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Geometric motivation

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension n ≥ 1. Fix ω0

a Kähler form and consider the Kähler-Ricci flow{
∂ω
∂t = −Ric(ω)
ω|t=0 = ω0

This flow admits a unique solution ω = ω(t, x) = ωt(x) on a maximal
domain [0,Tmax [×X , where

Tmax = sup{t > 0 ; {ω0} − tc1(X ) is Kähler }.
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. . . . . .

Geometric motivation

An ambitious program

A natural and difficult problem is to understand the asymptotic behavior
of ωt as t → Tmax . Ideally one would like to

show that (X , ωt) converges to a midly singular Kähler variety
(X1, S1) equipped with a singular Kähler current S1;

try and restart the KRF on X1 with initial data S1;

repeat finitely many times to reach a minimal model Xr ;

study the long term behavior of the NKRF (KXr is nef),{
∂ω
∂t = −Ric(ω)− ωt

ω|t=0 = Sr

and show that (Xr , ωt) converges to a canonical model (Xcan, ωcan).
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Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (Song-Weinkove [2013]).

Program however largely open in dimension ≥ 3.

Many difficulties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
Define and study the KRF on mildly singular varieties.
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Geometric motivation

Mild singularities

Singularities showing up in the Minimal Model Program

Sufficient for our purpose to deal with canonical singularities

An example

n∑
j=0

z2j = 0 ←→ the ordinary double point.

This is not a quotient singularity if n ≥ 3.
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. . . . . .

Parabolic scalar equations

Complex Monge-Ampère flows

Solving the (normalized) Kähler-Ricci flow is equivalent to solving

(CMAF ) (ωt + ddcφt)
n = eφ̇t+αφt+h(t,x)eψ(x)dV (x),

t 7→ ωt(x) continuous family of semi-positive closed (1, 1)-forms;

(t, x) 7→ h(t, x) is continuous on [0,T [×X ;

α ≥ 0 so that the RHS is non-decreasing in φ;

ψ is quasi-psh and continuous (i.e. eψ is continuous),

and (t, x) 7→ φ(t, x) = φt(x) is the unknown function.
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. . . . . .

Parabolic scalar equations

Degeneracies

We work on a smooth manifold Y , obtained by desingularizing the original
variety: if π : Y → X denotes a resolution of singularities, then

ωt = π∗θt are pull-backs of Kähler forms hence no longer Kähler;

the RHS vanishes along the exceptional divisor, e.g.

eψ =
N∏
j=1

|sj |2h ←→ canonical singularities.
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Parabolic scalar equations

Existence result

We always assume that

∃θ semi-positive and big s.t. θ ≤ ωt for all t;

∃ε ∈ C1 with ε(0) = 0 s.t. ωs(1− ε(t − s)) ≤ ωt .

.
Theorem
..

.

. ..

.

.

If φ0 is an arbitrary continuous ω0-psh function, there exists a unique
viscosity solution (t, x) 7→ φt(x) of (CMAF) with initial value φ0.
The function φt is the upper envelope of viscosity subsolutions. In
particular x 7→ φt(x) is ωt-plurisubharmonic for all t ≥ 0.
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Parabolic scalar equations

Convergence result

The plan now is to

define the notions of viscosity sub/super/solutions;

explain the strategy of the proof (comparison principle);

explain how this method produces convergence results such as:

.
Theorem
..

.

. ..

.

.

On a Q-Calabi-Yau variety (canonical singularities), the KRF continuously
deforms any Kähler current S0 to the unique KE current in {S0}.
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. . . . . .

Parabolic scalar equations

Classical sub/super/solutions

.
Definition
..

.

. ..

.

.

A function φ ∈ C1,2 is a classical subsolution of (CMAF) if for all t ≥ 0
x 7→ φt(x) is ωt-psh and

(ωt + ddcφt)
n ≥ eφ̇t+αφt+h(t,x)eψ(x)dV (x)

A function φ ∈ C1,2 is a classical supersolution of (CMAF) if

(ωt + ddcφt)
n
+ ≤ eφ̇t+αφt+h(t,x)eψ(x)dV (x)

Here θ+(x) = θ(x) if θ(x) ≥ 0 and θ+(x) = 0 otherwise.
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.
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A function φ ∈ C1,2 is a classical supersolution of (CMAF) if

(ωt + ddcφt)
n
+ ≤ eφ̇t+αφt+h(t,x)eψ(x)dV (x)

A classical solution is both a subsolution and a supersolution.

