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Variance Reduced Majorize Minimization algorithms for large scale learning

In this talk

Motivated by the Large scale Learning setting,

argminθEπ [`(X, θ)] from (Xi)i ∼ π argminθ
1

n

n∑
i=1

`(Xi, θ)

solved by a Majorize-Minimization (MM) algorithm

Part 1. Is it tractable ? no.

Part 2. Identify the limiting points of MM.

Part 3. Design a stochastic optimization algorithm with the same limiting
points: it combines

the Stochastic Approximation method Robbins and Monro (1951); book by Benveniste et al.

(1990)

Ŝn+1 = Ŝn + γn+1Hn+1 Hn+1

a variance reduction technique for the random approximation Hn+1.

Part 4. Explicit bounds of convergence for the SPIDER MM.

Part 5. Numerical illustrations.
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I. The Majorize Minimization algorithm in the large scale learning setting
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The large scale learning setting

The large scale learning setting

argminθ∈Rd (F (θ) + g(θ)) g(θ): exact

”Large batch” learning

F (θ)
def
=

1

n

n∑
i=1

`(Xi, θ) size n, prohibitive

Online learning

F (θ)
def
= Eπ [`(X, θ)] from a stream of observations Xi

i.i.d.∼ π
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The algorithm and its possible intractability

The MM algorithm book by K. Lange (2016)

An iterative algorithm

Repeat:

θt → majorizing fct→ θt+1 → majorizing fct→ · · ·

Given θt, the majorizing function satisfies

majorize F (·) ≤ G(·; θt) F (·) + g(·) ≤ G(·; θt) + g(·)
tangent F (θt) = G(θt; θt)

From the majorizing function,

θt+1
def
= argminθ (G(θ; θt) + g(θ))

A descent property:

F (θt+1)+g(θt+1) ≤ G(θt+1; θt)+g(θt+1) ≤ G(θt; θt)+g(θt) = F (θt)+g(θt)
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The algorithm and its possible intractability

Intractability ?

argminθ MajorizingFct(θ; θt)

[Considered here] The explicit expression of the majorizing function

F (θ) + g(θ) = n−1
n∑
i=1

`(Xi; θ) + g(θ) =⇒ θ 7→ n−1
n∑
i=1

( ) + g(θ)

F (θ) + g(θ) = Eπ [`(X; θ)] + g(θ) =⇒ θ 7→ Eπ [ ] + g(θ)

[assumed explicit, here] The optimization step

argminθ MajorizingFct(θ; θt)
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An example of MM algorithm: Expectation Maximization (EM)

Example of MM: EM Dempster et al (1977); book by G. McLachlan and T. Krishnan (2007)

Inference in latent variable models

`(X; θ)
def
= − log

∫
H
p(X,h; θ) dµ(h)

The construction of the majorizing function at the point θt:
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An example of MM algorithm: Expectation Maximization (EM)

Example of MM: EM Dempster et al (1977); book by G. McLachlan and T. Krishnan (2007)

Inference in latent variable models

`(X; θ)
def
= − log

∫
H
p(X,h; θ) dµ(h)

The construction of the majorizing function at the point θt:

`(X; θ)− `(X; θt) = − log

( ∫
H p(X,h; θ) dµ(h)∫
H p(X,h

′; θt) dµ(h′)

)
= − log

(∫
H

p(X,h; θ)∫
H p(X,h

′; θt) dµ(h′)
dµ(h)

)
= − log

(∫
H

p(X,h; θ)

p(X,h; θt)

p(X,h; θt)∫
H p(X,h

′; θt) dµ(h′)
dµ(h)

)
≤ −

∫
H

log p(X,h; θ) πθt(h|X) dµ(h) + Ct
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An example of MM algorithm: Expectation Maximization (EM)

Example of MM: EM Dempster et al (1977); book by G. McLachlan and T. Krishnan (2007)

Inference in latent variable models

`(X; θ)
def
= − log

∫
H
p(X,h; θ) dµ(h)

