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We study families of complex Monge–Ampère equations, focusing on the case where

the cohomology classes degenerate to a nonbig class. We establish uniform a priori

L∞-estimates for the normalized solutions, generalizing the recent work of S. Kołodziej

and G. Tian. This has interesting consequences in the study of the Kähler–Ricci flow.

1 Introduction

Let π : X −→ Y be a nondegenerate holomorphic mapping between compact Kähler

manifolds such that n := dimC X ≥ m := dimCY. Let ωX and ωY be Kähler forms on X

and Y, respectively. Let F : X −→ R
+ be a real function such that F ∈ L p(X) for some

p > 1.

Set ωt := π∗(ωY) + tωX, t > 0. We consider the following family of complex Monge–

Ampère equations

{
(ωt + ddcϕt )n = cttn−m Fωn

X

maxX ϕt = 0
(�)t

Received February 28, 2008; Revised June 3, 2008; Accepted June 3, 2008

Communicated by Prof. Thomas Bloom

C© The Author 2008. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oxfordjournals.org.

 at U
niveristÃ

©
 Paul Sabatier on M

ay 17, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


2 P. Eyssidieux et al.

where ϕt is ωt-plurisubharmonic on X and ct > 0 is a constant given by

ctt
n−m

∫
X

Fωn
X =

∫
X

ωn
t .

It follows from the seminal work of Yau [16] and Kołodziej [9], that Equation

(�)t admits a unique continuous solution (see also [2] for uniqueness). (Observe that for

t ∈ ]0, 1], ωt is a Kähler form.)

Our aim here is to understand what happens when t → 0+, motivated by recent

geometrical developments [11–13]. When n = m, the cohomology class ω0 is big and

semiample and this problem has been addressed by several authors recently (see [4, 6,

14, 15]).

We focus here on the case m < n. This situation is motivated by the study of the

Kähler–Ricci flow on manifolds X of intermediate Kodaira dimension 1 ≤ kod(X) ≤ n − 1.

When n = 2 this has been studied by Song and Tian [12].

In a very recent and interesting paper [11], Kołodziej and Tian were able to show,

under a technical geometric assumption on the fibration π , that the solutions (ϕt ) are

uniformly bounded on X when t ↘ 0+.

The purpose of this note is to (re)prove this result without any technical assump-

tion and with a different method: we actually follow the strategy introduced by Kołodziej

in [9, 10] and further developed in [3, 6].

Theorem A. There exists a uniform constant M = M(p, π , ‖F‖p) > 0 such that the solu-

tions to the Monge–Ampère equations (�)t satisfy

‖ϕt‖L∞(X) ≤ M, ∀t ∈ ]0, 1].

An independent proof of Theorem A has been given in [5]. �

In [11, Theorem 2], an important application of Theorem A to convergence of the

expanding Kähler–Ricci flow is given.

Let X be a projective manifold and m a positive integer such that mKX is base

point free. Let Y be the normalization of the image of the morphism |mKX|. The morphism

π : X −→ Y is then a privileged model of the Iitaka fibration. Then, it is known [4, 14]

that the expanding Kähler–Ricci flow

{
d
dt ω(t , ·) = −Ricω(t , ·) − ω(t , ·)
ω(0, ·) = ω0

(��)
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has a global solution on X, for any fixed Kähler form ω0. It can be expressed as

ω(t , ·) = e−tω0 + (1 − e−t )π∗ωY + ddcϕ(t , ·),

where ϕ(t , ·) is a smooth family of functions on X.

Assume furthermore that Y is smooth and π has no multiple fiber. Then [11,

Theorem 2] asserts, under a technical condition, ϕ(t , ·) converges in L1-topology to π∗ϕ∞
as t → +∞, where

(1) ϕ∞ is a bounded ωY-plurisubharmonic function on Y;

(2) ϕ∞ satisfies a degenerate Monge–Ampère equation (see [12]).

