only canonical singularities and that it has index N and let hN be a
smooth hermitian metric on ω

[N ]
V . Let β be a local generator of ω

[N ]
V . Define vβ(h)

to be the volume form on V reg:

vβ(h) =
(√

−1
Nn

(−1)N n(n+1)
2

β ∧ β̄

‖β‖2
hN

) 1
N

.
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Since vβ(h) is independent of β, this expression defines an adapted measure v(h)
with C∞ density on V .

Now, let hN
sing = e−NχhN be a singular metric on ω

[N ]
V . The Chern-Weil form

c1(ωN
X , hN

sing) is then well defined as a quasi-positive current. Since hN
sing has locally

C∞+psh potentials, χ is locally bounded above and the above formula defines a
measure v(hsing) = eχv(h) on V such that v(hsing)

v(h) ∈ L∞
loc. In particular

v(hsing)
Ωn

∈ L1+ε(V, Ωn) for ε > 0 small enough.

We have c1(KX , hsing) = c1(KX , h) + ddcχ, where c1(KX , h) := 1
N c1(ωN

X , hN ).

Definition 7.2. Assume V has only canonical singularities. An adapted measure
on V is a positive Radon measure locally of the form ef .v where f is locally given
as the sum of a psh and a smooth function on V . An adapted measure has C0, resp.
Cα, resp. C∞, density if ef is C0, resp. Cα, resp. C∞.

The definition has the virtue of generalizing the usual equivalence between
smooth metrics on the canonical sheaf of a manifold and positive definite volume
forms to singular metrics and log-terminal spaces. This suggests the following:

Definition 7.3. Let V be a Q-Gorenstein Kähler normal n-dimensional complex
space with only log terminal singularities. Let Ω be a semi-Kähler current with
L∞

loc potential and adapted Monge-Ampère measure. Let h be the singular metric
on the canonical sheaf such that Ωn = v(h). We define

Ric(Ω) := −c1(KV , h),

where the equality is to be taken in the sense of currents.
Here Ω will be called a singular Kähler-Einstein metric if Ric(Ω) = cΩ for some

c ∈ R.

7.2. Singular Ricci flat metrics.

Definition 7.4. Let V be a Kähler space with only canonical singularities. The
space V is said to be Q-CY iff there is some multiple N ′ of index(X) such that
H0(V, ω

[N ′]
V ) = Cα, where α is a global generator of ω

[N ′]
V .

Theorem 7.5. Assume V is a compact Q-CY Kähler space. Let Ω be a smooth
Kähler metric on V . Then there is a unique semi-Kähler current with locally
bounded potential and adapted Monge-Ampère measure Ω′ = Ω + ddcϕ, such that

(Ω + ddcϕ)n = Cvα and sup
V

ϕ = −1,

where
∫

V
Ωn = C

∫
V

(−1)nvα.
Furthermore, if V is projective-algebraic and [Ω] ∈ NSR(V ), then Ω + ddcϕ is

smooth on V reg where it defines a bona fide Ricci flat metric.

Corollary 7.6. In each cohomology class of a smooth Kähler form, there is a
unique singular Ricci flat metric.

Proof. This follows straighforwardly from Theorems 6.3, 3.5, Lemma 6.4 and Defi-
nition 7.3. �
Example 7.7. A nodal quintic threefold is Q-CY and does not have quotient
singularities, so the orbifold method of [Kö] does not work.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



636 PHILIPPE EYSSIDIEUX, VINCENT GUEDJ, AND AHMED ZERIAHI

7.3. Singular Kähler-Einstein metrics of negative curvature.

Theorem 7.8. Let V be a general type projective algebraic variety with only canon-
ical singularities such that KV is ample. Let hN be a smooth hermitian metric on
ωN

V such that Ω = c1(KV , h) is a smooth Kähler form on V .
There is a unique ϕ ∈ L∞(V, R) such that
(1) ϕ is Ω-psh.
(2) Ω + ddcϕ is a semi-Kähler current with L∞ potentials.
(3) (Ω + ddcϕ)n = eϕv(h).

