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Pluripotential Kähler–Ricci flows
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We develop a parabolic pluripotential theory on compact Kähler manifolds, defin-
ing and studying weak solutions to degenerate parabolic complex Monge–Ampère
equations. We provide a parabolic analogue of the celebrated Bedford–Taylor theory
and apply it to the study of the Kähler–Ricci flow on varieties with log terminal
singularities.
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Introduction

The Ricci flow, first introduced by Hamilton [24], is the equation

@

@t
gij D�2Rij ;

evolving a Riemannian metric by its Ricci curvature. If the Ricci flow starts from a
Kähler metric — the underlying Riemannian manifold being complex Kähler — the
evolving metrics remain Kähler and the resulting PDE is called the Kähler–Ricci flow.

After the spectacular use of the Ricci flow by Perelman to settle the Poincaré and
geometrization conjectures, it is expected that the Kähler–Ricci flow can be used
similarly to give a geometric classification of complex algebraic and Kähler manifolds,
and produce canonical metrics at the same time.
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Understanding the existence of canonical Kähler metrics on compact Kähler manifolds
has been a central question in the last forty years, following Yau’s solution to the Calabi
conjecture [40]. The Kähler–Ricci flow provides a canonical deformation process
towards such metrics, as shown by the works of many authors (see eg Cao [5], Phong,
Song, Sturm and Weinkove [29; 30], Song and Tian [32], Song and Weinkove [34],
Song, Székelyhidi and Weinkove [31], Collins and Tosatti [8], Tosatti and Zhang [38],
Collins and Székelyhidi [7] and Berman, Boucksom, Eyssidieux, Guedj and Zeriahi [3]).

Writing locally gij D  ij D @ix@j , it is classical that the Kähler–Ricci flow can be
reduced to a nonlinear parabolic scalar equation in  , of the form

det. ij /D e
P tCH.t;x/C� t ;

where H is a smooth density and � 2R depends on c1.X/.

The classification of complex algebraic manifolds requires to work on singular varieties,
as advocated by the minimal model program. Defining the Kähler–Ricci flow on mildly
singular projective varieties was undertaken by Song and Tian [33] and requires a
theory of weak solutions for degenerate parabolic complex Monge–Ampère equations,
where  is no longer smooth and H can blow up.

Eyssidieux, Guedj and Zeriahi [14] have developed a parabolic viscosity approach. It
applies to the Kähler context, but requires the densities to be continuous. This enabled
one to study the behavior of the Kähler–Ricci flow on minimal models with positive
Kodaira dimension and canonical singularities; see Eyssidieux, Guedj and Zeriahi [15].

While both the approach of Song and Tian and the viscosity one permit a good under-
standing of the first singular situations encountered in the minimal model program, one
needs to extend these theories in order to treat the fundamental case of Kähler pairs with
Kawamata log terminal (klt) singularities. This is the main objective of the present work.

From an analytic point of view, klt singularities lead one to deal with densities that
may blow up, though belonging to Lp for some exponent p > 1 whose size is related
to the algebraic nature of the singularities.

We develop in this article a parabolic pluripotential approach to the complex Monge–
Ampère flows

(CMAF) .!t C i@x@'t /
n
D e P'tCF.t;x;'/g.x/ dV.x/

in XT WD �0; T Œ�X, where T 2 �0;C1� and

� X is a compact Kähler n–dimensional manifold;
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� t 7! !.t; x/ is a C2–family of closed semipositive .1; 1/–forms such that
�.x/� !t .x/, where � is a closed semipositive big form with

�A!t � P!t �
A

t
!t and R!t � A!t

for some fixed constant A > 0;

� .t; x; r/ 7! F.t; x; r/ is continuous in Œ0; T Œ �X �R, quasi-increasing in r ,
locally uniformly Lipschitz and semiconvex in .t; r/;

� g 2 Lp.X; dV /, p > 1, with g > 0 almost everywhere;

� 'W Œ0; T Œ�X !R is the unknown function, with 't WD '.t; � /.

Here dV is a fixed normalized volume form on X.

We introduce a notion of pluripotential solutions to such equations, a parabolic analogue
of the theory developed by Bedford and Taylor in their celebrated articles [1; 2].

We interpret the above parabolic equation on X as a second-order PDE on the .2nC1/–
dimensional manifold XT :

� the left-hand side becomes a positive Radon measure .!tCdd c't /n^dt , which
is well defined for paths t 7! 't of bounded !t –psh functions [2];

� the right-hand side e P'tCF.t;x;'/g.x/ dV.x/^ dt is a well-defined Radon mea-
sure if t 7! 't .x/ is (locally) uniformly Lipschitz.

It is useful in practice to allow the Lipschitz constant to blow up as t approaches
zero, so we introduce the corresponding class P.XT ; !/ of parabolic potentials (see
Definition 1.1).

We develop the local side of this theory in [19] by a direct approach, taking advantage
of the Euclidean structure of Cn . We approximate here (CMAF) by smooth complex
Monge–Ampère flows and establish various a priori estimates to prove our first main
result:

Theorem A Let '0 be a bounded !0–psh function. There exists a parabolic potential
' 2 P.XT ; !/ such that

� .t; x/ 7! '.t; x/ is locally bounded in Œ0; T Œ�X ;

� .t; x/ 7! '.t; x/ is continuous in �0; T Œ�Amp.�/;

� t 7! 't is locally uniformly semiconcave in �0; T Œ�X ;
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� ' is a pluripotential solution to (CMAF);

� 't ! '0 as t ! 0C in L1.X/ and pointwise.

Here Amp.�/ denotes the ample locus of � , ie the largest Zariski open subset of X
where the cohomology class of � behaves like a Kähler class.

It turns out that t 7!'t .x/�n.t log t�t /CCt is increasing for some fixed C >0. The
convergence at time zero is therefore rather strong (it is eg uniform if '0 is continuous).

The semiconcavity information of the solution ' constructed in Theorem A is a
crucial tool for approximation purpose (see Theorem 1.14). We show that it is the
unique pluripotential solution with such time regularity, by establishing the following
comparison principle:

Theorem B If ' 2 P.XT ; !/ is a bounded pluripotential subsolution to (CMAF) and
 2 P.XT ; !/ is a bounded pluripotential supersolution which is locally uniformly
semiconcave in t , then

'0 �  0 D) ' �  :

In particular, there is a unique bounded pluripotential solution ˆ.g; F; !t ; '0/ to
(CMAF) which is locally uniformly semiconcave in t .

This comparison principle also allows us to establish the following stability result,
which generalizes our [16, Theorem B]:

Theorem C Assume

� .gj / are densities which converge to g in Lp ,

� Fj converges to F with uniform constants,

� !t;j are smooth semipositive forms smoothly converging to !t ,

� '0;j are bounded !0;j –psh functions converging in L1.X; dV / to '0 .

Then ˆ.gj ; Fj ; !t;j ; '0;j / locally uniformly converges to ˆ.g; F; !t ; '0/.

It is delicate to compare pluripotential and viscosity concepts in general. We refer the
interested reader to [17], where we prove, when g is continuous, that the viscosity
solution constructed in [14] coincides with the pluripotential solution ˆ.g; F; !t ; '0/.

The present pluripotential approach allows us to deal with noncontinuous data. We
can, in particular, define a good notion of weak Kähler–Ricci flow on varieties with
terminal singularities (and more generally on klt pairs), as we explain in Section 5,
where we prove the following:
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Theorem D Let .Y; !0/ be a compact n–dimensional Kähler variety with log terminal
singularities and trivial first Chern class (Q–Calabi–Yau variety).

Fix S0 a positive closed current with bounded potentials, whose cohomology class is
Kähler. The Kähler–Ricci flow

@!t
@t
D�Ric.!t /

exists for all times t > 0, and deforms S0 towards the unique Ricci flat Kähler–Einstein
current !KE cohomologous to S0 as t !C1.

This extends previous results of Cao [5], Tsuji [39] and Tian and Zhang [35], avoiding
any projectivity assumption on X [33], nor any restriction on the type of singularities
[14; 15]. We refer the reader to Section 5 for much more general and precise results.

Assumptions on the data and notation

Assumptions on the manifold In the whole article we let X be a compact Kähler
n–dimensional manifold. We fix T 2 �0;C1�. Except for Section 5 we are mainly
concerned with finite time intervals, ie T <C1, and we implicitly assume that our data
are possibly defined in a slightly larger time interval, ie on �0; T C "Œ for some " > 0.

We let XT denote the .2nC1/–dimensional manifold XT D �0; T Œ�X with parabolic
boundary

@XT WD f0g �X:

We fix � a smooth closed semipositive .1; 1/–form whose cohomology class is big,
ie contains a (singular) positive closed current of bidegree .1; 1/ which dominates a
Kähler form. We let � denote the ample locus of � ,

� WD Amp.�/;

which is a nonempty Zariski open subset of X.

Assumptions on the forms We assume throughout the article that .!t /t2Œ0;T Œ is a
C2–smooth family of closed semipositive .1; 1/–forms on X satisfying

� � !t

for all t 2 Œ0; T Œ. For finite times we can also assume without loss of generality that
!t �‚ for some Kähler form ‚.
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By the end of Section 2 we need to assume that t 7! !t moreover satisfies

R!t � A!t

and

(0-1) �A!t � P!t � A!t

for some constant A > 0. The lower bound in (0-1) is equivalent to the fact that
t 7! eAt!t is increasing. In particular,

!tCs � e
�As!t � .1�As/!t ; s > 0:

The latter will be used on several occasions in the sequel.

Assumptions on the densities We assume throughout the article that

� dV is a fixed volume form on X ;

� 0� g 2 Lp.X; dV / for some p > 1, and Vol.fg D 0g/D 0;

� .t; x; r/ 7! F.t; x; r/ is a continuous function on Œ0; T Œ�X �R;

� r 7! F. � ; � ; r/ is uniformly quasi-increasing, ie there exists a constant �F � 0
such that for every .t; x/ 2 Œ0; T Œ�X, the function

(0-2) r 7! F.t; x; r/C�F r is increasing in RI

� .t; r/ 7! F.t; � ; r/ is locally uniformly Lipschitz, ie for all J b Œ0; T Œ�R there
is �J > 0 such that for every x 2X, .t; r/, .t 0; r 0/ 2 J,

(0-3) jF.t; x; r/�F.t 0; x; r 0/j � �J .jt � t
0
jC jr � r 0j/I

� .t; r/ 7! F.t; x; r/ is locally uniformly semiconvex, ie for every compact J b
Œ0; T Œ�R there exists CJ > 0 such that for every x 2X,

(0-4) .t; r/ 7! F.t; x; r/CCJ .t
2
C r2/ is convex in J:

Note that if F is C2–smooth then the local conditions (0-3) and (0-4) are automatically
satisfied, while (0-2) is a global assumption.

Invariance properties of the set of assumptions We check in Section 5.1.2 that the
above conditions are satisfied for the parabolic equations that describe the evolution of
the normalized (as well as the nonnormalized) Kähler–Ricci flow on a mildly singular
Kähler variety.

The family of parabolic complex Monge–Ampère equations we consider enjoys several
useful invariance properties. We refer the reader to Section 3.3 for more details.

Geometry & Topology, Volume 24 (2020)



Pluripotential Kähler–Ricci flows 1231

Organization of the paper

We describe the class of potentials we are using in Section 1.1 and define parabolic
complex Monge–Ampère operators in Section 1.2. We establish fundamental a priori
estimates in Section 2, which are then used to prove Theorem A in Section 3. We study
uniqueness and stability of pluripotential solutions in Section 4, establishing Theorems B
and C. In Section 5 we use these tools to study the long-term behavior of the normalized
Kähler–Ricci flow on varieties with log terminal singularities and nonnegative Kodaira
dimension, proving Theorem D and several other convergence results.

Acknowledgements This work is a natural continuation of [14; 15]. We thank Philippe
Eyssidieux for many useful discussions. We are indebted to the referee for a very
careful reading and for numerous useful suggestions which improve the presentation
of the paper.

The authors are partially supported by the ANR project GRACK.

1 Parabolic potentials and Monge–Ampère operators

1.1 Families of quasiplurisubharmonic functions

1.1.1 Compactness properties Recall that a function uW X ! Œ�1;C1Œ is !t –
plurisubharmonic (!t –psh for short) if it is locally given as the sum of a smooth and a
plurisubharmonic function and the current

!t C dd
cu� 0

is positive on X. Here d D @Cx@ and d c D i.x@� @/ are both real operators.

Definition 1.1 The set of parabolic potentials P.XT ; !/ is the set of functions
'W �0; T Œ�X ! Œ�1;C1Œ such that

� x 7! '.t; x/ is !t –plurisubharmonic on X for all t 2 �0; T Œ,

� ' is locally uniformly Lipschitz in �0; T Œ.

The last condition means that for any compact subset J � �0; T Œ there exists � D
�J .'/ > 0 such that

(1-1) '.t; x/� '.s; x/C �jt � sj for all s; t 2 J and x 2X:
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We say that a family ˆ � P.XT ; !/ is locally uniformly Lipschitz in �0; T Œ if the
inequality (1-1) is satisfied for all ' 2 ˆ with a uniform constant � D �.J;ˆ/ > 0
which only depends on J and ˆ.

A parabolic potential ' 2 P.XT ; !/ can be extended as an upper semicontinuous
function on Œ0; T Œ�X with !t –psh slices.

Proposition 1.2 Assume '0 is !0–psh and ' 2 P.XT ; !/ satisfies 't!'0 in L1

as t ! 0. Then the extension 'W Œ0; T Œ�X ! Œ�1;C1Œ is upper semicontinuous.

Proof It is classical that for all x 2 X, '0.x/ D lim supy!x lim supt!0 't .y/. It
therefore suffices to prove the following more general result: Assume that u2P.XT ; !/
is bounded from above near t D 0 and define

u0.x/ WD lim sup
y!x

�
lim sup
t!0

ut .y/
�
:

Then the extension uW Œ0; T Œ�X ! Œ�1;C1Œ is upper semicontinuous.

The upper semicontinuity inside XT follows from the semicontinuity in space and
Lipschitz regularity in time. Assume that .tj ; xj / is a sequence in XT converging
to .0; x0/ with x0 2X. We want to prove that

lim sup
j

u.tj ; xj /� u0.x0/:

Since the problem is local, we can assume that the functions utj are psh and negative
in a neighborhood B �Cn of x0 . Fix r > 0 such that B.x0; 2r/� B. Fix ı 2 �0; rŒ.
For j large enough, xj 2B.x0; ı/, hence B.x0; r/�B.xj ; rC ı/ and, since utj � 0
in B, we have

u.tj ; xj /�
1

Vol.B.xj ; r C ı//

Z
B.xj ;rCı/

u.tj ; x/ dV.x/

�
1

Vol.B.xj ; r C ı//

Z
B.x0;r/

u.tj ; x/ dV.x/

D
Vol.B.x0; r//

Vol.B.xj ; r C ı//
1

Vol.B.x0; r//

Z
B.x0;r/

u.tj ; x/ dV.x/:

Since lim supj utj .x/� u0.x/ for all x 2X, letting j !C1 we obtain

lim sup
j

u.tj ; xj /�
1

Vol.B.x0; r C ı//

Z
B.x0;r/

u0.x/ dV.x/:

Now, we first let ı! 0 and then r! 0 to obtain the result since u0 is psh.
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We next prove a compactness result for this class of functions.

Theorem 1.3 Let .'j /� P.XT ; !/ be a sequence which

� is locally uniformly bounded from above in XT ;

� is locally uniformly Lipschitz in �0; T Œ;

� does not converge locally uniformly to �1 in XT .

Then .'j / is bounded in L1loc.XT / and there exists a subsequence which converges to
some function ' 2 P.XT / in the L1loc.XT /–topology.

If .'j / converges weakly (in the sense of distributions) to ' in XT , then it converges
in Lploc.XT / for all p � 1.

The classes Lp are here defined with respect to the .2nC1/–dimensional Lebesgue
measure associated to a fixed volume form dt ^dV . For convenience we normalize
dV so that

R
X dV D 1.

Proof The proof of this result is local in nature and follows closely the classical proof
of the analogous result for quasiplurisubharmonic functions, once we have a substitute
for the submean value inequality.

We can thus assume here that X D��Cn is a bounded strictly pseudoconvex domain.
The Poincaré lemma ensures that !t D dd c�t for a family of plurisubharmonic
functions �t which is Lipschitz in t . Changing 't in 't C �t , we reduce further to
the case when !t D 0. The corresponding compactness and convergence properties
have then been obtained in [19].

Corollary 1.4 The class P.XT ; !/ is a subset of Lploc.XT / for all 1 � p , and the
inclusions P.XT ; !/ ,! L

p
loc.XT / are continuous.

The topologies induced by the classes Lp are thus all equivalent when restricted to the
class P.XT ; !/.