The construction of the majorizing function at the point θt:

large batch

θ 7→ − 1

n

n∑
i=1

∫
H

log p(Xi, h; θ) πθt(h|Xi) dµ(h) + g(θ) + Ct

online learning

θ 7→ Eπ
[
−
∫
H

log p(X,h; θ) πθt(h|X) dµ(h)

]
+ g(θ) + Ct

Intractability: outer sum, inner sum
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An example of MM algorithm: Expectation Maximization (EM)

Example of MM: EM for curved exponential family

A frequent assumption:

log p(X,h; θ) = 〈S(X,h), φ(θ)〉 − ψ(θ)

The majorizing function under this assumption

θ 7→ g(θ) + ψ(θ)−
〈
Eπ
[∫
H
S(X,h) πθt(h|X) dµ(h)

]
, φ(θ)

〉
+ Ct

in the parametric functional family

θ 7→ R(θ)− 〈s, φ(θ)〉

Under this assumption, the E-step ≡ compute the parameter ′′s′′, defined
as expectations (outer, inner).

EM, seen in the surrogate-space (s-space):
iterative construction of fcts through iterative construction of a parameter “s”



Variance Reduced Majorize Minimization algorithms for large scale learning

The MM algorithm UQ April22

Other examples of MM

Other examples of MM algorithms

F is L-smooth → quadratic surrogate of F → gradient-type algorithm.

argminθa+ 〈∇ξ(θt), θ − θt〉+
1

2γ
‖θ − θt‖2 = θt − γ∇ξ(θt)

Difference of convex functions → linear surrogate of a concave function

`(X, θ) = infh `(X,h; θ) → variational surrogates

In many examples, and assumed HEREAFTER

(large batch) MajorizingFct(θ; θt) = Ct +R(θ)−

〈
1

n

n∑
i=1

S̄(Xi; θt), φ(θ)

〉
(online) MajorizingFct(θ; θt) = Ct +R(θ)−

〈
Eπ
[
S̄(X; θt)

]
, φ(θ)

〉
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Conclusion of Part I.

Conclusion of Part I.

MM defines a sequence of surrogate functions → MM defines a sequence
of parameters “s”

θ 7→ R(θ)− 〈s, φ(θ)〉

In large scale learning: the exact value of “s” is intractable.

Solution ?

Identify the limiting points of the (exact) MM

Design a stochastic algorithm having the same limiting points.
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Conclusion of Part I.

II. The limiting points of MM
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Assumptions

Assumptions

We consider MM algorithms having

a surrogate function in the family indexed by s:

θ 7→ R(θ)− 〈s, φ(θ)〉

At iteration #t let us write it in the ”online learning setting”

θ 7→ R(θ)−
〈
Eπ
[
S̄(X, θt)

]
, φ(θ)

〉
an explicit optimization of this surrogate

T(s)
def
= argminθ (R(θ)− 〈s, φ(θ)〉)

Case of EM
Hyp 1: OK when the complete data likelihood is from the curved exponential
family.
Hyp 2: for convenience.
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Fixed points

Fixed points in the surrogate space

s? : s? = Eπ
[
S̄(X,T(s?))

]
MM finds the roots of

s 7→ h(s)
def
= Eπ

[
S̄(X,T(s))− s

]
.

The outer expectation is intractable.
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Conclusion of Part II.

Conclusion of Part II.

Forget the MM scheme

Keep in mind: algorithm to find the roots of

s 7→ h(s)
def
= Eπ

[
S̄(X,T(s))− s

]
.

Replace exact MM with: a Stochastic Approximation algorithm designed
to find the roots of the mean field h.
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Conclusion of Part II.

III. Variance reduction within Stochastic Approximation
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Stochastic Approximation

Stochastic Approximation algorithms

• Mean field:
h(s)

def
= Eπ

[
S̄(X,T(s))− s

]

• Iterative scheme:

Ŝt+1 = Ŝt + γt+1

1

b

∑
i∈Bt+1

S̄(Xi,T(Ŝt))− Ŝt


where Bt+1 is a mini-batch of examples of size b

(large batch) sampled with replacement; b << n

(online) from the data stream
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Examples of MM designed for large scale learning

Review of MM for large scale learning / EM context (1/2)

Online-EM.
Neal and Hinton, 1998; Cappé and Moulines, 2009); Nguyen et al (2020); Karimi et al (2019a, 2019b).