Here θ+(x) = θ(x) if θ(x) ≥ 0 and θ+(x) = 0 otherwise.

PROBLEM: classical solutions usually do not exist !
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. . . . . .

Parabolic scalar equations

Viscosity subsolutions

.
Definition
..

.

. ..

.

.

Given u : XT := (0,T )× X → R an u.s.c. bounded function and
(t0, x0) ∈ XT , q is a differential test form above for u at (t0, x0) if

q ∈ C1,2 in a small neighborhood V0 of (t0, x0);

u ≤ q in V0 and u(t0, x0) = q(t0, x0).

.
Definition
..

.

. ..

.

.

An u.s.c. bounded function u : XT → R is a viscosity subsolution of
(CMAF) if for all (t0, x0) ∈ XT and all differential test q from above,

(ωt0(x0) + ddcqt0(x0))
n ≥ e q̇t0 (x0)+αqt0 (x0)+h(t0,x0)eψ(x0)dV (x0).
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q ∈ C1,2 in a small neighborhood V0 of (t0, x0);

u ≤ q in V0 and u(t0, x0) = q(t0, x0).

.
Definition
..

.

. ..

.

.

An u.s.c. bounded function u : XT → R is a viscosity subsolution of
(CMAF) if for all (t0, x0) ∈ XT and all differential test q from above,

(ωt0(x0) + ddcqt0(x0))
n ≥ e q̇t0 (x0)+αqt0 (x0)+h(t0,x0)eψ(x0)dV (x0).
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Parabolic scalar equations

Viscosity super/solutions

.
Definition
..

.

. ..

.

.

A l.s.c. bounded function v : XT → R is a viscosity supersolution of
(CMAF) if for all (t0, x0) ∈ XT and all differential test q from below,

(ωt0(x0) + ddcqt0(x0))
n
+ ≤ e q̇t0 (x0)+αqt0 (x0)+h(t0,x0)eψ(x0)dV (x0).

.
Definition
..

.

. ..

.

.

A viscosity solution of (CMAF) is a continuous function which is both a
viscosity subsolution and a viscosity supersolution.
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. . . . . .

Parabolic scalar equations

Basic facts

Assume u (resp. v) is C1,2-smooth. It is a viscosity subsolution (resp.
supersolution) iff it is a classical subsolution (resp. supersolution).

If u1, u2 are viscosity subsolutions, then so is max(u1, u2).

If (uα)α∈A is a loc. unif. bdd above family of subsolutions, then

φ := (sup{uα, α ∈ A})∗ is a subsolution.

If u is a subsolution of (CMAF )µ, where µ := eh+ψdV , then it is also
a subsolution of (CMAF )ν for all 0 ≤ ν ≤ µ.
u is a subsolution of (CMAF )0 iff x 7→ φt(x) is ωt-psh ∀t ≥ 0.
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. . . . . .

Parabolic scalar equations

Supconvolution

In the definition of differential tests, one can use functions that are
merely Lipschitz in t and k-convex (resp. k-concave) in x .

Set A = 2OscX (u). If u is a subsolution of (CMAF )fdV , then

uε(t, x) = sup{u(s, x)− ε−1|t − s|; |t − s| < Aε}

decreases to u and is a subsolution of (CMAF )fεdV , where

fε(t, x) = inf{f (t, x); |t − s| < Aε}.

One can also use sup-convolutions in space locally, considering

uε(t, x) = sup{u(s, x)− ε−2||x − y ||2; |x − y | < Aε}

and obtain similar information.
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. . . . . .

Sketch of proof of the existence result

Step 1: Construction of subsolutions

We first show that there exists a bounded subsolution to the Cauchy
problem, i.e. a viscosity subsolution which satisfies u0 ≤ φ0.

Use θ ≤ ωt and solve (θ + ddcρ)n = ecdV , with ρ θ-psh and C0.
Possible by [EGZ, CPAM 2011]=continuous Calabi conjecture.