Consequently Ω+ddcϕ is the unique singular KE metric on V of negative curvature
in the canonical class of V . The current Ω + ddcϕ has locally bounded potentials
and is smooth on V reg where it defines a bona fide KE metric.

Proof. This is a consequence of Theorem 4.1, Proposition 4.4, and Definition 7.3.
�

Remark 7.9. Thanks to Theorem 5.4, for X a projective algebraic manifold of
general type such that R(X) :=

⊕
n∈N H0(X,OX(nKX)) is finitely generated, X

has a unique birational model V such that the above hypotheses hold. Thus we have
a birational map π : X ��� V which is well defined outside an indeterminacy locus
S of codimension ≤ 2. In particular π∗(ω + ddcϕ) is a closed positive current on
X−S that extends to a closed positive current T on X itself. The current T defines
a KE metric on X − S. It does not need to be a singular KE metric on X though,
since its potentials may have logarithmic poles on S, in fact algebraic singularities
of the form α log(

∑
|fi|2) + O(1), fi holomorphic and α ∈ Q>0. Moreover, T lies

in the canonical class of X iff X is a smooth minimal model as in [Ts].

Connection with [Ts]. Let X be a complex projective manifold such that KX is nef
and big. Let Ω be a smooth Kähler metric on X and consider the Kähler-Ricci flow

∂Ωt

∂t
= −Ric(Ωt) − Ωt, Ω0 = Ω.

In [Ts], it was proved that this flow has a global solution for all time t ∈ [0,∞[,
and an argument was given, recently fully completed in [TZ], to the effect that
Ωt converges to a closed positive current TKE , independent of Ω, which defines a
smooth Kähler-Einstein metric outside the exceptional divisor E of the holomorphic
bimeromorphic map X → Xcan. Its potential satisfies the Monge Ampère équation
considered in Theorem 7.8 outside E. It follows from Proposition 4.4 that the
current TKE coincides with the solution produced by Theorem 7.8.

The independant work [TZ] gives a proof of the following properties, already
conjectured by [Ts], that TKE has locally bounded potential and satisfies the de-
generate Monge-Ampère equation considered in Theorem 7.8.

Example 7.10. A nodal sextic threefold is of general type, Gorenstein, terminal, is
its own canonical model, has no smooth minimal model and does not have quotient
singularities. Therefore the orbifold method of [Kö] does not work and [Ts] does
not apply.

7.4. Singular KE metrics on klt pairs. Let us now state the immediate gener-
alization to klt pairs.

Definition 7.11. Let (V, ∆) be a klt compact Kähler pair.
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The pair (V, ∆) is said to be Q-CY iff there is some multiple N ′ of index(X, ∆)
such that

H0(V,OV (N ′(KV + ∆))) = Cα,

where α is a global generator of OV (N ′(KV + ∆)).
The pair (V, ∆) is canonically polarized iff KV + ∆ is ample.

Theorem 7.12. Let (V, ∆) be a klt compact Kähler pair.
If (V, ∆) is Q-CY, it carries a singular Ricci flat metric with adapted volume

form in any Kähler class of V , this current being smooth outside ∆∪ V sing if V is
projective and the Kähler class is rational.

If it is canonically polarized, it carries a unique singular KE metric in the coho-
mology class of KV + ∆, regular outside ∆ ∪ V sing.

Furthermore, let V o be the largest open subset of V reg such that ∆∩ V o has snc
support and multiplicities of the form 1 − 1

n with n ∈ N∗. Then, the singular KE
metric becomes smooth on the stack [V o, ∆ ∩ V o].

Proof. For regularity on the smooth locus, we need the full statement of Theorems
3.5 and 4.5, poles included. �
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C. Simpson and Y. T. Siu for inspiring remarks. We are grateful to the referee for
his penetrating remarks.

References
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