(large batch) iEM. Incremental EM
Case γt = 1. Neal and Hinton (1998); Ng and McLachlan (2003); Gunawardana and Byrne (2005); Karimi et al (2019c)

Based on an incremental approximation of

h(Ŝt) = n−1
n∑
i=1

S(Xi,T(Ŝt))− Ŝt.

∗ Init: store for all i, σi
def
= S(Xi,T(Ŝ0)) and compute h(Ŝ0).

∗ At iter #(t+ 1):
sample an index I;
update σI ← S(XI ,T(Ŝt));

update the term #I in the approximation of h(Ŝt).
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Examples of MM designed for large scale learning

Stochastic Approximation algorithms with Variance Reduction

Variance reduction through control variates

Ŝt+1 = Ŝt + γt+1

1

b

∑
i∈Bt+1

S̄(Xi,T(Ŝt))− Ŝt + Vt+1


Vt+1 is centered → the mean field is not modified.

Vt+1 and 1
b

∑
i∈Bt+1

S̄(Xi,T(Ŝt))− Ŝt are correlated.
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Examples of MM designed for large scale learning

Review of MM for large scale learning / EM context (2/2)

(large batch) sEM-vr. Stochastic EM with Variance Reduction
Chen et al, 2018. Parallel with ”SVRG” by Johnson and Zhang (2013)

(large batch) FIEM. Fast Incremental EM
Karimi et al, 2019; Fort et al, 2021. Parallel with “SAGA” by Defazio et al (2014).

The control variate Vt+1 is defined as in iEM:
∗ Init: store the σi’s
∗ At iter #(t+ 1)

sample two indices I, J .
Update σI and the sum n−1∑

i=1 σi by modifying the term #I

Correlate Vt+1 to the natural field S(XJ ,T(Ŝt))− Ŝt:

Vt+1
def
=

1

n

n∑
i=1

σi − σJ .
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A novel Variance-reduced MM: SPIDER-MM

(large batch) A novel variance-reduction: SPIDER MM Fort, Moulines, Wai - NeurIPS 2020

Stochastic Path Integrated Differential EstimatoR MM
adapted from: Nguyen et al. (2017), Fang et al. (2018), Wang et al. (2019)

Vt+1 = Vt +
1

b

∑
i∈Bt

S̄(Xi,T(Ŝt−1))− 1

b

∑
i∈Bt+1

S̄(Xi,T(Ŝt−1))

learn zero through an approximation of ”h(Ŝt−1)− h(Ŝt−1)”.

correlated to the natural field through Bt+1.

biased ! refresh the control variates regularly.
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SPIDER-MM

SPIDER-MM (Stochastic Path Integrated Differential EstimatoR MM)

1: Ŝ1,0 = Ŝ1,−1 = Ŝinit V1,0 = 0 B1,0 = {1, · · · , n}
2: for t = 1, · · · , kout do
3: for k = 0, . . . , ξt − 1 do
4: Sample a mini batch Bt,k+1 of size b from {1, · · · , n}
5: Vt,k+1 = Vt,k+b−1

(∑
i∈Bt,k S̄(Xi,T(Ŝt,k−1))−

∑
i∈Bt,k+1

S̄(Xi,T(Ŝt,k−1))
)

6: Ŝt,k+1 = Ŝt,k+γt,k+1

(
b−1∑

i∈Bt,k+1
S̄(Xi,T(Ŝt,k))− Ŝt,k + Vt,k+1

)
7: end for
8: Ŝt+1,−1 = Ŝt,ξt
9: Vt+1,0 = 0 Bt+1,0 = {1, · · · , n}

10: Ŝt+1,0 = Ŝt+1,−1 + γt+1,0

(
h(Ŝt+1,−1) + Vt+1,0

)
11: end for

• kout outer loops, the outer #t is of length ξt
• The control variate is refreshed at each outer loop #t (see Line 9)
• A full scan of the examples at each outer loop (see Line 9).
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SPIDER-MM

Extensions

The length of the outer loop is a Geometric random variable with
expectation ξt. Fort, Moulines, Wai - ICASSP 2021

Avoid the full scan of the examples when starting each outer loop →
reduction of the computational cost. Fort, Moulines, Wai - ICASSP 2021

An approximation of S̄(Xi, θ) Fort, Moulines - SSP 2021

for example: in EM, S̄(Xi, θ) is an expectation w.r.t. the a posteriori
distribution of the latent variables → Monte Carlo approximation.