1.1.2 Slices and time derivatives We now estimate the L1–norm on slices.

Lemma 1.5 Fix u; v 2 P.XT ; !/ and 0 < T0 < T1 < T . Then

ku.t; � /� v.t; � /kL1.X/ � 2M maxfku� vk1=2
L1.XT /

; ku� vkL1.XT /g

for all T0� t �T1 , where M WDmaxf
p
�; .T �T1/

�1g and � is the uniform Lipschitz
constant of u� v in ŒT0; T �.
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This lemma expresses in a quantitative way the following fact: for functions in
P.XT ; !/, the convergence in L1.XT / implies the local uniform convergence of
their slices in L1.X/: if .uj /� P.XT ; !/ converges to u in L1.XT / and is locally
uniformly Lipschitz in �0; T Œ, then uj .t; � / converges to u.t; � / in L1.X/ for each
slice t .

Proof The proof is identical to the corresponding one in the local context; we refer
the reader to [19].

Fix � a (finite) Borel measure on X, and let ` denote the Lebesgue measure on RC .

Lemma 1.6 Fix ' 2 P.XT ; !/. Then @t'.t; x/ exists for all .t; x/ … E, where
E �XT is `˝�–negligible.

In particular, @t' 2L1loc.XT / and h.@t'/`˝� is a well-defined Borel measure on XT
for any continuous function h 2 C0.R;R/.

Proof The proof is identical to the corresponding one in the local context; we refer
the reader to [19].

When ' is semiconvex or semiconcave in t , we can improve this result.

Definition 1.7 We say that 'W XT !R is uniformly semiconcave in �0; T Œ if for any
compact J b �0; T Œ, there exists � D �.J; '/ > 0 such that for all x 2X, the function
t 7! '.t; x/� �t2 is concave in J.

The definition of uniformly semiconvex functions is analogous. Note that such functions
are automatically locally uniformly Lipschitz.

Lemma 1.8 Let 'W XT !R be a continuous function which is uniformly semiconvex
in �0; T Œ. Then

@Ct '.t; x/D lim
s!0C

'.t C s; x/�'.t; x/

s

is upper semicontinuous in XT , while

@�t '.t; x/ WD lim
s!0�

'.t C s; x/�'.t; x/

s

is lower semicontinuous in XT . In particular, @Ct ' and @�t ' coincide and are continu-
ous `˝�–almost everywhere in XT .

Proof The proof is identical to the corresponding one in the local context; we refer
the reader to [19].
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1.1.3 Topology on P.XT ; !/ We introduce a natural complete metrizable topology
on the convex set P.XT ; !/.

We first consider a partial Sobolev space W .1;0/;1
loc .XT /: this is the set of functions

u 2 L1loc.XT / whose partial time derivative (in the sense of distribution) satisfies
PuD @tu 2 L

1
loc.XT /. It follows from Lemma 1.6 that

P.XT ; !/�W
.1;0/;1

loc .XT /:

The local uniform Lipschitz constant of ' 2P.XT ; !/ on a compact subset J b �0; T Œ

is given by
sup

t;s2J; s¤t

sup
x2X

� j'.s; x/�'.t; x/j

js� t j
D k P'kL1.J�X/;

where sup� is the essential sup with respect to a volume form dV on X.

We can therefore consider the following seminorms on W .1;0/;1
loc .XT /: given a compact

subset J b �0; T Œ and u 2W .1;0/;1
loc .XT /, we set

�J .u/ WD k PukL1.J�X/C

Z
J

Z
X

ju.t; x/j dV.x/ dt:

1.2 Parabolic complex Monge–Ampère operators

As explained in the introduction, we assume in this section (without loss of generality)
that � �!t �‚, where � is a semipositive and big .1; 1/–form and ‚ is a Kähler form.

1.2.1 Parabolic Chern–Levine–Nirenberg inequalities We assume here that ' 2
P.XT ; !/\L1loc.XT /. For all t 2 �0; T Œ, the function

X !R x 7! 't .x/D '.t; x/;

is !t –psh and bounded, hence .!t C dd c't /n is well defined as a positive Borel
measure on X, as follows from the works of Bedford and Taylor [1; 2].

Since 0 � !t � ‚ for 0 � t � T , the positive Borel measures .!t C dd c't /n have
uniformly bounded masses on X,Z

X

.!t C dd
c't /

n
�

Z
X

.‚C dd c't /
n
�

Z
X

‚n:

These can be considered, alternatively, as a family of currents of degree 2n on the
real .2nC1/–dimensional manifold XT D �0; T Œ�X. It follows from Bedford and
Taylor’s convergence theorem [1; 2] that t 7! .!t C dd

c't /
n is continuous as a map

from �0; T Œ to the space M.X/ of positive Radon measures on X endowed with the
weak�–topology. More generally we have:
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Lemma 1.9 Fix ' 2 P.XT ; !/\L1loc.XT / and � a continuous test function in XT .
The function t 7!

R
X �.t; � /.!t C dd

c't /
n is continuous in �0; T Œ and bounded , with

sup
0<t<T

ˇ̌̌̌Z
X

�.t; � /.!t C dd
c't /

n

ˇ̌̌̌
�
�
max
XT
j�j
� Z
X

‚n:

More generally , if � 2L1.XT / is upper semicontinuous (resp. lower semicontinuous)
on XT with compact support , then so is the function t 7!

R
X �.t; � /.!t C dd

c't /
n .

Proof Fix a continuous test function � on XT and fix a compact interval J b �0; T Œ

such that J �X contains the support of �.

Fix t0 2 �0; T Œ. The Lipschitz property of ' ensures that 't uniformly converges on
X to 't0 as t ! t0 . The continuity of t 7! !t and Bedford and Taylor’s continuity
theorem then ensure that .!t C dd c't /n converges to .!t0 C dd

c't0/
n as t ! t0 .

Since �t uniformly converges on X to �t0 , the first statement follows. The second
statement follows from the fact that

R
X .!t C dd

c't /
n �

R
X ‚

n for all t 2 �0; T Œ.

If � is merely upper/lower semicontinuous with compact support, there is a sequence of
continuous test functions �j which decreases (resp. increases) to �. By the monotone
convergence theorem we have that, for all t 2 �0; T Œ,

lim
j

Z
X

�j .t; � /.!t C dd
c't /

n
D

Z
X

�.t; � /.!t C dd
c't /

n:

By the previous result the functions t 7!
R
X �j .t; � /.!t C dd

c't /
n are continuous

in �0; T Œ. Therefore, the limit is upper semicontinuous (resp. lower semicontinuous)
in �0; T Œ.

Definition 1.10 Let ' 2 P.XT ; !/\L1loc.XT /. The map

(1-2) � 7!

Z
XT

�dt ^ .!t C dd
c't /

n
WD

Z T

0

dt

�Z
X

�.t; � /.!t C dd
c't /

n

�
defines a .2nC1/–current on XT , denoted by dt ^ .!t C dd c't /n , which can be
identified with a positive Radon measure on XT .

That (1-2) is well defined for continuous test (or Borel) functions � follows from
Lemma 1.9. The operator can also be defined by approximation in the spirit of Bedford
and Taylor’s convergence results [1; 2]:

Proposition 1.11 Fix ' 2 P.XT ; !/\L1loc.XT / and let 'j be a monotone sequence
of functions .'j / in P.XT ; !/\L1loc.XT / converging to ' almost everywhere in XT .
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Then
dt ^ .!t C dd

c'
j
t /
n
! dt ^ .!t C dd

c't /
n;

in the sense of measures on XT .

Proof Let � be a continuous test function in XT . By definition, for all j, we haveZ
XT

�dt ^MA.'j / WD
Z T

0

dt

�Z
X

�.t; � /MA.'jt /
�
:

We can apply Bedford and Taylor’s convergence theorems [2] to conclude that, for all
t 2 �0; T Œ, Z

X

�.t; � /.!t C dd
c'
j
t /
n
!

Z
X

�.t; � /.!t C dd
c't /

n:

Since
R
X �.t; � /.!t C dd

c'
j
t /
n is uniformly bounded (Lemma 1.9), the conclusion

follows from the Lebesgue convergence theorem.

It is classical that one can then define similarly mixed parabolic Monge–Ampère
operators

dt ^ .!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt /

whenever '1; : : : ; 'n 2 P.XT ; !/\L1loc.XT /. We note, for later use, the following
stronger version of the Chern–Levine–Nirenberg inequalities:

Proposition 1.12 Assume '1; : : : ; 'n 2 P.XT ; !/\L1loc.XT / and  2 P.XT ; !/.
Then, for all J b �0; T Œ,Z
J�X

j j dt ^ .!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt /

� Vol.‚/
Z
J

�
jsupX  t jC

nX
jD1

osc.'jt /
�
dt C

Z
J�X

j j dt ^‚n:

In particular,  2 L1loc.XT ; dt ^ .!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt //.

Proof Fix  2 P.XT ; !/ and J b �0; T Œ. Setting  t D z t C supX  t and using the
triangle inequality, we can writeZ
J�X

j j dt ^ .!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt /

�

Z
J�X

j z j dt ^ .!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt /CVol.‚/
Z
J

jsupX  t j dt:
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We can thus assume that supX  t D 0 for all t 2 J. A series of integration by parts as
in [20, Corollary 3.3] yieldsZ
X

j t j.!t C dd
c'1t /^ � � � ^ .!t C dd

c'nt /�

nX
jD1

oscX .'
j
t /Vol.!t /C

Z
X

j t j!
n
t

� Vol.‚/
nX

jD1

oscX .'
j
t /C

Z
X

j t j‚
n:

Integrating on J yields the desired estimate.

1.2.2 Convergence results

Definition 1.13 A family ˆ� P.XT ; !/ is uniformly semiconcave in �0; T Œ if, for
any compact subset J b �0; T Œ, there exists a constant � D �.J;ˆ/ > 0 such that any
' 2ˆ is uniformly �–concave in J.

Fix � a Borel measure on X, and let ` denote the Lebesgue measure on R.

Theorem 1.14 Let .fj / be a sequence of positive functions which converge to f in
L1.XT ; `˝�/. Let .'j / be a sequence of functions in P.XT ; !/ which

� converge `˝�–almost everywhere in XT to a function ' 2 P.XT ; !/;
� is uniformly semiconcave in �0; T Œ.

Then limj!C1 P'j .t; x/D P'.t; x/ for `˝�–almost any .t; x/ 2XT , and

h. P'j /fj `˝�! h. P'/f `˝�;

in the weak sense of Radon measures on XT , for all h 2 C0.R;R/.

Proof The proof is identical to the corresponding one in the local context; see
[19, Proposition 2.9]. For the reader’s convenience we sketch the argument here. Fixing
compact subintervals J b J 0b �0; T Œ, there exists a constant C such that the functions
uj .t; x/ WD'j .t; x/�Ct

2 are concave in J 0 for all x2X fixed. The t –concavity of uj

on J 0 ensures that Puj .t; x/ is uniformly bounded in J �X and P'j .t; x/ converges
pointwise a.e. to P'.t; x/ in J �X.

To conclude, it suffices to prove that h. P'j /fj converges to h. P'/f in L1.J �X; `˝�/.
Assume by contradiction that there exist a subsequence of .fj /, still denoted by .fj /,
and a constant a > 0 such that

(1-3) kh. P'j /fj � h. P'/f kL1.J�X;`˝�/ � a; j � 1:
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Extracting .fj / again we can assume that kfj � fjC1kL1.J�X;`˝�/ � 2
�j . Setting

g WD f Cf1C
PC1
jD1 jfjC1�fj j, we have that

max.fj ; f /� g 2 L1.J �X; `˝�/; j � 1:

It therefore follows from Lebesgue’s theorem that h. P'j /fj converges to h. P'/f in
L1.J �X; `˝�/, contradicting (1-3). This completes the proof.

2 A priori estimates

In this section we assume that '.t; x/D't .x/ is a smooth !t –psh solution to (CMAF),
where t 7! !t is a smooth family of Kähler forms, and F and g are smooth with g
positive. Our aim is to establish various a priori estimates that will allow us to construct
weak solutions to the corresponding degenerate equations.

For convenience we will also assume that � is Kähler, and '0 is smooth and strictly
!0–psh. It follows however from [12; 23; 36] that all the a priori bounds below remain
valid when � is semipositive and big, and '0 is merely !0–psh and bounded.

We will make various extra assumptions, depending on the a priori estimates that we
are interested in.

2.1 Controlling the oscillation of 't

Recall that �.x/ � !t .x/ � ‚.x/, where � and ‚ are Kähler forms. We let V1
(resp. V2 ) denote the volume of f�g (resp. f‚g),

V1 D

Z
X

�n and V2 D

Z
X

‚n:

We fix c1; c2 2R normalizing constants such that Vi D eci�.X/, where �D g dV . It
follows from [27; 12] that there exists �1 a bounded � –psh function (respectively �2
a bounded ‚–psh function) such that

.� C dd c�1/
n
D ec1� and .‚C dd c�2/

n
D ec2�:

The functions �1 and �2 are moreover unique once normalized by

sup
X

�1 D inf
X
�2 D 0:

Note that in proving existence of solutions the form � will no longer be Kähler but
merely semipositive and big. But the L1 bound on �1 remains uniform thanks to
[12, Proposition 2.6].
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Proposition 2.1 The following uniform a priori bound on 't holds:

j't .x/j � C0 WD C

�
e�FT C

e�FT �1

�F

�
;

where C is the uniform constant

C D sup
XT

jF.t; x; 0/jC .�F C 1/ sup
X

.j�1jC j�2j/C sup
X

j'0jCmax.�c1; c2/:

Recall that �F � 0 is a constant such that, for all .t; x/ 2 XT , the function r 7!
F.t; x; r/C�F r is increasing on R.

Proof Set, for t 2R,


.t/ WD sup
X

j'0je
�F t C

C.e�F t � 1/

�F
;

where C is as in the statement of the proposition. A direct computation shows that

.0/D supX j'0j and 
 0.t/��F 
.t/D C.

Set u.t; x/ WD �1.x/�
.t/ for .t; x/ 2XT . Observe that ut is � –psh, hence !t –psh,
that u0 � '0 and that

.!t C dd
cut /

n
� .� C dd c�1/

n
D ec1�� e PutCF.t;x;ut /�:

The last inequality follows from our choice of C : since r 7! F. � ; � ; r/C �F r is
increasing, and �1 � 0 and ut � 0, we obtain

F.t; x; ut .x//C Put D F.t; x; ut .x//� 

0.t/

� F.t; x; 0/��F .�1� 
.t//� 

0.t/

� F.t; x; 0/C�F j�1j �C

� c1:

It thus follows from the maximum principle that ' � u on XT .

Set now v.t; x/D �2.x/C 
.t/, .t; x/ 2 XT . We let the reader check similarly that
vt is ‚–psh, it satisfies

.‚C dd cvt /
n
� e@tv.t;x/CF.t;x;vt /g dV;

and v0 � '0 . Now 't is a subsolution to this new parabolic equation since !t �‚.
It follows therefore from the maximum principle that ' � v on XT , and the desired
estimates follow.
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The following construction of the subbarrier will be useful in showing that the pluri-
potential solution to (CMAF) has the right value at t D 0:

Proposition 2.2 For all 0� t � 1,

't � .1� t /e
�At'0C t�1Cn.t log t � t /�C e

�F t�1

�F
;

where C is the uniform constant

C WD supXT F.t; x; 0/C .AC�F C 1/
�
supX j'0jC supX j�1jCn

�
� c1:

Proof Recall that A denotes a positive constant such that P!t ��A!t for all t 2 �0; T Œ.
In particular, !t � e�At!0 and !t � � . Recall also that �F � 0 is a constant such
that r 7! F.t; x; r/C�F r is increasing in R for all .t; x/ 2XT .

Consider the function

ut .x/ WD .1� t /e
�At'0C t�1Cn.t log t � t /�C e

�F t�1

�F
;

where C is the uniform constant defined in the proposition.

Using that !t � e�At!0 and !t � � , we have

.!t C dd
cut /

n
D ..1� t /!t C .1� t /e

�Atdd c'0C t .!t C dd
c�1//

n

� tn.!t C dd
c�1/

n

� tnec1g dV:

Since ut � 0 and r 7! F.t; x; r/C�F r is increasing, a direct computation yields

PutCF.t; x; ut /

D n log tC�1Ce�At .A.1� t /C1/.�'0/�Ce�F tCF.t; x; ut /C�F ut ��F ut

� n log tC.AC1/ supX j'0jCsupXT F.t; x; 0/C�F
�
supX j'0jCsupX j�1jCn

�
�C

� n log tCc1:

It thus follows that ut is a subsolution to (CMAF) with u0 � '0 . The desired estimate
follows from the classical maximum principle.

2.2 Controlling the average

We establish the following control on the average of 't , which will be useful in proving
convergence at zero.
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Proposition 2.3 Set �D g dV . The following bound holds:Z
X

't d��

Z
X

'0 d�CCt;

where C3 is the uniform constant

C WD ��.X/ log.�.X/=V2/� inf
XT�Œ�C0;C0�

F.t; x; r/�.X/

and C0 is the uniform constant defined in Proposition 2.1.