The proof given in [11] is sketchy and only uses the above technical condition to

establish a special case of Theorem A. Hence Theorem A can be used to remove it. The

details—and much more—have indeed been given subsequently in the very interesting

preprint [13].

1.1 Preliminary remarks

1.1.1 Uniform control of ct

Observe that ωk
0 = 0 for m < k ≤ n, hence for all t ∈ ]0, 1],

ωn
t =

m∑
k=1

(
n

k

)
tn−kω0

k ∧ ωX
n−k.

Note that ]0, 1] � t 
−→ tm−nωn
t is increasing (hence decreases as t ↘ 0+) and satisfies for

t ∈ ]0, 1]

(
n

m

)
ωm

0 ∧ ωn−m
X∫

X ωm
0 ∧ ωn−m

X

≤ ωn
t

tn−m
∫

X ωm
0 ∧ ωn−m

X

≤ ωn
1∫

X ωm
0 ∧ ωn−m

X

. (1)

In particular, t 
−→ ct is increasing in t ∈ ]0, 1] and

0 <

(
n

m

)∫
X ωm

0 ∧ ωn−m
X∫

X Fωn
X

=: c0 ≤ ct ≤ c1.
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4 P. Eyssidieux et al.

1.1.2 Uniform control of densities

Let Jπ denote the (modulus square) of the Jacobian of the mapping π , defined through

ωm
0 ∧ ωn−m

X = Jπωn
X.

Let us rewrite Equation (�)t as follows:

(ωt + ddcϕt )
n = ftω

n
t ,

where for t ∈ ]0, 1]

0 ≤ ft := ctt
n−m F

ωn
X

ωn
t

≤ c1
F

Jπ

.

Observe that

∫
X

ftω
n
t = ctt

n−m
∫

X
Fωn

t =
∫

X
ωn

t =: Volωt (X),

hence ( ft ) is uniformly bounded in L1(ωt/Vt ), Vt := Volωt (X). We actually need a slightly

stronger information.

Lemma 1.1. There exists p′ > 1 and a constant C = C (π , ‖F‖L p(X)) > 0 such that for all

t ∈ ]0, 1]

∫
X

f p′
t ωn

t ≤ C Volωt (X).

�

Proof of the Lemma. Set Vt := Volωt = ∫
X ωn

t and observe that

0 ≤ ft
ωn

t

Vt
≤ c1 F

ωn
X∫

X ωm
0 ∧ ωn−m

X

= C2 Fωn
X,

where C2 := c1
∫

X Jπωn
X.

This shows that the densities ft are uniformly in L1 with respect to the normal-

ized volume forms ωn
t /Vt .

Since Jπ is locally given as the square of the modulus of a holomorphic function

that does not vanish identically, there exists α ∈ ]0, 1[ such that J−α
π ∈ L1(X). Fix β ∈ ]0, α[
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satisfying the condition β/p+ β/α = 1. It follows from Hölder’s inequality that

∫
X

fβ
t ωn

X ≤
(∫

X
F pωn

X

)β/p (∫
X

J−α
π ωn

X

)β/α

.

Setting ε := β/q and using Hölder’s inequality again, we obtain

∫
X

f1+ε
t

ωn
t

Vt
≤ C2

∫
X

f ε
t Fωn

X.

Now applying again Hölder inequality, we get

∫
X

f1+ε
t

ωn
t

Vt
≤ C2

(∫
X

fβ
t ωX

)1/q

‖F‖L p(X).

Therefore denoting by p′ := 1 + ε, we have the following uniform estimate:

∫
X

f p′
t

ωn
t

Vt
≤ C (π , ‖F‖L p(X)), ∀t ∈ ]0, 1],

where

C (π , ‖F‖L p(X)) := C2

(∫
X

J−α
π ωn

X

)β/αq

‖F‖1+β/q
L p(X) .

