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Studying the Kahler-Ricci flow

Let X be a compact Kahler manifold of complex dimension n > 1. Fix wg
a Kahler form and consider the Kahler-Ricci flow

O .
{ % = —Ric(w)
Wit=0 = Wo
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Studying the Kahler-Ricci flow

Let X be a compact Kahler manifold of complex dimension n > 1. Fix wg
a Kahler form and consider the Kahler-Ricci flow

O .
{ % = —Ric(w)
Wit=0 = Wo

This flow admits a unique solution w = w(t, x) = w¢(x) on a maximal
domain [0, Tpax[x X, where

Tmax = sup{t > 0; {wo} — tcr(X) is Kahler }.
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An ambitious program

A natural and difficult problem is to understand the asymptotic behavior
of wt as t = Tax. ldeally one would like to
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(X1, S1) equipped with a singular Kdhler current Sq;
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@ show that (X,w;) converges to a midly singular Kahler variety
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An ambitious program

A natural and difficult problem is to understand the asymptotic behavior
of wt as t = Tax. ldeally one would like to

@ show that (X,w;) converges to a midly singular Kahler variety
(X1, S1) equipped with a singular Kdhler current Sq;

@ try and restart the KRF on X; with initial data Sy;
@ repeat finitely many times to reach a minimal model X;;
@ study the long term behavior of the NKRF (K, is nef),

{ %—“t’ = —Ric(w) — wy
Wit=0 = Sr

and show that (X;,w;) converges to a canonical model (Xcan, wean)-
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Geometric motivation

Known results

@ Program achieved in dimension one, Hamilton [1986] & Chow [1991].
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Program however largely open in dimension > 3.

Many difficulties to overcome, among them

o Degenerate initial data (K3hler current rather than a Kahler form).
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Geometric motivation

Known results

@ Program achieved in dimension one, Hamilton [1986] & Chow [1991].
@ More or less complete in dimension two (Song-Weinkove [2013]).

@ Program however largely open in dimension > 3.

@ Many difficulties to overcome, among them

o Degenerate initial data (K3hler current rather than a Kahler form).
e Define and study the KRF on mildly singular varieties.
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Mild singularities

@ Singularities showing up in the Minimal Model Program
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@ Sufficient for our purpose to deal with canonical singularities
@ An example

2

zj =0 <— the ordinary double point.

j=0
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Mild singularities

@ Singularities showing up in the Minimal Model Program
@ Sufficient for our purpose to deal with canonical singularities
@ An example

2

zj =0 <— the ordinary double point.

j=0

@ This is not a quotient singularity if n > 3.
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Complex Monge-Ampere flows

Solving the (normalized) Kahler-Ricci flow is equivalent to solving

(CMAF) (wt + ddcgpt)n _ egbr-i—o&ﬁr-&-h(t,x)ellﬁ(x)d\/(x)7
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Complex Monge-Ampere flows

Solving the (normalized) Kahler-Ricci flow is equivalent to solving
(CMAF) (wt + ddCQOt)n — esbt-i-OtSOt-‘rh(t,X)ellﬁ(x)d\/(x)7
@ t > we(x) continuous family of semi-positive closed (1, 1)-forms;

e (t,x) — h(t,x) is continuous on [0, T[xX;
@ « > 0 so that the RHS is non-decreasing in ¢;
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Complex Monge-Ampere flows

Solving the (normalized) Kahler-Ricci flow is equivalent to solving
(CMAF) (wt + ddCQOt)n — esbt-i-(JtSOt-‘rh(t,X)ellﬁ(x)d\/(x)7
t — w(x) continuous family of semi-positive closed (1,1)-forms;

(t,x) — h(t,x) is continuous on [0, T[xX;
a > 0 so that the RHS is non-decreasing in ¢;

v is quasi-psh and continuous (i.e. e¥ is continuous),

and (t,x) — ¢(t, x) = p¢(x) is the unknown function.
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Degeneracies

We work on a smooth manifold Y/, obtained by desingularizing the original
variety: if m: Y — X denotes a resolution of singularities, then
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Degeneracies

We work on a smooth manifold Y/, obtained by desingularizing the original
variety: if m: Y — X denotes a resolution of singularities, then

@ wy = m*0; are pull-backs of Kahler forms hence no longer Kahler;

o the RHS vanishes along the exceptional divisor, e.g.

N
eV = H |s;|# <— canonical singularities.
J=1
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Existence result

We always assume that

@ 16 semi-positive and big s.t. 6 < w; for all t;
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Existence result

We always assume that
@ 16 semi-positive and big s.t. 6 < w; for all t;
o Je € C! with £(0) = 0 s.t. we(l —&(t —s)) < w.

