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Abstract. We continue our study of the dynamics of meromorphic mappings with small topo-
logical degree �2.f / < �1.f / on a compact Kähler surface X . Under general hypotheses we
are able to construct a canonical invariant measure which is mixing, does not charge pluripolar
sets and has a natural geometric description.

Our hypotheses are always satisfied when X has Kodaira dimension zero, or when the
mapping is induced by a polynomial endomorphism of C2. They are new even in the birational
case (�2.f / D 1). We also exhibit families of mappings where our assumptions are generically
satisfied and show that if counterexamples exist, the corresponding measure must give mass to
a pluripolar set.
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Introduction

In this article we continue from [DDG1] our study of the dynamics of meromorphic
mappings with small topological degree on complex surfaces. Whereas our previous
article focused on constructing canonical forward and backward invariant currents
for a given mapping, here we take up the problem of intersecting these currents to
create a natural invariant measure. In fact, the first half of this article does not concern
dynamics at all but rather the general problem of defining the wedge product of two
positive closed .1; 1/ currents on a compact complex surface. This is of interest
in its own right, and our treatment draws much in content and spirit from recent
work of Guedj and Zeriahi [GZ2] concerning the definition of the complex Monge–
Ampère operator in the compact setting. Let us begin, nevertheless, by rehearsing
the dynamical setting of immediate concern. We refer the reader to [DDG1] for a
more thorough presentation and list of references.

Let .X; !/ be a compact Kähler surface and f W X ! X a meromorphic self-
map. We assume thatf is 1-stable, meaning that the induced actionf � W H 1;1.X/ !
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H 1;1.X/ satisfies
.f n/� D .f �/n for all n 2 N:

We let �2 D �2.f / denote the topological degree of f and �1 D �1.f / be the first
dynamical degree of f . These are the spectral radii of the actions f � W H j;j .X/ !
H j;j .X/ for j D 2 and j D 1, respectively. Our main assumption is that f has
small topological degree; that is,

�2.f / < �1.f /:

Notice that with this terminology a birational map (�2 D 1) has small topologi-
cal degree only when �1 > 1. Note also that in this case either X is rational or
kod.X/ D 0.

Under these conditions we have shown in [DDG1] that there exist closed positive
(1,1) currents TC and T � uniquely characterized by

TC D lim
n!1

1

�n1
.f n/�! and T � D lim

n!1
1

�n1
.f n/�!: (1)

Furthermore, T˙ can be written as T˙ D !˙ C dd cG˙, where !˙ are positive
closed currents with bounded potentials. By scaling !, we normalize the cohomo-
logical intersection number so that fTCg � fT �g D 1. Finally, under the additional
assumption that X is projective (non-projective examples can arise on surfaces of
Kodaira dimension zero), the invariant currents have special geometric properties:
TC is laminar while T � is woven (see [DDG1] for definitions).

We have three goals in this article.

– First, we seek general conditions under which the wedge product TC ^T � may be
reasonably defined as a probability measure �f onX . Here, “reasonably defined”
is understood as a continuity requirement: when T˙ are approximated in a stan-
dard pluripotential theoretic sense by convergent sequences .Tj̇ / of less singular

positive closed .1; 1/ currents, then we insist that limj!1 TC
j ^ T �

j ! �f .

– Second, we seek to show that the conditions that guarantee existence of �f also
ensure that it has good dynamical properties:

(i) �f is invariant under f ;

(ii) �f is mixing;

(iii) �f may be alternately viewed as geometric intersection of the laminar/ woven
structures of the currents TC and T �.

In a third article, [DDG3] we will greatly elaborate on this second goal, studying
the fine ergodic properties of .f; �f / when properties (i) to (iii) are satisfied.
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– Finally we seek to apply our results to particular examples of meromorphic map-
pings. This requires that we find checkable dynamical criteria that imply the
potential theoretic conditions needed to define �f .

It should be noted that, as with the other two articles [DDG1], [DDG3] in this
series, this one represents an attempt to generalize things that are known about bi-
rational maps to the larger setting of maps with small topological degree. On the
other hand, this paper is the only one in the series that gives new results even in the
birational setting.

Let us now describe our results. Regarding the first goal, let S D ˛C dd c' and
T D ˇ C dd c be any two positive closed .1; 1/ currents on X , each expressed in
terms of a positive current with bounded local potentials (˛,ˇ) and a negative (relative)
potential function (',  ). Products ˛ ^ T involving a positive current with bounded
potentials are well-understood [BT1]. The most straightforward way to define S ^T
more generally is to require ' 2 L1.T / and then declare dd c' ^ T WD dd c.'T /.
We write “T 2 L1.S/” when this integrability holds. This condition is independent
of the choice of decomposition of T and moreover symmetric in S and T .

In our dynamical situation, the condition TC 2 L1.T �/ suffices for our first
goal. However, it is not clear that the resulting measure �f then has good dynamical
properties. In particular it seems difficult, given only the L1 condition, to establish
that the intersection TC ^ T � is geometric. Moreover, in certain cases (see e.g. the
examples in §4.4) we do not know whether TC 2 L1.T �/, but we are nevertheless
able to define a “reasonable” wedge product TC ^ T � by taking advantage of the
global (compact Kähler) context, in the spirit of [GZ2].

Let S and T be positive closed currents as before. We say that S has finite T -
energy, and denote “S 2 E.T /”, if there exists an unbounded convex increasing
function � W .�1; 0� ! .�1; 0� such that � B ' 2 L1.˛ ^ T / and the “weighted
energy” Z

�0 B ' d' ^ d c' ^ T (2)

is finite. This condition is independent of the choice of decomposition for S . We
stress that it does not imply that S 2 L1.T /.

Our first main result is the following.

Theorem 1. Let S D ˛C dd c' and T D ˇC dd c be positive closed currents on
a compact Kähler surface as above. Assume that S 2 E.T /, T 2 E.S/ and T does
not charge pluripolar sets.

Then the product S ^ T is well-defined and does not charge pluripolar sets.

When the first assumption of this theorem holds for the invariant currents TC
and T � associated to a 1-stable meromorphic map f W X ! X of small topological
degree, we say that f has finite dynamical energy. In this case we can show that the
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current TC does not charge pluripolar sets (see Proposition 2.2). Thus the measure
�f D TC ^ T � is well defined and does not charge pluripolar sets. We are further
able to prove that �f has the desired properties (i)–(iii) above, property (iii) being
the hardest to establish.

Theorem 2. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree. Assume that f has finite dynamical energy. Then
�f WD TC ^ T � is invariant and mixing.

If furthermore X is projective then �f is described by the geometric intersection
of the laminar/woven structures of TC=�.

We now turn to the problem of checking the finite dynamical energy condition;
i.e., of finding a weight � so that the integral in (2) is demonstrably finite. Some
weights are, of course, easier to work with than others. The class of homogeneous
weights �.t/ D �.�t /p , 0 < p � 1 turns out to be particularly useful for dynamical
applications.

For the weight �.t/ D t we obtain the following criterion which generalizes the
work of Bedford and the first author [BD] (see also [DG]). In order to state it, we
let IC denote the indeterminacy set of f , and I� D f .EC/ denote the image of the
exceptional set EC of f .

Theorem 3. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree, and let T˙ D !˙ Cdd cG˙ be the invariant currents.
Suppose that GC is finite at each point of I� and G� is finite at each point in IC.
Assume furthermore that

– either TC 2 L1.T �/,
– or no point in either IC or I� is spurious.

Then TC 2 E.T �/ and T � 2 E.TC/ with weight �.t/ D t .

We do not define “spurious” here (see §3), but we do note that the second assump-
tion is satisfied when, for instance, the classes of TC and T � are Kähler. Also, when
�2 D 1 it holds up to a birational change of surface [BD], Proposition 4.1. Finiteness
of G˙ on I� is a kind of “avoidance” condition on the orbits of IC and I� that is
readily verified for many maps.
We show in Section 4 that the hypotheses of Theorem 3 our satisfied in particular for

– polynomial maps of C2,
– maps on P1 � P1 that come from the secant algorithm for finding roots of

polynomials,
– maps on surfaces X with kod.X/ D 0.

We also give weaker “indeterminacy avoidance” conditions that guarantee finite
energy with respect to the other homogeneous weights �.t/ D �.�t /p . By studying
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a birational example of Favre, whose salient feature is an invariant line on which
the map f acts by rotation, we show how it can happen that the weaker avoidance
conditions are verified when the stronger ones are not. For birational mappings with
TC 2 L1.T �/ it was proven in [DG] that

finite energy with respect to the weight �.t/ D t

is equivalent to

log d. �; IC/ 2 L1.�f /:
On the other hand, it follows from Theorem 2 and the results of [Du2] that, if a
birational map f with �1 > 1 has finite dynamical energy then it enjoys many
interesting dynamical properties. Thus, the examples in §4.4 show that for birational
maps, it is possible that the results of [Du2] hold while log d. �; IC/ … L1.�f /.

Less formally but more suggestively, our methods allow us to prove that �f acts
much like a non-uniformly hyperbolic measure even though �f does not satisfy a
convenient hypothesis guaranteeing existence of well-defined Lyapunov exponents
(see e.g. Section S.2 in [KaHa] for background on these).

It is worth emphasizing that we do not know any example violating the finite
dynamical energy condition.1 A rational map with small topological degree and
infinite dynamical energy will tend to have some very surprising properties. For
instance, we obtain the following dichotomy:

Theorem 4. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree. Assume further that TC 2 L1.T �/. Then

– either f has finite dynamical energy,

– or �f D TC ^ T � charges the pluripolar set fGC CG� D �1g.

The family of birational maps given in Example 4.7 satisfies this dichotomy.
Furthermore, generic members of this family indeed have finite dynamical energy.

The structure of the paper is as follows. In §1, we develop the general framework
for intersection of positive closed .1; 1/ currents satisfying the finite energy condition.
Theorem 1 and a general dichotomy leading to Theorem 4 are both established here.
In §2, we consider the nature of the measure�f under the assumption that f has finite
dynamical energy. Theorem 2 is the end result. In §3, we consider the particular case
of homogeneous weights more carefully, giving several criteria for finite dynamical
energy along the lines of Theorem 3. Finally, in §4, we illustrate our main results
by applying them to several significant examples, both invertible and non-invertible
ones among them.

Acknowledgment. We would like to thank A. Zeriahi for several useful discussions.

1Added in proof: such examples have been very recently constructed by X. Buff [Bu].
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1. Weighted energy with respect to a current

We develop in this section the pluripotential theoretic tools that we will use to define
and understand the wedge product TC ^ T �. There is no dynamics here, so these
results might accordingly be of independent interest.