�

1.2 Uniform domination by capacity

We now show that the measure µt := ftω
n
t /Volωt are uniformly strongly dominated by

the normalized capacity Capωt
/Volωt (X). It actually follows from a careful reading of the

no-parameter proof given in [3, 6].

Lemma 1.2. There exists a constant C0 = C0(π , ‖F‖L p(ωn
X )) > 0 such that for any compact

set K ⊂ X and t ∈ ]0, 1],

µt (K) ≤ C n
0

(
Capωt

(K)

Volωt (X)

)2

.

�
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6 P. Eyssidieux et al.

Proof. Fix a compact set K ⊂ X. Set Vt := Volωt (X). Hölder’s inequality yields

µt (K) ≤
(∫

X
f p′
t

ωn
t

Vt

)1/p′ (∫
K

ωn
t

Vt

)1/q′

.

It remains to dominate uniformly the normalized volume forms ωn
t /Vt by the normalized

capacities Capωt
/Vt . Fix σ > 0 and observe that for any t ∈ ]0, 1],

∫
K

ωn
t

Vt
≤

∫
X

e−σ (VK,ωt −maxX VK,ωt ) ω
n
t

Vt
Tωt (K)σ ,

where

VK,ωt := sup{ψ ∈ P SH (X, ωt ); ψ ≤ 0, on K}

is the ωt-extremal function of K and Tωt (K) := exp(− supX VK,ωt ) is the associated ωt-

capacity of K (see [7] for their properties).

Observe that ωn
t /Vt ≤ c1ω

n
1 and ωt ≤ ω1, hence the family of functions VK,ωt −

maxX VK,ωt is a normalized family of ω1-psh functions. Thus there exists σ > 0, which

depends only on (X, ω1) and a constant B = B(σ , X, ω1) such that ([17])

∫
X

e−σ (VK,ωt −maxX VK,ωt ) ω
n
t

Vt
≤ B, ∀t ∈ ]0, 1].

The Alexander–Taylor comparison theorem (see Theorem 7.1 in [7]) now yields for a

constant C3 = C3(π , ‖F‖L p(X))

µt (K) ≤ C3 exp

[
−σ

(
Vt

Capωt
(K)

)1/n
]

, ∀t ∈ ]0, 1].

We infer that there is a constant C4 = C4(π , ‖F‖L p(X)) such that

µt (K) ≤ C4

(
Capωt

(K)

Vt

)2

, ∀t ∈ ]0, 1]. (2)

�
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1.3 Uniform normalization

The comparison principle (see [10]) yields for any s > 0 and τ ∈ [0, 1]

τn Capωt
({ϕt ≤ −s − τ })

Vt
≤

∫
{ϕt ≤−s}

(ωt + ddcϕt )n

Vt
.

It is now an exercise to derive from this inequality an a priori L∞-estimate,

‖ϕt‖L∞(X) ≤ C5 + s0(ωt ),

where s0(ωt ) (see [3, 6]) is the smallest number s > 0 satisfying the condition

enC n
0 Capωt

({ψ ≤ −s})/Vt ≤ 1 for all ψ ∈ P SH (X, ωt ) such that supX ψ = 0. Recall from ([7],

Proposition 3.6) that

Capωt
({ψ ≤ −s − τ })

Vt
≤ 1

s

(∫
X
(−ψ )

ωn
t

Vt
+ n

)
.

Since ωn
t

Vt
≤ C1ω

n
1 , it follows that

Capωt
({ψ ≤ −s − τ })

Vt
≤ 1

s

(
C1

∫
X
(−ψ )ωn

1 + n
)

.

Since ψ is ω1-psh and normalized, we know that there is a constant A = A(X, ω1) > 0 such

that C1
∫

X(−ψ )ωn
1 ≤ A for any such ψ . Therefore s0(ωt ) ≤ s0 := enC n

0 (A+ n) for any t ∈ ]0, 1].

Finally, we obtain the required uniform estimate for all t ∈ ]0, 1].
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