If @o is an arbitrary continuous wg-psh function, there exists a unique
viscosity solution (t,x) — ¢¢(x) of (CMAF) with initial value ¢g.
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Parabolic scalar equations

Existence result

We always assume that
@ 16 semi-positive and big s.t. 6 < w; for all t;

o Je € C! with £(0) = 0 s.t. we(l —&(t —s)) < w.

If @o is an arbitrary continuous wg-psh function, there exists a unique
viscosity solution (t,x) — ¢¢(x) of (CMAF) with initial value ¢g.
The function p; is the upper envelope of viscosity subsolutions. In
particular x — ¢¢(x) is we-plurisubharmonic for all t > 0.
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Convergence result

The plan now is to

@ define the notions of viscosity sub/super/solutions;
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Convergence result

The plan now is to
@ define the notions of viscosity sub/super/solutions;
@ explain the strategy of the proof (comparison principle);

@ explain how this method produces convergence results such as:

On a Q-Calabi-Yau variety (canonical singularities), the KRF continuously
deforms any Kahler current Sy to the unique KE current in {Sp}.
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Classical sub/super/solutions

A function ¢ € C1? is a classical subsolution of (CMAF) if for all t > 0
x = @¢(x) is we-psh and

(we + dd ;)" > eProeeth(t0 ) gy (x)
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Parabolic scalar equations

Classical sub/super/solutions

A function ¢ € C1? is a classical subsolution of (CMAF) if for all t > 0
X = p¢(x) is we-psh and

(we + ddCp;)" > efrtarith(tx)g¥(x) gy/(x)
A function ¢ € C12 is a classical supersolution of (CMAF) if

(we + dd ;)] < ePetaeeth(tev() gy (x)

Here 64 (x) = 6(x) if 8(x) > 0 and 6, (x) = 0 otherwise.
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Classical sub/super/solutions

A function ¢ € C1? is a classical subsolution of (CMAF) if for all t > 0
X — p¢(x) is we-psh and

(e + ddipe)" > ePrHawcHhlen) b g\ (x)
A function ¢ € C1?2 is a classical supersolution of (CMAF) if

(Wt + ddCSOt)gr < e<,b:+agot+h(t,x)ew(x)dv(x)

A classical solution /s both a subsolution and a supersolution.

Here 0. (x) = 6(x) if 8(x) > 0 and 6, (x) = 0 otherwise.
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Classical sub/super/solutions

A function ¢ € C1? is a classical subsolution of (CMAF) if for all t > 0
X — p¢(x) is we-psh and

(e + ddipe)" > ePrHawcHhlen) b g\ (x)
A function ¢ € C1?2 is a classical supersolution of (CMAF) if

(Wt + ddCSOt)gr < e<,b:+agot+h(t,x)ew(x)dv(x)

A classical solution /s both a subsolution and a supersolution.

Here 0. (x) = 6(x) if 8(x) > 0 and 6, (x) = 0 otherwise.

PROBLEM: classical solutions usually do not exist !
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Viscosity subsolutions

Given u: X7 :=(0,T) x X — R an u.s.c. bounded function and
(to, x0) € X1, q is a differential test form above for u at (ty, xo) if
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(to, x0) € X1, q is a differential test form above for u at (ty, xo) if
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Viscosity subsolutions

Definition

Given u: X7 :=(0,T) x X — R an u.s.c. bounded function and
(to,x0) € X1, q is a differential test form above for u at (to, xo) if

e g € C%? in a small neighborhood Vj of (to, xo);
e u<gqin Vy and u(ty,x0) = q(to, o).

Definition

| \

An u.s.c. bounded function u : Xt — R is a viscosity subsolution of
(CMAF) if for all (to, x0) € Xt and all differential test q from above,

(wiy(x0) + ddqe,(x0))" > ei‘lto(Xo)+ozqto(Xo)+h(to7X0)ew(xo)d\/(XO).
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Viscosity super/solutions

Definition

A Is.c. bounded function v : Xt — R is a viscosity supersolution of
(CMAF) if for all (to, x0) € Xt and all differential test q from below,

(wiy (x0) + dd°qs (x0))". < e(-lto(XO)'i‘Otho(X0)+h(t0,X0)e’¢'(Xo)dv(xo).
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Viscosity super/solutions

Definition

A Is.c. bounded function v : Xt — R is a viscosity supersolution of
(CMAF) if for all (to,x0) € X1 and all differential test q from below,

(wi(x0) + dd gz, (x0)) < efho(Xo)+aqto(Xo)+h(t0,xo)ew(xo)d\/(XO).

