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Application: Penalized Maximum Likelihood inference in latent variable models

Penalized Maximum Likelihood inference, latent variable model

@ N observations : Y = (Y1, ,Yn)

@ A negative normalized log-likelihood of the observations Y, in a latent
variable model

0 —%logL(Y, ) L(Y,0) = /pg(x, Y) u(da)

where § € © C R?.

@ A penalty term on the parameter 6: 6 — g(6) for sparsity constraints on
0; usually non-smooth and convex.

Goal: Computation of

0 — argming .o <—% log L(Y, 0) + 9('9)>

when the likelihood L has no closed form expression, and can not be evaluated.
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Application: Penalized Maximum Likelihood inference in latent variable models

Latent variable model: example (Generalized Linear Mixed Models)
GLMM
@ Y1,---,Yn: indep. observations from a Generalized Linear Model.
@ Linear predictor

p q
n = Z Xk Br + Z ZieUsp
k=1 =1
N——
fixed effect random effect
where
X, Z: covariate matrices
B € RP: fixed effect parameter
U € R?: random effect parameter
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Application: Penalized Maximum Likelihood inference in latent variable models

Latent variable model: example (Generalized Linear Mixed Models)
GLMM

@ Y1,---,Yn: indep. observations from a Generalized Linear Model.
@ Linear predictor

P q
n = ZXi,kﬁk + Z Zi U
k=1 =1

-
fixed effect random effect
where
X, Z: covariate matrices
B € RP: fixed effect parameter
U € R?: random effect parameter
Example: logistic regression
e Y1,---,Yn binary independent observations: Bernoulli r.v. with mean

pi = exp(n:)/(1 + exp(n:))

exp(Yin:)
(Y1, Yw)lU = H1+exp (m:)

e Gaussian random effect: U ~ A
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Application: Penalized Maximum Likelihood inference in latent variable models

Gradient of the log-likelihood

log L(Y,8) = log [ pu(a,Y) ude)
Under regularity conditions, 6 — log L(6) is C* and

_ J 9opo(x,Y) p(d)
Volog L(Y,0) = Jpo(z,Y) p(dz)

= /69 log pe(z,Y)

po(z,Y) p(dr)
S pe(z,Y) u(dz)
—_———

the a posteriori distribution
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Application: Penalized Maximum Likelihood inference in latent variable models

Gradient of the log-likelihood

log L(Y,8) = log [ pu(a,Y) ude)
Under regularity conditions, 6 — log L(6) is C* and

_ J 9opo(x,Y) p(d)
Volog L(Y,0) = Jpo(z,Y) p(dz)

= /69 log pe(z,Y)

po(z,Y) p(dr)
S pe(z,Y) u(dz)
—_———

the a posteriori distribution

The gradient of the log-likelihood
Vo {—%mgL(Y, o)} - / Ho() mo(dz)

is an untractable expectation w.r.t. the conditional distribution of the latent
variable given the observations Y. For all (x,0), Ho(x) can be evaluated.
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Application: Penalized Maximum Likelihood inference in latent variable models

Approximation of the gradient

Vg{—ﬁlogLYQ} /Hg(m o(dz)

@ Quadrature techniques: poor behavior w.r.t. the dimension of X’

@ Monte Carlo approximation with i.i.d. samples: not possible, in general.

© Markov chain Monte Carlo approximations: sample a Markov chain
{Xm,0,m > 0} with stationary distribution 7 (dz) and set

/X Ho(@) mo(d2) % 2= > Ho(Xm)
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Application: Penalized Maximum Likelihood inference in latent variable models

Approximation of the gradient

Vg{—ﬁlogLYQ} /Hg(m o(dz)

@ Quadrature techniques: poor behavior w.r.t. the dimension of X’

@ Monte Carlo approximation with i.i.d. samples: not possible, in general.

