Stochastic Perturbations of Proximal-Gradient methods for nonsmooth convex optimization: the price of Markovian perturbations

Gersende Fort

LTCI, CNRS and Telecom ParisTech Paris, France

Based on joint works with

- Eric Moulines (Ecole Polytechnique, France)
- Yves Atchadé (Univ. Michigan, USA)
- Jean-François Aujol (Univ. Bordeaux, France) and Charles Dossal (Univ. Bordeaux, France)
- → On Perturbed Proximal-Gradient algorithms (2016-v3, arXiv)

Application: Penalized Maximum Likelihood inference in latent variable models

Outline

Application: Penalized Maximum Likelihood inference in latent variable models

Stochastic Gradient methods (case g = 0)

Stochastic Proximal Gradient methods

Rates of convergence

High-dimensional logistic regression with random effects

Penalized Maximum Likelihood inference, latent variable model

- N observations : $\mathbf{Y} = (Y_1, \cdots, Y_N)$
- A negative normalized log-likelihood of the observations Y, in a latent variable model

$$\theta \mapsto -\frac{1}{N} \log L(Y, \theta)$$
 $L(Y, \theta) = \int p_{\theta}(x, Y) \, \mu(dx)$

where $\theta \in \Theta \subset \mathbb{R}^d$.

• A penalty term on the parameter $\theta \colon \theta \mapsto g(\theta)$ for sparsity constraints on θ ; usually non-smooth and convex.

Goal: Computation of

$$\theta \mapsto \operatorname{argmin}_{\theta \in \Theta} \left(-\frac{1}{N} \log L(\mathsf{Y}, \theta) + g(\theta) \right)$$

when the likelihood L has no closed form expression, and can not be evaluated.

Latent variable model: example (Generalized Linear Mixed Models) GLMM

- Y_1, \dots, Y_N : indep. observations from a Generalized Linear Model.
- Linear predictor

$$\eta_i = \underbrace{\sum_{k=1}^p X_{i,k} \beta_k}_{\text{fixed effect}} + \underbrace{\sum_{\ell=1}^q Z_{i,\ell} \mathsf{U}_\ell}_{\text{random effect}}$$

where

X, Z: covariate matrices

 $\beta \in \mathbb{R}^p$: fixed effect parameter

 $\mathsf{U} \in \mathbb{R}^q$: **random** effect parameter

Latent variable model: example (Generalized Linear Mixed Models) GLMM

- Y_1, \dots, Y_N : indep. observations from a Generalized Linear Model.
- Linear predictor

$$\eta_i = \underbrace{\sum_{k=1}^p X_{i,k} \beta_k}_{\text{fixed effect}} + \underbrace{\sum_{\ell=1}^q Z_{i,\ell} \mathsf{U}_\ell}_{\text{random effect}}$$

where

X, Z: covariate matrices

 $\beta \in \mathbb{R}^p$: fixed effect parameter

 $U \in \mathbb{R}^q$: random effect parameter

Example: logistic regression

• Y_1, \dots, Y_N binary independent observations: Bernoulli r.v. with mean $p_i = \exp(\eta_i)/(1 + \exp(\eta_i))$

$$(Y_1, \cdots, Y_N) | \mathsf{U} \equiv \prod_{i=1}^N \frac{\exp(Y_i \eta_i)}{1 + \exp(\eta_i)}$$

• Gaussian random effect: $U \sim \mathcal{N}_a$.

Gradient of the log-likelihood

$$\log L(Y, \theta) = \log \int p_{\theta}(x, Y) \mu(dx)$$

Under regularity conditions, $\theta \mapsto \log L(\theta)$ is C^1 and

$$\begin{split} \nabla_{\theta} \log L(\mathsf{Y}, \theta) &= \frac{\int \partial_{\theta} p_{\theta}(x, \mathsf{Y}) \, \mu(\mathsf{d}x)}{\int p_{\theta}(z, \mathsf{Y}) \, \mu(\mathsf{d}z)} \\ &= \int \partial_{\theta} \log p_{\theta}(x, \mathsf{Y}) \, \underbrace{\frac{p_{\theta}(x, \mathsf{Y}) \, \mu(\mathsf{d}x)}{\int p_{\theta}(z, \mathsf{Y}) \, \mu(\mathsf{d}z)}}_{\text{the a posteriori distribution}} \end{split}$$