A Proximal operator for constrained optimization Fort, Moulines - SSP 2021

Ŝt,k+1 = Proxγt,k+1 g

(
Ŝt,k + γt,k+1Ht,k+1

)
for example: find the roots of h in a compact set.
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SPIDER-MM

IV. Convergence analysis of SPIDER MM
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Assumptions

Assumptions

1 There exists a continuously differentiable function W : Rq → R such that

∇W (s)
def
= −B(s) h(s) h(s)

def
=

1

n

n∑
i=1

S̄(Xi,T(s))− s

where B(s) is a q × q positive definite matrix.
In addition, ∇W is globally Lipschitz with constant LẆ ,
and there exist 0 < vmin ≤ vmax such that the spectrum of B(s) is in
[vmin, vmax].

2 For any i ∈ {1, · · · , n}, the function s 7→ S̄(Xi,T(s))− s is globally
Lipschitz with constant Li.
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Assumptions

What kind of convergence results ?

The objective fct: non necessarily convex but T(s) exists, unique.

Explicit control of errors given a fixed nbr of observations (given a
”budget”).

What is ”errors”
E
[
‖h(Ŝt)‖2

]
At time t ? no · · · at some random time τ ! non convex optim.

What do we learn from an explicit control ? how design parameters scale
with n, in order to reach an accuracy ε

E
[
‖h(Ŝτ )‖2

]
≤ ε
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Assumptions

Convergence in expectation, explicit hi’s

Under the previous assumptions:

(Fort, Moulines, Wai, NeurIPS 2020)

Set L2 def
= n−1∑n

i=1 L
2
i . Fix kout, kin, b ∈ N?. Choose α ∈ (0, vmin/µ?(kin, b))

with

µ?(kin, b)
def
= vmax

√
kin√
b

+
LẆ
2L

.

Run the algorithm with ξt = kin and γt,k
def
= α/L. Then

E
[
‖h
(
Ŝτ,ξ−1

)
‖2
]

≤
(

1

kin
+
α2

b

)
1

kout

2L

α{vmin − αµ?(kin, b)}

(
E
[
W (Ŝinit)

]
−minW

)
where (τ, ξ) is a uniform r.v. on {1, · · · , kout} × {0, · · · , kin − 1} indep of

{Ŝt,k}.
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Assumptions

Complexity for ε-approximate stationarity
From this explicit expression of an upper bound for

E
[
‖h(Ŝτ,ξ−1)‖2

]
in the non convex setting
with a random stopping rule

as a function of kout, kin, b, n and the learning rate γ (= γt,k for any
t, k > 0)

To reach ε-stationarity, the complexity of SPIDER-MM

With: kin = b = O(
√
n), kout = O(1/(εkin))

Nbr of optimization steps: O(1/ε)
Nbr of S̄(Xi, θ)’s evaluations: K = O(

√
n ε−1)→ state of the art !

Algorithm Complexity K
Online-MM ε−2

iMM n ε−1

sMM-vr n2/3 ε−1

FIMM n2/3 ε−1 ∧
√
n ε−3/2
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Assumptions

Sketch of proof
Inside an outer loop #t, then sum along the inner loops k = 0 to k = kin − 1; then sum along the outer loops
t = 1 to t = kout.