Definition

| A\

A viscosity solution of (CMAF) is a continuous function which is both a
viscosity subsolution and a viscosity supersolution.

.
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Basic facts

@ Assume u (resp. v) is C1?-smooth. It is a viscosity subsolution (resp.
supersolution) iff it is a classical subsolution (resp. supersolution).
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Parabolic scalar equations

Basic facts

@ Assume u (resp. v) is C1?-smooth. It is a viscosity subsolution (resp.
supersolution) iff it is a classical subsolution (resp. supersolution).

@ If uy, up are viscosity subsolutions, then so is max(u1, up).

@ If (uq)aca is a loc. unif. bdd above family of subsolutions, then

¢ = (sup{ua, a € A})* is a subsolution.
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Basic facts

@ Assume u (resp. v) is C1?-smooth. It is a viscosity subsolution (resp.
supersolution) iff it is a classical subsolution (resp. supersolution).

@ If uy, up are viscosity subsolutions, then so is max(u1, up).

@ If (uq)aca is a loc. unif. bdd above family of subsolutions, then
¢ = (sup{ua, a € A})* is a subsolution.

o If uis a subsolution of (CMAF),, where p := e"T¥dV, then it is also
a subsolution of (CMAF), for all 0 < v < p.
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Basic facts

@ Assume u (resp. v) is C1?-smooth. It is a viscosity subsolution (resp.
supersolution) iff it is a classical subsolution (resp. supersolution).

@ If uy, up are viscosity subsolutions, then so is max(u1, up).

@ If (uq)aca is a loc. unif. bdd above family of subsolutions, then
¢ = (sup{ua, a € A})* is a subsolution.

o If uis a subsolution of (CMAF),, where p := e"T¥dV, then it is also
a subsolution of (CMAF), for all 0 < v < p.

@ u is a subsolution of (CMAF)g iff x — ¢¢(x) is we-psh Vt > 0.
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Parabolic scalar equations

Supconvolution

@ In the definition of differential tests, one can use functions that are
merely Lipschitz in ¢t and k-convex (resp. k-concave) in x.
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Parabolic scalar equations

Supconvolution

@ In the definition of differential tests, one can use functions that are
merely Lipschitz in ¢t and k-convex (resp. k-concave) in x.

@ Set A= 20scx(u). If uis a subsolution of (CMAF )¢y, then

ue(t,x) = sup{u(s,x) — et —s|; |t —s| < Ae}
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Parabolic scalar equations

Supconvolution

@ In the definition of differential tests, one can use functions that are
merely Lipschitz in ¢t and k-convex (resp. k-concave) in x.

@ Set A= 20scx(u). If uis a subsolution of (CMAF )¢y, then
ue(t,x) = sup{u(s,x) — et —s|; |t —s| < Ae}
decreases to u and is a subsolution of (CMAF )¢ 4y, where

f-(t,x) = inf{f(t,x); |t —s| < Ae}.
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Supconvolution

@ In the definition of differential tests, one can use functions that are
merely Lipschitz in ¢t and k-convex (resp. k-concave) in x.

@ Set A= 20scx(u). If uis a subsolution of (CMAF )¢y, then
ue(t,x) = sup{u(s,x) — et —s|; |t —s| < Ae}
decreases to u and is a subsolution of (CMAF )¢ 4y, where
f(t,x) = inf{f(t,x); |t —s| < Ac}.
@ One can also use sup-convolutions in space locally, considering
u*(t,x) = sup{u(s, x) — e 2[[x — y[I%; [x — y| < Ac}
and obtain similar information.
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Step 1: Construction of subsolutions

We first show that there exists a bounded subsolution to the Cauchy
problem, i.e. a viscosity subsolution which satisfies ug < (.
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e Use 6 < w; and solve (6 + dd°p)" = e°dV/, with p 6-psh and C°.
@ Possible by [EGZ, CPAM 2011]=continuous Calabi conjecture.

@ Unique solution up to an additive constant, can impose p < ¢g.
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Step 1: Construction of subsolutions

We first show that there exists a bounded subsolution to the Cauchy
problem, i.e. a viscosity subsolution which satisfies ug < (.

e Use 6 < w; and solve (6 + dd°p)" = e°dV/, with p 6-psh and C°.
@ Possible by [EGZ, CPAM 2011]=continuous Calabi conjecture.

@ Unique solution up to an additive constant, can impose p < ¢g.
@ The function u(t,x) = p(x) — At does the job if A >> 1.
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Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.
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Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.