Gradient of the log-likelihood

$$\log L(\mathsf{Y}, \theta) = \log \int p_{\theta}(x, \mathsf{Y}) \, \mu(\mathsf{d}x)$$

Under regularity conditions, $\theta \mapsto \log L(\theta)$ is C^1 and

$$\begin{split} \nabla_{\theta} \log L(\mathsf{Y}, \theta) &= \frac{\int \partial_{\theta} p_{\theta}(x, \mathsf{Y}) \, \mu(\mathsf{d}x)}{\int p_{\theta}(z, \mathsf{Y}) \, \mu(\mathsf{d}z)} \\ &= \int \partial_{\theta} \log p_{\theta}(x, \mathsf{Y}) \, \underbrace{\frac{p_{\theta}(x, \mathsf{Y}) \, \mu(\mathsf{d}x)}{\int p_{\theta}(z, \mathsf{Y}) \, \mu(\mathsf{d}z)}}_{\text{the a posteriori distribution}} \end{split}$$

The gradient of the log-likelihood

$$\nabla_{\theta} \left\{ -\frac{1}{N} \log L(\mathsf{Y}, \theta) \right\} = \int H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x)$$

is an untractable expectation w.r.t. the conditional distribution of the latent variable given the observations Y. For all (x, θ) , $H_{\theta}(x)$ can be evaluated.

Approximation of the gradient

$$\nabla_{\theta} \left\{ -\frac{1}{N} \log L(\mathsf{Y}, \theta) \right\} = \int_{\mathcal{X}} H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x)$$

- lacktriangle Quadrature techniques: poor behavior w.r.t. the dimension of \mathcal{X}
- 2 Monte Carlo approximation with i.i.d. samples: not possible, in general.
- ① Markov chain Monte Carlo approximations: sample a Markov chain $\{X_{m,\theta}, m \geq 0\}$ with stationary distribution $\pi_{\theta}(\mathrm{d}x)$ and set

$$\int_{\mathcal{X}} H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x) \approx \frac{1}{M} \sum_{m=1}^{M} H_{\theta}(X_{m,\theta})$$

Approximation of the gradient

$$\nabla_{\theta} \left\{ -\frac{1}{N} \log L(\mathsf{Y}, \theta) \right\} = \int_{\mathcal{X}} H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x)$$

- lacktriangle Quadrature techniques: poor behavior w.r.t. the dimension of \mathcal{X}
- ② Monte Carlo approximation with i.i.d. samples: not possible, in general.
- ① Markov chain Monte Carlo approximations: sample a Markov chain $\{X_{m,\theta}, m \geq 0\}$ with stationary distribution $\pi_{\theta}(\mathrm{d}x)$ and set

$$\int_{\mathcal{X}} H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x) \approx \frac{1}{M} \sum_{m=1}^{M} H_{\theta}(X_{m,\theta})$$

Stochastic approximation of the gradient

• a biased approximation

$$\mathbb{E}\left[\frac{1}{M}\sum_{m=1}^{M}H_{\theta}(X_{m,\theta})\right] \neq \int H_{\theta}(x) \ \pi_{\theta}(\mathsf{d}x).$$

• if the chain is ergodic "enough", the bias vanishes when $M \to \infty$.

Application: Penalized Maximum Likelihood inference in latent variable models

To summarize,

Problem:

$$\operatorname{argmin}_{\theta \in \Theta} F(\theta)$$
 with $F(\theta) = f(\theta) + g(\theta)$

when

- $\theta \in \Theta \subseteq \mathbb{R}^d$
- ullet g convex non-smooth function (explicit).
- ullet f is C^1 and its gradient is of the form

$$\nabla f(\theta) = \int H_{\theta}(x) \, \pi_{\theta}(\mathsf{d}x) \approx \frac{1}{M} \sum_{m=1}^{M} H_{\theta}(X_{m,\theta})$$

where $\{X_{m,\theta}, m \geq 0\}$ is the output of a MCMC sampler with target π_{θ} .

