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Hölder continuous solutions to Monge–Ampère equations

V. Guedj, S. Kolodziej and A. Zeriahi

Abstract

We study the regularity of solutions to the Dirichlet problem for the complex Monge–Ampère
equation (ddcu)n = fdV on a bounded strongly pseudoconvex domain Ω ⊂ C

n. We show, under
a mild technical assumption, that the unique solution u to this problem is Hölder continuous if
the boundary data φ is Hölder continuous and the density f belongs to Lp(Ω) for some p > 1.
This improves previous results by Bedford and Taylor and Kolodziej.

Introduction

Let Ω be a bounded strongly pseudoconvex open subset of C
n. Given φ ∈ C0(∂Ω) and f ∈

Lp(Ω), we consider the Dirichlet problem

MA(Ω, φ, f) :

{
(ddcu)n = fβn in Ω,

u = φ on ∂Ω,

where u ∈ PSH(Ω) ∩ C0(Ω). Here βn = dV denotes the euclidean volume form in C
n, d = ∂ + ∂,

dc = i(∂ − ∂), PSH(Ω) is the set of plurisubharmonic functions in Ω (the set of locally integrable
functions u such that ddcu � 0 in the sense of currents), and (ddc·)n denotes the complex
Monge–Ampère operator: this operator is well defined on the subset of bounded (in particular
continuous) plurisubharmonic functions, as follows from the work of Bedford and Taylor [2].
We refer the reader to [10] for a recent survey on its properties.

The equation MA(Ω, φ, f) has been studied intensively during the last decades. Bremermann
[3], Walsh [12], and Bedford and Taylor [1] have shown that MA(Ω, φ, f) admits a unique
continuous solution u ∈ PSH(Ω) ∩ C0(Ω) when f ∈ C0(Ω) is continuous.

It was further shown in [1] that u ∈ Lipα(Ω) is α-Hölder continuous whenever φ ∈ Lip2α(∂Ω)
and f1/n ∈ Lipα(Ω). Higher regularity results have been established by Caffarelli, Kohn,
Nirenberg and Spruck [4], assuming smoothness of the data φ, f and nondegeneracy of the
density f > 0.

It has been proved by the second author [7, 8] (see also [5]) that MA(Ω, φ, f) still admits a
unique continuous solution u ∈ PSH(Ω) ∩ C0(Ω) under the much milder assumption f ∈ Lp(Ω),
p > 1.

Our aim here is to show that this solution is actually Hölder continuous, when φ is so.
A significant particular case of our results can be stated as follows.

Main Theorem. Assume that φ is C1,1 on ∂Ω and that f ∈ Lp(Ω) for some p > 1. Then
the unique solution u ∈ PSH(Ω) ∩ C0(Ω) to MA(Ω, φ, f) is α-Hölder continuous on Ω, for any
exponent

α < αp :=
2

(qn + 1)
, where

1
p

+
1
q

= 1.

Received 26 October 2007; revised 22 July 2008; published online 4 November 2008.

2000 Mathematics Subject Classification 32W20, 32U15.
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We can also prove that u is Hölder continuous on Ω when φ ∈ Lip2α(Ω) is merely Hölder
continuous, but we then need to add an extra technical assumption: Theorems 3.1 and 4.1,
which we refer the reader to.

Let us stress that the exponent αp = 2/(qn + 1) (as well as further exponents α′, α′′ from
Theorems 3.1 and 4.1) is not far from being optimal as we indicate in Examples 4.4 and 4.5.

1. The stability estimate

Our main tool is the following estimate which is proved in [6] in a compact setting (under
growth, but no boundary, conditions, see [6, Proposition 3.3]). A similar, but weaker, estimate
was established by S.Kolodziej in [9].

Theorem 1.1. Fix 0 � f ∈ Lp(Ω), p > 1. Let ϕ,ψ be two bounded plurisubharmonic
functions in Ω such that (ddcϕ)n = fβn in Ω, and let ϕ � ψ on ∂Ω. Fix r � 1 and 0 �
γ < r/[nq + r], 1/p + 1/q = 1. Then there exists a uniform constant C = C(γ, ‖f‖Lp(Ω)) > 0
such that

sup
Ω

(ψ − ϕ) � C [‖(ψ − ϕ)+‖Lr(Ω)]γ ,

where (ψ − ϕ)+ := max(ψ − ϕ, 0).