1.1. The class E.T; ˛/. Throughout the section, we take ˛; T to be positive closed
.1; 1/ currents on X such that ˛ has bounded potentials. We assume

R
X
˛ ^ T D

f˛g � fT g D 1, the middle term denoting intersection of cohomology classes. We let
PSH.X; ˛/ D fu 2 L1.X/ W ˛ C dd cu � 0g denote the set of ˛-plurisubharmonic
(or just ˛-psh) functions. If u 2 PSH.X; ˛/ for ˛ smooth, then u is called quasi-
plurisubharmonic (or just qpsh).

If u; v 2 PSH.X; ˛/ are bounded, it follows from plurifine considerations (see
[BT2]) that

1fu>vgŒ˛ C dd cu� ^ T D 1fu>vgŒ˛ C dd c max.u; v/� ^ T (3)

in the sense of Borel measures.
Let ' 2 PSH.X; ˛/ be an unbounded function and let 'j WD max.';�j / 2

PSH.X; ˛/ \ L1.X/ be its canonical approximants. We have 'j & ', and by (3),

1f'>�kgŒ˛ C dd c'j � ^ T D 1f'>�kgŒ˛ C dd c'k� ^ T
whenever j � k, since

˚
'j > �k� D f' > �kg and max.'j ;�k/ D 'k . Observe

that f' > �kg � f' > �j g. Hence

�j .'; T / WD 1f'>�j gŒ˛ C dd c'j � ^ T
is an increasing sequence of Borel measures onX , whose total mass is bounded from
above by 1 D f˛g � fT g.

Definition 1.1. We set �.'; T / WD lim % �j .'; T / and

E.T; ˛/ WD f' 2 PSH.X; ˛/ =�.'; T /.X/ D 1g:

Alternatively ' 2 E.T; ˛/ if and only if Œ˛ C dd c'j � ^ T .f' � �j g/ ! 0.
Observe that the probability measures Œ˛ C dd c'j � ^ T converge to �.'; T /

as Borel measures (i.e. in mass) when ' 2 E.T; ˛/. This is much stronger than
convergence as Radon measures (i.e. in the weak topology) and furnishes the key to
the next proposition.

Proposition 1.2. Assume ' 2 E.T; ˛/. Then

(1) the measures ˛ ^ T and �.'; T / do not charge the set f' D �1g;
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(2) if T puts no mass on a complete pluripolar set P , then neither does �.'; T /.

Proof. We can suppose that ' � 0. To simplify notation we set � D �.'; T / and
�j D �j .'; T /. Note first that �j .f' D �1g/ D 0, and hence �.f' D �1g/ D 0.

Fix � W R ! R a convex increasing function such that �.�1/ D �1 and
� B ' 2 L1.�/ (see Lemma 1.3 below). Since 0 � 'j � ' and 0 � �j � �, we
have

sup
j

Z
X

.��/ B 'j d�j �
Z
X

.��/ B ' d� < C1:

By Stokes’ theorem,Z
X

.��/ B 'j .˛ C dd c'j / ^ T D
Z
.��/ B 'j ˛ ^ T C

Z
�0 B 'jd'j ^ d c'j ^ T;

where the rightmost term is non-negative. Observe that the measures .˛Cdd c'j /^T
and � have the same mass since ' 2 E.T; ˛/ and coincide in .' > �j /, so

.˛ C dd c'j / ^ T .' � �j / D �.' � �j /:
ThereforeZ
.'��j /

.��/B'j .˛Cdd c'j /^T D .��/.�j /�.' � �j / �
Z
.'��j /

.��/B' d�;

which yields Z
X

.��/ B 'j ˛ ^ T �
Z
X

.��/ B ' d� < C1:

We infer � B ' 2 L1.˛ ^ T /, hence in particular ˛ ^ T .' D �1/ D 0.
Let P be a complete pluripolar set, i.e. P D f D �1g for some quasi-

plurisubharmonic function  � 0 on X . Let ! be a Kähler form. By assumption
! ^ T .P / D 0. Attenuating the singularities of  if necessary (i.e. replacing  by
� B  for some convex increasing function � with slow growth at �1 and such that
still �.�1/ D �1), we can assume  2 L1.! ^ T /.

Write ˛ D � C dd cu, where � is smooth and u is bounded. We can also assume
without loss of generality that !0 D � C ! is Kähler and dd c � �!0 (replace !
by A!, A � 1, if necessary).

We claim that for every bounded ˛-psh function v,  2 L1.Œ˛ C dd cv� ^ T /.
Indeed

0 �
Z
.� /Œ˛ C dd cv� ^ T �

Z
.� /!0 ^ T C

Z
.uC v/.�dd c / ^ T:

Now we can assume thatuCv � 0 since these functions are bounded. The conclusion
follows by observing that �dd c � !0.

This shows in particular that �j D Œ˛ C dd c'j � ^ T .P / D 0, hence �.P / D 0

since .�j / converges to � in the strong sense of Borel measures. �
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We now introduce a set of weights.

Notation. We let W be the set of all convex increasing functions � W R ! R such
that �.�1/ D �1 and �.0/ D 0.

A straightforward computation (see [GZ2]) shows that if ' 2 PSH.X; ˛/ and
�0 B ' � 1, then � B ' 2 PSH.X; ˛/.

Lemma 1.3. Let � be a positive measure and u a measurable function which is
bounded from above and such that u > �1 �-a.e. Then there exists � 2 W such
that � B u 2 L1.�/.
Proof. Assume for simplicity that u is negative. From the identityZ

.� B u/d� D
Z 1

0

�.� B u < �t /dt

it is straightforward to construct a piecewise affine � that suffices. �

Proposition 1.4. Assume that T has the form T D ˇ C dd c , with ˇ a positive
current with bounded potentials, and T puts no mass on the set f D �1g. Then T
does not charge pluripolar sets.

Consequently if ' 2 E.T; ˛/, then �.'; T / does not charge pluripolar sets.

Proof. Fix a Kähler form !. Replacing ˇ with ˇ C !, we may assume fˇg2 > 0.
If P � X is locally pluripolar then by Theorem 7.2 in [GZ1], P � fu D �1g for
some u 2 PSH.X; ˇ/. Fix � 2 W such that � B  2 L1.T ^ !/.

We can assume without loss of generality that � B u 2 PSH.X; ˇ/ and
R
X
.��/ B

u ŒˇC dd cu�^! < C1, replacing u by � B .u�C/, C > 0, if necessary (in other
words it is no loss of generality to assume u has “small singularities”, see [CGZ] for
more detail). The comparison principle (see Proposition 2.5 in [GZ2]) then givesZ
.��/ B uT ^ ! � 2

Z
.��/ B u Œˇ C dd cu� ^ ! C 2

Z
.��/ B  T ^ ! < C1:

Therefore � B u 2 L1.T ^ !/, in particular T ^ !.P / � T ^ !.fu D �1g/ D 0.
The second statement of the proposition follows from Proposition 1.2. �

We introduce another class of ˛-psh functions.

Definition 1.5. For � 2 W we set

E�.T; ˛/ WD ˚
' 2 PSH.X; ˛/ = sup

j2N

R
X
.��/ B 'j Œ˛ C dd c'j � ^ T < C1�

;

where 'j WD max.';�j / are the canonical approximants.
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The relationship between these classes and E.T; ˛/ is the following.

Proposition 1.6. We have

E.T; ˛/ D
[
�2W

E�.T; ˛/:

Proof. Given ' 2 E�.T; ˛/, we may assume ' � 0. Then

0 � Œ˛Cdd c'j �^T .f' � �j g/ � 1

j�.�j /j sup
k

Z
X

.��B'k/Œ˛Cdd c'k�^T ! 0;

since �.�1/ D �1. Hence ' 2 E.T; ˛/.
Conversely assume ' 2 E.T; ˛/. By Proposition 1.2 and Lemma 1.3, there is

weight � 2 W such that � B ' 2 L1.�.'; T //. We have by definition

�.'; T /.f' > �j g/ D Œ˛ C dd c'j � ^ T .f' > �j g/: (4)

Since the measures on either side have the same total mass, we infer that

�.'; T /.f' � �j g/ D Œ˛ C dd c'j � ^ T .f' � �j g/: (5)

Writing �.'/ D �.'; T / and ˛'j
WD ˛ C dd c'j , we use (4) again to get

Z
X

.�� B 'j / ˛'j
^ T D .��/.�j /

Z
f'��j g

˛'j
^ T C

Z
f'>�j g

.�� B '/ ˛'j
^ T

D .��/.�j /
Z

f'��j g
d�.'/C

Z
f'>�j g

.�� B '/ d�.'/

�
Z
X

.�� B '/ d�.'/:

So ' 2 E�.T; ˛/. �

1.2. Intersection of currents. Let ˛, ˇ, S , T be positive closed .1; 1/ currents on
X such that

(1) ˛; ˇ have bounded potentials;

(2) S D ˛ C dd c' for some ' 2 PSH.X; ˛/;

(3) T D ˇ C dd c for some  2 PSH.X; ˇ/;

(4) f˛g � fˇg D R
X
˛ ^ ˇ D fSg � fT g D 1.
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We want to define the wedge product S ^ T . That is we want to construct
a probability measure � such that whenever 'j 2 PSH.X; ˛/ \ L1.X/,  j 2
PSH.X; ˇ/ \ L1.X/ decrease towards '; then

Sj ^ Tj WD Œ˛ C dd c'j � ^ Œˇ ^ dd c j � ! � (†)

in the weak sense of Radon measures. Recall that the wedge productSj ^Tj of closed
currents with bounded potentials is well defined thanks to the work of E. Bedford
and A. Taylor [BT1]. It is well known that it is not always possible to define S ^ T
when the currents have unbounded potentials, even if S D T . We show here that it
is nevertheless possible in some very general situations.

The L1 condition. When the potential ' of S , is integrable with respect to (the trace
measure of) the current T , then the current 'T is well-defined, as is therefore

� D S ^ T WD ˛ ^ T C dd c.'T /:

It is well known that the continuity property .�/ holds in this case. This is a conse-
quence of the following lemma, which we will need for other purposes.

Lemma 1.7. Assume ' 2 L1.T /. Then for any bounded quasiplurisubharmonic
function u, and for any sequence 'j 2 PSH.X; ˛/ decreasing to ', one has 'j 2
L1.T / and Z

X

u Œ˛ C dd c'j � ^ T !
Z
X

u Œ˛ C dd c'� ^ T:

Proof. By the monotone convergence theorem 'jT ! 'T as currents. Therefore
Œ˛C dd c'j �^ T ! Œ˛C dd c'�^ T in the weak sense of Radon measures. Hence
we are done if u is continuous. Since u is upper semi-continuous, we get that

lim sup
Z
X

u Œ˛ C dd c'j � ^ T �
Z
X

u Œ˛ C dd c'� ^ T:

We now use the assumption that u 2 PSH.X; �/ for some positive closed .1; 1/-
current � with bounded potentials. It follows from repeated application of Stokes’
theorem thatZ

X

u Œ˛ C dd c'j � ^ T D
Z
u˛ ^ T C

Z
X

'j Œ� C dd cu� ^ T �
Z
X

'j � ^ T

�
Z
X

u Œ˛ C dd c'� ^ T C
Z
X

.' � 'j /� ^ T:
The integrations by parts are easily justified because u is bounded. By monotone
convergence,

R
X
.' � 'j /� ^ T ! 0. So we infer

lim inf
Z
X

u Œ˛ C dd c'j � ^ T �
Z
X

u Œ˛ C dd c'� ^ T: �
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Note that the condition ' 2 L1.T / is symmetric, ' 2 L1.T / ,  2 L1.S/.
This follows from the Stokes theorem: if ! is any fixed Kähler form, thenZ

X

'T ^ ! D
Z
X

 S ^ ! C
Z
X

'ˇ ^ ! �
Z
X

 ˛ ^ !;

where the last two integrals are finite because qpsh functions are always integrable
with respect to measures of the form ˛ ^ ! (resp. ˇ ^ !) (see e.g. [De]).