© Markov chain Monte Carlo approximations: sample a Markov chain
{Xm,0,m > 0} with stationary distribution 7 (dz) and set

/X Ho(@) mo(d2) % 2= > Ho(Xm)

Stochastic approximation of the gradient

@ a biased approximation

E [1\14 ;He(xm,a)] 4 / Ho(z) mo(dx).

o if the chain is ergodic "enough”, the bias vanishes when M — oc.
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Application: Penalized Maximum Likelihood inference in latent variable models

To summarize,

Problem:
argming o F'(6) with F(0) = f(0) + g(8)
when
e c®CR?
@ g convex non-smooth function (explicit).

o fis C! and its gradient is of the form

V() = /Hg(x) ro(dz) ~ % S Ho(Xmo)

where { X9, m > 0} is the output of a MCMC sampler with target 7.
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Application: Penalized Maximum Likelihood inference in latent variable models

To summarize,

Problem:
argming. o F'(6) with F(0) = f(6) + g(0)
when
e cOCR?

@ g convex non-smooth function (explicit).
e fis C' and its gradient is of the form

M
1
V() = /Hg(x) mo(da) ~ Zzlﬂg(xm,g)
where { X9, m > 0} is the output of a MCMC sampler with target 7.

Difficulties:
@ biased stochastic perturbation of the gradient
o gradient-based methods in the Stochastic Approximation framework (a
fixed number of Monte Carlo samples)
@ weaker conditions on the stochastic perturbation.
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Stochastic Gradient methods (case g = 0)

Perturbed gradient algorithm

Algorithm:

Given a stepsize/learning rate sequence {vn,n > 0}:
Initialisation: 6, € ©
Repeat:

e compute Hy41, an approximation of V f(6,,)
@ set Oni1 =0n — Ynr1Hpnta.

M. Benaim. Dynamics of stochastic approxi ion algorithms. Séminaire de Probabilités de Strasbourg (1999)

A. Benveniste, M. Métivier and P. Priouret, Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, New York,
1990.

V. Borkar. Stochastic Approximation: a dynamical systems viewpoint. Cambridge Univ. Press (2008).
M. Duflo, Random lterative Systems, Appl. Math. 34, Springer-Verlag, Berlin, 1997.
H. Kushner, G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. Springer Book (2003).
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Stochastic Gradient methods (case g = 0)

Sufficient conditions for the convergence
Set L={0€O:VFf0)=0},  nni1=Hnp1 — VF(6n).

Theorem (Andrieu—Moulines—Priouret(2005); F.-Moulines-Schreck-Vihola(2016))

Assume
o the level sets of f are compact subsets of © and L is in a level set of f.
e Y ym=-+40c0andy v < oo.
© > Ynlnt1lle, exc < oo for any compact subset K of ©.
Then
(i) there exists a compact subset IC, of © s.t. 0,, € ICs for all n.
(i) {f(6n),n > 0} converges to a connected component of f(L).

If in addition V f is locally lipschitz and " | Yallnall* Mo, exc < oo, then
{0n,n > 0} converges to a connected component of {6 : V f(0) = 0}.
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Stochastic Gradient methods (case g = 0)

When H,,+1 is a Monte Carlo approximation (1)
V1(6) = [ Ho, (o) 70, (o)

Two strategies:

(1) Stochastic Approximation (fixed batch size)
Hni1 = He, (X1,1),
(2) Monte Carlo assisted optimization (increasing batch size)
M1

H, = H
ntl = Mot Z 0n (X ,n),

where { X, n}m "approximate” the target g, (dz).
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Stochastic Gradient methods (case g = 0)

When H,,+1 is a Monte Carlo approximation (2)
V1(6) = [ Ho, (o) 70, (o)

o With i.i.d. Monte Carlo:
E [Hny1|Fn] = Vf(60n) unbiased approximation
o With Markov chain Monte Carlo approximation

E [Hpy1|Fn] # V§(6n) Biased approximation !
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Stochastic Gradient methods (case g = 0)

When H,,+1 is a Monte Carlo approximation (2)
V1(6) = [ Ho, (o) 70, (o)

o With i.i.d. Monte Carlo:

E [Hny1|Fn] = Vf(60n) unbiased approximation
o With Markov chain Monte Carlo approximation

E [Hpy1|Fn] # V§(6n) Biased approximation !

and the bias:

it 951001 =00 (17

does not vanish when the size of the batch is fixed.
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Stochastic Gradient methods (case g = 0)