To summarize,

Problem:

$$\operatorname{argmin}_{\theta \in \Theta} F(\theta)$$
 with $F(\theta) = f(\theta) + g(\theta)$

when

- $\theta \in \Theta \subseteq \mathbb{R}^d$
- ullet g convex non-smooth function (explicit).
- ullet f is C^1 and its gradient is of the form

$$\nabla f(\theta) = \int H_{\theta}(x) \, \pi_{\theta}(\mathsf{d}x) \approx \frac{1}{M} \sum_{m=1}^{M} H_{\theta}(X_{m,\theta})$$

where $\{X_{m,\theta}, m \geq 0\}$ is the output of a MCMC sampler with target π_{θ} .

Difficulties:

- biased stochastic perturbation of the gradient
- gradient-based methods in the Stochastic Approximation framework (a fixed number of Monte Carlo samples)
- weaker conditions on the stochastic perturbation.

Outline

Application: Penalized Maximum Likelihood inference in latent variable models

Stochastic Gradient methods (case g = 0)

Stochastic Proximal Gradient methods

Rates of convergence

High-dimensional logistic regression with random effects

Perturbed gradient algorithm

Algorithm:

Given a stepsize/learning rate sequence $\{\gamma_n, n \geq 0\}$:

Initialisation: $\theta_0 \in \Theta$

Repeat:

- compute H_{n+1} , an approximation of $\nabla f(\theta_n)$
- set $\theta_{n+1} = \theta_n \gamma_{n+1} H_{n+1}$.
- M. Benaïm. Dynamics of stochastic approximation algorithms. Séminaire de Probabilités de Strasbourg (1999)
- A. Benveniste, M. Métivier and P. Priouret, Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, New York, 1990.
- V. Borkar. Stochastic Approximation: a dynamical systems viewpoint. Cambridge Univ. Press (2008).
- M. Duflo, Random Iterative Systems, Appl. Math. 34, Springer-Verlag, Berlin, 1997.
- H. Kushner, G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. Springer Book (2003).

Sufficient conditions for the convergence

Set
$$\mathcal{L} = \{ \theta \in \Theta : \nabla f(\theta) = 0 \}, \quad \eta_{n+1} = H_{n+1} - \nabla f(\theta_n).$$

Theorem (Andrieu-Moulines-Priouret(2005); F.-Moulines-Schreck-Vihola(2016))

Assume

- the level sets of f are compact subsets of Θ and $\mathcal L$ is in a level set of f.
- $\sum_n \gamma_n = +\infty$ and $\sum_n \gamma_n^2 < \infty$.
- $\sum_{n} \gamma_n \eta_{n+1} \mathbb{I}_{\theta_n \in \mathcal{K}} < \infty$ for any compact subset \mathcal{K} of Θ .

Then

- (i) there exists a compact subset \mathcal{K}_{\star} of Θ s.t. $\theta_n \in \mathcal{K}_{\star}$ for all n.
- (ii) $\{f(\theta_n), n \geq 0\}$ converges to a connected component of $f(\mathcal{L})$.

If in addition ∇f is locally lipschitz and $\sum_n \gamma_n^2 \|\eta_n\|^2 \mathbb{1}_{\theta_n \in \mathcal{K}} < \infty$, then $\{\theta_n, n \geq 0\}$ converges to a connected component of $\{\theta : \nabla f(\theta) = 0\}$.

When H_{n+1} is a Monte Carlo approximation (1)

$$\nabla f(\theta_n) = \int H_{\theta_n}(x) \ \pi_{\theta_n}(\mathsf{d}x)$$

Two strategies:

(1) Stochastic Approximation (fixed batch size)

$$H_{n+1} = H_{\theta_n}(X_{1,n}),$$

(2) Monte Carlo assisted optimization (increasing batch size)

$$H_{n+1} = \frac{1}{M_{n+1}} \sum_{m=1}^{M_{n+1}} H_{\theta_n}(X_{m,n}),$$

where $\{X_{m,n}\}_m$ "approximate" the target $\pi_{\theta_n}(\mathrm{d}x)$.