Lastly, note that if ˛1 C dd c'1 and ˛2 C dd c'2 are two representations of the
same closed positive current S , with ˛i of bounded potential, then '1 2 L1.T / iff
'2 2 L1.T /. It therefore makes sense to write “S 2 L1.T /” as a shorthand for
“' 2 L1.T / for some choice of ˛”. Thus we have just seen that

S 2 L1.T / () T 2 L1.S/:
In the next paragraph we will give a different approach to the wedge product,

using the energy formalism.

The energy condition. We will show that the wedge product S ^ T can be defined
as �.'; T / whenever ' 2 E.T; ˛/.

Proposition 1.8. Assume ' 2 L1.T / so that the probability measure S ^ T is well
defined. Then

�.'; T / D 1f'>�1gS ^ T:
Therefore ' 2 E.T; ˛/ if and only if S ^ T .f' D �1g/ D 0.

Proof. Without loss of generality, assume that ' < 0. Let 'j WD max.';�j / and
uk WD max.'=k C 1; 0/ 2 PSH.X; ˛/ \ L1.X/, where k � j is fixed. Observe
that fuk > 0g D f' > �kg and uk D 0 elsewhere, thus

uk Œ˛ C dd c'j � ^ T D uk1f'>�j g Œ˛ C dd c'j � ^ T D uk �j .'; T /;

Letting j ! C1 we infer, by using Lemma 1.7, that

huk S ^ T; hi D huk�.'; T /; hi; for all k 2 N

and for any continuous test function h on X . Now uk % 1f'>�1g, so

h1f'>�1g S ^ T; hi D h�.'; T /; hi
since �.'; T / does not charge f' D �1g. �

Proposition 1.8 implies that wheneverS 2 L1.T /, one has' 2 E.T; ˛/ if and only
if  2 E.S; ˇ/, and in either case �.'; T / D �. ; S/. The next result gives some
symmetry even without the integrability assumption. It follows from a monotone
convergence argument that we defer until the next subsection.
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Theorem 1.9. Assume ' 2 E.T; ˛/ and 2 E.S; ˇ/. Assume moreover that T does
not charge pluripolar sets. Then

�.'; T / D �. ; S/

and this measure does not charge pluripolar sets.
If, moreover, 'j 2 PSH.X; ˛/,  j 2 PSH.X; ˇ/ decrease to ',  , and we set

Sj WD ˛ C dd c'j , Tj WD ˇ C dd c j , then we have 'j 2 E.Tj ; ˛/;  j 2 E.Sj ; ˇ/

and
�.'j ; Tj / D �. j ; Sj / ! �.'; T / D �. ; S/

in the weak sense of Radon measures.

Note that the condition ' 2 E.T; ˛/ does not depend on the choice of ˛.

Proposition 1.10. Assume that S D ˛1Cdd c'1 D ˛2Cdd c'2, where ˛1, ˛2 have
bounded potentials. Then �.'1; T / D �.'2; T /. In particular '1 2 E.T; ˛1/ if and
only if '2 2 E.T; ˛2/.

Proof. Fixu bounded such that˛2 D ˛1Cdd cu. Subtracting a constant if necessary,
we can assume '1 D '2 C u. Fix M > 0 such that �M � u � CM .

Observe that max.'2;�j / C u D max.'1;�j C M/ in the plurifine open set
f'1 > �j CM g � f'2 > �j g. Thus

1f'1>�jCM gŒ˛1 C dd c max.'1;�j CM/� ^ T
� 1f'2>�j gŒ˛2 C dd c max.'2;�j /� ^ T � �.'2; T /:

We infer �.'1; T / � �.'2; T /, whence equality by reversing the roles of '1
and '2. In particular '1 2 E.T; ˛1/ if and only if '2 2 E.T; ˛2/. �

We already know that if both 'j and  j are bounded, then �.'j ; Tj / D Sj ^ Tj .
Hence under the hypotheses of Theorem 1.9, our results now make it reasonable to
set

S ^ T WD �.'; T / D �. ; S/:

Also we can write “S 2 E.T /” to say that ' 2 E.T; ˛/ for some choice of ˛. In
summary, we have shown that ifS 2 E.T / andT 2 E.S/, then there is a well-defined
wedge product S ^ T . We stress that our definition of S ^ T applies even in some
cases where S … L1.T / (see [GZ2], §2.4). On the other hand, the case where S
and T are transversely intersecting lines shows that S 2 L1.T / does not mean that
S 2 E.T /.

We now discuss the hypothesis made in Theorem 1.9 that T does not charge
pluripolar sets. Later on we will apply this construction to the case where T D TC is
the canonical f �-invariant current associated to a 1-stable endomorphism f W X !
X of small topological degree. The laminar structure and extremality properties of
TC will allow us to reach the following alternative:
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– either TC does not charge pluripolar sets,

– or TC is supported on a complete pluripolar set.

It is therefore important to notice that the latter possibility can not occur under
the finite energy assumption.

Proposition 1.11. Assume T D ˇ C dd c is supported on . D �1/ and ' 2
E.T; ˛/. Then �. ; S/ D 0, hence in particular  … E.S; ˇ/.

Proof. Assume ' 2 E.T; ˛/. It follows from Lemma 1.14 that ' 2 E.Tj ; ˛/, where
Tj D ˇ C dd c j ,  j D max. ;�j /.

Observe that by definition of�.'; Tj /, the measuresTj^Sk converge (in the strong
sense of Borel measures) towards �.'; Tj /, as k ! C1. Here Sk D ˛ C dd c'k ,
where 'k D max.';�k/.

Now �.'; Tj / D Tj ^ S , as follows from Proposition 1.8. We infer

1f >�j gTj ^ Sk k!C1�����! 1f >�j gTj ^ S:
Observe finally that 1f >�j gTj^Sk D 1f >�j gT ^Sk D 0 ifT is supported on . D
�1/. The latter equality follows from lemma 1.12 below. Thus 1f >�j gTj ^S D 0,
hence �. ; S/ D 0. �

The following result is probably known to experts in pluripotential theory. Since
we could not find a reference, we include a proof.

Lemma 1.12. Assume T D dd c � 0 is a positive closed .1; 1/ current in the
unit ball B � C2, which gives full mass to f D �1g. Then so does the measure
T ^ dd cu, for any locally bounded plurisubharmonic function u.

Proof. This is a local question; we can assume all our objects are defined in a small
neighborhood of xB. Set % WD e . This is a bounded psh function such that f% > 0g D
f > �1g and f% D 0g D f D �1g. By assumption %T D 0 and we need to
prove that %� D 0, where � D T ^ dd cu, u 2 PSH.B/ \ L1

loc.B/.
If u is smooth, this easily follows from the identity

h%�; �i D h%T; �dd cui
valid for any test function �.

For the general case we approximate u by a decreasing sequence of smooth psh
functions uj . Set �j WD T ^ dd cuj . Since

h%�j ; �i D h%T; �dd cuj i D 0;
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it suffices to show that the measures %�j converge, in the weak sense of Radon
measures, towards %�. This is obvious if % is continuous. Let %" denote a sequence
of smooth psh functions decreasing to %. Since

lim
j!C1h%"�j ; �i D h%"�; �i;

for fixed " > 0, it suffices to show that %"�j ! %�j as " ! 0 uniformly with respect
to j .

Using a “max-construction”, we can assume without loss of generality that %" 	
% 	 uj 	 u 	 jjzjj2�1 near @B. This allows us to integrate by parts, since all these
functions vanish on @B. Let � be a test function, thenˇ̌h%"�j ; �i � h%�j ; �iˇ̌

� jj�jjC2h.%" � %/dd cuj ; T i
D C�

Z
d.%" � %/ ^ d cuj ^ T

� C�

�Z
d.%" � %/ ^ d c.%" � %/ ^ T

�1=2 �Z
duj ^ d cuj ^ T

�1=2
;

as follows from Cauchy–Schwarz inequality.
The latter integral is uniformly bounded from above,Z
duj ^ d cuj ^ T D

Z
.�uj / ^ dd cuj ^ T � jjujjL1

Z
dd cuj ^ T � M0;

while the next to last converges to zero,Z
d.%" � %/ ^ d c.%" � %/ ^ T �

Z
.%" � %/dd c% ^ T ! 0;

as follows from the monotone convergence theorem. �

1.3. Proof of Theorem 1.9. We start with two useful inequalities.

Lemma 1.13. Fix� 2 W and letu; v 2 PSH.X; ˛/\L1.X/be such thatu � v � 0.
Then

0 �
Z
X

.�� B v/ Œ˛ C dd cv� ^ T � 2

Z
X

.�� B u/ Œ˛ C dd cu� ^ T:

The proof is a simple integration by parts (see Lemma 2.3 in [GZ2] for simi-
lar computation). It will follow from this lemma that in the definition of the class
E�.X; ˛/, one can replace the canonical approximants by any sequence of bounded
˛-psh functions decreasing towards '.

Fix � � 0 a positive closed current with bounded potentials. For this lemma we
use the notation ˛' WD ˛ C dd c' and �u WD � C dd cu.
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Lemma 1.14. Fix � 2 W and 0 � ' 2 PSH.X; ˛/ \ L1.X/. Let u � v be two
� -psh functions. Then

0 �
Z
X

.�� B '/ ˛' ^ �v � 2

Z
X

.�� B '/ ˛' ^ �u C �0.0/
Z
X

Œv � u�˛2:

Proof. It follows from Stokes’ theorem thatZ
.�� B '/ ˛' ^ �v D

Z
.�� B '/ ˛' ^ �u C

Z
.v � u/˛' ^ Œ�dd c� B '�:

Observe that �dd c� B ' � �0 B ' ˛, thus the latter integral is bounded from above
by I D R

.v � u/�0 B '˛' ^ ˛. Now

�0 B ' ˛' � �0 B ' ˛' C �00 B ' d' ^ d c' D �0 B ' ˛ C dd c.� B '/;
so we may estimate the integral I :

I �
Z
.�� B '/ ˛ ^ dd c.u � v/C

Z
.v � u/�0 B ' ˛2

�
Z
.�� B '/ ˛ ^ �u C �0.0/

Z
.v � u/˛2:

The conclusion follows by observing thatZ
.��B'/ ˛'^�u D

Z
.��B'/ ˛^�uC

Z
�0B' d'^d c'^�u �

Z
.��B'/ ˛^�u:

�

Proof of Theorem 1.9. Without loss of generality we can assume that '; � 0.