Proof Set �C 0 WD infXT�Œ�C0;C0� F.t; x; r/>�1. It follows from the flow equation
that Z

X

e P't�C
0

d��

Z
X

!nt � V2:

On the other hand, it follows from Jensen’s inequality thatZ
X

e P't
d�

�.X/
� exp

�Z
X

P't
d�

�.X/

�
:

Combining these two estimates we arrive atZ
X

P'tg dV � C WD C
0�.X/C�.X/ logV2��.X/ log�.X/:

The function t 7!
R
X 't d��Ct is therefore nonincreasing, henceZ

X

't d��

Z
X

'0 d�CCt:

2.3 Lipschitz control in time

We now establish an a priori bound which will allow us to show that the solutions 't
to degenerate complex Monge–Ampère flows are locally uniformly Lipschitz in time,
away from zero.

For the convenience of the reader we first state and prove our theorem in the simpler case
when t 7! !t is affine and r 7! F.t; x; r/ is increasing. A more technical statement
follows, together with its proof.

Recall that we assume here our data are smooth (g > 0 is smooth, F is smooth, � is
Kähler, and '0 is smooth and strictly !0–psh). We will explain in Theorem 3.4 below
how to reduce to this case.
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2.3.1 Affine dependence on time

Theorem 2.4 Assume t 7! !t D !0C t� is affine and r 7! F. � ; � ; r/ is increasing.
Then, for all .t; x/ 2XT ,

n log t �C � P't .x/�
C

t
;

where C depends explicitly on T , k@F=@rkL1 , k@F=@tkL1 , kgkp and C0 .

Here and below C0 denotes the constant from Proposition 2.1, and the Lipschitz
constants k@F=@rkL1 ; k@F=@tkL1 are computed on XT � Œ�C0; C0�.

Proof For notational convenience we set �D g dV . We first establish the bound from
above. Consider

H.t; x/D t P't .x/� .'t �'0/�Bt;

where
B D nC 1� inf

XT�Œ�C0;C0�

h
t
@F

@t
.t; x; r/

i
:

Set St WD !t C dd c't and observe that

@H

@t
D t R't �B;

with
P't D log.Snt =�/�F.t; x; 't /;

hence
R't D�St . P't /CTrSt . P!t /�

@F

@t
.x; t; 't /� P't

@F

@r
.x; t; 't /;

where

�Stf WD n
dd cf ^Sn�1t

Snt
and TrSt .�/ WD n

�^Sn�1t

Snt
:

On the other hand,

�St .H/D t�St . P't /�nCTrSt .!t C dd
c'0/;

therefore�
@

@t
��St

�
.H/D

n
�t
@F

@t
� t P't

@F

@r
Cn�B

o
�TrSt .S0/CTrSt .!0C t P!t �!t /:

The assumption that t 7! !t is affine ensures TrSt .!0C t P!t � !t / D 0, while our
choice of B yields �

@

@t
��St

�
.H/� �1� t P't

@F

@r
.t; x; 't /:
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If H realizes its maximum Hmax along .t D 0/, we obtain

H.t; x/�Hmax D sup
x2X

H.0; x/D 0;

which yields the desired upper bound for P't .

If H realizes its maximum Hmax at some point .t0; x0/ with t0 > 0, then

0�
�
@

@t
��St

�
.H/.t0; x0/;

hence
t0 P't0.x0/

@F

@r
.t0; x0; 't0.x0//� �1 < 0:

Since @F=@r � 0 and t0 > 0, we infer P't0.x0/ < 0, hence

Hmax � �.'t0 �'0/.x0/� C;

where the last inequality follows from Proposition 2.1. This yields again the desired
upper bound.

We now take care of the lower bound. We first deal with the particular case when

�.x/D h.x/�n.x/;

where h� 0 is a bounded density. Fix D� 1 so large that all our quantities are well
defined and under control on Œ0; T C 1=D��X. Observe that

�CD!t DD!tC1=D �D�:

We set
G.t; x/D P't .x/CD't .x/�n log t;

and compute�
@

@t
��St

�
.G/D TrSt .�CD!t /�Dn�

@F

@t
C

h
D�

@F

@r

i
P't �

n

t

�
f
�1=n
t

C1
�C2�

n

t
;

where ft D e P't . We have used here

TrSt .�CD!t /�D TrSt .�/� nD
�
�n

Snt

�1=n
D nDf

�1=n
t

�
�n.x/

eF.t;x;'t /�.x/

�1=n
�
f
�1=n
t

C 01
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(the last inequality uses our assumption that �D h�n with h bounded), the fact that
@F=@t � c and @F=@r � c0, and the inequality

P't D logft � �n"f
�1=n
t �nC";

valid for " > 0 arbitrarily small (since "x > log x�C" for x > 0).

The function G attains its minimum on �0; T ��X at a point .t0; x0/ with t0 > 0. At
this point we therefore have a control on the density ft , namely

f
�1=n
t0

.x0/� C1C2C
nC2

t0
;

hence

P't0.x0/D logft0.x0/� �n log
�
C1C2C

nC2

t0

�
:

We infer

G.t0; x0/�D't0.x0/�n logŒC1C2t0CnC2�� �C3;

using Proposition 2.1. The desired lower bound follows.

We now get rid of the extra assumption made on �. We fix as earlier �1 a smooth
� –psh function such that

.� C dd c�1/
n
D ec1�

and supX �1 D 0. We set

z!t D !t C dd
c�1; z't WD 't � �1 2 PSH.X; z!t /

and
zF .t; x; r/D F.t; x; r C �1.x//:

Observe that Pz't D P't , @t z!t D @t!t and

z!t � z� D � C dd
c�1:

Moreover, zF has the same Lipschitz constant (in t and r ) as that of F and

.z!t C dd
c
z't /

n
D e

Pz'tC zF .t;x;z't /�.x/

with z�n D ec1�, hence �D zhz�n with bounded density zhD e�c1 . We can thus use
the same reasoning as above to conclude.
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2.3.2 Refining the hypotheses We now establish similar uniform bounds on P't
under less restrictive assumptions on t 7! !t and r 7! F. � ; � ; r/. Recall that r 7!
F.t; x; r/C�F r is increasing on R.

Theorem 2.5 Assume P!t � �A!t . Then, for all .t; x/ 2XT ,

n log t �C � P't .x/:

If there exists A� 0 with P!t � A!t , then, for all .t; x/ 2XT ,

P't .x/�
C

t
:

Here again C depends explicitly on T , k@F=@rkL1 , k@F=@tkL1 , kgkLp and C0
(defined in Proposition 2.1). The norms k@F=@rkL1 and k@F=@tkL1 are computed
on Œ0; T Œ�X � Œ�C0; C0�.

Proof Consider

H.t; x/D t P't .x/�C't ;

where C WD .AC�F /T C 2. We let the reader check that�
@

@t
��St

�
.H/� C 0� Œt@rF CC � 1� P't :

The upper bound then follows just as in the proof of Theorem 2.4.

We now establish the lower bound. Consider, for .t; x/ 2 �0; T ��X,

G.t; x/ WD P't CA.2't � �1/�n log t;

where �1 2 PSH.X; �/ is the unique normalized solution to

.� C dd c�1/
n
D ec1g dV:

Using the same notation as in the proof of Theorem 2.4 we obtain

�StG D�St P't CA
�
TrSt .2!t C 2dd

c't �!t � .!t C dd
c�1//

�
��St P't C 2nA�ATrSt .!t /�TrSt .� C dd

c�1/

��St P't C 2nACTrSt . P!t /�ne
.c1� P't�F.t;� ;'t //=n

� TrSt . P!t C dd
c
P't /C 2nA�

f
�1=n
t

C1
:
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It thus follows that�
@

@t
��St

�
.G/D R't�2A P't�

n

t
��StG��

@F

@t
�

�
2AC

@F

@r

�
P'tC

f
�1=n
t

C1
�
n

t
�2nA:

We can then conclude as in the proof of Theorem 2.4.

Remark 2.6 The lower bound for P't ensures that

't � '0Cn.t log t � t /�Ct;

which is a simpler lower bound than the one provided by Proposition 2.2.

2.4 Semiconcavity in time

Our goal in this section is to establish that !t –psh solutions to (CMAF) are �–concave
in time away from zero, with a uniform a priori constant � .

2.4.1 A particular case

Theorem 2.7 Assume that t 7! !t is affine and r 7! F. � ; � ; r/ is convex and in-
creasing. Let 't be a smooth solution to (CMAF). Then there exists C > 0 such
that

R't .x/�
C

t
for all .t; x/ 2XT ;

where C depends explicitly on T , the L1–norms of @F=@r , @F=@t , @2F=@r@t and
@2F=@t2 , kgkp and C0 .

Recall that C0 is an upper bound for j't j established in Proposition 2.1, and the norms
on the partial derivatives of F are computed on XT � Œ�C0; C0�.

We will establish a similar (though less precise) control under less restrictive assump-
tions on t 7!!t and F . We postpone this to the next subsection, as the a priori estimates
are already quite involved.

Proof Set !t D !C t�, so that P!t D �. Writing

P't D logŒ.!t C dd c't /n=g.x/ dV.x/��F.t; x; '/;

we differentiate in time to obtain

R't D�St . P't /CTrSt . P!t /�
@F

@t
.t; x; 't /� P't

@F

@r
.t; x; 't /:
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It follows from the Lipschitz a priori estimate (Theorem 2.4) that

�C � t P't
@F

@r
.t; x; 't /� C

is uniformly bounded on XT , hence

t R't D t TrSt .�C dd
c
P't /CO.1/:

Differentiating again yields

«'t D�St . R't /�n
2

�
.�C dd c P't /^S

n�1
t

Snt

�2
Cn.n� 1/

.�C dd c P't /
2 ^Sn�2t

Snt

�
@2F

@t2
.x; t; 't /� 2 P't

@2F

@r@t
.x; t; 't /� R't

@F

@r
.x; t; 't /� . P't /

2 @
2F

@r2
.x; t; 't /:

Set H.t; x/D t R't �Bt with B > 0. It follows from the Lipschitz control t j P't j � C
and Lemma 2.8 below that�

@

@t
��St

�
H �

h
1� t

@F

@r

i
R't �nt

�
.�C dd c P't /^S

n�1
t

Snt

�2
if we choose B > 0 so large that

t
@2F

@t2
.t; x; 't /C 2t P't

@2F

@r@t
.t; x; 't /CB � 0:

We use here the simplifying assumption that r 7! F. � ; � ; r/ is convex, so that

�. P't /
2 @
2F

@r2
.t; x; 't /� 0:

We will remove this assumption in the next subsection.

Let .t0; x0/ 2XT be a point at which H realizes its maximum. If t0 D 0 then H � 0,
hence R't � B and we are done. If t0 > 0, then 0 � .@=@t ��St /H at the point
.t0; x0/; thus, for .t; x/D .t0; x0/,

1

n
.t TrSt .�C dd

c
P't //

2
�

h
1� t

@F

@r

i
t R't

with
t R't D t TrSt .�C dd

c
P't /� t

@F

@t
.t; x; 't /� t P't

@F

@r
.t; x; 't /

D t TrSt .�C dd
c
P't /CO.1/:

It follows that t0 R't0.x0/ is uniformly bounded from above, hence so is H � C. Thus
t R't � Bt CC � C

0 on XT .
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We have used the following differential inequality, which is probably well known. We
include a proof for the reader’s convenience.

Lemma 2.8 Assume n � 2. Let ! be a Kähler form and let � be a closed .1; 1/–
differential form. Then

�2 ^!n�2

!n
�

�
�^!n�1

!n

�2
:

Proof This is a pointwise inequality, hence it reduces to linear algebra. Since ! is
a Kähler form, we can assume that !.x/ is the Euclidean Kähler metric. Perturbing
�.x/ if necessary, we can also make a change of local coordinates so that �.x/ is given
by a diagonal matrix with diagonal entries �1; : : : ; �n . We infer

�2 ^!n�2

!n
.x/D

1

n.n� 1/

X
˛¤ˇ

�˛�ˇ ;

while �
�^!n�1

!n

�2
.x/D

�
1

n

X
˛

�˛

�2
:

The desired inequality follows from the elementary computation�
1

n

nX
˛D1

�˛

�2
�

1

n.n� 1/

X
˛¤ˇ

�˛�ˇ D
1

n2.n� 1/

X
˛<ˇ

.�˛ ��ˇ /
2
� 0:

2.4.2 More general bounds We assume in this subsection that there exists a constant
A > 0 such that, for all t 2 �0; T Œ,

(2-1) �A!t � P!t �CA!t and R!t � A!t :

We also assume that .t; r/ 7! F.t; x; r/ is uniformly semiconvex, ie there exists a
constant CF > 0 such that for every x 2X, the function

(2-2) .t; r/ 7! F.t; x; r/CCF .t
2
C r2/ is convex in Œ0; T Œ� Œ�C0; C0�:

Theorem 2.9 Assume that !t and F. � ; � ; r/ are as above. Let 't be a solution of
the above parabolic Monge–Ampère equation. Then there exists C > 0 such that

R't .x/�
C

t2
for all .t; x/ 2XT ;

where C depends explicitly on A, T , CF , �F , k@F=@rkL1 ; k@F=@tkL1 , kgkp
and C0 .
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Here C0 is the constant given in Proposition 2.1 and the norms k@F=@rkL1 and
k@F=@tkL1 are computed on XT � Œ�C0; C0�.

Proof In the proof below we use C to denote various constants under control. Set
˛t WD P!t C dd

c P't and St WD !t C dd c't , and, for h 2 C1.X;R/,

�th WD Trt .dd ch/ WD TrSt .dd
ch/D n

dd ch^Sn�1t

Snt
:

Writing
P't D logŒ.!t C dd c't /n=g.x/ dV.x/��F.t; x; '/;

we differentiate twice in time to obtain, as in the proof of Theorem 2.7, that

(2-3) t R't D t Trt˛t � t@tF � t P't@rF D t Trt˛t CO.1/;

where we use the uniform bound t j P't j � C (thanks to Theorem 2.5), and

«'t D Trt . P̨ t /Cn.n� 1/
˛2t ^S

n�2
t

Snt
�n2

�
˛t ^S

n�1
t

Snt

�2
� R't

@F

@r
.t; x; 't /

�
@2F

@t2
.t; x; 't /� 2 P't

@2F

@r@t
.t; x; 't /� . P't /

2 @
2F

@r2
.t; x; 't /

� Trt . P̨ t /�
1

n
.Trt˛t /2� R't

@F

@r
.t; x; 't /CCF .. P't /

2
C 1/;

using the convexity condition (2-2) and Lemma 2.8. The Lipschitz control t j P't j � C
(provided by Theorem 2.5) yields

(2-4) t2«'t � t
2Trt P̨ t � t2n�1ŒTrt .˛t /�2� t2 R't

@F

@r
.t; x; 't /CC:

Set H.t; x/D t2 R't �AT t't . It follows from (2-1) and a direct computation that

(2-5) �tH � t
2Trt P̨ t C .AT t �At2/Trt .!t /�AnT t � t2Trt P̨ t �C:

It follows therefore from (2-4) and (2-5) that�
@

@t
��t

�
H � t R't .2� t@rF /� t

2n�1.Trt˛t /2CC:

Let .t0; x0/ 2XT be a point at which the function H realizes its maximum. If t0 D 0
then H � 0, hence t2 R't � C and we are done. If t0 > 0, then 0� .@=@t ��St /H at
the point .t0; x0/; thus, for .t; x/D .t0; x0/,

t R't .t@rF � 2/C t
2n�1.Trt˛t /2 � C:

Using (2-3) we conclude that t2 R't � C on XT , finishing the proof.
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2.5 Conclusion

2.5.1 The estimates We summarize here the a priori estimates we have obtained so
far. We assume that the forms and densities are smooth and satisfy the uniform bounds
listed in the introduction, involving the constants A, p , �F and CF .

Theorem 2.10 There exist C0; C1; C2 > 0 such that , for all .t; x/ 2XT ,

(1) �C0 � 't .x/� C0 ;

(2) n log t �C1 � P't .x/� C1=t ;

(3) R't .x/� C2=t2 ;

where the Cj depend on A, B, p , CF and �F , and

� C0 explicitly depends on T , � , ‚, infX '0 , supX '0 and supXT jF.t; x; 0/j;

� C1 explicitly depends on C0; T; k@F=@rkL1 ; k@F=@tkL1 and kgkLp ;

� C2 explicitly depends on C0 , C1 and T .

The norms k@F=@rkL1 and k@F=@tkL1 are computed on XT � Œ�C0; C0�.

2.5.2 Convergence of semiconcave functions It is useful to know when a sequence
of !t –psh functions is uniformly semiconcave. It allows one to obtain the convergence
of the associated parabolic Monge–Ampère operators, as the following result shows:

Theorem 2.11 Let gj .t; x/ be a family of L1.XT /–densities such that gj ! g in
L1.XT /. Let Fj .t; x; r/ be continuous densities which uniformly converge towards F .
Let 'j .t; x/ be a family of !t –psh functions such that

� .'j / is uniformly bounded ;

� R'j � C=t
2 for some uniform constant C > 0.