When H_{n+1} is a Monte Carlo approximation (2)

$$\nabla f(\theta_n) = \int H_{\theta_n}(x) \ \pi_{\theta_n}(\mathsf{d}x)$$

• With i.i.d. Monte Carlo:

$$\mathbb{E}\left[H_{n+1}|\mathcal{F}_n\right] = \nabla f(\theta_n)$$
 unbiased approximation

• With Markov chain Monte Carlo approximation

$$\mathbb{E}\left[H_{n+1}|\mathcal{F}_n\right] \neq \nabla f(\theta_n)$$
 Biased approximation!

When H_{n+1} is a Monte Carlo approximation (2)

$$\nabla f(\theta_n) = \int H_{\theta_n}(x) \ \pi_{\theta_n}(\mathsf{d}x)$$

With i.i.d. Monte Carlo:

$$\mathbb{E}\left[H_{n+1}|\mathcal{F}_n\right] = \nabla f(\theta_n)$$
 unbiased approximation

• With Markov chain Monte Carlo approximation

$$\mathbb{E}\left[H_{n+1}|\mathcal{F}_n\right] \neq \nabla f(\theta_n)$$
 Biased approximation!

and the bias:

$$|\mathbb{E}[H_{n+1}|\mathcal{F}_n] - \nabla f(\theta_n)| = O_{L^p}\left(\frac{1}{M_{n+1}}\right)$$

does not vanish when the size of the batch is fixed.

When H_{n+1} is a Monte Carlo approximation (3)

$$\theta_{n+1} = \theta_n - \gamma_{n+1} H_{n+1}$$

$$H_{n+1} = \frac{1}{M_{n+1}} \sum_{j=1}^{M_{n+1}} H_{\theta_n}(X_{j,n}) \approx \nabla f(\theta_n)$$

MCMC approx. and fixed batch size

$$\sum_{n} \gamma_n = +\infty \qquad \sum_{n} \gamma_n^2 < \infty \qquad \sum_{n} |\gamma_{n+1} - \gamma_n| < \infty$$

i.i.d. MC approx. / MCMC approx with increasing batch size

$$\sum_{n}\gamma_{n}=+\infty$$
 $\sum_{n}rac{\gamma_{n}^{2}}{M_{n}}<\infty$ $\sum_{n}rac{\gamma_{n}}{M_{n}}<\infty$ (case MCMC)

A remark on the proof

$$\sum_{n=1}^{N} \gamma_{n+1} \left(H_{n+1} - \nabla f(\theta_n) \right) = \sum_{n=1}^{N} \gamma_{n+1} \left(\underbrace{\Delta_{n+1}}_{\text{martingale increment}} + \underbrace{R_{n+1}}_{\text{remainder term}} \right)$$

$$= \text{Martingale} + \text{Remainder}$$

How to define Δ_{n+1} ?

unbiased MC approx with increasing batch size biased MC approx with fixed batch size

$$\begin{split} \Delta_{n+1} &= H_{n+1} - \nabla f(\theta_n) \\ \Delta_{n+1} &= H_{n+1} - \mathbb{E}\left[H_{n+1} | \mathcal{F}_n\right] \\ &\quad \text{technical !} \end{split}$$

Stochastic Approximation with MCMC inputs: see e.g.

Benveniste-Metivier-Priouret (1990) Springer-Verlag.

Duflo (1997) Springer-Verlag.

Andrieu-Moulines-Priouret (2005) SIAM Journal on Control and Optimization.

F.-Moulines-Priouret (2012) Annals of Statistics.

F.-Jourdain-Lelièvre-Stoltz (2015,2016) Mathematics of Computation, Statistics and Computing.

F.-Moulines-Schreck-Vihola (2016) SIAM Journal on Control and Optimization.

Outline

Application: Penalized Maximum Likelihood inference in latent variable models

Stochastic Gradient methods (case g = 0)

Stochastic Proximal Gradient methods

Rates of convergence

High-dimensional logistic regression with random effects

Problem:

A gradient-based method for solving

$$\mathrm{argmin}_{\theta \in \Theta} F(\theta) \qquad \text{ with } F(\theta) = f(\theta) + g(\theta)$$

when

- g is non-smooth and convex
- f is C^1 and

$$\nabla f(\theta) = \int_{\mathsf{X}} H_{\theta}(x) \, \pi_{\theta}(\mathsf{d}x).$$

 \bullet Available: Monte Carlo approximation of $\nabla f(\theta)$ through Markov chain samples.