Step 1. Assume that 'j WD max.';�j / and  j WD max. ;�j / are the canonical
approximants. We first show that the measures Sj ^ Tj converge to �.'; T /. Recall
that by definition,

�.'; T / D lim % 1f'>�j gSj ^ T:
Fix N 2 N. It follows from (3) that for all j � N ,

Sj ^ Tj � 1f >�N gSj ^ Tj D 1f >�N gSj ^ T:
Let 	 be a cluster point of the sequence .Sj ^ Tj /. We infer

	 � lim
N!C1 1f >�N g�.'; T / D 1f >�1g�.'; T / D �.'; T /;

since �.'; T / does not charge the pluripolar set f D �1g, as follows from Propo-
sition 1.2 (because we assume T does not charge pluripolar sets). Since both 	 and
�.'; T / are probability measures, it follows that 	 D �.'; T /.
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We now show that �.'; T / D �. ; S/. Observe first that

1f'>�j g\f >�j gSj ^ Tj ! �.'; T /;

where the convergence holds in the strong sense of Borel measures. Recall that
�. ; S/ D lim % 1f >�j gS ^ Tj . Now 1f'>�j gS ^ Tj D 1f'>�j gSj ^ Tj , hence

1f'>�j g
�
1f >�j gS ^ Tj

� D 1f'>�j g\f >�j gSj ^ Tj :
We infer 1f'>�1g�. ; S/ D �.'; T /. Since these are both probability measures,

we conclude that �. ; S/ D �.'; T / and this measure does not charge pluripolar
sets (by Proposition 1.2).

Step 2. In the sequel we set � D �.'; T / D �. ; S/ and we fix � 2 W such that
' 2 E�.T; ˛/ and  2 E�.S; ˇ/. We show that

� B 'j Sj ^ Tj ! � B '�
in the strong sense of Borel measures.

Let B be a Borel subset of X . We leave the reader check that
R
B
� B 'jSj ^ T

converges to
R
B
� B 'd� as j ! 1. It then suffices to verify that

R
B
� B 'j Sj ^

.T � Tj / ! 0. It follows from (3) that

1f >�j g� B 'jSj ^ Tj D 1f >�j g� B 'jSj ^ T:
SinceZ
B\f ��j g

j�j B 'jSj ^ T �
Z

f ��j g
j�j B 'jSj ^ T !

Z
f D�1g

j�j B 'd� D 0;

we will be done if we can show that
R

f ��j g j�j B 'jSj ^ Tj ! 0.
From Lemmas 1.13 and 1.14, we obtain M� 2 R such that
Z
.��/ B 'j Sj ^ Tj � M�;

Z
.��/ B  j Sj ^ Tj � M� for all j 2 N:

Choose another weight Q� 2 W , such that the same uniform bound hold, and such that
moreover � D o. Q�/ and �= Q� is increasing (to find such a Q�, choose Q� first and then
�!). We conclude that

Z
f ��j g

j�j B 'jSj ^ Tj � M Q�
ˇ̌
ˇ̌�

Q�.�j /
ˇ̌
ˇ̌ ! 0;

as desired.
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From Step 2 we immediately obtain the following generalization of Lemma 1.13.

Corollary 1.15. Let � 2 W , u 2 E�.T; ˛/ and v 2 PSH.X; ˛/ such that u � v � 0.
Then v 2 E�.T; ˛/ and

0 �
Z
X

.�� B v/ Œ˛ C dd cv� ^ T � 2

Z
X

.�� B u/ Œ˛ C dd cu� ^ T:

Step 3. Let 'j ;  j � 0 denote now arbitrary sequences of ˛-psh, ˇ-psh functions
decreasing towards '; . From Lemma 1.14 and Corollary 1.15, we infer that 'j 2
E�.Tj ; ˛/ and  j 2 E�.Sj ; ˇ/. Thus the measures �.'j ; Tj / D �. j ; Sj / are well
defined. We set

'
.K/
j WD max.'j ;�K/;  

.K/
j WD max. j ;�K/;

'.K/ WD max.';�K/;  .K/ WD max. ;�K/:
Similarly,

S
.K/
j WD ˛ C dd c'

.K/
j ; T

.K/
j WD ˇ C dd c 

.K/
j ;

S .K/ WD ˛ C dd c'.K/; T .K/ WD ˇ C dd c .K/:

It follows from Step 1 that S .K/ ^ T .K/ ! � and S .K/j ^ T
.K/
j ! Sj ^ Tj when

K ! C1. It follows from the monotone convergence theorem of [BT1] that for
each fixed K,

S
.K/
j ^ T .K/j ! S .K/ ^ T .K/ as j ! C1:

Thus we will be done if we can prove that the convergence S .K/j ^ T .K/j ! Sj ^ Tj
is uniform with respect to j . This is what we show now.

Fix a Borel subset B � X . Note that
˚
'j � �K� [ ˚

 j � �K� � ˚
uj � �K�

,
where uj WD 'j C j . Fixing � 2 W as at the end of Step 2, we have from convexity
of � that

sup
j

Z
X

.��Buj / Sj^Tj � sup
j

Z
X

.��B'j / Sj^TjCsup
j

Z
X

.��B j / Sj^Tj � 2M�:

It follows again from (3) that S .K/j ^ T
.K/
j 	 Sj ^ Tj in the plurifine open set˚

'j > �K� \ ˚
 j > �K�

, thus

ˇ̌
S
.K/
j ^ T .K/j .B/ � Sj ^ Tj .B/

ˇ̌ �
Z
fuj ��Kg

�
S
.K/
j ^ T .K/j C Sj ^ Tj

�
:
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Lemma 1.14 and Corollary 1.15 imply that
R
.��/ Bu.K/j S

.K/
j ^T .K/j is bounded

above by 4M� C C . Hence

ˇ̌
S
.K/
j ^ T .K/j .B/ � Sj ^ Tj .B/

ˇ̌ � 6M� C C

j�.�K/j
converges to zero as K ! C1, uniformly with respect to j . �

1.4. The gradient approach. We now give an alternative description of the finite
energy conditions in terms of integrability properties of weighted gradients (in the
spirit of [BD] who considered the special case �.t/ D t in what follows).

Recall that any function ' 2 PSH.X; ˛/ has gradient in L2�".X/ for any " > 0,
but r' … L2.X/ in general. Indeed, ' has gradient in L2 if and only if ' 2 L1.˛'/,
where we write ˛' D ˛ C dd c' as before. More generally when ˛' WD ˛ C dd c'

does not charge the set f' D �1g, there exists � 2 W such that � B ' 2 L1.˛'/.
HenceZ
X

�0 B ' d' ^ d c' ^ ! D
Z
X

.�� B '/ dd c' ^ ! �
Z
X

.�� B '/ ˛' ^ ! < C1;

where ! is a fixed Kähler form. We get that ' has weighted gradient in L2.X/.
This suggests that we can give an alternative description of our energy conditions

in terms of weighted gradients.

Definition 1.16. For � 2 W we set

r�.T; ˛/ WD ®
' 2 PSH.X; ˛/ = sup

j�0
R
X
�0 B 'jd'j ^ d c'j ^ T < C1¯

;

where 'j WD max.';�j / are the canonical approximants.

Proposition 1.17. Fix � 2 W . Then

E�.T; ˛/ D ˚
' 2 r�.T; ˛/ = � B ' 2 L1.˛ ^ T /� :

Proof. This follows from integrating by parts,
Z
.�� B 'j / ˛'j

^ T D
Z
.�� B 'j / ˛ ^ T C

Z
�0 B 'j d'j ^ d c'j ^ T: �

Remark 1.18. If �0 is bounded above, then to verify the condition �B' 2 L1.˛^T /
in Proposition 1.17, it suffices to show simply that � B ' 2 L1.T /.
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Proof. Since ˛ � 0 has bounded potentials, we have ˛ � c! C dd cu where u is
bounded and, without loss of generality, positive. Thus,

0 �
Z

�� B ' ˛ ^ T � c

Z
�� B ' ! ^ T C

Z
�udd c.� B '/ ^ T:

The assertion therefore follows from the bound �udd c.�B'/ � �u.�0 B'/dd c' �
ku�0k1 !C. �

1.5. Examples. We give here simple criteria which ensure that some of our energy
conditions are satisfied. We let E1.T; ˛/ denote the class E�.T; ˛/ for the weight
�.t/ D t . Observe that

E1.T; ˛/ D
\
�2W

E�.T; ˛/:

Proposition 1.19. If ' 2 PSH.X; ˛/ is bounded, then ' 2 E1.T; ˛/.

This is easy and follows directly from the definitions. In dynamical situations,
invariant currents with bounded potentials appear for instance for meromorphic maps
on surfaces of Kodaira dimension zero (see §4). The next result is a bit more elaborate
and will be useful in particular with ' D 
˙ in §3.

Proposition 1.20. Assume ' 2 PSH.X; ˛/\L1
loc.X n F /, where F is a finite set of

points. Then ' 2 L1.T /.
Moreover if ' � A log dist. �; F /�A for some constantA > 0, and if �.T; p/ D 0

for all p 2 F , then ' 2 E.T; ˛/.

Proof. We can assume without loss of generality that ' � 0 on X . Fix ! a Kähler
form on X . We need to show that

R
X
.�'/T ^ ! < C1. Let !0 be a smooth form

cohomologous to! which vanishes in a small neighborhood ofF . We can find h � 0

a smooth function such that ! D !0 C dd ch. NowZ
X

.�'/T ^ ! D
Z
X

.�'/T ^ !0 C
Z
X

hT ^ .�dd c'/

�
Z
X

.�'/T ^ !0 C
Z
X

hT ^ ˛ < C1;

since ' is bounded on the support of T ^ !0. We have used here that hT � 0 while
�dd c' � ˛. This shows that ' 2 L1.T /. Thus the measure � WD S ^ T D
.˛ C dd c'/ ^ T is well defined.

Assume now that ' � g WD A log dist. �; F / � A for some constant A > 0 and
�.T; p/ D 0 for all p 2 F . Assume g 2 PSH.X; ˛/. Observe that g 2 L1.T /.
Hence � D Œ˛ C dd cg� ^ T is a well defined positive measure which looks, locally
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near each point in F , like the projective mass of T . Since �.T; p/ D 0 when p 2 F ,
we infer that �.p/ D 0. Therefore �.fg D �1g/ D 0, and there exists � 2 W such
that g 2 E�.T; ˛/. It now follows from Corollary 1.15 that ' 2 E�.T; ˛/ also, since
' is less singular than g.