The proof closely follows that given in [6], but for the reader’s convenience, we will give
it at the end of this section. The estimate of the theorem is a consequence of several results
to follow.

To state the results needed for the proof, it is useful to consider the Monge–Ampère capacity
introduced and studied by Bedford and Taylor in [2]. Recall that for a Borel subset K � Ω,

Cap(K) := sup
{∫

K

(ddcv)n / v ∈ PSH(Ω) with − 1 � v � 0
}

.

Proposition 1.2. Fix f ∈ Lp(Ω), p > 1, and let ϕ,ψ be bounded plurisubharmonic
functions in Ω such that ϕ � ψ on ∂Ω. If (ddcϕ)n = fβn, then for any α > 0 there exists
a uniform constant A = A(α, ‖f‖Lp(Ω)) such that for all ε > 0,

sup
Ω

(ψ − ϕ) � ε + A [Cap({ϕ − ψ < −ε})]α .

Before proving Proposition 1.2, we first establish three lemmas.

Lemma 1.3. Fix ϕ,ψ ∈ PSH(Ω) ∩ L∞(Ω) such that limζ→∂Ω(ϕ − ψ) � 0. Then for all
t, s > 0,

tnCap({ϕ − ψ < −s − t}) �
∫
{ϕ−ψ<−s}

(ddcϕ)n.

Proof. Fix v ∈ PSH(Ω) such that −1 � v � 0. Then for any s > 0 and t > 0, we have {ϕ −
ψ < −s − t} ⊂ {ϕ < ψ − s + tv} ⊂ {ϕ < ψ − s} � Ω. By the comparison principle [2] we get

tn
∫
{ϕ−ψ<−s−t}

(ddcv)n �
∫
{ϕ<ψ−s+tv}

(ddc(−s + ψ + tv))n �
∫
{ϕ−ψ<−s}

(ddcϕ)n.

Taking the supremum over all the vs yields the desired result.
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Lemma 1.4. Assume 0 � f ∈ Lp(Ω), p > 1. Then for all τ > 1, there exists Dτ =
D(τ, ‖f‖Lp(Ω)) > 0 such that for any Borel subset K ⊂ Ω,

0 �
∫
K

f dV � Dτ [Cap(K)]τ .

Proof. By Hölder inequality we have∫
K

f dV � ‖f‖Lp(Ω)[Vol(K)]1/q.

On the other hand, it is well known that

Vol(K) � exp[−Const · [Cap(K)−1/n]],

which is a much better control than what we actually need (see [13, Theorem 7.1]). The
estimate of the lemma follows.

Lemma 1.5. Let g : R
+ → R

+ be a decreasing right-continuous function. Assume that there
exist τ,B > 1 such that g satisfies

tg(s + t) � B [g(s)]τ ∀s, t > 0.

Then g(s) = 0 for all s � s∞, where

s∞ :=
2Bg(0)τ−1

1 − 21−τ
.

The proof, almost identical to that of [6, Lemma 2.3], is left to the reader.

Proof of Proposition 1.2. Combining Lemmas 1.3 and 1.4, we conclude that, given ε > 0,
the function defined for s > 0 by g(s) := Cap({ϕ − ψ < −s − ε})1/n satisfies the conditions
of Lemma 1.5 for any τ > 1 with the constant B := D

1/n
τ . Therefore applying this lemma

we obtain that Cap({ϕ − ψ < −s∞ − ε}) = 0, which means that ψ − ϕ � ε + s∞ almost
everywhere on Ω. Then if we choose τ := 1 + αn, it follows that

sup
Ω

(ψ − ϕ) � ε + A[Cap({ϕ − ψ < −ε})]α,

where A := 2B/(1 − 21−τ ).

We finally give the proof of Theorem 1.1.