• W is Gradient-Lipschitz, and its gradient is a linear function of h

W (Ŝt,k+1)−W (Ŝt,k) ≤
〈
∇W (Ŝt,k), Ŝt,k+1 − Ŝt,k

〉
+
L
Ẇ

2
‖Ŝt,k+1 − Ŝt,k‖

2

≤ −γt,k+1vmin‖Ht,k+1‖
2
+ γt,k+1

(
β

2
vmax + γt,k+1

L
Ẇ

2

)
‖Ht,k+1‖

2

+
γt,k+1

β2
vmax‖Ht,k+1 − h(Ŝt,k)‖

2 ∀β > 0; choice: β2 ∝ γt,k+1

• Biased field; full scan when refreshing→ cancel the bias

E
[
Ht,k+1|Ft,k

]
= h(Ŝt,k) +Ht,k − h(Ŝt,k−1) E

[
Ht,k+1|Ft,0

]
= 0.

• L2-error of the field

E
[
‖Ht,k+1−h(Ŝt,k)‖

2|Ft,0
]
= E

[
‖Ht,k+1−E

[
Ht,k+1|Ft,k

]
‖2|Ft,0

]
+ E

‖ E
[
Ht,k+1|Ft,k

]
−h(Ŝt,k)︸ ︷︷ ︸

Ht,k−h(Ŝt,k−1)

‖2|Ft,0


• Variance: specific form of Ht,k+1 → difference of hi’s

Ht,k+1 − E
[
Ht,k+1|Ft,k

]
=

1

b

∑
i∈Bt,k+1

{hi(Ŝt,k)− hi(Ŝt,k−1)} −
1

n

n∑
i=1

{hi(Ŝt,k)− hi(Ŝt,k−1)}

use:‖hi(Ŝt,k)− hi(Ŝt,k−1)‖
2 ≤ L2

i ‖Ŝt,k − Ŝt,k−1‖
2

= L
2
i γ

2
t,k‖Ht,k‖

2
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Convergence analysis, Monte Carlo approx of S̄(Xi, θ)’s

Assumptions (case: Monte Carlo approximation of S̄(Xi, θ)’s)

In the case

S̄(Xi,T(Ŝt,k)) =

∫
H(h)πt,k(h|Xi)dµ(h) ≈ 1

mt,k+1

mt,k+1∑
r=1

H(Zi,t,kr )

error

ηt,k+1
def
=

1

b

∑
i∈B•

(
1

mt,k+1

mt,k+1∑
r=1

H(Zi,t,kr )− S̄(Xi,T(Ŝt,k))

)

3 (bias) there exists Cb ≥ 0 s.t. for any t, k, with probability one

‖E [ηt,k+1|Ft,k] ‖ ≤ Cb
mt,k+1

4 (variance) there exists Cv s.t. for any t, k with probability one

E
[
‖ηt,k+1 − E [ηt,k+1|Ft,k] ‖2|Ft,k

]
≤ Cv
Mt,k+1

Examples. i.i.d. case: Cb = 0; i.i.d. and MCMC cases: Mt,k+1 = bmt,k+1
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Convergence analysis, Monte Carlo approx of S̄(Xi, θ)’s

Convergence in expectation (i.i.d. case)

Fort, Moulines – SSP 2021; i.i.d. case and MCMC case

Choose ξt = kin and γt,k = γ where

γ
def
=

vmin

LẆ + 2Lvmax

√
kin/
√

b

Then

γvminE

[
‖Ŝτ,ξ − Ŝτ,ξ−1‖2

γ2

]
≤ 1

kout(1 + kin)

(
W (Ŝinit)−minW

)
+ C1

vmax

L

1√
kinb

E
[
kin − ξ
mτ,ξ+1

]
where (τ, ξ) is a uniform r.v. on {1, · · · , kout} × {0, · · · , kin} indep of {Ŝt,k}.

From
Ŝt,k+1 − Ŝt,k = γt,k+1Ht,k+1 6= γt,k+1 h(Ŝt,k),

a control is then obtained on E
[
‖h(Ŝτ,ξ)‖2

]
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Convergence analysis, Monte Carlo approx of S̄(Xi, θ)’s

Complexity for ε-approximate stationarity
From this explicit expression of an upper bound for