@ Assume wlog that w; < © =Kahler form.
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Step 2: Construction of supersolutions
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Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.

@ Assume wlog that w; < © =Kahler form.
@ Solve (© + ddpy)" = e“+¥dV, with py ©-psh and C°.
e OK by [Kolodziej, Acta Math 98]=extension of [Yau, CPAM 78]
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Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.

@ Assume wlog that w; < © =Kahler form.
@ Solve (© + ddpy)" = e“+¥dV, with py ©-psh and C°.
e OK by [Kolodziej, Acta Math 98]=extension of [Yau, CPAM 78]

@ Unique solution up to an additive constant, can assume p2 > .
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Step 2: Construction of supersolutions

Show similarly the existence of a bdd supersolution to the Cauchy problem.
@ Assume wlog that w; < © =Kahler form.
@ Solve (© + ddpy)" = e“+¥dV, with py ©-psh and C°.
e OK by [Kolodziej, Acta Math 98]=extension of [Yau, CPAM 78]
@ Unique solution up to an additive constant, can assume p2 > .
@ The function v(t,x) = pa(x) + At does the job if A >> 1.
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Step 3: The comparison principle

The most difficult result here is the following maximum principle:
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Assume u is a subsolution to the Cauchy problem and
v is a supersolution to the Cauchy problem.
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Step 3: The comparison principle

The most difficult result here is the following maximum principle:

Assume u is a subsolution to the Cauchy problem and
v is a supersolution to the Cauchy problem.
Then ug < vg = uy < v; for all t > 0.
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Step 3: The comparison principle

The most difficult result here is the following maximum principle:

Assume u is a subsolution to the Cauchy problem and
v is a supersolution to the Cauchy problem.
Then ug < vg = uy < v; for all t > 0.

Observe that this already implies uniqueness of solutions.
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Step 4: Construction of barriers

Consider
¢ :=sup{u; u subsolution};
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Step 4: Construction of barriers

Consider
¢ :=sup{u; u subsolution};

@ this family is non-empty and bounded from above by Steps 1-3;
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¢ :=sup{u; u subsolution};

@ this family is non-empty and bounded from above by Steps 1-3;

@ thus ™ is a subsolution (of the equation, cf basic facts);
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Step 4: Construction of barriers

Consider
¢ :=sup{u; u subsolution};

@ this family is non-empty and bounded from above by Steps 1-3;
@ thus ™ is a subsolution (of the equation, cf basic facts);

e Easy exercise: @, is a supersolution (of the equation);
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Step 4: Construction of barriers

Consider
¢ :=sup{u; u subsolution};

@ this family is non-empty and bounded from above by Steps 1-3;
@ thus ™ is a subsolution (of the equation, cf basic facts);
e Easy exercise: @, is a supersolution (of the equation);

o Construct barriers to insure that ¢* < ¢ and @, > o at time zero.
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Step 4: Construction of barriers

Consider
¢ :=sup{u; u subsolution};

@ this family is non-empty and bounded from above by Steps 1-3;
@ thus ™ is a subsolution (of the equation, cf basic facts);
e Easy exercise: @, is a supersolution (of the equation);

o Construct barriers to insure that ¢* < ¢ and @, > o at time zero.

It follows then from Step 3 that

© = ¥ = p, is the solution.
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Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kahler space with
canonical singularities s.t. Kx is a Q-line bundle with mKx ~ 0, m > 1.
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Convergence of the normalized Kahler-Ricci flow

Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kahler space with
canonical singularities s.t. Kx is a Q-line bundle with mKx ~ 0, m > 1.

e Fix 0y a Kahler form on X. It follows from [EGZ, JAMS 2009] that
there exists a unique Ricci-flat current Txg cohomologous to 6.
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Convergence of the normalized Kahler-Ricci flow

Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kahler space with
canonical singularities s.t. Kx is a Q-line bundle with mKx ~ 0, m > 1.

e Fix 0y a Kahler form on X. It follows from [EGZ, JAMS 2009] that
there exists a unique Ricci-flat current Txg cohomologous to 6.

o Tkg =honest Kahler form s.t. Ric(Tkg) =0 in X",
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Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kahler space with
canonical singularities s.t. Kx is a Q-line bundle with mKx ~ 0, m > 1.

e Fix 0y a Kahler form on X. It follows from [EGZ, JAMS 2009] that
there exists a unique Ricci-flat current Txg cohomologous to 6.