Proof of Theorem 1.1. Applying Lemma 1.3 with s = t = ε > 0 and using Hölder inequality,
we get

Cap({ϕ − ψ < −2ε}) � ε−n

∫
{ϕ−ψ<−ε}

f dV

� ε−n−r/q

∫
Ω

(ψ − ϕ)r/q
+ f dV

� ε−n−r/q‖(ψ − ϕ)+‖r/q
Lr(Ω)‖f‖Lp(Ω).

Now fix α to be chosen later and apply Proposition 1.2 to get

sup
Ω

(ψ − ϕ) � 2ε + Aε−α(n+r/q) ‖f‖α
Lp(Ω) ‖(ψ − ϕ)+‖αr/q

Lr(Ω).
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Next fix γ as in the theorem and set ε := ‖(ψ − ϕ)+‖γ
Lr(Ω) in the last estimate. Then it is easy

to check that the estimate of the theorem holds if we choose

α :=
γq

r − γ(r + nq)
.

2. Hölder continuous barriers

For fixed δ > 0 we consider Ωδ := {z ∈ Ω /dist(z, ∂Ω) > δ} and set

uδ(z) := sup
‖ζ‖�δ

u(z + ζ), z ∈ Ωδ.

This is a plurisubharmonic function in Ωδ, when u is plurisubharmonic in Ω, which measures the
modulus of continuity of u. We would like to use Theorem 1.1 applied with ψ = uδ. However, uδ

is not globally defined in Ω, so we need to extend it with control on the boundary values. This
is the content of our next result which makes heavy use of the pseudoconvexity assumption.

Proposition 2.1. Let u ∈ PSH(Ω) ∩ L∞(Ω) be a plurisubharmonic function such that
u|∂Ω = φ ∈ Lip2α(∂Ω). Then there exists a constant C = C(u) > 0 and δ0 > 0 small enough
such that for any 0 < δ < δ0 the function defined on Ω by

ũδ =

{
max{uδ, u + Cδα} in Ωδ,

u + Cδα in Ω \ Ωδ,

is a bounded plurisubharmonic function on Ω and the family (ũδ) decreases to u as δ decreases
to 0.

In particular, supΩδ
(uδ − u) � supΩ(ũδ − u) for 0 < δ < δ0.

The proof relies on the construction of Hölder continuous plurisubharmonic and plurisuper-
harmonic barriers for the Dirichlet problem MA(Ω, φ, f).

Lemma 2.2. Fix φ ∈ Lip2α(∂Ω), f ∈ Lp(Ω), p > 1, and set u := u(Ω, φ, f). Then there exist
v, w ∈ PSH(Ω) ∩ Lipα(Ω) such that

(1) v(ζ) = φ(ζ) = −w(ζ),∀ζ ∈ ∂Ω,
(2) v(z) � u(z) � −w(z),∀z ∈ Ω.

Proof. Assume first that φ ≡ 0. We are going to show that there exists a weak barrier bf ∈
PSH(Ω) ∩ Lip1(Ω) for the Dirichlet problem MA(Ω, 0, f), that is, a plurisubharmonic function
which satisfies

(i) bf (ζ) = 0, ∀ζ ∈ ∂Ω,
(ii) bf � u(Ω, 0, f), in Ω,
(iii) |bf (z) − bf (ζ)| � C1|z − ζ|, ∀z ∈ Ω, ∀ζ ∈ Ω,

for some uniform constant C1 > 0.
In order to construct bf , we set u0 := u(Ω, 0, f) and assume first that the density f is bounded

near ∂Ω: there exists a compact subset K ⊂ Ω such that 0 � f � M on Ω \ K. Let ρ be a C2

strictly plurisubharmonic defining function for Ω. Then for A > 0 large enough the function
bf := Aρ satisfies the condition (ddcbf )n � Mβn � fβn on Ω \ K. Moreover, taking A large
enough we also have Aρ � m � u0 on a neighbourhood of K, where m := minΩ u0. Therefore
the function bf is a C2 plurisubharmonic function on Ω satisfying the conditions (ddcbf )n �
(ddcu0)n on Ω \ K and bf � u0 on ∂(Ω \ K). This implies, by the comparison principle [2],
that bf � u0 in Ω \ K, and hence in Ω.
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When f is not bounded near ∂Ω, we can proceed as follows. Fix a large ball B ⊂ C
n so that