When H,,;1 is a Monte Carlo approximation (3)

9n+1 = Gn - 'Yn+1Hn+1

n+1

Z Hy, (Xjn) = Vf(0n)

Hn+1 -
n+1

MCMC approx. and fixed batch size

Dm=+400 D Aa<oo D |-l <o
n n n

i.i.d. MC approx. / MCMC approx with increasing batch size

— o /g
Zn:fyn =400 M, < 00 Mn < oo (case MCMC)
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Stochastic Gradient methods (case g = 0)

A remark on the proof

N N
Z’Yn+1 (Hnt1 = Vf(0n)) = Z'Yn-H At + Rnta
—— ——

n=1 n=1 . . .
martingale increment  remainder term

= Martingale + Remainder

How to define A, 41 ?

unbiased MC approx Apy1=Hup1 —Vf(6n)
biased MC approx with increasing batch size Ant1 = Hoy1 — E[Hpp1|Fn]
biased MC approx with fixed batch size technical !

Stochastic Approximation with MCMC inputs: see e.g.
Benveniste-Metivier-Priouret (1990) Springer-Verlag.
Duflo (1997) Springer-Verlag.
Andrieu-Moulines-Priouret (2005) SIAM Journal on Control and Optimization.
F.-Moulines-Priouret (2012) Annals of Statistics.
F.-Jourdain-Leligvre-Stoltz (2015,2016) Mathematics of Computation, Statistics and Computing.
F.-Moulines-Schreck-Vihola (2016) SIAM Journal on Control and Optimization.
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Stochastic Proximal Gradient methods
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Stochastic Proximal Gradient methods

Problem:

A gradient-based method for solving
argming g F'(6) with () = f(0) + g(0)
when
@ g is non-smooth and convex
o fis C' and
Vi) = /X Ho(z) 7o(da).

@ Available: Monte Carlo approximation of V f(8) through Markov chain
samples.
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Stochastic Proximal Gradient methods

The setting, hereafter

argming o F'(6) with F(0) = f(0) + g(8)
where

o the function g: R* — [0, 00] is convex, non smooth, not identically equal
to +00, and lower semi-continuous

e the function f:R? — R is a smooth convex function
i.e. f is continuously differentiable and there exists L > 0 such that

IVfO) V@) <L|o-0| V0,0 R

o © C R? is the domain of g: © = {#: g(0) < cc}.



Stochastic Perturbations of Proximal-Gradient methods for h convex optimization: the price of Markovian perturbations
Stochastic Proximal Gradient methods

The proximal-gradient algorithm

The Proximal Gradient algorithm

Ont1 = Proxy,, . ,q (0n — Y1V f(0n))

where
. 1
Pt ) = g (g(e> 40— r||2)

Proximal map: Moreau(1962); Parikh-Boyd(2013);

Proximal Gradient algorithm: Nesterov(2004); Beck-Teboulle(2009)

About the Prox-step:
o when g =0: Prox(r) =7
@ when g is the projection on a compact set: the algorithm is the projected
gradient.

@ in some cases, Prox is explicit (e.g. elastic net penalty). Otherwise,
numerical approximation:

Oni1 =Proxy, ., g (0n — Y1V f(0n)) + €01
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Stochastic Proximal Gradient methods

The perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Ont1 = Proxy, ;.9 (On — Y1 Hni1)

where Hy+1 is an approximation of V f(0,).

There exist results under (some of) the assumptions
infyn > 0, ; | Hpp1 — VORI < oo, i.i.d. Monte Carlo approx

i.e. fixed stepsize, increasing batch size and unverifiable conditions for MCMC sampling
Combettes (2001) Elsevier Science.
Combettes-Wajs (2005) Multiscale Modeling and Simulation.
Combettes-Pesquet (2015, 2016) SIAM J. Optim, arXiv
Lin-Rosasco-Villa-Zhou (2015) arXiv
Rosasco-Villa-Vu (2014,2015) arXiv
Schmidt-Leroux-Bach (2011) NIPS
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Stochastic Proximal Gradient methods

Convergence of the perturbed proximal gradient algorithm

Ont1 =Proxy, g (0n — Ynt1 Hni1) with Hpq1 = Vf(6,)

Set: L = argming (f + g) Mnt1 = Hpy1 — Vf(0r)

Theorem (Atchadé, F., Moulines (2015))

Assume

e g convex, lower semi-continuous; f convex, C* and its gradient is
Lipschitz with constant L; L is non empty.