Then there exists a bounded function ' 2 P.XT ; !/ such that , up to extracting and
relabeling , 'j ! ' in L1loc.XT / and

e P'jCFj .t;x;'j .t;x//gj .t; x/ dt ^ dV.x/! e P'CF.t;x;'.t;x//g.t; x/ dt ^ dV.x/;

in the weak sense of Radon measures on XT .
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Proof Since .'j / is bounded in L2.XT /, it is weakly compact. Extracting and
relabeling, we assume that .'j / weakly converges to ' 2 L2.XT /.

Fix a compact subinterval J b �0; T Œ. There exists a constant C D CJ > 0 such that
the functions t 7! 'j .t; x/�Ct

2 are concave in J for all x 2 X fixed. The same
property holds for the limiting function '.t; x/ by letting j !C1. For t fixed, the
functions x 7! 'j .t; x/ are !t –psh and uniformly bounded, hence x 7! '.t; x/ is
!t –psh and uniformly bounded in XT .

It follows from Theorem 1.3 that 'j ! ' in L1loc.XT / and 'j .t; x/! '.t; x/ almost
everywhere in XT with respect to the Lebesgue measure. The conclusion follows by
applying Theorem 1.14.

3 Existence and properties of sub/super/solutions

From now on we assume that t 7! !t and the densities g and F satisfy the conditions
listed in the introduction.

For bounded parabolic potentials ' 2P.XT /\L1.XT /, the equation (CMAF) should
be understood in the sense of measures on �0; T Œ�X :

(CMAF) .!t C dd
c't /

n
^ dt D e P'tCF.t;x;'t /g.x/ dV.x/^ dt:

It follows from Definition 1.10 that the left-hand side is a well-defined Radon measure,
while Lemma 1.6 ensures that so is the right-hand side.

3.1 Stability estimates

We establish in this section uniform L1–L1 stability estimates needed in the proof of
the existence theorem.

Proposition 3.1 Fix 0� g1; g2 2Lp.X/ with p > 1, and 0 < T0 <T1 <T . Assume
'1; '2 2 P.XT ; !/\ C1.XT / both satisfy

dt ^ .!t C dd
c'i /n D e P'

i .t; � /CFi .t; � ;'
i /gi dt ^ dV:

Then, for all .t; x/ 2 ŒT0; T1��X,

(3-1) j'1.t; x/�'2.t; x/j � Bk'1�'2k˛
L1.XT /

;

where 0 < ˛ D ˛.n; p/ while 0 < B depends on T0 , T1 , � , ‚, and upper bounds for
kgikLp.X/ , kFikL1.XT / , k@tFikL1.XT / and k@rFikL1.XT / .
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Proof We are going to use the stability results of [12; 21]. These rely on important
estimates which we recall for the convenience of the reader. The uniform bounds
� � !t �‚ and [11, Lemma 2.2] show that there exists a uniform constant A1 > 0
such that

Vol.K/� A1 Cap!t .K/
2

for all t 2 Œ0; T � and all compact sets K �X, where

Cap!t .K/ WD sup
�Z
K

.!t C dd
cu/n W u 2 PSH.X; !t / with 0� u� 1

�
is the Monge–Ampère capacity associated to the form !t .

Fix T0 < T1 < T and consider the densities

f it WD e
P'i .t; � /CFi .t;x;'

i /gi .x/; i D 1; 2:

It follows from Theorem 2.5 that t P'i .t; x/ is uniformly bounded by C1 , while
Proposition 2.1 ensures that the 'i are uniformly bounded. The Lp–norms of the
densities f it are thus uniformly bounded from above by

A2 WD e
C1=T0CC2.kg0kLp.X/Ckg1kLp.X//

when t 2 ŒT0; T1�. It follows therefore from [12, Proposition 3.3] that

max
X
j'1.t; � /�'2.t; � /j � Ck'1.t; � /�'2.t; � /k




L1.X/

for all t 2 ŒT0; T1�, where 
 2 �0; 1Œ only depends on p and n. Lemma 1.5 yields

k'1.t; � /�'2.t; � /kL1.X/ � Amaxfk'1�'2kL1.XT /; k'
1
�'2k

1=2

L1.XT /
g;

where A WD 2maxf
p
�; .T �T1/

�1g.

The proof is completed by combining the last two inequalities.

In practice, this proposition yields the following useful information:

Corollary 3.2 Assume kgj kLp , kFj kL1 , k@tFj kL1 and k@rFj kL1 are uniformly
bounded. If a sequence .'j / of solutions to (CMAF)Fj ;gj converges in L1.XT / to ',
then it uniformly converges on compact subsets of �0; T Œ�X.
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3.2 The Cauchy problem

We are now in position to prove Theorem A of the introduction.

Definition 3.3 A parabolic potential ' 2P.XT ; !/ is a pluripotential solution (respec-
tively sub/supersolution) to (CMAF) with initial values '0 2 PSH.X; !0/\L1.X/ if
' satisfies (CMAF) (or the inequality � or �, respectively) in the sense of measures
on XT and 't ! '0 in L1.X/ as t ! 0C .

Theorem 3.4 Assume that '0 is a bounded !0–psh function in X, and .!; F; g/ is
as in the introduction. There exists ' 2 P.XT ; !/ solving (CMAF) such that , for all
0 < T 0 < T ,

� .t; x/ 7! '.t; x/ is uniformly bounded in �0; T 0��X ;

� .t; x/ 7! '.t; x/ is continuous in �0; T Œ��;

� t 7! '.t; x/�n.t log t � t /CC1t is increasing on �0; T 0Œ for some C1 > 0;

� t 7! '.t; x/CC2 log t is concave on �0; T 0Œ for some C2 > 0;

� 't ! '0 as t ! 0C in L1.X/ and pointwise.

Recall that � is the ample locus of � . The solution we provide is in particular locally
uniformly semiconcave in t 2 �0; T Œ. We will study the uniqueness issue in the next
section.

Proof Fix 0 < T 0 < T . We prove the existence of a solution on �0; T 0Œ �X. The
uniqueness result (Corollary 4.5) then ensures that a solution exists in �0; T Œ�X.

We approximate

� g by smooth densities gj > 0 in Lp.X/;

� F by smooth densities Fj with uniform constants �Fj , CFj and �Fj ;

� '0 from above on X by smooth .!0C2�j‚/–psh functions '0;j ;

� !t by smooth (in t ) !jt such that !jt � !t C 2
�j‚ and !

j
t satisfies the

assumptions in the introduction.

It is well known (see eg [37]) that there exists a unique smooth solution 'j 2P.XT ; !j /
to (CMAF)Fj ;gj , ie

(3-2) dt ^ .!
j
t C dd

c'
j
t /
n
D e P'

j .t;x/CFj .t;x;'
j .t;x//gj dt ^ dV.x/:
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It follows from Theorem 2.10 that the 'j are uniformly bounded and the derivatives R'j

are locally uniformly bounded from above in XT . Extracting a subsequence of .'j /
and relabeling it, Theorem 2.11 ensures that there exists ' 2 P.XT /\L1loc.XT / such
that 'j ! ' in L1.XT / and

e P'
j .t;x/CFj .t;x;'

j .t;x//gj .t; x/ dt ^ dV.x/! e P'.t;x/CF.t;x;'.t;x//g.x/ dt ^ dV.x/;

in the sense of currents on XT .

We claim that 'j ! ' locally uniformly in XT . This follows indeed from the stability
estimates established in Proposition 3.1 above. Fix 0 < T0 < T1 < T . Since the
densities gj have uniform Lp–norms, Theorem 2.5 ensures that the sequence . P'j / is
uniformly bounded in ŒT0; T ��X. By (3-1), for all j and k large enough, t 2 ŒT0; T1�
and x 2X, we have

j'j .t; x/�'k.t; x/j � Ck'j �'kk˛
L1.XT /

;

where C > 0 and 0 < ˛ < 1 are uniform constants which do not depend on j, k and
t 2 ŒT0; T1�. This proves our claim.

Therefore dt ^ .!jt C dd
c'
j
t /
n ! dt ^ .!t C dd

c't /
n in the sense of measures

on XT , hence ' solves (CMAF).

One shows similarly that ' is uniformly semiconcave in �0; T Œ: the densities gj
in (3-2) are uniformly bounded in Lp.X/, hence Theorem 2.9 ensures the existence of
a uniform constant C > 0 such that

R'j .t; x/� C=t2

for all j 2N; .t; x/ 2XT . Thus, for each compact subinterval J b �0; T Œ there exists
a constant CJ > 0 such that the functions t 7! 'j .t/�CJ t

2 are concave in J, and
the same property holds for ' by letting j !1.

The continuity of ' on �0; T Œ�� follows from the elliptic theory, as will be shown in
Proposition 3.12 below. The lower bound P't � n log t �C1 , provided by Theorem 2.5,
ensures that t 7! 't � n.t log t � t /CC1t is increasing, hence any cluster point (in
L1–topology) of 't (as t! 0C ) is greater than '0 . On the other hand, it follows from
Proposition 2.3 and Lemma 1.5 thatZ

X

'tg dV �

Z
X

'0g dV CCt

Geometry & Topology, Volume 24 (2020)



1256 Vincent Guedj, Chinh H Lu and Ahmed Zeriahi

for a uniform constant C > 0. Let u0 be any cluster point of .'t / as t ! 0C . Then,
as explained above, u0 � '0 . On the other hand, the average control above ensures thatZ

X

u0g dV �

Z
X

'0g dV:

Since the set fgD 0g has Lebesgue measure zero, we infer u0D'0 almost everywhere,
hence everywhere.

Remark 3.5 Proposition 1.2 ensures that the pluripotential solution constructed above
is upper semicontinuous on Œ0; T Œ�X. The functions 't quasidecrease to '0 as t& 0.
The convergence at time zero is thus quite strong: If '0 is continuous, it follows
for instance that the convergence is uniform. For noncontinuous initial '0 , there is
convergence in capacity: a sequence of functions uj converges in capacity to u if for
all " > 0 we have

lim
j!C1

Cap�
�
fx 2X W juj .x/�u.x/j> "g

�
D 0:

Remark 3.6 The way the density is allowed to vanish is crucial. Theorem A does not
hold for an arbitrary density g � 0: If g vanishes in a nonempty open set D �X then
(CMAF) has no solution with initial value '0 unless '0 is a maximal !0–psh function
in D. Indeed, the complex Monge–Ampère operator is continuous for the convergence
in capacity, so .!t C dd c't /n D 0 would converge to .!0C dd c'0/n D 0 in D.

3.3 Invariance properties of the set of assumptions

The family of parabolic complex Monge–Ampère equations we consider,

.!t C dd
c't /

n
D e P'tCF.t;x;'/g.x/ dV.x/;

has several invariance properties, as we now briefly explain.

3.3.1 Translations We can replace 't .x/ by  t .x/D't .x/CC.t/ without changing
the Monge–Ampère term, while the density F is modified into

zF .t; x; r/D F.t; x; r �C.t//�C 0.t/:

We let the reader check that zF satisfies the same set of assumptions as F .

More generally we can replace !t by �tD!t�dd c�t , changing 't .x/ in 't .x/C�t .x/.
The density g remains unchanged while the new density F is

zF .t; x; r/D F.t; x; r � �.t; x//� @t�.t; x/:
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3.3.2 Scaling A more involved transformation consists in scaling in space and re-
normalizing in time, so that the equation keeps the same shape. Namely we replace
!t by 
.s/!t.s/ as well as 't .x/ by  s.x/D 
.s/'t.s/.x/, where s 7! 
.s/ > 0 is
smooth and positive, t .0/D 0 and t 0.s/D 1=
.s/, so that

@s s D

 0.s/


.s/
 sC @t't.s/:

The density g remains unchanged while the density F is transformed into

zF .s; x;R/D F.t.s/; x; r.s; R//Cn log 
.s/�

 0.s/


.s/
R;

where r.s; R/DR=
.s/.

A classical example of such a transformation is when 
.s/D es and t .s/D 1� e�s ,
allowing one to pass from the Kähler–Ricci flow to the normalized Kähler–Ricci flow.

We let the reader check that zF remains quasi-increasing in R and locally uniformly
Lipschitz in .s; R/. It is slightly more involved to keep track of the semiconvexity
property:

Lemma 3.7 The function .s; R/ 7! zF .s; x;R/ is locally uniformly semiconvex
in .s; R/.

Proof Fix 0 < S0 < S, T0 D t .S0/ and a compact interval J b R. We want to
prove that .s; R/ 7! zF .s;R/ is semiconvex in Œ0; S0��J. We omit in the sequel the
dependence on x as it is not affected by the transformation.

We can assume that F is smooth and proceed by approximation. The goal is to prove
that the Hessian matrix H.s;R/ of .s; R/ 7! zF .s;R/ satisfies

H.s;R/CCI2 � 0;

where I2 is the identity matrix in M2.R/, and the constant C is under control. Increas-
ing C, we can also assume that F is convex in Œ0; S0��J. Recall that F is Lipschitz
on Œ0; T0��J and s 7! 
.s/ > 0 is smooth. Using this we can write

@2 zF

@s2
D
@2F

@t2

�
@t

@s

�2
C 2

@2F

@t@r

@r

@s

@t

@s
C
@2F

@r2

�
@r

@s

�2
CO.1/;

@2 zF

@R2
D
@2F

@r2

�
@r

@R

�2
CO.1/;

@2 zF

@R@s
D
@2F

@r2
@r

@R

@r

@s
C
@2F

@r@t

@r

@R

@t

@s
CO.1/:
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It remains to check that �
a b

b c

�
� 0;

where
aD

@2F

@t2

�
@t

@s

�2
C 2

@2F

@t@r

@r

@s

@t

@s
C
@2F

@r2

�
@r

@s

�2
;

c D
@2F

@r2

�
@r

@R

�2
;

b D
@2F

@r2
@r

@R

@r

@s
C
@2F

@r@t

@r

@R

@t

@s
:

The convexity of F and a direct computation ensure that a; c � 0 and ac�b2 � 0.

We note, for later use, that such a transformation allows one to reduce to the case when
r 7! F. � ; � ; r/ is increasing:

Lemma 3.8 Assume that r 7! F. � ; r/ is quasi-increasing with �F > 0. Consider

 W s 2 Œ0; SŒ 7! 1��F s 2 Œ0; T Œ, where S <��1F is defined by

R S
0 .1��F r/

�1 dr DT .
The function R 7! zF .s;R/ is increasing for all s 2 Œ0; SŒ.

Proof The function zF is given, for .s; R/ 2 Œ0; SŒ�R, by

zF .s;R/D F.t.s/; R=
.s//Cn log 
.s/C
�R


.s/
:

Using that r 7! F.t; x; r/C�r is increasing, it is straightforward to check that zF is
increasing in R .

3.4 Pluripotential sub/supersolutions

3.4.1 Definitions Our plan is to establish a pluripotential parabolic comparison prin-
ciple. The latter is easier to obtain under an extra regularity assumption in the time
variable, so we introduce the following terminology for convenience:

Definition 3.9 A parabolic potential u 2P.XT ; !/ is called of class C1=0 if for every
t 2 �0; T Œ fixed, @tu.t; x/ exists and is continuous in �.

Definition 3.10 A parabolic potential ' 2P.XT /\L1.XT / is called a pluripotential
subsolution of (CMAF) if

.!t C dd
c't /

n
^ dt � e P'tCF.t;x;'/g.x/ dV.x/^ dt

holds in the sense of measures in �0; T Œ�X.
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Similarly a parabolic potential ' 2 P.XT /\L1.XT / is called a pluripotential super-
solution of (CMAF) if

.!t C dd
c't /

n
^ dt � e P'tCF.t;x;'/g.x/ dV.x/^ dt

holds in the sense of measures in �0; T Œ�X.

In many cases one can interpret these notions by considering a family of inequalities
on slices:

Lemma 3.11 Fix u 2 P.XT /\L1.XT /.

(1) If u is a pluripotential subsolution of (CMAF) such that @Ct u exists and is lower
semicontinuous in t 2 �0; T Œ, then, for all t 2 �0; T Œ,

.!t C dd
cut /

n
� e@

C
t uCFg dV in the sense of measures in X:

(2) If u is a pluripotential supersolution of (CMAF) such that @�t u exists and is
upper semicontinuous in t 2 �0; T Œ, then, for all t 2 �0; T Œ,

.!t C dd
cut /

n
� e@

�
t uCFg dV in the sense of measures in X:

Proof We will prove the result for subsolutions. The corresponding result for super-
solutions follows similarly. Assume the right derivative @Ct u exists for all .t; x/ 2XT
and is lower semicontinuous in t for x fixed. It follows from [19, Proposition 3.2] that
for almost every t 2 �0; T Œ,

.!t C dd
cut /

n
� e@

C
t uCFg dV;

in the sense of measures on X. Any t 2 �0; T Œ can be approximated by a sequence
.tj /j2N for which the inequality above holds. The limiting inequality follows from the
lower semicontinuity of @Ct u.t; x/ in t and Fatou’s lemma.

3.4.2 Properties of supersolutions We use some properties of solutions to complex
Monge–Ampère equations to show that parabolic supersolutions automatically have
continuity properties.