When g is not ˛-psh, it is !-psh and hence .! C ˛/-psh, for some Kähler form
!. Observe that ' is also .! C ˛/-psh. We claim that ' 2 E.T; ˛/ if and only if
' 2 E.T; ˛ C !/. Indeed

�.'; T; ˛ C f!g/ D lim
j!C1

�
�j .'; T; ˛/C 1f'>�j g! ^ T �

D �.'; T; ˛/C 1f'>�1g! ^ T:

Now ! ^ T .' D �1/ D 0 since .' D �1/ � F is finite. Thus

M .�.'; T; ˛ C f!g// D fT g � .˛ C f!g/ if and only if M .�.'; T; ˛// D fT g � ˛;

which is the desired result. Here M.�/ denotes the total mass of the measure �. We
can now conclude the proof by replacing ˛ by ˛ C ! in the above argument. �

2. The canonical invariant measure

Now let us return to the dynamical situation described in the introduction. For the
remainder of this paper, f W X ! X is a meromorphic transformation of a compact
Kähler surface .X; !/. We always assume that

� f is 1-stable, i.e. .f n/� D .f �/n on H 1;1.X;R/ for all n 2 N;

� the dynamical degrees of f satisfy 1 � �2.f / < �1 WD �1.f /.

With these conditions, our work in [DDG1] shows that the canonical current
TC D ��1

1 f
�TC in (1) exists and can be alternatively expressed

TC D lim
n!1��n

1 f n�!C D !C C dd cGC; with GC D
1X
nD0


C B f n
�n1

; (6)

where !C is a positive closed current with bounded potentials cohomologous to TC
and dd c
C D ��1

1 f
�!C � !C. The canonical forward invariant current T � D

��1
1 f�T � also exists and admits a similar description

T � D lim
n!1��n

1 f n� !� D !� C dd cG�; with G� D
1X
nD0

��n
1 f n� 
�: (7)
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2.1. The dynamical energy. We can assume, without loss of generality, that f!Cg �
f!�g D fTCg � fT �g D 1: Our aim here is to use the techniques from §1 to define
a probability measure �f D TC ^ T � and understand its geometric and dynamical
properties.

Definition 2.1. We say that f has finite dynamical energy if

TC 2 E.T �/ and T � 2 E.TC/:

We assume henceforth that our maps always have finite dynamical energy. Finite
dynamical energy is equivalent via Proposition 1.6 to having � 2 W such that

GC 2 E�.T
�; !C/ and G� 2 E�.T

C; !�/:

We say then more specifically that f satisfies condition .E�/. We shall see in §4
some weights � 2 W that actually arise in specific families of examples.

The existence of �f , in the sense of Theorem 1.9, is a consequence of finite dy-
namical energy. When kod.X/ D 0, the invariant current T � has bounded potentials,
hence it does not charge pluripolar sets. WhenX is rational, we instead consider TC.

Proposition 2.2. AssumeX is rational and f has finite dynamical energy. Then TC
does not charge pluripolar sets.

Proof. The proof consists in establishing the following more precise alternative:

– either TC does not charge pluripolar sets,

– or it is supported on a pluripolar set, hence f cannot have finite dynamical
energy.

Decompose TC as TC D TC
np C TC

pp , where TC
np D 1fGC>�1gTC does not charge

pluripolar sets, whileTC
pp D 1.GCD�1/ gives full mass the pluripolar setGC D �1.

Because TC is a strongly approximable laminar current (see [DDG1]) It follows
from [Du1], Theorem 6.8, that this decomposition is closed, i.e. TC

pp; T
C
np are closed

currents.
Since TC is invariant (under f �=�1) and does not charge (critical) curves (see

Theorem 2.4 in [DDG1]), we also infer that TC
pp; T

C
np are both invariant. Now TC is

an extremal point of the cone of positive closed invariant currents (see Remark 2.2 in
[DDG1]). Thus it follows that either TC D TC

np does not charge pluripolar sets (see
Proposition 1.4), or TC D TC

pp is supported on the pluripolar set fGC D �1g. In
the latter case, it follows from Proposition 1.11 that f cannot have finite dynamical
energy. �

As it will be seen below and in [DDG3], the finite dynamical energy condition will
allow us to understand the dynamics of�f quite thoroughly. From Proposition 1.8 we
get the following nice alternative, which emphasizes the naturality of this assumption.
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Theorem 2.3. Assume that TC 2 L1.T �/, so that �f D TC ^ T � is well defined.
Then

– either �f charges the pluripolar set fGC D �1g [ fG� D �1g,
– or f has finite dynamical energy.

2.2. Mixing

Theorem 2.4. Assume f has finite dynamical energy. Then the measure �f D
TC ^ T � is f -invariant and mixing, and it does not charge pluripolar sets.

Proof. It follows from Proposition 2.2 and Theorem 1.9 that �f D TC ^ T � is a
well defined probability measure which does not charge pluripolar sets. In particular,
�f D TC ^ T � does not charge the pluripolar set IC � fGC D �1g. Moreover
by Theorem 1.9,

�f D lim
n;p!C1�n;p; where �n;p WD 1

�n1
.f n/�!C ^ 1

�
p
1

.f p/�!�:

Since f��n;p D �n�1;pC1 and since the operator f� is continuous on the set of
probability measures which do not charge the indeterminacy set IC, we infer f��f D
�f , i.e. �f is an invariant probability measure.

We now show that �f is mixing. Let h and k be test functions on X . We need to
show that Z

X

k h B f n d�f !
Z
X

h d�f

Z
X

k d�f :

Set �j WD Œ!� C dd cvj � ^ TC, where vj WD max.G�;�j / are the canonical
approximants of G�. Fix � 2 W such that G� 2 E�.T

C; !�/. It follows from
Corollary 1.15 that � BG� 2 L1.�f /, � B vj 2 L1.�j / uniformly in j , and also that
�j 	 �f in the plurifine open set fG� > �j g. Therefore

ˇ̌ˇ̌Z
X

k h B f n d�f �
Z
X

k h B f n d�j
ˇ̌ˇ̌ � jjkjjL1 jjhjjL1.�f C �j /fG� � �j g

converges to zero as j ! C1, uniformly with respect to n 2 N.
It suffices then to replace�f by .!� Cdd cv/^TC, where v is a bounded!�-psh

function and showZ
X

k h B f n.!� C dd cv/ ^ TC !
�Z

k.!� C dd cv/ ^ TC
� �Z

h d�f

�
:

Observe that here we can replace !� by ��, which is smooth. So it suffices to show
the convergence for an arbitrary Kähler form !, instead of ��.
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If v is smooth the convergence follows from Proposition 2.5 below. For the
general case, recall that we can approximate v from above by a decreasing family
of smooth !-psh functions v". The proof will be finished if we show that

R
X
kh B

f n dd c.v" � v/^ TC converges to zero as " ! 0, uniformly with respect to n. For
this we first integrate by parts

ˇ̌ˇ̌Z
X

k h B f n dd c.v" � v/ ^ TC
ˇ̌ˇ̌

�
ˇ̌ˇ̌Z
X

dk ^ d c.v" � v/ ^ h B f n TC
ˇ̌ˇ̌

C
ˇ̌ˇ̌Z
X

dh B f n ^ d c.v" � v/ ^ k TC
ˇ̌ˇ̌ D I.n; "/C II.n; "/;

and use the Cauchy–Schwarz inequality. For the first term we get

I.n; "/ � jjhjjL1 jjkjjC1

�Z
d.v" � v/ ^ d c.v" � v/ ^ TC

�1=2
! 0;

because v is bounded.
Treating the second integral II.n; "/ similarly gives rise to an integral of the form

Z
d.h B f n/ ^ d c.h B f n/ ^ kTC:

Then we argue as in the proof of Theorem 3.3 in [DDG1] to get that this integral is
O.�n2=�

n
1/. �

Proposition 2.5. Let h be a (smooth) test function on X . Then

h B f n TC ! cTC; where c D
Z
h d�f

Again, the proof is similar to that of Theorem 3.3 in [DDG1], so we omit it.

2.3. Geometric intersection. In this paragraph,X is supposed to be projective. We
showed in [DDG1] that the invariant currents TC and T � admit important geometric
structures. More precisely TC (resp. T �) is a strongly approximable laminar (resp.
woven) current.

Our purpose here is to show that the measure �f can be alternatively obtained
by “intersecting” these geometric structures. Recall that another result that has been
obtained using laminarity is the fact that TC –and consequently �f – does not charge
pluripolar sets.
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We first very briefly recall some preliminaries on geometric currents (see [Du1],
[Du2] and also [DDG1], [DDG3] for more details). The construction of these geo-
metric structures requires subdivisions Q of X into families of “cubes” Q 2 Q,
which are obtained by projecting along two generically transverse linear pencils, and
taking intersections of subdivision of the projection bases into squares. In particular
we have some freedom in the choice of the projections and the squares. The spaces
parametrizing projections and squares are manifolds so we can speak of a “generic
subdivision” where genericity is understood in the sense of Lebesgue measure.

That TC is a strongly approximable laminar current means that if Q is a generic
increasing family (actually, a sequence) of subdivisions by cubes, then TC is the limit
of an increasing family

TC
Q

D
X
Q2Q

TC
Q ;

the current TC
Q is uniformly laminar in Q. Furthermore, TC

Q can be written as
an integral over a measured family of disjoint submanifolds of uniformly bounded
volume

TC
Q D

Z
˛2AC

Q

Œ�C̨� d�C
Q.˛/: (8)

We have the important estimate

M.TC � TC
Q
/ � Cr2: (9)

The same holds for T �, with “woven” instead of “laminar”. In this case (8) becomes

T �
Q D

Z
˛2A�

Q

Œ��̨� d��
Q.˛/; (10)

where the �� are allowed to intersect and can be singular. In view of (8) and (10)
we can naturally define the geometric intersection of TC

Q and T �
Q as

TC
Q

P̂ T �
Q D

Z
A

C

Q

Z
A�

Q

Œ�C̨ \��̨
0 � d�

C
Q.˛/ d�

�
Q.˛

0/;

where by definition, Œ�˛ \�˛0 � is the sum of Dirac masses at isolated intersections,
counting multiplicities.