The setting, hereafter

$$\operatorname{argmin}_{\theta \in \Theta} F(\theta)$$
 with $F(\theta) = f(\theta) + g(\theta)$

where

- the function $g\colon \mathbb{R}^d \to [0,\infty]$ is convex, non smooth, not identically equal to $+\infty$, and lower semi-continuous
- the function $f:\mathbb{R}^d \to \mathbb{R}$ is a smooth convex function i.e. f is continuously differentiable and there exists L>0 such that

$$\|\nabla f(\theta) - \nabla f(\theta')\| \le L \|\theta - \theta'\| \quad \forall \theta, \theta' \in \mathbb{R}^d$$

• $\Theta \subseteq \mathbb{R}^d$ is the domain of g: $\Theta = \{\theta : g(\theta) < \infty\}$.

The proximal-gradient algorithm

The Proximal Gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1},g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

where

$$\operatorname{Prox}_{\gamma,g}(\tau) = \operatorname{argmin}_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right)$$

Proximal map: Moreau(1962); Parikh-Boyd(2013);

Proximal Gradient algorithm: Nesterov(2004); Beck-Teboulle(2009)

About the Prox-step:

- when g = 0: $Prox(\tau) = \tau$
- ullet when g is the projection on a compact set: the algorithm is the projected gradient.
- in some cases, Prox is explicit (e.g. elastic net penalty). Otherwise, numerical approximation:

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n)) + \epsilon_{n+1}$$

The perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} H_{n+1})$$

where H_{n+1} is an approximation of $\nabla f(\theta_n)$.

There exist results under (some of) the assumptions

$$\inf_n \gamma_n > 0, \qquad \sum_n \| \boldsymbol{H}_{n+1} - \nabla f(\boldsymbol{\theta}_n) \| < \infty, \qquad \text{i.i.d. Monte Carlo approx}$$

i.e. fixed stepsize, increasing batch size and unverifiable conditions for MCMC sampling

Combettes (2001) Elsevier Science.

Combettes-Wajs (2005) Multiscale Modeling and Simulation.

Combettes-Pesquet (2015, 2016) SIAM J. Optim, arXiv

Lin-Rosasco-Villa-Zhou (2015) arXiv

Rosasco-Villa-Vu (2014,2015) arXiv

Schmidt-Leroux-Bach (2011) NIPS

Convergence of the perturbed proximal gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} \ H_{n+1})$$
 with $H_{n+1} \approx \nabla f(\theta_n)$

Set:
$$\mathcal{L} = \operatorname{argmin}_{\Theta}(f+g)$$
 $\eta_{n+1} = H_{n+1} - \nabla f(\theta_n)$

Theorem (Atchadé, F., Moulines (2015))

Assume

- g convex, lower semi-continuous; f convex, C^1 and its gradient is Lipschitz with constant L; \mathcal{L} is non empty.
- $\sum_n \gamma_n = +\infty$ and $\gamma_n \in (0, 1/L]$.
- Convergence of the series

$$\sum_{n} \gamma_{n+1}^{2} \|\eta_{n+1}\|^{2}, \qquad \sum_{n} \gamma_{n+1} \eta_{n+1}, \qquad \sum_{n} \gamma_{n+1} \langle \mathsf{S}_{n}, \eta_{n+1} \rangle$$

where
$$S_n = \text{Prox}_{\gamma_{n+1},q}(\theta_n - \gamma_{n+1}\nabla f(\theta_n)).$$

Then there exists $\theta_{\star} \in \mathcal{L}$ such that $\lim_{n} \theta_{n} = \theta_{\star}$.