Proposition 3.12 Assume that  2 P.XT /\L1.XT / is a supersolution to (CMAF).
Then  is continuous in �0; T Œ��.
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Proof Fix 0 < T0 < T1 < T . For almost every t 2 �0; T Œ we have

.!t C dd
c t /

n
� e

P .t; � /CF.t; � ; t /g dV

in the weak sense on X.

Since  is locally uniformly Lipschitz in t and F is bounded, there exists M > 0

such that P .t; � /CF.t; � ;  t /�M for almost any t 2 ŒT0; T1�. Thus,

.!t C dd
c t /

n
� eMg dV;

for almost every t 2 ŒT0; T1�. By (weak) continuity (in t ) of the left-hand side, it
follows that this inequality actually holds for any t 2 ŒT0; T1�.

The elliptic theory (see eg [22, Theorem 12.23]) implies that  t is continuous in �
for any t 2 ŒT0; T1�. Since  is uniformly Lipschitz in ŒT0; T1�, it follows that  
is continuous in ŒT0; T1���. Indeed, let � be the uniform Lipschitz constant of  
on ŒT0; T1�. Then, for any s; t 2 ŒT0; T1� and x; y 2�, we have

j .s; x/� .t; y/j � j .s; x/� .t; x/jC j .t; x/� .t; y/j

� �js� t jC j .t; x/� .t; y/j;

which implies the continuity of  in ŒT0; T1���.

Supersolutions admit uniform bounds from below:

Proposition 3.13 Assume that  2 P.XT / \ L1loc.XT / is a pluripotential super-
solution to (CMAF) which is locally uniformly semiconcave in t . There exist C > 0
and t0 > 0 such that, for all .t; x/ 2 �0; t0��X,

 .t; x/� .1� t /e�At 0.x/CC.t log t � t /:

Here A is a positive constant such that

�A!t � P!t � A!t for all t 2 �0; T Œ:

This implies in particular that !tCs � e�At!s for all t; s > 0 with t C s < T .

Proof Set M WDM WD supXT=2 j j. The Lipschitz condition on F ensures that there
exists a constant � D �F such that, for all t; t 0 2

�
0; 1
2
T
�
, x 2X and r 2 Œ�M;M�,

jF.t; x; r/�F.t 0; x; r/j � �jt � t 0j:
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Set t0 WDmin
�
1; 1
4
T; 1

2
�
�
. As observed above, !tCs � e�At!s for all s 2

�
0; 1
2
t0
�

and
t 2 �0; t0Œ. Fix s 2 �0; t0� and consider, for t 2 �0; t0�,

us.t; x/ WD .1� t /e
�At s.x/C t�CC.t log t � t /;

vs.t; x/ WD  .t C s; x/C 2�ts;

where � is a � –psh function on X, normalized by supX �D 0, which solves

.� C dd c�/n D ec1g dV

with a normalization constant c1 , and C is a positive constant to be specified later.

The existence and boundedness of � follows from [12]. Observe that us is of class C1=0

in t and, for each t 2 �0; t0� fixed, us.t; � / is continuous in � (see Proposition 3.12).

A direct computation shows that, for t 2 �0; t0�,

.!tCsC dd
cus/

n
D
�
.1� t /!tCsC t!tCsC dd

c..1� t /e�At s/C tdd
c�
�n

�
�
.1� t /e�At .!sC dd

c s/C t .� C dd
c�/
�n

� ec1 tng dV:

In the second line above we have used !tCs � e�At!s while in the last line we have
used !sCdd c s � 0. Thus, since  s is uniformly bounded, by choosing C > 0 large
enough (depending on MF ) we obtain

.!tCsC dd
cus/

n
� e@tus.t; � /CF.t; � ;us.t; � //g dV:

It is also clear from the definition that us.t; � / converges in L1.X; dV / to us.0; � /D s
as t ! 0C .

On the other hand, since  is a supersolution to (CMAF), by Lemma 3.11 we have

.!tCsC dd
cvs/

n
� e@

�
t  .tCs; � /CF.tCs; � ; .tCs; � //g dV

� e@
�
t vs.t; � /�2�sCF.tCs; � ; .tCs; � //g dV:

The Lipschitz condition on F ensures that, for all t; s 2 Œ0; t0� and x 2X,

F.t C s; x;  .t C s; x//� F.t; x;  .t C s; x//C �s:

The quasi-increasing property of F ensures that

F.t; x;  .t C s; x//D F.t; x; vs.t; x/� 2�ts/� F.t; x; vs.t; x//C 2��ts:
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Thus, for t � t0 � 1
2
�,

.!tCsC dd
cvs/

n
� e@tvs.t; � /CF.t; � ;vs.t; � //g dV:

It follows from Proposition 3.12 that vs is continuous on Œ0; t0��� and vs.0; � /D s .
We can thus apply Proposition 4.2 below and obtain us � vs on �0; t0Œ�X. Letting
s! 0 we obtain that, for all .t; x/ 2 �0; t0��X,

.1� t /e�At 0.x/C t�CC.t log t � t /�  .t; x/:

The result follows since � is bounded.

3.4.3 Regularization of subsolutions We introduce a regularization process for
subsolutions. Fix 0 < T 0 < T and "0 > 0 such that .1C "0/T 0 < T . It follows from
(0-1) that there exists A1 > 0 such that, for all t 2 �0; T 0Œ and s 2 Œ1� "0; 1C "0�,

(3-3) !t � .1�A1js� 1j/!ts;

where "0 > 0 is a fixed small constant. For js� 1j< "0 we set

�s WD
j1� sj

s
; ˛s WD s.1��s/.1�A1js� 1j/ 2 �0; 1Œ:

Up to shrinking "0 we can also assume that, for all js� 1j � "0 ,


s WD
�s

1�˛s
� "1;

where "1 D .5CA1/�1 > 0.

We let � 2 PSH.X; �/ with supX �D 0 be the unique bounded solution to

."1� C dd
c�/n D ec1g dV

for some normalization constant c1 2R (see [12]).

Lemma 3.14 Assume that u 2 P.XT / is a bounded pluripotential subsolution of
(CMAF). Then there exists a uniform constant C > 0, depending on Mu WD supXT juj
and the data, such that, for every s 2 Œ1� "0; 1C "0�,

.t; z/ 7! vs.t; z/ WD
˛s

s
u.ts; x/C .1�˛s/�.x/�C js� 1jt

is a pluripotential subsolution of (CMAF) in XT 0 .

Geometry & Topology, Volume 24 (2020)



Pluripotential Kähler–Ricci flows 1263

Proof For notational convenience we set

ˇs WD
1��s

˛s
D 1CO.js� 1j/:

Since u is a pluripotential subsolution of (CMAF), using (3-3) we can write

.ˇs!t C s
�1dd cu.st; � //n � s�n.!tsC dd

cu.st; � //n

� e�n log sC@�u.st;x/CF.ts;x;u.st;x//g.x/ dV:

By the choice of � we also have

.
s!t C dd
c�/n � ."1� C dd

c�/n D ec1g dV:

Combining these with Lemma 3.15 below, we arrive at

.!t C dd
cvs.t; � //

n
D Œ.1��s/!t C s

�1˛sdd
cu.st; � /C�s!t C .1�˛s/dd

c��n

D Œ˛s.ˇs!t C s
�1dd cu.st; � //C .1�˛s/.
s!t C dd

c�/�n

� e˛s@�u.st;x/C˛sF.t;x;u.st;x//C.1�˛s/c1�n˛s log sg.x/ dV:

Since F.t; x; r/ is uniformly bounded on Œ0; T Œ � X � Œ�Mu;Mu� and ˛s � 1 D

O.js� 1j/, up to enlarging C we infer

.!t C dd
cvs.t; � //

n
� e@tvs.t;x/CF.t;x;vs.t;x//g.x/ dV:

This concludes the proof.

We have used the following mixed inequalities:

Lemma 3.15 Let �1 and �2 be two closed smooth semipositive .1; 1/–forms on X.
Let u1 2 PSH.X; �1/ and u2 2 PSH.X; �2/ be bounded and such that

.�1C dd
cu1/

n
� ef1� and .�2C dd

cu2/
n
� ef2�;

where f1 and f2 are bounded measurable functions and � D h dV � 0. Then, for
every ˛ 2 �0; 1Œ,�

˛.�1C dd
cu1/C .1�˛/.�2C dd

cu2/
�n
� e f̨1C.1�˛/f2�:

Proof The proof is identical to that of [19, Lemma 5.9] using the convexity of the
exponential together with the mixed Monge–Ampère inequalities due to S Kołodziej [28]
(see also [10]).
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Let �W R! Œ0;C1Œ be a smooth function with compact support in Œ�1; 1� such thatR
R �.s/ ds D 1. For " > 0 we set �".s/ WD "�1�.s="/.

Proposition 3.16 Assume that u 2 P.XT / is a bounded pluripotential subsolution of
(CMAF). Let vs be defined as in Lemma 3.14.

If r 7! F. � ; � ; r/ is convex then there exists a uniform constant B > 0 such that, for
" > 0 small enough, the function

u".t; x/ WD

Z
R
vs.t; x/�".s� 1/ ds�B".t C 1/

is a pluripotential subsolution of (CMAF) which is C1=0 in t and such that

sup
X

Œu".0; x/�u0.x/�
"!0
��! 0:

When r 7! F. � ; � ; r/ is merely semiconvex, the same conclusion holds if we further
assume that

(3-4) j@tu.t; x/j � C=t for all .t; x/ 2 �0; T 0��X:

Proof We first assume that r 7! F. � ; � ; r/ is uniformly convex and increasing. In
this case we do not need the assumption (3-4). Fix "0 as in Lemma 3.14. For each s
such that js� 1j � "0 the function vs.t; z/ is a pluripotential subsolution to (CMAF).

As in [19, Theorem 5.7, Step 3], we use [18, Main Theorem] and Jensen’s inequality
to show that, for any t 2 �0; T Œ,

(3-5) .!tCdd
cu"/n�exp

�
@tu

".t; x/CB"C

Z
R
F.t; x; vs.t; x//�".s�1/ ds

�
g dV;

in the weak sense on X.

If F.t; x; � / is convex for any .t; x/, thenZ
R
F.t; x; vs.t; x//�".s� 1/ ds � F.t; x; u

"
CB"/� F.t; x; u"/;

since F is nondecreasing in r . Plugging this inequality in (3-5) we conclude that, for
any B � 0, u" is a subsolution to the equation (CMAF).

If F is merely semiconvex, the function r 7! F.t; x; r/C �r2 is convex for any
.t; x/ 2XT for some constant � > 0. Thus,

(3-6)
Z

R
F.t; x; vs.t; x//�".s� 1/ ds � F.t; x; u

".t; x//�".s� 1/ dsC�Q".t; x/;
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where

Q".t; x/ WD

Z
R
vs.t; x/

2�".s� 1/ ds�

�Z
R
vs.t; x/�".s� 1/ ds

�2
:

We claim that there is C1 > 0 such that jQ".t; x/j � C1" for all .t; x/ 2 Œ0; T ��X.
Indeed the family of function s 7! vs is uniformly bounded in Œ0; T ��X by a constant
M > 0. Hence, for any .t; x/ 2 Œ0; T ��X and " > 0 small enough, we have

jQ".t; x/j � 2M

Z
R
jvs.t; x/� v

"
s .t; x/j�".s� 1/ ds;

where v"s .t; x/ WD
R

R vs.t; x/�".s� 1/ ds .

Recall that vs.t; x/ WD .˛s=s/u.s � t; x/C.1�˛s/�.x/�C js�1jt . The condition (3-4)
ensures that the function @svs is uniformly bounded in s 2 Œ1 � "0; 1 C "0� and
.t; x/ 2XT . Thus the family s 7! vs is uniformly L–Lipschitz in s 2 Œ1� "0; 1C "0�,
which proves our claim with C1 WD 2ML.

By (3-6) this implies that, for any .t; x/ 2XT ,Z
R
F.t; x; vs.t; x//�".s� 1/ ds � F.t; x; u

".t; x//�".s� 1/ ds�C1":

Pluging this inequality in (3-5) and taking B �C1 we see that u" is a subsolution to the
equation (CMAF). Taking B large enough we obtain furthermore that u".0; x/�u0.x/
for all x 2X.

We let the reader adapt these arguments to the situation when r 7! F. � ; � ; r/ is merely
quasi-increasing.

4 Uniqueness

We have shown in the previous section that the Cauchy problem for (CMAF) with
bounded initial data '0 2 PSH.X; !0/ admits a pluripotential solution which is locally
uniformly semiconcave in t . We now prove that there is only one such solution.

4.1 Comparison principle, I

Our goal in this section is to establish the following comparison principle:

Theorem 4.1 Fix '; 2 P.XT ; !/\L1.XT / and assume that

(a) ' is a pluripotential subsolution to (CMAF);
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(b)  is a pluripotential supersolution to (CMAF);

(c) x 7! '. � ; x/ is continuous in � and j@t'.t; x/j � C=t for all .t; x/ 2XT ;

(d)  is locally uniformly semiconcave in t 2 �0; T Œ;

(e) 't ! '0 and  t !  0 in L1 as t ! 0.

If '0 �  0 then ' �  .

We first establish this result under extra assumptions:

Proposition 4.2 Fix '; 2P.XT /\L1.XT /. Assume that ' (resp.  ) is a pluripo-
tential subsolution (resp. supersolution) to (CMAF) such that

(a) ' is C1=0 in t and , for any t > 0, '.t; � / is continuous on �;

(b)  is locally uniformly semiconcave in t ;

(c) 't ! '0 and  t !  0 in L1 as t ! 0;

(d) the function .t; x/ 7!  .t; x/ is continuous on Œ0; T Œ��.

Then
'0 �  0 D) ' �  on XT :

A particular case of this result was established in [16, Theorem 3.1].

Proof We fix T 0 2 �0; T Œ and we prove that ' �  on Œ0; T 0��X. The result then
follows by letting T 0! T . Using the invariance properties of the family of equations
(see Section 3.3), we can assume without loss of generality that r 7! F. � ; � ; r/ is
increasing. We proceed in several steps.

Construction of auxiliary functions We first introduce two auxiliary functions. Let
�1 2 PSH

�
X; 1

2
�
�

be a 1
2
� –psh function with analytic singularities (in particular �1 is

smooth in �) such that �1 D �1 on @�. We need to use this function in order to
apply the classical maximum principle in �. Note that the ample locus of � coincides
with that of 1

2
� .

The standard strategy is to replace ' by .1�ı/'tCı�1 . However, the time derivative P't
may blow up as t ! 0, so we need to use a second auxiliary function. Let �2 2
PSH

�
X; 1

2
�
�

be the unique solution to�
1
2
� C dd c�2

�n
D ec1g dV;
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normalized by supX �2 D 0, where c1 2 R is a normalization constant. Then � WD
�1C�2 is a � –psh function which is continuous in � and tends to �1 on @�.

Adaptation of the arguments in [16] Fix "; ı > 0 small enough and set

w.t; x/ WD .1� ı/'.t; x/C ı�.x/� .t; x/� 3"t; t 2 Œ0; T 0�; x 2�:

This function is upper semicontinuous on Œ0; T 0��� (see Proposition 1.2) and tends
to �1 on @�, hence attains a maximum at some .t0; x0/ 2 Œ0; T 0���.

We claim that w.t0; x0/� 0. Assume by contradiction that w.t0; x0/ > 0. Then t0 > 0
and we set

K WD fx 2� W w.t0; x/D w.t0; x0/g:

Since w tends to �1 on @� it follows from upper semicontinuity of ' that K is a
compact subset of �. Since '. � ; x0/ is differentiable in �0; T Œ, the classical maximum
principle ensures that, for all x 2K,

.1� ı/@t'.t0; x/� @
�
t  .t0; x/C 3":

By assumption, the partial derivative @t'.t; x/ is continuous on �. Moreover, by
Proposition 3.12,  t is continuous on � for all t 2 �0; T Œ. By local semiconcavity of
t 7! t it then follows that, for t 2 �0; T Œ fixed, @�t  .t; x/ is upper semicontinuous in �.
We thus can find � > 0 small enough that, by introducing the open set containing K,

D WD fx 2� W w.t0; x/ > w.t0; x0/� �gb�;

we have

(4-1) .1� ı/@t'.t0; x/ > @
�
t  .t0; x/C 2" for all x 2D:

We note here that D is open because the function x 7!w.t0; x/ is continuous in � by
assumptions (a) and (d) and by the continuity of � in �.