Ω � B ⊂ C
n. Define f̃ := f in Ω and f̃ = 0 in B \ Ω. We can use our previous construction

to find a barrier function bf̃ ∈ PSH(B) ∩ C2(B) for the Dirichlet problem MA(B, 0, f̃) for the
ball B. Let h = u(Ω,−bf̃ , 0) denote the Bremermann function in Ω with boundary values −bf̃ ,
for the zero density. Since −bf̃ ∈ C2(∂Ω), the plurisubharmonic function h is Lipschitz on
Ω (see [1]); therefore bf := h + bf̃ ∈ PSH(Ω) ∩ Lip1(Ω) is a barrier function for the Dirichlet
problem MA(Ω, 0, f).

It remains to construct the functions v, w satisfying Conditions (1) and (2) above. It follows
from [1] that the plurisubharmonic functions u(Ω,±φ, 0) are Hölder continuous of order α.
We let the reader check that the functions v := u(Ω, φ, 0) + bf and w := u(Ω,−φ, 0) + bf do
the job.

We are now ready for the proof of the proposition.

Proof of Proposition 2.1. It follows from Lemma 2.2 that

|u(z) − u(ζ)| � C|z − ζ|α ∀ζ ∈ ∂Ω, ∀z ∈ Ω.

For δ > 0 small enough, the function uδ(z) := sup‖ζ‖�δ u(z + ζ) is plurisubharmonic in Ωδ.
Observe that if z ∈ ∂Ωδ and ζ ∈ C

n with ‖ζ‖ � δ then z + ζ ∈ ∂Ω, and hence uδ � u(z) + Cδα.
Thus the functions

ũδ(z) :=

{
sup{uδ(z), u(z) + Cδα} in Ωδ,

u + Cδα in Ω \ Ωδ

are plurisubharmonic and bounded in Ω and decrease to u as δ decreases to 0.

Our construction of barriers allows us to control the total mass of the Laplacian of solutions
to MA(Ω, φ, f). This will be important in Section 4.

Proposition 2.3. Fix 0 � f ∈ Lp(Ω) (p > 1) and φ ∈ C0(∂Ω). Then

(1) if φ ∈ C1,1(∂Ω), then Δu(Ω, φ, 0) has finite mass in Ω;
(2) Δu(Ω, 0, f) has finite mass in Ω. Moreover, if Δu(Ω, φ, 0) has finite mass in Ω, then

Δu(Ω, φ, f) also has finite mass in Ω.

Proof. Fix a strictly plurisubharmonic exhaustion ρ for Ω.
(1) Assume first that φ ∈ C2(∂Ω). Consider any smooth extension of φ in a neighbourhood of

Ω and correct it by adding Aρ, A 	 1, in order to obtain a smooth plurisubharmonic extension
φ̂ that is plurisubharmonic in a neighbourhood of Ω. Since φ̂ is a subsolution to MA(Ω, φ, 0)
whose Laplacian has finite mass in Ω, it follows from the comparison principle that Δu(Ω, φ, 0)
also has finite mass in Ω.

Now if φ ∈ C1,1(∂Ω) then it has a C1,1 extension to a neighbourhood of Ω which we still
denote by φ. Then ddcφ is a positive current with bounded coefficients on a neighbourhood
of Ω, and then for A > 1 big enough, the function φ̂ := φ + Aρ is plurisubharmonic on a
neighbourhood of Ω. We conclude as before, since by construction φ̂ is a subsolution to
MA(Ω, φ, 0), whose Laplacian has finite mass in Ω.

(2) Let f̃ be the trivial extension of f to a large ball B containing Ω. Let bf̃ ∈
C2(B) be a plurisubharmonic barrier for MA(B, 0, f̃) (see the proof of Lemma 2.2). Then
bf := u(Ω,−bf̃ , 0) + bf̃ is a plurisubharmonic barrier for MA(Ω, 0, f). Its Laplacian has finite
mass in Ω since bf̃ is smooth, so it follows from the comparison principle that Δu(Ω, 0, f) has
finite mass in Ω.
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Now set v := u(Ω, 0, f) + u(Ω, φ, 0). This is a plurisubharmonic function in Ω such that v = φ
on ∂Ω and (ddcv)n � f dV in Ω. If Δu(Ω, φ, 0) has finite mass in Ω, then Δv has finite mass
in Ω, and hence Δu(Ω, φ, f) also has finite mass in Ω.