Assume now that TC ^ T � is well defined, in the L1 or energetic sense. We say
that the wedge product TC ^T � is a geometric intersection if the family of measures
TC

Q
P̂ T �

Q
WD P

Q2Q T
C
Q

P̂ T �
Q increases to TC ^T � when Q is any family of generic

subdivisions into cubes of size r ! 0.
The following basic result asserts that for uniformly geometric currents the wedge

product is geometric.
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Proposition 2.6. With notation as above, assume that TC
Q

2 L1loc.T
�
Q
/. Then the

wedge product TC
Q

^ T �
Q

is geometric, that is,

TC
Q

^ T �
Q D

X
Q2Q

TC
Q

P̂ T �
Q :

Proof. The proposition follows by applying Lemma 2.7 below twice. Notice that if
� and �0 are submanifolds in Q, Œ�� 2 L1loc.Œ�

0�/ iff � and �0 only have isolated
intersections. If this holds, then Œ�� ^ Œ�0� D Œ� \�0� (see [De]). �

Lemma 2.7. Assume that R and S are two positive closed currents in an open set
Q, such that S 2 L1loc.R/ and S admits a decomposition S D R

S˛d�.˛/ as an
integral of positive closed currents. Then for � a.e. ˛, S˛ 2 L1loc.R/ and we have the
decomposition

R ^ S D
Z
.R ^ S˛/d�.˛/:

Proof. The result is local so consider a small ball B b Q. By definition, ˛ 7!
M.S˛jB/ is locally � integrable. By Lemma 2.8 below, for every ˛ there exists a non
positive psh function u˛ in B such that dd cu˛ D S˛ and ku˛kL1.B0/ � CM.S˛jB/,
where B 0 is a slightly smaller ball. Hence u D R

u˛d�.˛/ is a well defined psh
function which is a potential for S in B 0.

Now since u 2 L1loc.R/, we get that for a.e. ˛, u˛ 2 L1loc.R/, which is the first
assertion of the lemma, while the second follows by applying dd c to the formula
uR D R

u˛Rd�.˛/. �

The following lemma is classical and goes back at least to [Le] (see [BE] for a
brief treatment).

Lemma 2.8. Let T be a positive closed current with finite mass in the unit ball
B � C2. Then T admits potential u which is canonical, negative on B.0; 1=2/ and
satisfies kukL1.B.0;3=4/ � CM.T /, with C a universal constant.

We now arrive to the main result in this paragraph.

Theorem 2.9. Assume X is projective and that f has finite dynamical energy. Then
the wedge product TC ^ T � is geometric.

Proof. Let us first assume for simplicity that TC 2 L1.T �/. This guarantees that all
the wedge productsT˙^T�

Q
, TC

Q
^T �

Q
are well defined in theL1loc sense and bounded

from above byTC^T �. The wedge productTC
Q

^T �
Q

is geometric by Proposition 2.6
and we need to show that this product increases towards �f D TC ^ T �, as r > 0
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decreases towards 0. Here the situation is symmetric so it suffices to estimate the
mass M.T � ^ .TC � TC

Q
//. We follow the proof and notation of Theorem 5.2 in

[Du2].
Shifting the cubes slightly, we can assume the mass of�f is not concentrated near

the boundary of Q. Let  Q D P
Q2Q  Q be a test function such that each function

 Q is supported in the cube Q, satisfies 0 �  Q � 1 and is identically equal to 1 in
the major part ofQ. It suffices to show that

R
X
 QT

� ^ .TC �TC
Q
/ ! 0. Note that

 can be chosen so that kr Qk D O.1=r/ and kdd c Qk D O.1=r2/.
Let G�

j D maxfG�;�j g, T �
j D !� C dd cG�

j and �j D T �
j ^ TC as before.

ThenZ
 QT

� ^.TC �TC
Q
/ D

Z
 QT

�
j ^.TC �TC

Q
/C

Z
 Q.T

� �T �
j /^.TC �TC

Q
/:

(11)
In the second integral on the right, we use the facts that TC � TC

Q
are closed on

Supp Q and that T � ^ .TC �TC
Q
/ D T �

j ^ .TC �TC
Q
/ on fG� > �j g to estimate

ˇ̌ˇ̌Z
X

 Q.T
� � T �

j / ^ .TC � TC
Q
/

ˇ̌ˇ̌ D
ˇ̌ˇ̌Z

fG���j g
 Q.T

� � T �
j / ^ .TC � TC

Q
/

ˇ̌ˇ̌
(12)

�
Z

fG���j g
 Q.�f C �j /;

which tends to zero as j ! 1 uniformly in r (recall that �j .fG� � �j g/ D
�.fG� � �j g/ see (5)). From now on we fix j such that this integral is small.

It remains to control the first integral on the right hand side of (11). For con-
venience it is better to write T �

j D �� C dd cHj , where �� is a smooth form
cohomologous to !� and Hj is still bounded. This gives
Z
 QT

�
j ^.TC�TC

Q
/ D �

Z
d Q ^d cHj ^.TC�TC

Q
/C

Z
 Q�

�^.TC�TC
Q
/:

The second term on the right tends to zero as r ! 0 by laminarity of TC. The
first we estimate with Schwarz’ inequality and the estimate given by the “strong
approximability” of TC.

ˇ̌ˇ̌Z d Q ^ d cHj ^ .TC � TC
Q
/

ˇ̌ˇ̌2 � kd Qk21O.r2/

Z
dHj ^d cHj ^.TC�TC

Q
/:

Since kd Qk21 D O.r�2/, it suffices to know that the last integral tends to zero
with r . But this happens because the bounded function Hj has gradient in L2 with
respect to TC, and because TC

Q
% TC (see the end of the argument in [Du2]).
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We now no longer assume that TC 2 L1.T �/. One difficulty is that we have to
justify the existence of the local wedge products TC

Q ^T �, etc. This is ensured by the
following lemma (which, it is perhaps worth stressing, does not require homogeneity
of X ).

Lemma 2.10. There exists SC
Q

arbitrary close to TC
Q

such that G� 2 L1loc.S
C
Q
/.

Likewise, there exists S�
Q

arbitrary close to T �
Q

such that GC 2 L1loc.S
�
Q
/.

Proof. Since T � 2 E.TC/, by the first item of Proposition 1.2 G� is not �1 a.e.
on TC. Thus, given a cube Q, G� is not identically �1 on TC

Q . Now TC
Q DR

Œ�˛�d�
C
Q.˛/; hence for �C-a.e. disk�˛ , ˆ.˛/ WD R

�˛
G� is finite. Consider now

�C
N WD �Cjfˆ>�N g and TC

Q;N WD
Z
Œ�˛�d�

C
N .˛/:

Then by construction G� 2 L1.TC
Q;N / and TC

Q;N is arbitrarily close to TC
Q .

The argument for S�
Q

is similar. �

From now on we replace the T˙
Q

with the S˙
Q

as given by the previous lemma, so
all the local wedge products (TC

Q ^ T �
Q , TC

Q ^ T �, TC ^ T �
Q ) are well defined in the

usual L1 sense. We further assume that S˙
Q

is so close to T˙
Q

that the estimate (9) is
satisfied.

We now need to justify the inequalities TC
Q

^ T �
Q

� TC ^ T �, etc. This follows
from the following simple observation: let T �

j D !� Cdd c max.G�;�j /. We have

that TC ^T �
j ! TC ^T � (by the energy approach) and TC

Q
^T �

j ! TC
Q

^T � (by

the classical approach) as j ! 1. Since TC
Q

^ T �
j � TC ^ T �

j we conclude that

TC
Q

^ T � � TC ^ T �. In the same way we obtain that TC ^ T �
Q

� TC ^ T �. The
inequality TC

Q
^ T �

Q
� TC

Q
^ T � is obvious since all wedge products are defined in

the classical sense.
Starting from here the proof is identical to the L1 case. �

3. Homogeneous weights

In this section we give criteria allowing to verify in practice (see §4.4) the finite energy
condition for the homogeneous weights �.t/ D �.�t /p , with 0 < p � 1.

Recall from (6) and (7) that we can write T˙ D !˙ C dd cG˙. To analyze
the potential GC, it is easier to use the function 
C as an intermediary. Indeed,
Proposition 2.4 in [DDG1] implies that 
C � A log dist. �; IC/�B for someA;B >

0, where IC � X is the indeterminacy set of the map f . Let us call an indeterminacy
point

p 2 IC spurious if f .p/ � !C D 0:
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At every non-spurious point, we also have the reverse inequality


C � A log dist. �; p/ � B:
Similar inequalities hold for 
�. We let EC denote the exceptional set of f ,

i.e. the union of those curves collapsed by f to points, and set I� D f .EC/.
Then 
� � A log dist. �; I�/ � B with the reverse inequality holding if and only
f �1.p/ � !� ¤ 0 for every p 2 I�. Likewise, we say that a point

p 2 I� is spurious if f �1.p/ � !� D 0:

We refer the reader to [DDG1] for more about spurious points. Here we point out
only that

(1) if the invariant cohomology classes fTCg, fT �g are Kähler, then there is no
spurious point of indeterminacy in resp. IC, I�;

(2) when f is bimeromorphic, we can always perform a bimeromorphic change of
coordinates to get rid of spurious indeterminacy ([BD], Proposition 4.1).

It is plausible that a similar result holds when the topological degree �2.f / is merely
smaller than the first dynamical degree �1 D �1.f /. We refer the reader to §5 in
[DDG1] for some results in this direction.

The Lelong numbers of TC vanish on I� (see [DDG1], Theorem 2.4). Hence
Proposition 1.20 gives

Proposition 3.1. We have 
� 2 E.TC; !�/.

A similar result holds for 
C=T � if we know that T � has zero Lelong number
at each point in IC (which we do e.g. when �2.f / D 1).

The main theme in this section is that for homogeneous weights, it is possible to
pass from control on energy of 
˙ to control on that of G˙. This idea originates in
[BD]. We set

Ep.T; !/ WD E�.T; !/ and rp.T; !/ WD r�.T; !/
where �.t/ D �.�t /p , 0 < p � 1.

Proposition 3.2. Fix 0 < p � 1. Then


C 2 Ep.T �; !C/ if and only if GC 2 rp.T �; !C/:

If �p1 > �2.f / then we similarly have that


� 2 Ep.TC; !�/ if and only if G� 2 rp.TC; !�/:
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Proof. Since 
C and GC are both !C-psh functions such that GC � 
C � 0, it
follows from Corollary 1.15 that

GC 2 E�.T
�; !C/ H) 
C 2 E�.T

�; !C/;

for any weight � 2 W .
Assume conversely now that 
C 2 E�.T

�; !C/ for the special homogeneous
weight �.t/ D �.�t /p , 0 < p � 1. Since �0 B GC � �0.��j

1 
C B f j / D
�

�j.p�1/
1 �0.
C B f j /, it follows from the Cauchy–Schwarz inequality and
.f j /�T � D �

j
1T

� that
�Z

X

�0 BGC dGC ^ d cGC ^ T �
�1=2

�
X
j�0

1

�
j
1

�Z
X

�0 BGCd.
C B f j / ^ d c.
C B f j / ^ T �
�1=2

�
X
j�0

1

�
jp=2
1

�Z
X

�0 B 
Cd
C ^ d c
C ^ T �
�1=2

< C1:

Hence GC 2 r�.T �; !C/.
For 
� and G�, the proof is very similar except that in the estimate analogous

to the one in the previous display, pushforward does not distribute over products as
well as pullback. If  is a .1; 0/ form, we have only an inequality

i f� ^ f� � �2.f / � f�.i  ^ N/:
Arguing as above and setting E�.
�/ D R

�0 B 
�d
� ^ d c
� ^ TC, we thus get
�Z

X

�0 BG� dG� ^ d cG� ^ TC
�1=2

�
X
j�0

�
�2

�
p
1

�j=2 �
E�.