Set u WD .1� ı/'.t0; � /C ı� and v WD  .t0; � /. Since ' is a subsolution to (CMAF),
using Lemma 3.15 we infer

.!t0 C dd
cu/n �

�
.1� ı/.!t0 C dd

c't0/C ı
�
1
2
� C dd c�2

��n
� e.1�ı/.@t'.t0; � /CF.t0;x;'.t0; � ///Cıc1g dV:

Since F is bounded on Œ0; T 0��X � Œ�M;M� for each M > 0 and ' is bounded on
Œ0; T 0��X, there exists a constant C > 0 under control such that

.!t0 C dd
cu/n � e.1�ı/@t'.t0; � /CF.t0;x;'.t0; � //�ıCg dV;
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in the weak sense of measures in �. Using (4-1) and choosing ı < C�1", we then
have

.!t0 C dd
cu/n � e@

�
t  .t0; � /CF.t0;x;'.t0; � //C"g dV;

in the weak sense of measures in D. Since  is a pluripotential supersolution,
Lemma 3.11 ensures

.!t0 C dd
c t0/

n
� e@

�
t  .t0; � /CF.t0;x; .t0; � //g dV;

in the weak sense of measures in D. The last two estimates yield

.!t0 C dd
cu/n � eF.t0; � ;u. � //�F.t0; � ;v. � //C".!t0 C dd

cv/n:

Recall that u.x/ > v.x/C "t0 for any x 2K. Shrinking D if necessary, we can thus
assume that u.x/ > v.x/ for all x 2D.

Since r 7! F.t; x; r/ is increasing, we thus get

.!t0 C dd
cu/n � e".!t0 C dd

cv/n;

in the sense of positive measures in D.

Consider now zu WD uCmin@D.v�u/. Since v � zu on @D, the comparison principle
Proposition 4.3, below, yieldsZ
fv<zug\D

e".!t0 Cdd
cv/n �

Z
fv<zug\D

.!t0 Cdd
cu/n �

Z
fv<zug\D

.!t0 Cdd
cv/n:

It then follows that zu � v almost everywhere in D with respect to the measure
.!t0Cdd

cv/n, hence everywhere in D by the domination principle (see Proposition 4.3).

In particular,

(4-2) u.x0/� v.x0/Cmin
@D
.v�u/D zu.x/� v.x/� 0:

Since K \ @D D∅, we infer w.t0; x/ < w.t0; x0/ for all x 2 @D, hence

u.x/� v.x/ < u.x0/� v.x0/ for all x 2 @D;

contradicting (4-2). Altogether this shows that t0 D 0, thus

.1� ı/'C ı� � � 3"t � ı sup
X

j'0j

in Œ0; T 0���. Letting ı! 0 and then "! 0 we arrive at ' � in Œ0; T 0��� hence
in Œ0; T 0��X.
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We have used the following semilocal version of the domination principle:

Proposition 4.3 Fix a nonempty open subset D � X and let u and v be � –psh
functions on X, which are bounded in a neighborhood of D, such that

lim inf
D3z!@D

.u� v/.z/� 0:

Then Z
fu<vg\D

�nv �

Z
fu<vg\D

�nu :

Moreover, if MA� .u/.fu < vg\D/D 0 then u� v in D.

The proof is classical (see [6; 16]) but we include it for the convenience of the reader.

Proof Up to replacing v with max.v;�C/, and zu with max.zu;�C/ for a large
constant C, we can assume that u and v are bounded on X.

Fix "> 0 . By the assumption on the boundary values of u and v we can find a compact
subset K b D such that max.u; v � "/ D u on D nK. It follows from the Stokes
theorem that, for any smooth test function � 2 C1.D/ with compact support and
�D 1 in a neighborhood of K,Z

D

�.� C dd c max.u; v� "//n D
Z
D

�.� C dd cu/n:

Letting � increase to 1D , we arrive atZ
D

.� C dd c max.u; v� "//n D
Z
D

.� C dd cu/n:

Since the Monge–Ampère operator is local with respect to the plurifine topology, we
have that

1fu>v�"g.� C dd
c max.u; v� "//n D 1fu>v�"g.� C dd

cu/n

and
1fu<v�"g.� C dd

c max.u; v� "//n D 1fu<v�"g.� C dd
cv/n:

Combining all these, we obtainZ
D

.� C dd cu/n �

Z
fu>v�"g\D

.� C dd cu/nC

Z
fu<v�"g\D

.� C dd cv/n;

hence Z
fu<v�"g\D

.� C dd cv/n �

Z
fu�v�"g\D

.� C dd cu/n:
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Letting "! 0, we prove the first statement.

Now, assume moreover that MA� .u/.fu < vg\D/D 0. Adding a constant to both u
and v , we can assume that v � 0. We can then apply the comparison principle above
to u and �v for � 2 �0; 1Œ to obtain that .� C dd c�v/n vanishes in fu < �vg \D.
Since � > 0 in �, it follows that u� �v a.e. in D, hence everywhere in D because
these are quasi-psh functions. Letting �! 1, we arrive at the conclusion.

We now remove assumption (d) in Proposition 4.2:

Proposition 4.4 Fix '; 2 P.XT / \ L1.XT / such that ' (respectively  ) is a
pluripotential subsolution (respectively supersolution) to (CMAF). If the assumptions
(a), (b) and (c) of Proposition 4.2 are satisfied then

'0 �  0 D) ' �  on XT :

Proof We assume without loss of generality that r 7! F. � ; � ; r/ is increasing and use
an argument similar to that of Lemma 3.14. Fix s > 0 small enough and consider

vs.t; x/ WD  .t C s; x/CCst CCs�Cs log s

and
us.t; x/ WD ˛s'.t; x/C .1�˛s/��Cst �Cs;

where ˛s WD .1 � s/.1 � As/ 2 �0; 1Œ, A > 0 is defined in (0-1), � is a quasi-psh
function and C is a positive constant to be specified later. The goal is to show that for
C > 0 large enough (under control), vs is a supersolution while us is a subsolution to
a parabolic equation and us.0; � /� vs.0; � /. We can then invoke Proposition 4.2 and
let s! 0 to obtain the result.

By considering s small enough we can assume that

ˇs WD
.1�As/s

1�˛s
� "1 > 0

for some uniform constant "1 . We let � be the unique "1� –psh function on X

such that supX � D 0 and ."1� C dd c�/n D ec1g dV . By definition one has that
˛sC .1�˛s/ˇs D 1�As . Then one can show that

.!tCsC dd
cus/

n
� Œ.1�As/!t C˛sdd

c't C .1�˛s/dd
c��n

D Œ˛s.!t C dd
c't /C .1�˛s/.ˇs!t C dd

c�/�n

� e˛s.@t'tCF.t; � ;'.t; � ///C.1�˛s/c1g dV;
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where in the last line we use Lemma 3.15. Since ˛s D 1CO.s/ and F is bounded, by
choosing C > 0 large enough (depending on MF ; c1 ) we have

.!tCsC dd
cus/

n
� e@tusCF.t; � ;us.t; � //g dV:

On the other hand, for C > 0 large enough (which depends on �F ) we have

.!tCsC dd
cvs/

n
� e@tvs�CsCF.tCs; � ;vs.t; � //g dV � e@tvsCF.t; � ;vs.t; � //g dV:

Up to increasing C it follows from Proposition 3.13 that vs.0; x/ �  0.x/. Since
us.0; x/� vs.0; x/ it then follows from Proposition 4.2 that

us.t; x/� vs.t; x/ for all .t; x/ 2XT :

Letting s! 0, we arrive at the conclusion, finishing the proof.

Proof of Theorem 4.1 Fix T 0 < T . We regularize the subsolution ' by applying
Proposition 3.16. The family of subsolutions obtained this way is denoted by u" . Then
u" is a pluripotential subsolution to (CMAF) and, up to enlarging the constant B > 0
in Proposition 3.16, we can also assume that u".t; x/ converges to '0 in L1.X; dV /
as t ! 0C .

It follows moreover from Proposition 3.12 that for t 2 �0; T Œ fixed,  t is continuous
in �. We can thus apply Proposition 4.2 and obtain u" �  on �0; T 0��X. Letting
"! 0 and then T 0! T , we arrive at the conclusion.

Corollary 4.5 Fix '0 a bounded !0–psh function. There exists a unique function
' 2 P.XT /\L1.XT / such that

� x 7! '.t; x/ is continuous on � for each t 2 �0; T Œ;

� j@t'.t; x/j � C=t for all .t; x/ 2 �0; T Œ�X ;

� t 7! '.t; � / is locally uniformly semiconcave in �0; T Œ;

� 't ! '0 in L1.X/ as t ! 0;

� ' solves (CMAF) in XT .

In particular, any smooth approximants converge towards this solution, hence the latter
is independent of the approximants.

Definition 4.6 Given data .F; g; !; '0/ we let ˆ.F; g; !; '0/ denotes the unique
pluripotential solution to (CMAF), as in Corollary 4.5.
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4.2 Uniqueness and stability

We now establish a more general uniqueness result. The proof relies on a delicate
comparison principle and also yields stability results.

4.2.1 Stability, I

Proposition 4.7 Assume that .g; F; !t / and .gj ; Fj ; !t;j / satisfy the assumptions
in the introduction with uniform constants independent of j, and

� gj and Fj are smooth ;

� 0 < gj converge in Lp.X/ to g 2 Lp.X/;

� '0;j are uniformly bounded !0–psh functions which converge in L1.X/ to-
wards '0 2 L1\PSH.X; !0/;

� Fj uniformly converge to F on Œ0; T Œ�X �J for each J b R;

� !t;j uniformly converges to !t .

Let 'j be the unique smooth solutions to (CMAF) with data .gj ; Fj ; !t;j ; '0;j /. Then
.'j / converges in L1loc.XT / to ' , where ' is the unique solution of (CMAF) with data
.g; F; !t ; '0/ provided by Corollary 4.5.

Proof The sequence .'j / satisfies the conditions of Theorem 2.10. Hence, Theorem
2.11 ensures that a subsequence of .'j /, still denoted by .'j /, converges in L1loc.XT /

to a function ' 2 P.XT ; !/ which

� is a pluripotential solution to (CMAF);

� is locally uniformly semiconcave in t 2 �0; T Œ;

� satisfies j@t'j � C=t on �0; T Œ�X.

It follows from Proposition 3.13 that there exist uniform constants C > 0 and t0 > 0
such that, for all .t; x/ 2 �0; t0��X,

'j .t; x/� .1� t /e
�Ct'0;j .x/CC.t log t � t /:

Letting j !C1 we obtain, for all .t; x/ 2 �0; t0��X,

'.t; x/� .1� t /e�Ct'0.x/CC.t log t � t /:

This lower bound and Proposition 2.3 ensure that 't ! '0 in L1.X/ as t ! 0C . It
finally follows from Corollary 4.5 that ' 2 P.XT ; !/ is uniquely determined.
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4.2.2 Comparison principle, II We now extend the comparison principle (Theorem
4.1), avoiding the space continuity assumption on the subsolution ' , as well as the
Lipschitz-type control at the origin:

Theorem 4.8 Assume that '; 2 P.XT /\L1.XT / are such that

� ' is a pluripotential subsolution to (CMAF);

�  is a pluripotential supersolution to (CMAF);

�  is locally uniformly semiconcave in t ;

� 't ! '0 and  t !  0 in L1 as t ! 0.

If '0 �  0 then ' �  .

Proof We fix T 0 < T and prove that ' �  on Œ0; T 0��X. The result follows then
by letting T 0! T . Using the invariance properties of our family of equations, we can
assume that r 7! F. � ; � ; r/ is increasing.

If z is the unique pluripotential solution constructed by approximation (see Corollary
4.5), Theorem 4.1 ensures that z �  on XT 0 . We can thus assume without loss of
generality that  D z . We proceed in several steps.

Step 1 Assume that the data .!t ; g; F;  0/ is smooth, g > 0, � is Kähler and the
time derivative @t'.t; x/ is uniformly bounded in �0; T 0��X.

Then  is smooth since there exists a unique smooth solution (as follows from
[23; 9; 36] and Corollary 4.5).

If x 7!'. � ; x/ were known to be continuous, we could invoke Theorem 4.1 to conclude.
In absence of this extra assumption, we take a little detour inspired by viscosity
techniques.

Step 1.1 Assume the following conditions:

(1) For all x 2X, P't .x/ exists and t 7! P't .x/ is continuous in t 2 �0; T 0�.

(2) 't and P't are uniformly quasicontinuous on X. This means, for any "> 0, there
exists an open subset U with Vol.U / < " such that on the compact set X nU
the functions x 7! 't .x/ and x 7! P't .x/ are continuous for all t 2 �0; T 0�.

The first condition ensures that the inequality

.!t C dd
c't /

n
� e P'tCF.t; � ;'t . � //g dV
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holds in the pluripotential sense on X for all t 2 �0; T 0�. As will be shown later,
the regularizing family '".t; x/ as constructed in Proposition 3.16 satisfies these two
conditions.

We introduce the constants M WD 2CM1CM2 , where

M1 WD sup
Œ0;T 0��X

j'.t; x/j

and
M2 WD sup

Œ0;T 0��X

�
j P't .x/jC jF.t; x; 't .x//jC jF.t; x;  t .x//j

�
:

Fix " > 0 small enough. By uniform quasicontinuity of 't and P't , there exists an
open set U such that

� Vol.U / < e�4M=" ;

� for all t 2 �0; T 0�, the functions 't and P't are continuous on X nU.

Let �" be the unique bounded � –psh function on X such that

.� C dd c�"/
n
D e2M="1Ug dV C a"g dV; sup

X

�" D 0:

Here 0� a" is a normalization constant. The boundedness of g yieldsZ
U

e2M="g dV � e2M=" sup
X

g;

hence, for " > 0 small enough, a" � 1
2

. Also, the L2–norm of the density of
.� C dd c�"/

n is uniformly bounded, hence, by [12, Proposition 2.6], �" is uniformly
bounded.

Set, for .t; x/ 2XT 0 ,
u".t; x/ WD .1� "/'t C "�":

We prove that u"� �C"t � 0 in Œ0; T 0��X, where C WD 2M CM1�F . By contra-
diction assume that it were not the case. Since the function is upper semicontinuous
on the compact set Œ0; T 0��X, its maximum is attained at some .t0; x0/ 2 �0; T 0��X.
We then have

u".t0; x0/� .t0; x0/� C"t0 > 0;

hence

(4-3) '.t0; x0/�  .t0; x0/� "M1:
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By the classical maximum principle we have

(4-4) .1� "/ P't0.x0/� C"C
P t0.x0/:

By assumption .1/, t 7! P't .x/ is continuous on �0; T 0Œ for all x 2 X. Since ' is a
subsolution to (CMAF), Lemma 3.11 then ensures that

.!t0 C dd
c't0/

n
� e P't0CF.t0; � ;'t0 . � //g dV

holds in the sense of measures on X. By construction of �" , we also have

.!t0 C dd
c�"/

n
� .� C dd c�"/

n
� ef"g dV;

where
f" WD

�
2M=" if x 2 U;
�log 2 if x 2X nU:

It then follows from Lemma 3.15 that

(4-5) .!t0 C dd
cu".t0; � //

n
� eh"g dV;

where

h" WD

�
M if x 2 U;
.1� "/ P't0 C .1� "/F.t0; x; 't0.x//� " log 2 if x 2X nU:

The assumption .2/ ensures that h" is lower semicontinuous on X nU. The choice
of M then shows that h" is lower semicontinuous on X and

(4-6) h".x/� .1� "/ P't0.x/C .1� "/F.t0; x; 't0.x//� " log 2 for all x 2X:

It then follows from Lemma 4.9 that (4-5) holds in the viscosity sense. The function
x 7!  t0.x/� t0.x0/Cu".t0; x0/ is a smooth upper test for u".t0; � / at x0 , hence

.!t0 C dd
c t0/

n
� eh"g dV

holds in the classical sense at x0 . Now, from (4-4) and (4-6) we have

(4-7) .!t0 C dd
c t0/

n.x0/� e
P t0 .x0/C.C�log2/"C.1�"/F .t0;x0;'t0 .x0//g.x0/ dV:

It follows from (4-3) and the monotonicity of r 7! F.t; x; r/ that

F.t0; x0; 't0.x0//� F.t0; x0;  t0.x0/�M1"/� F.t0; x0;  t0.x0//� �FM1":

Hence,

.1� "/F.t0; x0; 't0.x0//� F.t0; x0;  t0.x0//� �FM1"�M"

� F.t0; x0;  t0.x0//� .C �M/":
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This together with (4-7) gives a contradiction since  is a solution to (CMAF).

We thus have that u" �  C C"t on Œ0; T 0� � X. Letting " ! 0 we arrive at the
conclusion.

Step 1.2 We next remove the assumptions on ' in Step 1.1.

Using Proposition 3.16 we can find '" which are pluripotential subsolutions to (CMAF)
and which satisfy the assumptions in Step 1.1. Indeed, it suffices to check that 't is
uniformly quasicontinuous on X. But this holds by quasicontinuity of 't and by the
Lipschitz condition. More precisely, for fixed " > 0, there exists an open subset U
with Vol.U / < " such that 't is continuous on X n U for all t 2 �0; T Œ\Q. The
continuity of 't on X nU for irrational points t follows from the Lipschitz property
of the family 't .

Thus the previous step applies and yields '" �  CO."/. Letting "! 0, we arrive
at ' �  .

Step 2 We finally remove the smoothness assumption on the data and the Lipschitz
condition on ' by using the stability result above together with an argument from [16].