When H_{n+1} is a Monte Carlo approximation

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1},g} (\theta_n - \gamma_{n+1} H_{n+1})$$

$$H_{n+1} = \frac{1}{M_{n+1}} \sum_{i=1}^{M_{n+1}} H_{\theta_n}(X_{j,n}) \approx \nabla f(\theta_n)$$

MCMC approx. and fixed batch size

$$\sum_{n} \gamma_n = +\infty \qquad \sum_{n} \gamma_n^2 < \infty \qquad \sum_{n} |\gamma_{n+1} - \gamma_n| < \infty$$

i.i.d. MC approx. / MCMC approx with increasing batch size

$$\sum_{n}\gamma_{n}=+\infty$$
 $\sum_{n}rac{\gamma_{n}^{2}}{M_{n}}<\infty$ $\sum_{n}rac{\gamma_{n}}{M_{n}}<\infty$ (case MCMC)

 \hookrightarrow Same conditions as in the Stochastic Gradient algorithm

Stochastic Perturbations of Proximal-Gradient methods for nonsmooth convex optimization: the price of Markovian perturbations

Rates of convergence

Outline

Application: Penalized Maximum Likelihood inference in latent variable models

Stochastic Gradient methods (case g=0)

Stochastic Proximal Gradient methods

Rates of convergence

High-dimensional logistic regression with random effects

Problem:

For non negative weights a_k , find an upper bound of

$$\sum_{k=1}^{n} \frac{a_k}{\sum_{\ell=1}^{n} a_\ell} F(\theta_k) - \min F$$

It provides

- an upper bound for the cumulative regret $(a_k = 1)$
- ullet an upper bound for an averaging strategy when F is convex since

$$F\left(\sum_{k=1}^{n} \frac{a_k}{\sum_{\ell=1}^{n} a_\ell} \theta_k\right) - \min F \le \sum_{k=1}^{n} \frac{a_k}{\sum_{\ell=1}^{n} a_\ell} F(\theta_k) - \min F.$$

A deterministic control

Theorem (Atchadé, F., Moulines (2016))

For any $\theta_{\star} \in \operatorname{argmin}_{\Theta} F$,

$$\sum_{k=1}^{n} \frac{a_k}{A_n} F(\theta_k) - \min F \le \frac{a_0}{2\gamma_0 A_n} \|\theta_0 - \theta_\star\|^2$$

$$+ \frac{1}{2A_n} \sum_{k=1}^{n} \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right) \|\theta_{k-1} - \theta_\star\|^2$$

$$+ \frac{1}{A_n} \sum_{k=1}^{n} a_k \gamma_k \|\eta_k\|^2 - \frac{1}{A_n} \sum_{k=1}^{n} a_k \left\langle \mathsf{S}_{k-1} - \theta_\star, \eta_k \right\rangle$$

where

$$A_n = \sum_{k=0}^n a_k, \quad \eta_k = H_k - \nabla f(\theta_{k-1}), \quad S_k = \text{Prox}_{\gamma_k, g}(\theta_{k-1} - \gamma_k \nabla f(\theta_{k-1})).$$

When H_{n+1} is a Monte Carlo approximation, bound in L^q

$$\left\| F\left(\frac{1}{n}\sum_{k=1}^{n}\theta_{k}\right) - \min F \right\|_{L^{q}} \le \left\| \frac{1}{n}\sum_{k=1}^{n}F(\theta_{k}) - \min F \right\|_{L^{q}} \le u_{n}$$

$u_n = O(1/\sqrt{n})$

with fixed size of the batch and (slowly) decaying stepsize

$$\gamma_n = \frac{\gamma_{\star}}{n^a}, a \in [1/2, 1] \qquad M_n = m_{\star}.$$

With averaging: optimal rate, even with slowly decaying stepsize $\gamma_n \sim 1/\sqrt{n}$.

$u_n = O(\ln n/n)$

with increasing batch size and constant stepsize

$$\gamma_n = \gamma_\star \qquad M_n = m_\star n.$$

Rate with $O(n^2)$ Monte Carlo samples !