E
[
‖h(Ŝτ,ξ−1)‖2

]
in the non convex setting

with a random stopping rule

as a function of kout, kin, b, n and the learning rate γ

with a Monte Carlo approximation of the S̄(Xi, θ)’s

To reach ε-stationarity, the complexity of Perturbed-SPIDER-MM

With: kin = b = O(
√
n), kout = O(1/(εkin)), mt,k = ε−1

Nbr of optimization steps: O(1/ε)
Nbr of S̄(Xi, ·)’s evaluations: K = O(

√
n ε−1)→ same as SPIDER-MM

Nbr of Monte Carlo draws: O(
√
n/ε2)



Variance Reduced Majorize Minimization algorithms for large scale learning

Numerical illustrations UQ April22

V. Numerical illustrations
Herafter, MM means EM
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Complexity of SPIDER-EM

SPIDER-EM: state-of-the-art among the incremental EM algorithms
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Figure: Nbr of processed examples required to reach convergence, as a function of the problem size n



Variance Reduced Majorize Minimization algorithms for large scale learning

Numerical illustrations UQ April22

Estimation of the parameters

Estimation of the parameters (1/2)
Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples
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Figure: Evolution of the L = 12 iterates αk = (αk,1, . . . , αk,L) as a function of the
number of epochs, for EM, iEM and Online EM on the top from left to right; FIEM,
sEM-vr and SPIDER-EM on the bottom from left to right.
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Estimation of the parameters

Estimation of the parameters (2/2)
Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples
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Figure: Evolution of the p = 20 eigenvalues of the iterates Σk as a function of the
number of epochs, for EM, iEM and Online EM on the top from left to right; FIEM,
sEM-vr and SPIDER-EM on the bottom from left to right.
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Objective function

Evolution of the objective function
Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples
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Figure: Evolution of the objective function −W (Ŝk) vs the number of epochs.
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Choice of the design parameters

Deterministic or geometric length of the outer loops? Full scan when
refreshing ? (1/2)

Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples
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Figure: Quantile of order 0.5 of ‖h(Ŝt,ξt )‖2 vs the number of epochs (left) and vs the
number of si’s evaluations (right)

Length of each outer loop: either constant (ctt) ξt = kin, or a geometric r.v. (geom) with
expectation kin

When refreshing the control variate: use the full data set (full), or the half data set (half) or a

quadratically increasing nbr of examples (quad).
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Choice of the design parameters

Deterministic or geometric length of the inner loops? Full scan when
refreshing ? (2/2)

Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples
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Figure: Evolution of the normalized log-likelihood vs the number of si’s evaluations
until 2e6 (left) and after (right).
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Choice of the design parameters

Monte Carlo approximations: benefit of variance reduction
Case: Ridge-penalized inference in a logistic regression model (from the MNIST data set). An individual regression

vector Zi ∈ R1+50 assumed i.i.d. N51(θ, 0.1 I). n = 24 989, 2 classes.

∆t,k+1
def
= ‖Ŝt,k+1 − Ŝt,k‖2/γ2
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Figure: [left] Monte Carlo estimation of E
[
∆t,k+1

]
vs the number of epochs.

Comparison of (Perturbed-Proximal-Preconditioned) 3P-SPIDER-EM and
Online-EM when b = n (case full) and b = 10

√
n (case sqr). Monte Carlo

approximations with mt,k = 2
√
n. [right] Quantiles 0.75 of ∆t,k vs the number of

epochs, for Online-EM and 3P-SPIDER-EM. For 3P-SPIDER-EM mt,k = 2
√
n for t ≤ 9

and mt,k = 10
√
n for t ≥ 10.
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Choice of the design parameters

Monte Carlo approximations: number of points in the Monte Carlo sum
Case: Ridge-penalized inference in a logistic regression model (from the MNIST data set). An individual predictor

vector Zi ∈ R1+50 assumed i.i.d. Nd(θ, 0.1 I). n = 24 989, 2 classes.
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Figure: Monte Carlo estimation of E
[
∆t,k+1

]
vs the number of epochs.

(Perturbed-Proximal-Preconditioned) SPIDER-EM applied with γt,k = 0.1 and
mt,k = 2

√
n in Case 1; and with γt,k = 0.1 and mt,k = 2

√
n for t ≤ 10 and

mt,k = 10
√
n for t ≥ 11 on Case 2 and Case 3. Case 2 and Case 3 differ in the

choice of γt,0
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