Let .gj ; Fj / be smooth approximants of .g; F /. Fix " > 0 small enough and consider

'";j .t; x/ WD .1� ıj /'.t C "; x/C ıj�j Cn log.1� ıj /� .Bıj CC"C �j /t;

where ıj 2
�
0; 1
2

�
and �j � 0 will be specified later, and �j 2 PSH.X; �/ is the unique

solution to
.� C dd c�j /

n
D

�
aj C

jgj �gj

kgj �gkp

�
dV;

normalized by supX �j D 0 for a normalization constant aj � 0.

We are going to prove that, for suitable choices of B, C, ıj and �j , the function '";j
is a pluripotential subsolution to (CMAF) with data .!";j ; gj ; Fj /, where

� !";j .t/ is a smooth family of Kähler forms such that !";j satisfies the assump-
tions in the introduction, !";j .t/� !.tC "/, and !";j .t/ converges to !.tC "/
as j !C1;

� 0 < gj is smooth and kgj �gkp! 0;

� Fj is smooth in �0; T Œ �X �R with the same Lipschitz and semiconvexity
constants as F , and Fj locally uniformly converge to F .
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Let  ";j be the unique smooth solution to (CMAF) with the above data .!";j ; gj ; Fj /
such that  ";j .0; � /� .1� ıj /'."; � / andZ

X

 ";j .0; x/ dV.x/�

Z
X

.1� ıj /'."; x/ dV.x/C 2
�j :

It follows from Proposition 4.7 that the  ";j converge, as j !C1 and "! 0, to
some z 2 P.XT 0/ which is a pluripotential solution to (CMAF) with data .!t ; g; F /
and initial value '0 . Moreover, z and  satisfy the assumptions of Theorem 4.1,
hence z �  .

We now prove that ' � z by showing that '";j is a subsolution to an approximate
(CMAF). Since ' is locally uniformly Lipschitz, there exists a constant C1 (depending
also on ") such that

sup
Œ";T 0��X

j P'j � C1;

hence

@t'.tC "; x/� .1� ıj /@t'.tC "; x/�C1ıj D @t'";j .t; x/C .B �C1/ıj CC"C�j :

A direct computation yields

.!";j C dd
c'";j /

n

� en log.1�ıj /C@t'.tC";x/CF.tC";x;'.tC";x//g dV C ınj
jgj �gj

kgj �gkp
dV:

Set M' WD supXT j'j and J WD Œ�M' ;M' � and

�j WD supfjF.t; x; r/�Fj .t; x; r/j W .t; x; r/ 2 Œ0; T 0��X �J g:

Then �j ! 0 as j !C1. Setting

ınj WD e
C1CMF kgj �gkp;

where

MF WD supfjF.t; x; r/j W .t; x; r/ 2 Œ0; T Œ�J g;

and considering j large enough
�
so that ıj � 1

2

�
, we obtain

.!";j C dd
c'";j /

n
� en log.1�ıj /C@t'.tC";x/CF.tC";x;'.tC";x//gj dV:

The Lipschitz condition on F ensures that

F.t C "; x; '.t C "; x//�F.t; x; .1� ıj /'.t C "; x//� �C2.ıj C "/
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for a uniform constant C2 > 0. Choosing positive B and C large enough and using
log.1� ıj /� �ıj , we conclude that

.!";j .t; x/C dd
c'";j .t; x//

n
� e@t'";jCF.t;x;'";j /C�j gj dV

� e@t'";jCFj .t;x;'";j /gj dV:

Thus '";j is a subsolution to (CMAF) for the data .gj ; Fj ; !";j /.

We can now apply Step 1 to obtain '";j �  ";j . Letting j !C1 and then "! 0

finally shows that ' �  .

We have used the following straightforward extension of [13, Proposition 1.5]:

Lemma 4.9 Assume that u is a psh function in an open set U �Cn and .dd cu/n �
ef dV in the pluripotential sense, where f is lower semicontinuous in U. Then the
inequality holds in the viscosity sense.

Corollary 4.10 There exists a unique solution to the Cauchy problem for (CMAF)
which is locally uniformly semiconcave in t . It is the envelope of pluripotential
subsolutions.

4.2.3 Stability, II We are now ready to prove Theorem C of the introduction. We
assume here that

� F;GW yXT WD Œ0; T Œ�X �R!R are continuous;
� F and G are increasing in the last variable;
� F and G are uniformly Lipschitz in r with Lipschitz constants LF and LG .
� 0� f; g 2 Lp.X/ with p > 1.

The Lipschitz assumption on F means that, for all .t; x/ 2XT ,

jF.t; x; r/�F.t; x; r 0/j � LF jr � r
0
j:

Theorem 4.11 Assume that ' 2 P.XT ; !/ is a solution to the parabolic equation
(CMAF) with admissible data .F; f / and  2 P.XT ; !/ is a bounded solution to
(CMAF) with admissible data .G; g/.

There exists ˛ 2 �0; 1Œ and for any " > 0 there exists A."/ > 0 such that

sup
Œ";T Œ�X

j' � j � A."/k'"� "k
˛
L1.X/

CT sup
yXT

jF �GjCA."/kg�f k1=np :

In particular, if

� .gj / are densities which converge to g in Lp.X/,
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� Fj converges to F locally uniformly,

� '0;j are bounded !0–psh functions converging in L1.X/ to '0 ,

then ˆ.Fj ; gj ; '0;j / locally uniformly converges to ˆ.F; g; '0/.

Here we denote by ˆ.F; g; '0/ the solution to the Cauchy problem for the admissible
data .F; g; '0/.

Proof Set ˆj D ˆ.Fj ; gj ; '0;j / and ˆ D ˆ.F; g; '0/. The quantitative estimate
is a simple consequence of Proposition 4.12 below. The norm kˆj" �ˆ"kL1.X/ is
controlled by kˆj �ˆkL1.Œ";T ��X/ as follows from Lemma 1.5. By Proposition 3.1,
ˆj converges in L1loc.XT / to ˆ, hence the last statement of the theorem follows.

The stability result is a consequence of the following quantitative version of the com-
parison principle:

Proposition 4.12 Assume ' 2P.XT ; !/ is a subsolution to (CMAF) with data .F; f /
and  2 P.XT ; !/ is a supersolution to (CMAF) with data .G; g/.

Fix " > 0. There exists ˛;A;B > 0 such that, for all .t; x/ 2 Œ"; T Œ�X,

'.t; x/� .t; x/� Bk.'"� "/Ck
˛
L1.X/

CT sup
yXT

.G �F /CCAk.g�f /Ck
1=n
p ;

where A;B > 0 depend on X, � , n, p , a uniform bound on P', P , ' and  on the set
Œ"; T Œ�X, supXT G.t; x; supXT '/, and LG .

Proof We use a perturbation argument as in [16] which goes back to the work of
Kołodziej [26]. For convenience we normalize � so that

R
X dV D

R
X �

n D 1. Set

m0 WD inf
XT
'; m1."/ WD inf

Œ";T Œ�X
P' and M WD sup

yXT

.G �F /C:

We first assume that k.g�f /Ckp >0. It follows from [12] (see also [27] in the Kähler
case) that there exists � 2 PSH.X; �/\L1.X/, normalized by maxX �D 0, such that

(4-8) .� C dd c�/n D

�
aC

.g�f /C

k.g�f /Ckp

�
dV;

where a � 0 is a normalizing constant given by

a WD 1�
k.g�f /Ck1

k.g�f /Ckp
2 Œ0; 1�:
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We moreover have a uniform bound on � which only depends on the Lp –norm of the
density of .� C dd c�/n , which is here bounded from above by 2,

(4-9) k�k1 � C0.aC 1/� 2C0;

where C0 > 0 is a uniform constant depending only on .X; �; p/.

For 0 < ı < 1 and .t; x/ 2XT , we set

'ı.t; x/ WD .1� ı/'.t; x/C ı�Cn log.1� ı/�Bıt �Mt:

The plan is to choose B > 0 in such a way that 'ı is a subsolution to (CMAF) on
Œ"; T Œ with data .G; g/. The conclusion will then follow from the comparison principle
(Theorem 4.8).

Observe that for almost all t 2 Œ"; T Œ fixed, 'ı.t; � / is !t –plurisubharmonic on X and

.!t C dd
c'ı.t; � //

n
� .1� ı/n.!t C dd

c't /
n
C ın.� C dd c�/n:

Using that ' is a subsolution to (CMAF) with data .F; f /, we infer

(4-10) .!t Cdd c'ı.t; � //
n
� e P'tCF.t; � ;'t /Cn log.1�ı/f dV C ın

.g�f /C

k.g�f /Ckp
dV:

Noting that ' � 'ı C ı' and recalling that G is increasing in the last variable, we
obtain

P'.t; x/CF.t; x; '.t; x//Cn log.1� ı/

� P'ı.t; x/C ı P'.t; x/CG.t; x; '.t; x//�M Cn log.1� ı/CBıCM

� P'ı.t; x/C ı P'.t; x/CG.t; x; 'ı.t; x/C ı'.t; x//Cn log.1� ı/CBı

� P'ı.t; x/CG.t; x; 'ı.t; x/C ım0/C ım1."/Cn log.1� ı/CBı:

The Lipschitz condition on G yields, writing LD LG ,

P'.t; x/CF.t; x; '.t; x//Cn log.1� ı/

� P'ı.t; x/CG.t; x; 'ı.t; x//CBı�Lıjm0jC ım1."/Cn log.1� ı/:

Using the elementary inequality log.1� ı/��2.log 2/ı for 0 < ı � 1
2

, it follows that,
for 0 < ı � 1

2
,

Bı�Lıjm0jCm1."/ıCn log.1� ı/� .B �Ljm0jCm1."/� 2n log 2/ı:

We now choose B WD Ljm0jC 2n log 2�m1."/, so that

P'.t; x/CF.t; x; '.t; x//Cn log.1� ı/� P'ı.t; x/CG.t; x; 'ı.t; x//;
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which, together with (4-10), yields

(4-11) .!t C dd
c'ı.t; � //

n
� e P'ı.t; � /CG.t; � ;'ı.t; � //f dV C ın

.g�f /C

k.g�f /Ckp
:

On the other hand, if we set

M1."/ WD sup
Œ";T Œ�X

P'; M0 WD sup
XT

' and M2 WD sup
XT

G.t; x;M0/;

then the Lipschitz property of G ensures, for .t; x/ 2 Œ"; T Œ�X,

P'ı.t; x/CG.t; x; 'ı.t; x//� .1� ı/ sup
Œ";T Œ�X

P'C sup
XT

G.t; x; .1� ı/'.t; x//

� .1� ı/M1."/C sup
XT

G.t; x; .1� ı/M0/

� .1� ı/M1."/CM0LıCM2

�M2CmaxfLM0;M1."/g:

Using (4-11), we conclude that, for 0 < ı < 1
2

, x 2X and almost all t 2 Œ"; T Œ,

(4-12) .!t C dd
c'ı.t; � //

n

� e P'ı.t; � /CG.t; � ;'ı.t;� //
�
f C ıne�M3."/

.g�f /C

k.g�f /Ckp

�
dV;

where M3."/ WDM2CmaxfLM0;M1."/g.

To conclude that 'ı is a subsolution, we finally set

(4-13) ı WD k.g�f /Ck
1=n
p eM3."/=n:

Assume first that k.g� f /Ckp � 2�ne�M3."/ , so that ı � 1
2

. It follows from (4-12)
that, for almost all t 2 Œ"; T Œ,

.!t C dd
c'ı.t; � //

n
� e P'ı.t; � /CG.t; � ;'ı.t; � //.f C .g�f /C/ dV

� e P'ı.t; � /CG.t; � ;'ı.t; � //g dV;

hence 'ı is a subsolution to (CMAF) for the data .G; g/ on Œ"; T Œ. The comparison
principle ensures that, for all .t; x/ 2 Œ"; T Œ�X,

'ı.t; x/� .t; x/�max
X
.'ı."; � /� ."; � //C:

Together with (4-9) and (4-13) we obtain, for .t; x/ 2 Œ"; T Œ�X,

'.t; x/� .t; x/�max
X
.'."; � /� ."; � //CCTM CA1."/k.g�f /Ck

1=n
p ;
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where
A1."/ WD .M0C 2n log 2CBT /eM3."/=n:

When k.g�f /Ckp > 2�ne�M3."/ , we choose A2."/ > 0 so that

sup
XT

.'.t; x/� .t; x//�max
X
.'"� "/CCA2."/2

�ne�M3."/:

We lastly set A."/DmaxfA1."/; A2."/g.

Assume finally that k.g� f /Ckp D 0, which means that g � f almost everywhere
in X. In this case, the function .t; x/ 7! '.t; x/�Mt is a subsolution to (CMAF) with
data .G; g/ and the conclusion follows from the comparison principle.

Now observe that  " is a supersolution to the degenerate elliptic equation

.!"C dd
c "/

n
� eD."/g dV;

where D."/ is an upper bound of P .t; x/CG.t; x;  .t; x// on Œ"; T Œ�X.

By the L1–L1 semistability theorem of [12, Proposition 3.3], it follows that there
exists ˛ 2 �0; 1Œ and a constant C."/ > 0 depending on D."/, p , � and kgkp such
that

max
X
.'"� "/C � C."/k.'"� "/Ck

˛
L1.X/

;

concluding the proof.

5 Geometric applications

In this section we show that our hypotheses are satisfied when studying the Kähler–
Ricci flow on a compact Kähler variety with log terminal singularities. We prove
the existence and study the long-term behavior of the normalized Kähler–Ricci flow
(NKRF for short) on such varieties starting from an arbitrary closed positive current
with bounded potential.

The definition and study of the Kähler–Ricci flow on mildly singular projective varieties
has been undertaken by Song and Tian in [32; 33]. A different viscosity approach has
been developed by Eyssidieux, Guedj and Zeriahi in [14; 15].

Our approach allows one to avoid any projectivity assumption on the varieties, to deal
with more general singularities, to avoid any continuity assumption on the data, and also
provide more general uniqueness and stability results. The whole discussion extends to
the case of Kawamata log terminal pairs but we leave this discussion for later work.
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5.1 Analytic approach to the minimal model program

5.1.1 Log terminal singularities Let Y be an irreducible compact Kähler normal
complex analytic space with only terminal singularities. Let � W X ! Y be a log-
resolution, ie X is a compact Kähler manifold, � is a bimeromorphic projective
morphism and Exc.�/ is a divisor with simple normal crossings. Here Exc.�/ WD
��1.Y nYreg/ is the exceptional divisor. Denote by fEgE2E the family of the irreducible
components of Exc.�/. With this notation, one has furthermore

KX � �
�KY C

X
E

aEE;

where �1<aE 2Q, KY denotes the canonical Q–line bundle on Y , whose restriction
to the smooth locus is the line bundle whose sections are holomorphic top-dimensional
forms (canonical forms), KX the canonical class of X and E also denotes, with a
slight abuse of language, the cohomology class of E (we refer to [25] for more details).

The log terminal condition aE >�1 means that for every nonvanishing locally defined
multivalued canonical form � defined over Y , the holomorphic multivalued canonical
form ��� on X has poles or zeroes of order aE along E, so that the corresponding
volume form decomposes as

��.cn�^ x�/D e
wC�w�dV.x/;

where wC D
P
aE>0

aE log jsE jhE and w� D
P
0>aE>�1

aE log jsE jhE are quasi-
plurisubharmonic with ew

C

continuous and e�w
�

2Lp for some p >1 whose precise
value depends on minE .aE C 1/.

5.1.2 The (normalized) Kähler–Ricci flow The Kähler–Ricci flow is the evolution
equation of Kähler forms on Y

@�t

@t
D�Ric.�t /;

starting from an initial Kähler form �0 . These can be written as

�t D �t C dd
c�t with �t D �0C t�;

where � 2 c1.KY /.

One can pull back these forms via a log-resolution of singularities and consider the
corresponding forms !t D ���t , which are big and semipositive (they vanish along
Exc.�/). The latter satisfy our main assumptions:
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Lemma 5.1 Assume that � W X ! Y is a proper holomorphic map onto a compact
normal Kähler space Y , with !t D ���t and � D ��!Y , where !Y is a Kähler form
on Y . Then there exists A > 0 such that

�=A� !t ; �A!t � P!t � A!t and R!t � A!t :

Proof The corresponding inequalities are valid on Y since !Y and �0 are Kähler and
t 7! �t is smooth, as long as we work on a finite time interval (which is implicit). One
can then transpose the inequalities from Y to X by the holomorphic mapping � .

One can similarly consider the normalized Kähler–Ricci flow on Y

@�t

@t
D�Ric.�t /���t ;

starting from an initial data �0D�0Cdd c�0 with �0 being a bounded potential which
is plurisubharmonic with respect to the given Kähler form �0 on Y , and where � 2R.

By rescaling, one can reduce to the cases �D 1; 0;�1. To simplify the discussion we
restrict to the case �D 1. At the cohomological level, this yields a first-order ODE
showing that the cohomology class of �t evolves as

f�tg D e
�t
f�0gC .1� e

�t /KY :

We thus define by

Tmax WD supft > 0 W e�tf�0gC .1� e�t /KY 2 K.Y /g

the maximal (cohomological) time of existence of the flow.