Acceleration (1)

Let $\{t_n, n \ge 0\}$ be a positive sequence s.t.

$$\gamma_{n+1}t_n(t_n-1) \le \gamma_n t_{n-1}^2$$

Nesterov acceleration of the Proximal Gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} (\tau_n - \gamma_{n+1} \nabla f(\tau_n))$$

$$\tau_{n+1} = \theta_{n+1} + \frac{t_n - 1}{t_{n+1}} (\theta_{n+1} - \theta_n)$$

Nesterov (1983); Beck-Teboulle (2009)

AllenZhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-TatLee-Singh(2015); Su-Boyd-Candes(2015)

Proximal-gradient

$$F(\theta_n) - \min F = O\left(\frac{1}{n}\right)$$

Accelerated Proximal-gradient

$$F(\theta_n) - \min F = O\left(\frac{1}{n^2}\right)$$

Acceleration (2) Aujol-Dossal-F.-Moulines, work in progress

Perturbed Nesterov acceleration: some convergence results

Choose γ_n, M_n, t_n s.t.

$$\gamma_n \in (0, 1/L], \qquad \lim_n \gamma_n t_n^2 = +\infty, \qquad \sum_n \gamma_n t_n (1 + \gamma_n t_n) \frac{1}{M_n} < \infty$$

Then there exists $\theta_{\star} \in \operatorname{argmin}_{\Theta} F$ s.t $\lim_{n} \theta_{n} = \theta_{\star}$. In addition

$$F(\theta_{n+1}) - \min F = O\left(\frac{1}{\gamma_{n+1}t_n^2}\right)$$

Schmidt-Le Roux-Bach (2011); Dossal-Chambolle(2014); Aujol-Dossal(2015)

γ_n	M_n	t_n	rate	NbrMC
γ	n^3	n	n^{-2}	n^4
γ/\sqrt{n}	n^2	n	$n^{-3/2}$	n^3

Table: Control of $F(\theta_n) - \min F$

Outline

Application: Penalized Maximum Likelihood inference in latent variable models

Stochastic Gradient methods (case g=0)

Stochastic Proximal Gradient methods

Rates of convergence

High-dimensional logistic regression with random effects

Logistic regression with random effects

The model

• Given $U \in \mathbb{R}^q$.

$$Y_i \sim \mathcal{B}\left(\frac{\exp(x_i'\beta + \sigma z_i'\mathsf{U})}{1 + \exp(x_i'\beta + \sigma z_i'\mathsf{U})}\right), \qquad i = 1, \cdots, N.$$

- $\mathsf{U} \sim \mathcal{N}_a(0,I)$
- Unknown parameters: $\beta \in \mathbb{R}^p$ and $\sigma^2 > 0$.

Stochastic approximation of the gradient of f

$$\nabla f(\theta) = \int H_{\theta}(u) \pi_{\theta}(\mathsf{d}u)$$

with

$$\pi_{\theta}(u) \propto \mathcal{N}(0, I)[u] \prod_{i=1}^{N} \frac{\exp(Y_i(x_i'\beta + \sigma z_i'u))}{1 + \exp(x_i'\beta + \sigma z_i'u)}$$

 \hookrightarrow sampled by MCMC Polson-Scott-Windle (2013)

Numerical illustration

- The Data set simulated: N=500 observations, a sparse covariate vector $\beta_{\rm true} \in \mathbb{R}^{1000}$, q=5 random effects.
- Penalty term elastic net on β , and $\sigma > 0$.
- Comparison of 5 algorithms

Algo1 fixed batch size:
$$\gamma_n=0.01/\sqrt{n}$$
 $M_n=275$ Algo2 fixed batch size: $\gamma_n=0.5/n$ $M_n=275$

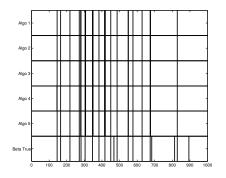
Algo3 increasing batch size:
$$\gamma_n=0.005$$

$$M_n=200+n$$
 Algo4 increasing batch size: $\gamma_n=0.001$
$$M_n=200+n$$

Algo5 increasing batch size: $\gamma_n=0.05/\sqrt{n}$ $M_n=270+\sqrt{n}$ After 150 iterations, the algorithms use the same number of MC draws.