® > ¥n =400 and v, € (0,1/L].

o Convergence of the series

> veallmal?, > Ynt1nas, > Ant1 (Sny M)
n n n

where S;, = Prox,,, ,, ¢(0n — Yn1V f(0n)).

Then there exists 0, € L such that lim,, 6,, = 0,.
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Stochastic Proximal Gradient methods

When H,,1 is a Monte Carlo approximation

Ony1 = PI‘OX.yn_H,g (9 - 7n+1Hn+1)

n+1

Z Hy, (Xjn) = Vf(On)

Hn+1 -
n+1

MCMC approx. and fixed batch size
Dom=H0 Y m<oo Y 1=l <oo

i.i.d. MC approx. / MCMC approx with increasing batch size

Z'yn=+oo Z—<oo Z—<c>o(caseMCMC)

n

— Same conditions as in the Stochastic Gradient algorithm
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Rates of convergence

Problem:

For non negative weights ay, find an upper bound of

ZZ@ T F(0r) — min F

It provides
@ an upper bound for the cumulative regret (ar = 1)

@ an upper bound for an averaging strategy when F' is convex since

SR .
F —_— —min F' < 0r) — min F.
Zzz 1a€k 2251 F6r)
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Rates of convergence

A deterministic control

Theorem (Atchadé, F., Moulines (2016))

For any 0, € argmingF",

A 1P — 0.”

o Z( =) s — 0.
+ * Zak’}/k”nIcHQ L iak (Sk—1 — 0%, Mk)
An k=1 An k=1 7

kg A—kF(Hk — min F <

where

An=>as,  mp=He=Vf(Or-1),  Sk=Prox, o(Ok—1—wVf(0k-1)).
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Rates of convergence

When H,, 1 is a Monte Carlo approximation, bound in L4

RS 1 ¢
F= —minFl| < |3 PO - min P <
H <n;9k> min F|| < n; () — min LS U

with fixed size of the batch and (slowly) decaying stepsize

'yn:Z—* a€[1/2,1] M, = m..

a’

With averaging: optimal rate, even with slowly decaying stepsize v, ~ 1/y/n.

u, = O(lnn/n)

with increasing batch size and constant stepsize
Yn = Vx M, = m,n.

Rate with O(n?) Monte Carlo samples !
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Rates of convergence

Acceleration (1)

Let {t,,n > 0} be a positive sequence s.t.

Tnti1tn(tn —1) < ’)’ntifl

Nesterov acceleration of the Proximal Gradient algorithm

Ont1 = PrOX7n+1,g (Tn = Y41V f(0))

tn — 1
(On+1—0n)
tn+1

Tn+l — 0n+1 +

Nesterov (1983); Beck-Teboulle (2009)

AllenZhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-TatLee-Singh(2015); Su-Boyd-Candes(2015)

Proximal-gradient F(0n) —minF =0 <%)

Accelerated Proximal-gradient F(0n) —minF =0 <%>
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Rates of convergence

c

"

't methods for

h convex optimization:

the price of Markovian perturbations

Acceleration (2) Aujol-Dossal-F.-Moulines, work in progress

Perturbed Nesterov acceleration: some convergence results

Choose ~yn, My, ty s.t.

Tn € (Ovl/L]?

liTILn ’ynti = +o0,

1

n

Then there exists 0, € argming F' s.t lim, 0, = 6,.

In addition

F(0nt1) —minF =0 (

Schmidt-Le Roux-Bach (2011); Dossal-Chambolle(2014); Aujol-Dossal(2015)

o)
Tn+1t2

Yn M, t, | rate NbrMC
v n> n n? n?
v/ n? on | a2 pd

Table: Control of F(,) — min F’
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High-dimensional logistic regression with random effects

Logistic regression with random effects

The model
e Given U € RY,

exp(38 + 0z;U) ,
Yi~ , =1, N
5 <1 + exp(z;8 + oz/U) !

o U~ Ny(0,1)

@ Unknown parameters: 8 € R? and % > 0.