3. Gradient estimates

This section is devoted to the proof of the following result.

Theorem 3.1. Assume that f ∈ Lp(Ω), for some p > 1, and φ ∈ Lip2α(∂Ω), with
∇u(Ω, φ, 0) ∈ L2(Ω). Then

u(Ω, φ, f) ∈ Lipα′(Ω), for all α′ < min(α, 2/[qn + 2]),

where 1/p + 1/q = 1.

The condition ∇u(Ω, φ, 0) ∈ L2(Ω) is automatically satisfied if φ ∈ C1,1(∂Ω): in this case
u(Ω, φ, 0) ∈ Lip1(Ω), and hence ∇u(Ω, φ, 0) is actually bounded in Ω (see [1]). What really
matters here is that there should exist a subsolution v ∈ B(Ω, φ, 0) such that ∇v ∈ L2(Ω). This
implies (see Lemma 3.1) that u(Ω, φ, 0) and u(Ω, φ, f) both have gradient in L2(Ω).

We could not avoid the use of this additional technical hypothesis on the homogenous
solution u(Ω, φ, 0). Also the exponent α′ is probably not optimal. We can get a better
exponent by assuming that Δu(Ω, φ, 0) has finite mass in Ω (this is automatically satisfied
when φ ∈ C2(∂Ω)).

Proof. Since f ∈ Lp(Ω), p > 1, it follows from [8] that the solution u = u(Ω, φ, f) ∈
PSH(Ω) ∩ C0(Ω) is a continuous plurisubharmonic function. Our aim is to show that u is
Hölder continuous on Ω.

Let ũδ be the functions given by Proposition 2.1. The stability estimate (Theorem 1.1)
applied with r = 2 yields

sup
Ωδ

(uδ − u) � sup
Ω

(ũδ − u) � C1δ
α + C2‖uδ − u‖γ

L2(Ωδ),

for γ < 2/(nq + 2). To conclude the proof of the theorem, it remains to show that
‖uδ − u‖L2(Ωδ) = O(δ) as δ ↓ 0.

It will be a consequence of Lemma 3.2 below that ∇u ∈ L2(Ω). Assuming this for the moment,
we derive the following precise uniform upper-bound:

‖uδ − u‖L2(Ωδ) � 2n+1 δ ‖∇u‖L2(Ω).

Indeed, fix δ > 0 small enough, z ∈ Ωδ, and |ζ| � δ. Using the mean value inequality for u
on the euclidean ball of centre z + ζ and radius δ > 0 and averaging the gradient of u on the
corresponding lines, we obtain the following estimate:

|u(z + ζ) − u(z)| � 2δ

∫1

0

dt

∫
|η|�δ

‖∇u(z + t(ζ + η))‖ dV (η)
τ2nδ2n

.

Observe that the reasoning above works only if u is smooth, for example, C1 in a neighbour-
hood of Ω3δ with δ > 0 small enough. In our case by regularization we can approximate u on
a neighbourhood of Ω3δ by a decreasing sequence (uj) of smooth plurisubharmonic functions.
Then it is well known that the sequence (∇uj) of gradients converges in L1

loc(Ω) and then it has
a subsequence which converges almost everywhere on Ω. Therefore the inequality will follow
from the smooth case by the Lebesgue convergence theorem.
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Now a simple computation using Jensen’s convexity inequality and a change of variables
yields

|uδ(z) − u(z)|2 � 4δ2

∫1

0

dt

∫
|ξ|�2tδ

‖∇u(z + ξ)‖2 dV (ξ)
τ2nt2nδ2n

.

Then integrating over Ωδ, we get∫
Ωδ

|uδ(z) − u(z)|2 dV (z) � 4n+1 δ2 ‖∇u‖2
L2(Ω3δ),

which proves the required estimate.
This ends the proof of the theorem up to the fact, to be established now, that u has gradient

in L2(Ω).