A sparse limiting value

Displayed: for each algorithm, the non-zero entries of the limiting value $\beta_{\infty} \in \mathbb{R}^{1000}$ of a path $(\beta_n)_n$



Algo2
$$\gamma_n = 0.5/n$$
 $M_n = 275$
Algo3 $\gamma_n = 0.005$ $M_n = 200 + n$
Algo4 $\gamma_n = 0.001$ $M_n = 200 + n$

Algo1 $\gamma_n = 0.01/\sqrt{n}$ $M_n = 275$

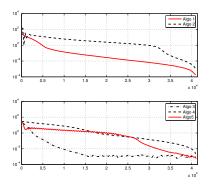
Algo5
$$\gamma_n = 0.05/\sqrt{n}$$
 $M_n = 270 + \sqrt{n}$

Relative error

Displayed: For each algorithm, relative error

$$\frac{\|\beta_n - \beta_{150}\|}{\|\beta_{150}\|}$$

as a function of the total number of MC draws up to time n.



(*) Algo1
$$\gamma_n=0.01/\sqrt{n}$$
 $M_n=275$ Algo2 $\gamma_n=0.5/n$ $M_n=275$

(*) Algo3
$$\gamma_n = 0.005$$
 $M_n = 200 + n$ Algo4 $\gamma_n = 0.001$ $M_n = 200 + n$

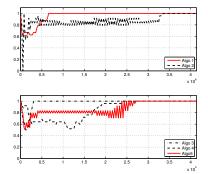
Algo5
$$\gamma_n = 0.05/\sqrt{n}$$
 $M_n = 270 + \sqrt{n}$

Recovery of the sparsity structure of $\beta_{\infty}(=\beta_{150})$ (1)

Displayed: For each algorithm, the sensitivity

$$\frac{\sum_{i=1}^{1000} \mathbb{I}_{|\beta_{n,i}|>0} \mathbb{I}_{|\beta_{\infty,i}|>0}}{\sum_{i=1}^{1000} \mathbb{I}_{|\beta_{\infty,i}|>0}}$$

as a function of the total number of MC draws up to time n.



(*) Algol
$$~\gamma_n=0.01/\sqrt{n}~M_n=275$$
 Algol $~\gamma_n=0.5/n~M_n=275$

(*) Algo3
$$\gamma_n = 0.005$$
 $M_n = 200 + n$ Algo4 $\gamma_n = 0.001$ $M_n = 200 + n$

Algo5
$$\gamma_n = 0.05/\sqrt{n}$$
 $M_n = 270 + \sqrt{n}$

Recovery of the sparsity structure of $\beta_{\infty} (= \beta_{150})$ (2)

Displayed: For each algorithm, the precision

$$\frac{\sum_{i=1}^{1000} 1\!\!\mathrm{I}_{|\beta_{n,i}|>0} 1\!\!\mathrm{I}_{|\beta_{\infty,i}|>0}}{\sum_{i=1}^{1000} 1\!\!\mathrm{I}_{|\beta_{n,i}|>0}}$$

as a function of the total number of MC draws up to time n.



(*) Algol
$$\gamma_n=0.01/\sqrt{n}$$
 $M_n=275$ Algol $\gamma_n=0.5/n$ $M_n=275$

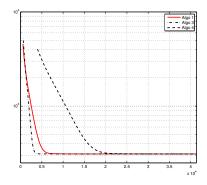
(*) Algo3
$$\gamma_n=0.005$$
 $M_n=200+n$ Algo4 $\gamma_n=0.001$ $M_n=200+n$

Algo5
$$\gamma_n = 0.05/\sqrt{n}$$
 $M_n = 270 + \sqrt{n}$

Convergence of $\mathbb{E}\left[F(\theta_n)\right]$

In this example, the mixed effects are chosen so that $F(\theta)$ can be approximated.

Displayed: For some algorithm, a Monte Carlo approximation of $\mathbb{E}\left[F(\theta_n)\right]$ over 50 indep. runs as a function of the total number of MC draws up to time n.



(*) Algol
$$~\gamma_{n}~=0.01/\sqrt{n}~~M_{n}~=275$$

$$\begin{array}{lll} \mbox{(\star) Algo3} & \gamma_n = 0.005 & & M_n = 200 + n \\ & & \mbox{Algo4} & \gamma_n = 0.001 & & M_n = 200 + n \end{array}$$