Denote by K.Y /�H 1.Y;PHY / the open convex cone of Kähler classes and let �0
be a smooth Kähler representative of the Kähler class f�0g. Here PHY is the sheaf
of real-valued pluriharmonic functions on Y (see [12, Section 5.2] for more details).
Assume h is a smooth Hermitian metric on the holomorphic Q–line bundle KY . Then
� WD �dd c log h is a smooth representative of KY 2H 1.Y;PHY / and we set

�t D e
�t�0C .1� e

�t /�:

The solution to the normalized Kähler–Ricci flow can be written as �t D �t C dd c�t ,
with ��� 2 P.XT /. We now define

�NKRF D cn
���^���

��k�k2
h

2 C 0.X;�
n;n
X /;
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which we view as a continuous element of C 0.XT ; �
n;n
XT =Œ0;T Œ

/, where cn is the unique
complex number of modulus 1 such that the expression is positive. As the notation
suggests, �NKRF is independent of the auxiliary multivalued holomorphic form � but
depends on h.

In local coordinates �NKRF has density of the form

vNKRF D
Y
E

jfE j
2aEv;

where v > 0 is smooth and fE is an equation of E in these local coordinates.

Theorem 5.2 The Cauchy problem with initial data S0 WD �0C dd c�0 for the nor-
malized Kähler–Ricci flow on Y admits a unique pluripotential solution defined on
Œ0; TmaxŒ�Y .

Proof Fix T < Tmax . Since e�tf!0gC .1�e�t /KY 2K.Y / for any t 2 Œ0; T �, there
exists a smooth family of Kähler forms .�t /0�t�T 2K.Y / such that for any t 2 Œ0; T �,
f�tg D f!tg.

We can write �t D �t C dd c�t , where � is a solution to the corresponding Monge–
Ampère flow at the level of potentials,

.�t C dd
c�t /

n
D e@t�C�tvY ;

on YT for some admissible volume form vY on Y , or, equivalently,

(5-1) .!t C dd
c't /

n
D e@t'C't�NKRF D e

@t'CF.t;x;'t /g dVX ;

on a log-resolution � W X ! Y , where �NKRF is a volume form on X which can be
locally written as

�NKRF D
Y
E

jfE j
2aE dVX D g dVX ;

where g D
Q
E jfE j

2aE 2 Lp for some p > 1, since �1 < aE for all E, and g > 0
almost everywhere.

We write here ' WD ��� and !t WD ���t . Since .�t /0�t�T is a smooth family of
Kähler forms on Y , it follows that the family of semipositive forms Œ0; T Œ 3 t 7! �t

satisfies all our requirements.

Theorem 3.4 can thus be applied (with F.t; x; r/� r ) and guarantees the existence
of a unique pluripotential solution to the Monge–Ampère flow on XT for any fixed
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T < Tmax starting at '0 . By uniqueness, all these solutions glue into a unique solution
of the Monge–Ampère flow on Œ0; TmaxŒ�X starting at '0 , denoted by 't . Pushing
this solution down to Y , we obtain a solution to the NKRF starting at S0 , denoted
by �t .

Now, assume that  t is another solution to the flow on Y . Then �� t is a solution
to the flow (5-1) on ��1.Yreg/. Since X n��1.Yreg/ is pluripolar, the equation (5-1)
extends trivially to the whole of X. Corollary 4.10 thus yields that �� t D 't on X,
hence �t D  t on Y .

5.1.3 Song–Tian program A natural and difficult problem is to understand the
asymptotic behavior of !t as t ! Tmax . Song and Tian have proposed in [33] an
ambitious program, combining the minimal model program and Hamilton–Perelman
approach to the Poincaré conjecture.

We focus here on the case when X has nonnegative Kodaira dimension. One would
ideally like to proceed as follows:

Step 1 Show that .Y; !t / converges to a mildly singular Kähler variety .Y1; S1/

equipped with a singular Kähler current S1 , as t ! T1;max .

Step 2 Restart the NKRF on Y1 with initial data S1 .

Step 3 Repeat finitely many times to reach a minimal model Yr (KYr is nef).

Step 4 Study the long-term behavior of the NKRF and show that .Yr ; !t / converges
to a canonical model .Ycan; !can/, as t !C1.

This program is more or less complete in dimension � 2 (see the lecture notes by Song
and Weinkove in [34] or Tosatti [37]). It is largely open in dimension � 3, but for
Step 2, which has been completed in [33; 23; 9; 14; 36].

In the sequel we focus on the final Step 4, ie we assume that Tmax DC1, so that Y
is a minimal model with log terminal singularities. The normalized Kähler–Ricci flow
is then well defined for all times t > 0, and our goal is to understand its asymptotic
behavior as t !C1.

5.2 Convergence of the NKRF

5.2.1 Convergence of the NKRF on log terminal varieties of general type Let Y
be a compact Kähler variety with terminal singularities and assume KY is big and nef.
It has been shown in [12] that there exists a unique positive closed current !KE on Y
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such that

� !KE 2 C1.KY / and it has bounded potentials;

� !KE is smooth in Amp.KY /, where it satisfies Ric.!KE/D�!KE .

The current !KE is called the singular Kähler–Einstein current.

Theorem 5.3 Fix S0 a positive closed current with bounded potentials, whose co-
homology class is Kähler. The normalized Kähler–Ricci flow continuously deforms S0
towards !KE as t !C1 at an exponential speed.

Proof It is classical that the problem boils down to solving and studying the long-term
behavior of the parabolic scalar equation

(5-2) .�t C dd
c't /

n
D e@t'tC'tvY ;

with initial data '0 , where S0 D �0C dd c'0 and �t D e�t�0C .1� e�t /�. Here �
is a Kähler form representing c1.KY /.

The existence of the unique maximal solution 't has been explained in Theorem 5.2,
so the problem is to show that 't ! 'KE as t !C1, where !KE D �C dd

c'KE .
We let the reader check that

u.t; x/D e�t'0C .1� e
�t /'KEC h.t/e

�t

is a subsolution to (5-2), where

h.t/D n.et � 1/ log.et � 1/�net log et DO.t/:

The computations are the same as that of [14, Theorem 4.3, Step 1]. The comparison
principle (Theorem 4.8) yields

'KE.x/�C.t C 1/e
�t
� u.t; x/� '.t; x/

for some uniform constant C > 0.

The proof for the upper bound is similar. Since � is Kähler, we can fix B > 0 such
that !0 � .1CB/�, thus �t � .1CBe�t /� for all t . We set

vt .x/ WD .1CBe
�t /'KECCe

�t ;

where C is chosen so that v0 � '0 . The function v is a supersolution to the Cauchy
problem for the parabolic equation

.Œ1CBe�t ��C dd cvt /
n
D e@tvtCvtCn logŒ1CBe�t �vY � e

@tvtCvtCnBe
�t

vY
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with initial data '0 , while w.t; x/D '.t; x/�nBte�t is a subsolution to this equation
since

.Œ1CBe�t ��C dd cw/n � .�t C dd
c't /

n
D e@t'tC'tvY D e

@twtCwtCnBe
�t

vY :

The comparison principle thus yields

'.t; x/� 'KE.x/CC
0.t C 1/e�t :

The conclusion follows.

5.2.2 Convergence of the KRF on log terminal Q–Calabi–Yau varieties In this
section we study the Kähler–Ricci flow on a log terminal Q–Calabi–Yau variety Y (ie
a Gorenstein Kähler space of finite index with trivial first Chern class and log terminal
singularities), and prove Theorem D of the introduction.

Theorem 5.4 Fix S0 a positive closed current with bounded potentials, whose co-
homology class is Kähler. The weak Kähler–Ricci flow

@!t

@t
D�Ric.!t /

exists for all times t > 0 , and deforms S0 towards the unique Ricci flat Kähler–Einstein
current !KE cohomologous to S0 as t !C1.

The existence of the singular Ricci flat Kähler–Einstein current !KE has been shown
in [12], generalizing Yau’s celebrated solution to the Calabi conjecture [40].

Proof It is classical that the problem boils down to solving and studying the long-term
behavior of the parabolic scalar equation

(5-3) .�0C dd
c't /

n
D e@t'tvY ;

with initial data '0 , where S0 D �0C dd c'0 .

The existence of the unique semiconcave solution 't has been explained in Theorem 5.2.
We are going to show that 't uniformly converges to 'KE as t ! C1, where
!KE D �0C dd

c'KE with

.�0C dd
c'KE/

n
D vY ;

and the bounded �0 -plurisubharmonic function 'KE is properly normalized. We proceed
in several steps.
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Step 1 (C0–bounds and normalization) It follows from the comparison principle
that .'t / remains uniformly bounded: indeed 'KE �C (resp. 'KECC ) provides a
static subsolution (resp. supersolution) to the Cauchy problem if C > 0 is so large that
'KE�C � '0 (resp. 'KECC � '0 ).

We assume without loss of generality that vY and �0 are normalized byZ
Y

�n0 D vY .Y /D 1:

The concavity of the logarithm ensures thatZ
Y

@t't vY D

Z
Y

logŒ.�0C dd c't /n=vY �vY � log
�Z
Y

.�0C dd
c't /

n

�
D 0;

hence t 7!
R
Y 't vY is decreasing. We therefore impose the normalizationZ

Y

'KE vY D lim
t!C1

Z
Y

't vY :

Step 2 (monotonicity of the Monge–Ampère energy along the flow) We now observe
that t 7!E.'t / is increasing, where

E.'t / WD
1

nC1

nX
jD0

Z
Y

't .�0C dd
c't /

j
^ �

n�j
0 :

More precisely:

Lemma 5.5 The function t 7!E.'t / is differentiable almost everywhere with

d

dt
E.'t /D

Z
Y

P't .�0C dd
c't /

n
� 0;

for almost every t 2 �0;C1Œ.

Proof It is straightforward to check that t 7!E.'t / is locally Lipschitz, its differen-
tiability almost everywhere thus follows from Rademacher theorem. Our goal is now
to compute its derivative.

By the Lipschitz property of t 7! 't we can find a subset I � �0; T Œ with �0;C1Œ n I
having measure zero such that, for every t0 2 I fixed, the function t 7! '.t; x/ is
differentiable at t0 for almost every x 2 Y . By the first observation we can also assume
that t 7!E.'t / is differentiable at every t 2 I. The semiconcavity property of 't in t
moreover ensures that, for every t 2 I and almost every x 2 Y ,

P'Ct .x/D P'
�
t .x/:
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The semiconcavity property of t 7! 't ensures that, for x 2 Y fixed, the function
t 7! P'Ct .x/ is lower semicontinuous, while t 7! P'�t .x/ is upper semicontinuous in
�0;C1Œ. In particular, for t0 2 I fixed,

lim inf
t!t0

P't
C.x/� P'Ct0 .x/D P'

�
t0
.x/� lim sup

t!t0

P'�t .x/;

for almost every x 2 Y .

Fix t0 2 I and t 2 I with t > t0 . By concavity of the Monge–Ampère energy (see
[4, Proposition 2.1]) we obtainZ

Y

't �'t0
t � t0

.�0C dd
c't /

n
�
E.'t /�E.'t0/

t � t0
�

Z
Y

't �'t0
t � t0

.�0C dd
c't0/

n:

Using that 't is a solution to (5-3) and P'Ct .x/D P'
�
t .x/ a.e., we getZ

Y

't �'t0
t � t0

e P'tg dV �
E.'t /�E.'t0/

t � t0
�

Z
Y

't �'t0
t � t0

e P't0g dV:

Letting I 3 t ! t0 and using the Lebesgue dominated convergence theorem, we arrive
at the desired formula for the derivative of t 7!E.'t / at t0 .

It remains to check that d
dt
E.'t /� 0. This follows from Jensen’s inequality,

d

dt
E.'t /D

Z
Y

P't .�0C dd
c't /

n
� �log

Z
Y

vY D 0:

Step 3 (asymptotic behavior of P't .x/) We claim that there exists a constant C > 0
such that, for all t � 1 and x 2 Y ,

j P't .x/j � C:

Indeed, since t 7! 't .x/ is locally uniformly Lipschitz (away from t D 0), there is
C > 0 such that j'sC1� '1j � Cs for every s 2 Œ0; 1�. Fix such s and consider, for
t > 0 and x 2 Y ,

ut .x/ WD '.sC t C 1; x/�Cs:

Observe that u0 � '1 and

.�0C dd
cut /

n
D e PutvY :

Since the function .t; x/ 7! '.t C 1; x/ solves the above equation, it follows from
Theorem 4.8 that ut � 'tC1 for all t > 0. Thus

'sCtC1 � 'tC1CCs;
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and letting s ! 0 yields a uniform upper bound for P't . The lower bound follows
similarly.

We now claim that there is a sequence of times tj !C1 such that P'tj .x/! 0 for
almost every x 2Y . Indeed, observe that the functional t 7!F.'t / WDE.'t /�

R
Y 't vY

is increasing along the flow: for a.e. t � 1,

d

dt
F.'t /D

Z
Y

P't .e
P't � 1/ dvY � C

�1

Z
Y

j P't j
2 dvY � 0:

Since F is uniformly bounded along the flow, there is tj !C1 such thatZ
Y

j P'tj j
2 dvY ! 0:

Since the time derivative P't is uniformly bounded for t � 1, it follows that

e
P'tj ! 1

in Lq.Y; dvY / for all 1 < q < 2, and P'tj .x/! 0 for almost every x 2 Y (up to
extracting and relabeling). It follows from the elliptic L1–L1 stability [21, Theorem C]
that 'tj uniformly converges to some  which satisfies

.�0C dd
c /n D vY

and
R
Y  dvY D

R
Y 'KE dvY , since

R
X 't dvY decreases to

R
Y 'KE dvY . The unique-

ness of the normalized Kähler–Einstein potential [12] now ensures that  D 'KE , ie
'tj uniformly converges to 'KE .

Step 4 (the semigroup property) The conclusion follows now from the fact that our
equation is invariant under translations in time: Observe that for all s > 0 , the function
.t; x/ 7!  .t; x/D '.t C s; x/ is again a bounded parabolic potential solution to the
equation

.�0C dd
c t /

n
D e@t tdvY :

Fix " > 0 and j large enough that

sup
X

j'tj �'KEj< ":

The function  .t; x/ D 'KE.x/� " is a subsolution to the Cauchy problem for the
above equation with initial data 'tj . Similarly, 'KE.x/C " is a supersolution to the
same Cauchy problem. The comparison principle (Theorem 4.8) therefore yields, for
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all t � 0 and x 2X,

'KE.x/� "� '.t C tj ; x/� 'KE.x/C ":

Letting t !C1 and then "! 0 yields the conclusion.

5.2.3 Minimal models of intermediate Kodaira dimension We finally just say a
few words about the more delicate volume-collapsing case. We assume here Y is
an abundant minimal model of Kodaira dimension 1 < � D kod.Y / < n, ie KY is
a semiample Q–line bundle with KY D f �KYcan , where f W Y ! Ycan is the Iitaka
fibration, with KYcan ample.

A generic fiber Xy D f �1.y/ is a Q–Calabi–Yau variety. We fix hA a positive
Hermitian metric of A D KYcan with curvature form �A , and � local (multivalued)
nonvanishing holomorphic section of KY . Then

v.hA/D cn
�^ x�

k�k2
f �hA

is a globally well-defined volume form on Y such that the measure f�v.hA/ has
density in L1C" with respect to ��A .

Generalizing [32; 33], it has been shown in [15] that there exists a unique bounded
�A–psh function 'can on Ycan such that

� .�AC dd
c'can/

� D e'canf�.v.hA//;

� the current !can D �AC dd
c'can is independent of hA ;

� it is smooth in Y reg
can n critical values of f ;

� it satisfies Ric.!can/D�!canC!WP in Y reg
can n critical values.

The Weil–Petersson term !WP is a semipositive .1; 1/–form which measures the change
of complex structures in the fibers of the Iitaka fibration. The current Tcan D f

�!can

is an important birational invariant such that

T �can ^!
n��
SF D e'canıf v.hA/:

Here !SF D !0C dd
c� denotes the fiberwise family of Ricci flat KE metrics,

!SFjXy D unique Ricci flat metric in f!0gjXy ;

whose existence has been obtained in [12].

Extending the main result of [15], the tools developed in this article allow one to
establish the following:
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Theorem 5.6 If dimC Y � 3 then the normalized Kähler–Ricci flow deforms !0
towards the canonical current Tcan as t !C1.

Proof For a suitable choice of the normalizing constants, the normalized Kähler–Ricci
flow is equivalent to the parabolic complex Monge–Ampère flow of potentials

.!t C dd
c't /

n

C �n e
�.n��/t

D e@t'C'tv.h/;

starting from an initial bounded potential '0 2 PSH.X; !0/. We have normalized here
both sides so that the volume of the left-hand side converges to 1 as t !C1. Here
C kn denotes the binomial coefficient C kn D

�
n
k

�
. It follows from Theorem 5.2 that this

flow admits a unique bounded pluripotential solution.

Once the objects are well defined, the proof is then identical to that in [15, Theorem D].
The restriction on dimC Y is related to a regularity issue for some families of Ricci
flat metrics.
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