Since u is plurisubharmonic and bounded, ∇u ∈ L2
loc(Ω). It follows from Lemma 3.2 below

that ∇u ∈ L2(Ω) as soon as u is bounded from below by a bounded plurisubharmonic
function v such that v � u in Ω, v = u = φ on ∂Ω, and ∇v ∈ L2(Ω). Our extra assumption
in Theorem 4.1 precisely yields such a function v. Indeed set v := u(Ω, φ, 0) + bf , where bf is
the plurisubharmonic barrier constructed in the proof of Lemma 2.2: this is a plurisubharmonic
function such that

(1) v = φ + 0 = u on ∂Ω;
(2) (ddcv)n � (ddcbf )n � fβn in Ω, and thus v � u in Ω;
(3) ∇u(Ω, φ, 0) ∈ L2(Ω) and ∇bf ∈ L∞(Ω), and hence ∇v ∈ L2(Ω).
It is easy to check that ∇u(Ω, φ, 0) ∈ L∞(Ω) ⊂ L2(Ω) when φ ∈ C2(∂Ω). We refer the reader

to [1] for a proof of the more delicate result that this still holds when φ ∈ C1,1(∂Ω).

Lemma 3.2. Let u, v ∈ PSH(Ω) ∩ C0(Ω) such that v � u on Ω and v = u on ∂Ω. Then∫
Ω

du ∧ dcu ∧ βn−1 �
∫
Ω

dv ∧ dcv ∧ βn−1, where β := ddc|z|2.

We thank the referee for simplifying our original argument.

Proof. First assume that u = v near the boundary ∂Ω. Then integration by parts yields∫
Ω

dv ∧ dcv ∧ βn−1 −
∫
Ω

du ∧ dcu ∧ βn−1 =
∫
Ω

d(v − u) ∧ dc(v + u) ∧ βn−1

=
∫
Ω

(v − u) ∧ ddc(v + u) ∧ βn−1 � 0.

Now if we only know that u = v on ∂Ω, then we can define for ε > 0 small enough, uε :=
sup{u − ε, v}. Then v � uε on Ω and uε = v near the boundary of Ω. Therefore we have∫

Ω

dv ∧ dcv ∧ βn−1 �
∫
Ω

duε ∧ dcvε ∧ βn−1.

Now by Bedford and Taylor’s convergence theorem [1], we know that duε ∧ dcuε ∧ βn−1 →
du ∧ dcu ∧ βn−1 as ε ↓ 0. Thus we have∫

Ω

dv ∧ dcv ∧ βn−1 �
∫
Ω

du ∧ dcu ∧ βn−1,

which proves the required inequality.

4. Laplacian estimates

This section is devoted to the proof of the following result.
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Theorem 4.1. Assume f ∈ Lp(Ω), for some p > 1, and φ ∈ Lip2α(∂Ω) is such that the
positive measure Δu(Ω, φ, 0) has finite mass in Ω. Then

u(Ω, φ, f) ∈ Lipα′′(Ω) for all α′′ < min
(

α,
2

[qn + 1]

)
,

where 1/p + 1/q = 1.

Observe that the hypothesis of the theorem is satisfied with α = 1 when φ ∈ C1,1(∂Ω) thanks
to Proposition 2.3. In this case the theorem implies that u(Ω, φ, f) ∈ Lipα′′(Ω), for all α′′ <
2/[qn + 1], which implies immediately our Main Theorem stated in the introduction.

To prove the above theorem, we use the same method as above. The finiteness of the total
mass of Δu(Ω, φ, 0) allows a good control (see Lemma 4.2) on the terms ûδ − u, where

ûδ(z) :=
1

τ2nδ2n

∫
|ζ−z|�δ

u(ζ) dV2n(ζ), z ∈ Ωδ,

where τ2n denotes the volume of the unit ball in C
n. We shall compare ûδ with uδ in Lemma

4.2 below.
It follows from the construction of plurisubharmonic Hölder continuous barriers that the

solution u = u(Ω, φ, f) is Hölder continuous near the boundary, that is, for δ > 0 small enough,
we have

u(z) − u(ζ) � c0δ
α, (1)

for z, ζ ∈ Ω with dist(z, ∂Ω) � δ,dist(ζ, ∂Ω) � δ, and |z − ζ| � δ.
The link between uδ and ûδ, is made by the following lemma.