@ Txe =honest Kahler form s.t. Ric(Tkg) =0 in X"&.
@ The current Txe = 09 + ddpkg is constructed by solving

(00 + ddCSDKE)n = HMcan,

where the 6y-psh function pkg is normalized by fx ke dptcan = 0.
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Ricci-flat currents

Let X be a Q-Calabi-Yau variety, i.e. a compact Kahler space with
canonical singularities s.t. Kx is a Q-line bundle with mKx ~ 0, m > 1.

e Fix 0y a Kahler form on X. It follows from [EGZ, JAMS 2009] that
there exists a unique Ricci-flat current Txg cohomologous to 6.

@ Txe =honest Kahler form s.t. Ric(Tkg) =0 in X"&.
@ The current Txe = 09 + ddpkg is constructed by solving

(90 + ddC(PKE)n = HMcan,

where the 6y-psh function pkg is normalized by fx ke dptcan = 0.
o Alternatively one can work on a desingularization 7 : Y — X with

(7-‘-*00 + ddchKE ¢} 7T)n = '/T*Mcan — e"/’candv.
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The Kahler-Ricci flow

The Kahler-Ricci flow can be written as

(wo + ddp;)" = ePtH¥eangy
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(wo + dd€p;)" = ePrivangy,

It is a particular case of the (CMAF) we have considered, with

e T =+o0, h=0,

Vincent Guedj (IUF & IMT) Weak complex Monge-Ampere flows May 11, 2015 21 /24



The Kahler-Ricci flow

The Kahler-Ricci flow can be written as

(wo + ddp;)" = ePtH¥eangy

It is a particular case of the (CMAF) we have considered, with
@ T =+o0, h=0,
@ Wt =

wo = w0y is independent of time;
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The Kahler-Ricci flow

The Kahler-Ricci flow can be written as
(wo + dd€p;)" = ePrivangy,

It is a particular case of the (CMAF) we have considered, with

e T =+o0, h=0,
@ w; = wg = ¥y is independent of time;

The functions p; uniformly converge, as t — +00, to wkg o .

May 11, 2015 21 /24
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The proof

@ We consider a perturbation of the flow: for € > 0,
(wo + ddp5)" = efitevitvan gy

with the same intial data gpi‘t:o = ©0.
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The proof

@ We consider a perturbation of the flow: for € > 0,
(wo + ddp5)" = efitevitvan gy

with the same intial data gpi‘t:o = ©0.

@ We consider the solution ¢ of the corresponding static equation

(wo + dd“¢f)" = e HVarqV.
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The proof

@ We consider a perturbation of the flow: for € > 0,
(wo + ddp5)" = efitevitvan gy

with the same intial data @?\t:o = ©0.

@ We consider the solution ¢ of the corresponding static equation
(wo + dd“¢f)" = e HVarqV.

e Standard viscosity fact: ¢§ uniformly converge to ¢ as ¢ N\ 0.
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The proof

@ We consider a perturbation of the flow: for € > 0,
(wo + ddp5)" = efitevitvan gy

with the same intial data @?\t:o = ©0.

@ We consider the solution ¢ of the corresponding static equation
(wo + dd“¢f)" = e HVarqV.

e Standard viscosity fact: ¢§ uniformly converge to ¢ as ¢ N\ 0.

@ Pluripotential stability: ¢° uniformly converges to kg o7 as € N\, 0.
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The proof

@ Fix C > 0 such that y* — C < ¢p < 9° + C.
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The proof

@ Fix C > 0 such that y* — C < ¢p < 9° + C.
@ Then v (t,x) := ¢°(x) — Ce~c* =subsolution to the Cauchy problem;
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The proof

@ Fix C > 0 such that y* — C < ¢p < 9° + C.
@ Then v (t,x) := ¢°(x) — Ce~c* =subsolution to the Cauchy problem;
e while uS (t,x) :=1°(x) + Ce =" =supersol. to the Cauchy problem;
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The proof

@ Fix C > 0 such that y* — C < ¢p < 9° + C.
@ Then v (t,x) := ¢°(x) — Ce~c* =subsolution to the Cauchy problem;
e while uS (t,x) :=1°(x) + Ce =" =supersol. to the Cauchy problem;

o |t follows from the comparison principle that

P(x) — Ce " < e(x) < Y°(x) + Ce c*.
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The proof

@ Fix C > 0 such that y* — C < ¢p < 9° + C.
@ Then v (t,x) := ¢°(x) — Ce~c* =subsolution to the Cauchy problem;
e while uS (t,x) :=1°(x) + Ce =" =supersol. to the Cauchy problem;

o |t follows from the comparison principle that
P(x) — Ce " < e(x) < Y°(x) + Ce c*.

The proof is complete.
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The end

Thank you for your attention !
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