Stochastic approximation of the gradient of f

0) = /Hg(u)ﬂ'g(du)
with

7o (u) o< N(0, I)[u] H elxi exp(;;ﬂﬁ_:-ajzui))

— sampled by MCMC polson-scott-windle (2013)
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High-dimensional logistic regression with random effects

Numerical illustration

@ The Data set simulated: N = 500 observations, a sparse covariate vector
Burue € R ¢ = 5 random effects.

@ Penalty term elastic net on 3, and o > 0.

@ Comparison of 5 algorithms

Algol fixed batch size: v, = 0.01/y/n M, =275
Algo?2 fixed batch size: v, = 0.5/n M, =275

Algo3 increasing batch size: v, = 0.005 M, =200+n
Algo4 increasing batch size: ~, = 0.001 M, =200+n

Algo5 increasing batch size: v, = 0.05/y/n M, =270+ +/n
After 150 iterations, the algorithms use the same number of MC draws.
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High-dimensional logistic regression with random effects

A sparse limiting value

Displayed: for each algorithm, the non-zero entries of the limiting value
Boo € R of a path (B,)n

Ago 1 1
Algol ~vp, = 0.01//n My = 275
gz | Algo2 ~yp = 0.5/n My, = 275
Algo 31 4 Algo3 ~p = 0.005 My, = 200 4+ n
Algo4 ~p = 0.001 My =200+ n
Algo 4f- 1
Algo5 ~ypn = 0.05/v/n My =270 + V/n
Algo 5 B
Beta True- 1

0 100 200 300 400 500 600 700 800 900 1000
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High-dimensional logistic regression with random effects

Relative error

Displayed: For each algorithm, relative error
[|8r — Busol|
| B1s0]]

as a function of the total number of MC draws up to time n.

(%) Algol yp = 0.01/y/n My, = 275
Algo2 yp = 0.5/n My = 275

(%) Algo3 vy = 0.005 My, = 200 +n
Algo4 ~ypn = 0.001 My, =200 +n

Algo5 vp = 0.05//m My = 270 4+ /1
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High-dimensional logistic regression with random effects

Recovery of the sparsity structure of S (= S150) (1)

Displayed: For each algorithm, the sensitivity
1000
izt Ui, i1>0085 0150

1000
2iz1 L i1>0
as a function of the total number of MC draws up to time n.

O A e L2 |
(%) Algol yp = 0.01/y/m My, = 275
Algo2 yp = 0.5/n My, = 275
go 1
L - : . . - i ~ : (%) Algo3 ~p, = 0.005 My, = 200 +n

x10* Algo4 ~ypn = 0.001 My, = 200 +n

Algo5 vp = 0.05//m My = 270 4+ /1
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High-dimensional logistic regression with random effects

Recovery of the sparsity structure of S (= S150) (2)

Displayed: For each algorithm, the precision

1000
izt L, >0l 10
1000
2im1 L, >0
as a function of the total number of MC draws up to time n.

o8l
: (%) Algol yp = 0.01/y/m My, = 275
06F#
‘ - Algo2 ~vp = 0.5/ My = 275
0.4p-1 gettrg oVt 4
o ,mv,\u,‘:,‘,\,.\,,\-u/m-mu»mum
o2\ — oo’
L L L L L L Algo3 = 0.005 My, = 200
o 05 1 5 2 25 3 35 4 (%) Algo3 v, n +n

x10* Algo4 ~ypn = 0.001 My, = 200 +n

i Algo5 vp = 0.05//m My = 270 4+ /1
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High-dimensional logistic regression with random effects

Convergence of E [F'(6,,)]

In this example, the mixed effects are chosen so that F'(6) can be approximated.

Displayed: For some algorithm, a Monte Carlo approximation of E [F(05,)] over 50
indep. runs @S @ function of the total number of MC draws up to time n.

(%) Algol ~vp = 0.01/y/m My = 275

(%) Algo3 vy, = 0.005 My =200+ n
Algo4 ~p = 0.001 My = 200+ n

x10°
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