�/
�1=2

;

which is finite if �p1 > �2. �

Since L1 � Lp for 0 < p � 1, Propositions 1.17 and 3.2 directly imply

Corollary 3.3. Suppose 0 < p � 1 and TC 2 L1.T �/. Then 
C belongs to
Ep.T �; !C/ if and only if GC does. If in addition �p1 > �2, then 
� belongs to
Ep.TC; !�/ if and only if G� does.

Having largely reduced the problem of controlling G˙ to that of controlling 
˙,
we now seek effective means of accomplishing the latter. The computations below
will be the same for 
C and 
�, so we work only with 
C. We let � D !C C c!.
For c > 0 large enough, both
C and ' WD log dist. �; IC/ are�-psh functions. Since

C � A' � B , Lemma 1.13 gives
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Proposition 3.4. Let � be any weight function. Then ' 2 E�.T
�; �/ implies that


C 2 E�.T
�; �/.

Hence we consider weighted energy of '. Let 'j be the canonical approximants.
Then up to finite additive constants we have

0 � �
Z
� B 'j .�C dd c'j / ^ T � D �

Z
�G�dd c'j ^ dd c� B 'j

D
Z

�G�.�00 B 'j / d'j ^ d c'j ^ dd c'j C
Z

�G�.�0 B 'j / .dd c'j /2

�
Z
XnIC

�G��00 B ' d' ^ d c' ^ dd c'

C
Z
XnIC

�G��0 B ' .dd c'/2 C
Z

�G�.�0 B '/�j
D I C II C III;

where �j D .dd c'j /
2j'D�j is a positive measure. Note also that d'^d c'j ^dd c'2j

puts no mass on ' D �j . One can verify this by replacing maxf�; j g with a smooth
convex approximation in the definition of 'j and then computing directly.

To bound integral I, we compute in local coordinates that

d' ^ d c' ^ dd c' � C dV.x/

dist.x; IC/4

So if m�.t/ is the spherical mean of G� on the set fdist.p; IC/ D etg, we get

I � C

Z max'

�1
�m�.t/�00.t/ dt;

We claim that II is always finite. To see this, let � W OX ! X be the blowup ofX along
the finite set IC. Then direct computation in local coordinates about IC reveals that
on X n IC, one has .dd c' B �/2 � dV , where dV is a smooth volume form on OX .
Since G� B � is ��˛�-psh on OX , this gives us that

II D
Z

OXn��1.IC/

�.G�B�/.�0B'B�/ .dd c'B�/2 �
Z

OXn��1.IC/

�G�B� dV < 1:

Finally, to deal with III, we note that for j large �j is uniformly (in j ) proportional
to normalized spherical measure on fdist.p; IC/ D e�j g. Hence we obtain that

III � �Cm�.�j /�0.�j /:
With these estimates we arrive at two conclusions very much in the spirit of [BD].
We state them only for 
C, but the analogous assertions for 
� are equally valid and
proved in the same way.
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Corollary 3.5. If G� is finite at all points in IC, then 
C 2 E1.T �; !C/. Hence
also GC 2 r1.T �; !C/. If moreover TC 2 L1.T �/ then GC 2 E1.T �; !C/.

Proof. By Propositions 3.4 and 3.2, it suffices to verify that the above bounds on I
and III are finite (and uniform as j ! 1). In this case, we have �.t/ D t , and in
particular �00 	 0. Hence I is trivially finite.

On the other hand, �0 	 1 and as t ! �1,m�.t/ decreases to the average value
of G� on the set IC. In particular the bound on III is uniform as j ! 1 if G� is
finite on IC. �

For other homogeneous weight functions, our estimates on I and III immediately
give an analogous criterion.

Corollary 3.6. Let (as above)m�.t/ denote the mean of G� on fdist.x; IC/ D etg.
Suppose for some q 2 .0; 1/ that

lim sup
t!�1

jt jq�1jm�.t/j < 1:

Then for any 0 < p < q, we have 
C 2 Ep.T �; !C/. Hence GC 2 rp.T �; !C/.
If additionally TC 2 L1.T �/, then GC 2 Ep.T �; !C/.

In some circumstances (e.g. polynomial maps of C2) it is possible to see directly
that TC 2 L1.T �/. Corollaries 3.5 and 3.6 are adequate by themselves for these
situations. In other circumstances, however, it is not easy to verify thatTC 2 L1.T �/.
We show now that one can avoid doing this if there are no spurious points in IC or I�.

Theorem 3.7. Suppose that 0 < p � 1 is chosen so that �p1 > �2 and that GC 2
rp.T �; !C/, G� 2 rp.TC; !�/. If there are no spurious points in IC or I�, then
it is further true that GC 2 Ep.T �; !/ and G� 2 Ep.TC; !/.

We prove the theorem in a sequence of lemmas, focusing mainly on GC. The
case of G� is identical, except that as in the proof of Proposition 3.2, we need the
condition �p1 > �2 to make the triangle inequality work in a couple of places below.

Lemma 3.8. There exists k 2 N and c > 0 such that for every n 2 N, we have

f nk� !

�nk1
� c! C dd cwn

where wn � �cG� is c!-psh

We remark before continuing that if the indeterminacy set of f has no spurious
points, then neither does that off k . Therefore, there is no particular harm in assuming
for the sake of notational simplicity that k D 1 when we apply the lemma.
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Proof. Let �� be a smooth form cohomologous to T �. Then by Theorem 1.3 in
[DDG1] we have ! D a�� C  for some a > 0 and a smooth form  such that
��k
1 f k�  tends to zero in cohomology. Thus for k large enough, we have

f k� !
�k1

� a�� C 1

2
! C dd cw

where w is a quasipsh function that is smooth away from I�.f k/. Since there are
no spurious points in I�, we have in fact that w � bG� for some b > 0. Iterating
this inequality then gives

f kn� !

�kn1
� abn�

� C 1

2n
! C dd c

	 n�1X
jD0

f
jk� w

2.n�1�j /�jk1




C dd c
	 n�2X
jD0

abn�2�j
1

�
jk
1

.f jk/�
�

;

where bn D Pn�1
`D0 2�` � 2. Since f

j
� �

�

�
j
1

� f
j

� G
�

�
j
1

� G�, the lemma follows

immediately. �

Lemma 3.9. Both
R �� BGC TC ^ ! and

R �� BG� T � ^ ! are finite.

Proof. Modulo finite additive constants, the first integral is estimated by

�Z
�� BGC TC ^ !

�1=2

D
�Z

�0 BGCdGC ^ d cGC ^ !
�1=2

�
1X
nD1

�Z
�0

�

C B f n
�n1

�
d.
C B f n/ ^ d c.
C B f n/

�2n1
^ !

�1=2

D
1X
nD1

1

�
np=2
1

�Z
�0 B 
C d
C ^ d c
C ^ f n� !

�n1

�1=2

�
1X
nD1

1

�
np=2
1

�Z
�0 B 
C d
C ^ d c
C ^ .c! C dd cwn/

�1=2
;

where c, wn are as in the previous lemma. If we take the contributions to the in-
tegral from c! and from dd cwn separately, then the first contribution is finite by
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Proposition 1.20. The second contribution is handled up to additive constants as
follows: Z

�0 B 
C d
C ^ d c
C ^ dd cwn

D
Z

�wn dd c.� B 
C/ ^ dd c
C

D
Z

�wn .dd c� B 
C C !C/ ^ .dd c
C C !C/CO.1/

� c

Z
�G� .dd c� B 
C C !C/ ^ .dd c
C C !C/CO.1/

D c

Z
�G� dd c.� B 
C/ ^ dd c
C CO.1/

D c

Z
�0 B 
C d
C ^ d c
C ^ T � CO.1/

which is finite by the hypotheses of Theorem 3.7 �

Lemma 3.10. Both
R �� BGC T � ^ ! and

R �� BG� TC ^ ! are finite.

Proof. We treat the first integral only. Let� D !C C!�. Then from Proposition 2.5
in [GZ2] we have up to additive constants thatZ

�� BGC T � ^ ! D
Z

�� BGC dd c.G� C�/ ^ !

� 2

Z
�� BGC Œ�C dd cGC� ^ !

C 2

Z
�� BG� Œ�C dd cG�� ^ !:

D 2

Z
�� BGC TC ^ ! C 2

Z
�� BG� T � ^ !:

We have just seen that the last two integrals are finite, so the proof is complete. �

Theorem 3.7 is now an immediate consequence of Proposition 1.17 and Re-
mark 1.18. �

4. Examples

In this section we exhibit families of examples satisfying our energy conditions.
Recall from Theorem 4.2 in [DDG1] that the assumption �1.f / > �2.f / implies
that X is either rational or of Kodaira dimension zero.
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4.1. Polynomial mappings of C2. Suppose that f W C2 ! C2 is polynomial and,
as always, has small topological degree. Recent work of Favre and Jonsson [FJ] gives
a smooth compactification X D C2 [D1 of C2 and k 2 N� such that

(P1) the meromorphic extension of f k to X is 1-stable;

(P2) f k contracts the divisor D1 at infinity to a fixed point in I� n IC.f k/;
(P3) the relative potential GC for TC is continuous in X n IC.f k/.
Using this information, we will show

Theorem 4.1. Let f W C2 ! C2 be a polynomial mapping with �2.f / < �1.f /,
and let X; k be as in (P1)–(P3). Then f k W X ! X has finite dynamical energy.
More precisely GC 2 E1.T �; !C/ and G� 2 E1.TC; !�/.

Proof. To simplify notation, we replace f k by f . We recall that 1-stability implies
that IC \ I� D ;. Since GC is continuous in X n IC, it is in particular finite at all
points in I�, so GC 2 E1.T �; !C/ by Proposition 1.20 and Corollary 3.5.

ThoughG� is less well-behaved, we can show it is finite at all points in IC. Since
f is polynomial on C2, we have IC � D1. The invariance f .C2/ � C2 and the
contraction property f .D1 n IC/ D q D f .q/ 2 I� imply that f �1.IC/ � IC.
Thus

G�.p/ D
X
n�0

1

�n1
.f n/�
�.p/ �

X
n�0

1

�n1
.f n/�M > �1;

where M D minp2IC 
�.p/ is finite because IC \ I� D ; (see Lemma 3.2 in
[DDG1]). From Corollary 3.5 again, we see that G� 2 r1.TC; !�/. Since GC 2
L1.T �/, we have G� 2 L1.TC/ by symmetry. Hence in fact G� 2 E1.TC; !�/.