Lemma 4.2. Given α ∈]0, 1[, the following two conditions are equivalent.

(i) There exist δ0, A > 0 such that for any 0 < δ � δ0,

uδ − u � Aδα on Ωδ.

(ii) There exist δ1, B > 0 such that for any 0 < δ < δ1,

ûδ − u � Bδα on Ωδ.

Proof. Observe that ûδ � uδ in Ωδ, and hence (i) ⇒ (ii) follows immediately.
We now prove that (ii) ⇒ (i). We need to show that there exist A, δ0 > 0 such that for

0 < δ � δ0,

ω(δ) := sup
z∈Ωδ

[uδ(z) − u(z)] � Aδα.

Fix δΩ > 0 small enough so that Ωδ �= ∅ for δ � 3δΩ. Since u is uniformly continuous, for any
fixed 0 < δ < δΩ,

ν(δ) := sup
δ<t�δΩ

ω(t)t−α < +∞.

We claim that there exists a δ0 > 0 small enough so that for any 0 < δ � δ0,

ω(δ) � Aδα with A = (1 + 4α)c0 + 2α4nB + ν(δΩ),

where c0 is the constant arising in inequality (1), while B is the constant from condition (ii).
Assume that this is not the case. Then there exists a 0 < δ < δΩ such that

ω(δ) > Aδα. (2)
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Set δ := sup{t < δΩ / ø(t) > Atα}. Then

ø(δ)
δα

� A � ø(t)
tα

for all t ∈ [δ, δΩ]. (3)

Since u is continuous, we can find z0 ∈ Ωδ, ζ0 ∈ Ω with |z0 − ζ0| � δ such that

ω(δ) = sup
z∈Ωδ

[
sup

w∈B(z,δ)

u(w) − u(z)

]
= u(ζ0) − u(z0).

We first derive a contradiction if z0 is close enough to the boundary of Ω. Assume that
dist(z0, ∂Ω) � 3δ. Take z1 ∈ ∂Ω such that dist(z0, ∂Ω) = dist(z0, z1) � 4δ. It follows from (1)
that

ω(δ) = u(ζ0) − u(z0) = [u(ζ0) − u(z1)] + [u(z1) − u(z0)] � [1 + 4α]c0δ
α.

This contradicts (3).
Thus we can assume that dist(z0, ∂Ω) > 3δ. Fix b > 1 so that dist(z0, ∂Ω) > (2b + 1)δ. Thus

any z ∈ B(ζ0, bδ) satisfies z ∈ B(z0, [b + 1]δ), and hence z ∈ Ωbδ. By using inequality (3) with
t = bδ, we get u(ζ0) − u(z) � bαø(δ); hence

u(z) � u(ζ0) − bαø(δ) for all z ∈ B(ζ0, bδ). (4)

Observe now that B(ζ0, δ) ⊂ B(z0, [b + 1]δ), and hence

û(b+1)δ(z0) =
(

b

b + 1

)2n

ûbδ(ζ0) +
1

τn(b + 1)2nδ2n

∫
B(z0,(b+1)δ)\B(ζ0,bδ)

u dV

�
(

b

b + 1

)2n

u(ζ0) +
[
(1 − b2n

(b + 1)2n

]
[u(ζ0) − bαω(δ)]

= u(ζ0) − bα

[
1 − b2n

(b + 1)2n

]
ø(δ),

where we have used the subharmonicity of u together with inequality (4). Since u(ζ0) = u(z0) +
ø(δ), we infer, letting b → 1,

û2δ(z0) � u(z0) + 4−nø(δ).

We now use assumption (ii), only considering small enough values of δ > 0: since û2δ(z0) �
u(z0) + B2αδα, we get

ø(δ) � 4n2αBδα < Aδα.

This contradicts the definition of δ, and hence we have proved that (ii) ⇒ (i).