Unique solution up to an additive constant, can impose ρ ≤ φ0.

The function u(t, x) = ρ(x)− At does the job if A >> 1.
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. . . . . .

Sketch of proof of the existence result

Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.

Assume wlog that ωt ≤ Θ =Kähler form.

Solve (Θ + ddcρ2)
n = ec

′+ψdV , with ρ2 Θ-psh and C0.
OK by [Kolodziej, Acta Math 98]=extension of [Yau, CPAM 78]

Unique solution up to an additive constant, can assume ρ2 ≥ φ0.

The function v(t, x) = ρ2(x) + At does the job if A >> 1.
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. . . . . .

Sketch of proof of the existence result

Step 3: The comparison principle

The most difficult result here is the following maximum principle:

.
Theorem
..

.

. ..

.

.

Assume u is a subsolution to the Cauchy problem and
v is a supersolution to the Cauchy problem.

Then u0 ≤ v0 =⇒ ut ≤ vt for all t > 0.

Observe that this already implies uniqueness of solutions.
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. . . . . .

Sketch of proof of the existence result

Step 4: Construction of barriers

Consider
φ := sup{u ; u subsolution};

this family is non-empty and bounded from above by Steps 1-3;

thus φ∗ is a subsolution (of the equation, cf basic facts);

Easy exercise: φ∗ is a supersolution (of the equation);

Construct barriers to insure that φ∗ ≤ φ0 and φ∗ ≥ φ0 at time zero.

It follows then from Step 3 that

φ = φ∗ = φ∗ is the solution.
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. . . . . .

Convergence of the normalized Kähler-Ricci flow

Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kähler space with
canonical singularities s.t. KX is a Q-line bundle with mKX ∼ 0, m ≥ 1.

Fix θ0 a Kähler form on X . It follows from [EGZ, JAMS 2009] that
there exists a unique Ricci-flat current TKE cohomologous to θ0.

TKE =honest Kähler form s.t. Ric(TKE) = 0 in X reg .

The current TKE = θ0 + ddcφKE is constructed by solving

(θ0 + ddcφKE )
n = µcan,

where the θ0-psh function φKE is normalized by
∫
X φKE dµcan = 0.

Alternatively one can work on a desingularization π : Y → X with

(π∗θ0 + ddcφKE ◦ π)n = π∗µcan = eψcandV .
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(π∗θ0 + ddcφKE ◦ π)n = π∗µcan = eψcandV .
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. . . . . .

Convergence of the normalized Kähler-Ricci flow

The Kähler-Ricci flow

The Kähler-Ricci flow can be written as

(ω0 + ddcφt)
n = eφ̇t+ψcandV .

It is a particular case of the (CMAF) we have considered, with

T = +∞, h ≡ 0,

ωt ≡ ω0 = π∗θ0 is independent of time;

.
Theorem
..
.
. ..

.

.

The functions φt uniformly converge, as t → +∞, to φKE ◦ π.
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. . . . . .

Convergence of the normalized Kähler-Ricci flow

The proof

We consider a perturbation of the flow: for ε > 0,

(ω0 + ddcφεt )
n = eφ̇

ε
t+εφ

ε
t+ψcandV ,

with the same intial data φεt |t=0 = φ0.

We consider the solution ψε of the corresponding static equation

(ω0 + ddcψε)n = eεψ
ε+ψcandV .

Standard viscosity fact: φεt uniformly converge to φt as ε↘ 0.

Pluripotential stability: ψε uniformly converges to φKE ◦ π as ε↘ 0.
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. . . . . .

Convergence of the normalized Kähler-Ricci flow

The proof

Fix C > 0 such that ψε − C ≤ φ0 ≤ ψε + C .

Then uε−(t, x) := ψε(x)−Ce−εt =subsolution to the Cauchy problem;

while uε+(t, x) := ψε(x) + Ce−εt =supersol. to the Cauchy problem;

It follows from the comparison principle that

ψε(x)− Ce−εt ≤ φt(x) ≤ ψε(x) + Ce−εt .

The proof is complete.
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Convergence of the normalized Kähler-Ricci flow

The end

Thank you for your attention !
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