�

It follows from Theorem 2.4 that �f D TC ^ T � is a well-defined, mixing
invariant probability measure which does not charge pluripolar sets. We can actually
say more.

Theorem 4.2. Let f be as in Theorem 4.1, and V � X be an algebraic curve. Then
log dist. �; V / 2 L1.�f /.

In particular log dist. �;Cf / 2 L1.�f /, where Cf denotes the critical set of f .
This result will allow us in [DDG3] to use Pesin’s theory of non-uniformly hyperbolic
dynamical systems and show the existence of many saddle periodic points.

Proof. Assume without loss of generality that V is irreducible. We claim thatG�
jV 6	

�1 on V . Granting this for the moment, let 0 � 'V 2 L1.X/ be a global potential
for the current of integration along V . Thus dd c'V D ŒV ��‚, where‚ is smooth,
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and 'V 2 L1.�f / if and only if log dist. �; V / 2 L1.�f /. From our claim we have
that G� 2 L1.ŒV �/ and, by symmetry ' 2 L1.T �/. Hence the measure T � ^ ŒV � is
well-defined.

Fix a constant � between
p
�2 and �1. Then from [FJ], we have C1 > 0 such that

dist.f nx; IC/ � .C1dist.x; IC//�n

; for all x 2 X and n 2 N

Since 
C.x/ � A log dist.x; IC/ � B , we infer from (6) that

GC.x/ � A0 log dist.x; IC/ � B 0:

Therefore repeated integration by parts gives (up to finite additive/multiplicative con-
stants)

Z
�' �f D

Z
�GC T � ^ ŒV � �

Z
� log dist. �; IC/ T � ^ ŒV �

D
Z
V

�G� dd c log dist. �; IC/ ^ ŒV �

�
Z
V

�G� ! ^ ŒV �C
X

x2IC\V
G�.x/ < 1;

since G� is finite on IC.
It remains to verify that G� is not identically �1 on V . Since V must meet

D1 somewhere, it suffices to show that G� is finite on V \ D1. This is the case
if, for instance, V \ D1 � IC. However, from f�G� D �1.G

� � 
�/, we see
that we need only show that G� is finite on f �n.V / \D1 for some n 2 N. If, for
instance, V \D1 does not contain the superattracting point q 2 I�, then this is true
for n D 1 because f �1.D1 n fqg/ � IC. Finally, as the next lemma makes clear,
even ifD1 \V does contain q, the same reasoning works for some larger value of n.

�

Lemma 4.3. There exists an integer n 2 N such that ifW is any irreducible compo-
nent of f �n.V /, not contained inD1, then q … W .

Proof. Suppose on the contrary that for each n 2 N, there exists an irreducible com-
ponent Wn of f n�V such that q 2 Wn but Wn 6� D. Then since q is superattracting
for f , this remains true at the local level. That is, there is a neighborhood U 3 q and
for everyn 2 N a local irreducible componentWn of the (local) pullback .f jU /n�.V /
such that q 2 Wn but Wn 6� D.

Moreover, by [FJ] we may choose a coordinate patch U about q D 0 so that
f W .U; 0/ ! .U; 0/ is a rigid holomorphic germ and there exists a non-trivial local



312 J. Diller, R. Dujardin and V. Guedj CMH

divisor Dloc � D satisfying .f jU /�Dloc � �1Dloc. The local topological degree of
fjU is no larger than �2. Hence

�n1 � ˝
Wn; f

n�Dloc
˛
q

D ˝
f n� Wn;Dloc

˛
q

� �n2 hV;Dlociq ;

where h�; �iq denotes local intersection of germs at q. This contradicts �2 < �1 for
large n. �

4.2. The secant method. If P W C ! C is a polynomial of degree at least two such
that all roots of P are simple, then we recall the secant method from [DDG1]: given
points x; y 2 C, one declares f .x; y/ D .y; z/ where z is chosen so that .0; z/
lies on the line from .x; P.x// to .y; P.y//. This prescription defines a 1-stable
meromorphic map f W P1 � P1 ! P1 � P1 with small topological degree.

Proposition 4.4. The secant map f has finite dynamical energy. More precisely,
GC 2 E1.T �; !C/ and G� 2 E1.TC; !�/.

Proof. We have that I� D I�.f n/ D f.z; z/ W P.z/ D 0g consists of fixed
points for every n 2 N and that each of these is attracting for f . It follows that
dist.f n.I�/; IC/; dist.f �n.IC/; I�/ � c for some c > 0 and every n 2 N. As
with the case ofG� for polynomial maps of C2 then, we infer thatGC is finite on I�
and vice versa. Thus by Corollary 3.5, GC 2 r1.T �; !C/ and G� 2 r1.TC; !�/.

The classes of TC and T � are both Kähler, moreover, so from Theorem 3.7 we
see that GC 2 E1.T �; !C/ and G� 2 E1.TC; !�/. �

4.3. Kodaira dimension zero. When kod.X/ D 0, we may assume after birational
conjugation that X is minimal and f is 1-stable (see [DDG1], Proposition 4.3).

Proposition 4.5. AssumeX is a minimal surface with kod.X/ D 0. Then f satisfies
condition .E�/ with �.t/ D t . Moreover log dist. �; IC/ 2 L1.�f /.

Proof. We know from [DDG1] that f is non-ramified. Therefore I� is empty and
(see Proposition 4.10 in [DDG1])G� is continuous on X . That is, the hypotheses of
Corollary 3.5 are satisfied by both GC and G�. From Proposition 1.20, we further
have log dist. �; IC/ 2 L1.�f /. �

4.4. Irrational rotations. The following examples originate in the work of Favre
[F] (see also [B]). Their common feature is the existence of a complex line where f
is conjugate to a rotation. Choosing the rotation angle properly allows us to produce
functions G˙ that are very singular and therefore useful for testing the sharpness of
the energy conditions.
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Example 4.6. Given a 2 C, we consider the birational transformation

f W Œx W y W t � 2 P2 7! Œy2 W ay2 C t2 � xy W yt� 2 P2;

For (the all but countably many) parameters a 2 C such that f is 1-stable on P2, we
have �1.f / D 2 is the degree of the homogeneous polynomials defining f . Thus f
has small topological degree. Moreover, since dimH 1;1.P2/ D 1, it follows that we
may take ! D !C D !�. So there are no spurious points in either IC or I�.

One checks that IC D fŒ1 W 0 W 0�g, I� D fŒ0 W 1 W 0�g, and that the line
L WD .t D 0/ joining these two points is f -invariant. When a 2 C n Œ�2; 2�, we
have IC1 \ I�1 D ;, where

IC1 D
[
n�0

IC.f n/ and I�1 D
[
n�0

I�.f n/:

This implies that f is 1-stable and that G˙ is finite at points in I�. From Proposi-
tion 3.2, Corollary 3.5 and Theorem 3.7 it follows that f satisfies condition .E�/ for
�.t/ D t .

Now suppose that a D 2 cos�� 2 Œ�2; 2�. In this case fL WD fjL is conjugate to
a rotation of angle 2�� , and f is 1-stable if and only if � is irrational. Determining
whether or not f satisfies .E�/ for any given � is tricky. We will show for any given
p 2 .0; 1/ that G˙ 2 Ep.T�; !˙/ if � is not too well approximated by rational
numbers. In [F] it was precisely proved that G˙ … E1.T�; !˙/ for certain values
of � .

Observe that f is conjugate to f �1 by the involution .x; y/ 7! .y; x/. Hence
by Corollary 3.6 (also Proposition 3.2 and Theorem 3.7), we need only verify that
lim supt!�1 jm�.t/jjt jq�1 dt < C1, where p is some number larger than q and
m�.t/ is the mean value of G� on the sphere @BŒ1W0W0�.et /. By plurisubharmonicity,
m�.t/ is comparable to supB.IC;et /G

�, which is in turn bounded below bym�
L.t/ WD

supB.IC;et /\LG�. We therefore estimate the latter, fixing coordinates on L Š P1

so that fL.x/ D e2�i	x for all x 2 C � L and that IC, I� become the points 1 and
�1, respectively. Hence

G�.x/ '
X
n�0

2�n log je2�in	x C 1j:

Note for any n 2 N and t > 0 that supjx�1jDe�t log je2�in	x C 1j is essentially
achieved at x D 1C e�t . Hence

m�
L.t/ 


X
n�0

2�n maxflog �.n/; tg

where �.n/ WD minm2Z j2n� � .2m C 1/j. Now let .2mj C1
2nj

/j2N � Q be the
sequence uniquely determined by requiring gcd.2nj ; 2mj C 1/ D 1, setting n0 D 1
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and choosing nj > nj�1 to be the smallest integer such that �.nj / < �.nj�1/. From
this it is entertaining to compute that

lim sup jm�
L.t/jjt jq�1 dt 
 lim sup 2�nj j log �.nj /jq:

In particular, G˙ 2 Ep.T�; !˙/ if the right side is finite for some q > p. We
remark that finiteness holds for almost all � 2 R and can be checked for any given
irrational � by examining its continued fraction expansion.

The next example is studied in [DG] where it is proved thatGC 2 L1.T �/. Hence
we are in a situation where the alternative of Theorem 2.3 holds.

Example 4.7. For parameters a; b; c 2 C�, we consider the rational transformation
of the complex projective plane, f D fabc W P2 ! P2, defined by

f Œx W y W z� D Œbcx.�cxC acy C z/ W acy.x � ay C abz/ W abz.bcxC y � bz/�:
The following facts can be verified by straightforward computation.

� fabc is birational with inverse f �1 D fa�1b�1c�1 .
� If D fŒa W 1 W 0�; Œ0 W b W 1�; Œ1 W 0 W c�g.
� f preserves each of the lines fx D 0g, fy D 0g, fz D 0g according to the

formulas

Œx W 1 W 0� 7! Œ�bcx W a W 0�; Œ0 W y W 1� 7! Œ0 W �acy W b�;
Œ1 W 0 W z� 7! Œc W 0 W �baz�

In particular, we have I1
f
; I1
f �1 � fxyz D 0g for all a; b; c 2 C�.

Given s > 1 and an irrational number � 2 R, let f W P2 ! P2 be the birational
map f D fabc with a D i , b D �se2�i	 , c D i=s. One can then check (see [DG])
that

� f is 1-stable on X D P2;
� TC 2 L1.T �/.
Thus the measure �f D TC ^ T � is a well defined probability measure. It is

further shown in [DG] that �f does not charge curves and is mixing. We can apply
the alternative of Theorem 2.3, reinforced by the ergodicity of �f :

� either �f is supported on the pluripolar set fGC CG� D �1g,
� or f has finite dynamical energy.

The latter almost always occurs2: when � is not too close to rational numbers, this
can be verified by arguing as in the previous example.

2But not always, see [Bu].
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