It is straightforward to check that if assumption (i) is satisfied, then u belongs to Lipα(Ω).
Thus Theorem 4.1 will be proved if we can establish assumption (ii). It follows from Theorem
1.1 that it suffices to get control on the L1-average of ûδ − u. This is the content of our next
result.

Lemma 4.3. Assume that Δu has finite mass in Ω. Then for δ > 0 small enough, we have∫
Ωδ

[ûδ(z) − u(z)] dV2n(z) � cn‖Δu‖δ2,

where cn > 0 is a uniform constant.
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Proof. It follows from Jensen’s formula that for z ∈ Ωδ and 0 < r < δ,

1
σ2n−1

∫
|ξ|=1

u(z + rξ) dS2n−1 = u(z) +
∫ r

0

t1−2n

(∫
|ζ|�t

ddcu ∧ βn−1

)
dt.

Using polar coordinates we get, for z ∈ Ωδ,

ûδ(z) − u(z) =
1

σ2n−1δ2n

∫ δ

0

r2n−1 dr

∫ r

0

t1−2n

(∫
|ζ−z|�t

ddcu ∧ βn−1

)
dt.

Finally, Fubini’s theorem yields
∫
Ωδ

(ûδ − u) dV2n � anδ−2n

∫ δ

0

r2n−1 dr

∫ r

0

t1−2n

(∫
|ζ|�t

(∫
Ω

Δu

))
dt

� cnδ2‖Δu‖.

To complete the proof of Theorem 4.1, we use the same gluing construction as in Proposition
2.1 to construct global plurisubharmonic approximants (vδ) decreasing to u in Ω as δ ↓ 0
such that vδ = u + Cδα on Ω \ Ωδ and ûδ − u � vδ − u � ûδ − u + Cδα on Ωδ. Now we can
use Lemma 4.3 since by Proposition 2.3, Δu = Δu(Ω, φ, f) has finite mass in Ω. Then using
Theorem 1.1 (with ψ = vδ, ϕ = u, r = 1) we get

sup
Ωδ

(ûδ − u) � sup
Ω

(vδ − u) + Cδα � C(δ2γ + δα),

where C > 0 is a constant, which proves our theorem due to Lemma 4.2.
We now give examples which show that the Hölder exponent in our theorems cannot be

better that 2/nq, where q = p/(p − 1). The first (simple) example explains why the exponent
is optimal.

Example 4.4. Consider the function defined on C
n by u(z1, . . . , zn) := |z1|α · |z′|2, where

z′ := (z2, . . . , zn). This is a plurisubharmonic function in C
n which is Hölder-continuous of

exponent α ∈]0, 1[. We let the reader check that

(ddcu)n = f dV with f(z) =
1

|z1|2−nα
g(z2, . . . , zn),

where g > 0 is a smooth density.
Given p > 1, f belongs to Lp

loc(C
n) whenever α = ε + 2/nq, for some ε > 0.

The next example was communicated to us by Plis [11]. It shows that one cannot expect a
better exponent than 2/nq in the unit ball with zero boundary data.

Example 4.5. Consider the function

η(t) =

{
0 if |t| � 1,

exp(−1/(1 − t2)) if |t| < 1,
(5)

and let

f(z) := η

( |zn|
|z′|α

)
|z′|β ,



1080 HÖLDER CONTINUOUS SOLUTIONS TO MONGE–AMPÈRE EQUATIONS

where z = (z′, zn) ∈ Bn, n � 2, α > 0, and β ∈ R. Then by [11], if u is a continuous
plurisubharmonic function on Bn such that

(ddcu)n = fβn in Bn,

u = 0 on ∂Bn

(6)

then there exist a sequence εk ↘ 0 and a constant C > 0 such that

u(0, εk) − u(0) � ε
(2α+2(n−1)+β)/nα
k .

Let p > 1 and ε > 0. Then if we set β := −(2(α + (n − 1) + ε))/p, we obtain a density f ∈
Lp(Bn) and for any δ > 0, the solution u is not (δ + 2/nq)-Hölder continuous on Bn if α > 0
is big enough, where q = p/(p − 1).
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