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ABSTRACT

Motivated by challenges in Computational Statistics such as Pe-
nalized Maximum Likelihood inference in statistical models with
intractable likelihoods, we analyze the convergence of a stochastic
perturbation of the Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA), when the stochastic approximation relies on a biased
Monte Carlo estimation as it happens when the points are drawn
from a Markov chain Monte Carlo (MCMC) sampler. We first moti-
vate this general framework and then show a convergence result for
the perturbed FISTA algorithm. We discuss the convergence rate of
this algorithm and the computational cost of the Monte Carlo ap-
proximation to reach a given precision. Finally, through a numerical
example, we explore new directions for a better understanding of
these Proximal-Gradient based stochastic optimization algorithms.

Index Terms— Computational Statistics, Stochastic Approxi-
mation, Markov chain Monte Carlo, Proximal-Gradient algorithms,
Nesterov acceleration.

1. INTRODUCTION

In various analyses, we are faced with solving:

argminθ∈Θ (f(θ) + g(θ)) , (1)

where the set Θ and the functions f, g satisfy

A1 g : Rd → [0,+∞] is convex, not identically +∞ and lower
semi-continuous; f : Rd → R ∪ {+∞} is continuously differen-
tiable on Θ := {θ ∈ Rd : g(θ) + |f(θ)| < ∞} and its gradient is
L-Lipschitz on Θ;

and the gradient ∇f is numerically intractable. Motivated by situ-
ations arising in Computational Statistics (see the examples in Sec-
tion 2), we consider the case when

A2 for any θ ∈ Rd, ∇f(θ) =
∫
X
H(θ, x) πθ(dx) where X is a

topological space endowed with its Borel σ-field, πθ is a probability
measure on X and H : R × X → Rd is measurable. In addition,
x 7→ H(θ, x) is πθ-integrable for any θ ∈ Rd,

and only an approximation of∇f(θ) is available, possibly a stochas-
tic approximation and if such, possibly a biased one. In the present
paper, our main contribution is to address a convergence analysis of
a numerical tool to solve Eq.(1), namely a Stochastic perturbation of
FISTA (see [1]), in the challenging situation when the perturbation
comes from a stochastic and biased approximation of∇f .
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2. PENALIZED MAXIMUM LIKELIHOOD ESTIMATION
IN MODELS WITH INTRACTABLE LIKELIHOOD

In this section, two classes of problems arising in Computational
Statistics, and illustrating the question (1) in the framework A1-A2,
are presented. The first situation corresponds to the computation of
the Penalized Maximum Likelihood, or equivalently the Bayesian
Maximum a Posteriori estimator, in latent variable models. In that
case, g stands for the penalty term on parameter θ (in the Bayesian
context, the prior on the parameter); while f is the normalized neg-
ative log-likelihood: for latent variable models, it is of the form (see
e.g.[2])

f(θ) = −`N (θ) := − 1

N
log

∫
X

p(x, θ)dµ(x) (2)

where for any θ, p(·, θ)dµ is the complete data likelihood and the
latent variables x take values in X (µ is a positive σ-finite measure,
such as the Lebesgue measure when X ⊆ Rp or the counting mea-
sure when X is countable). In (2), the dependence upon the N ob-
servations is omitted. Under regularity conditions on the model,

∇f(θ) = − 1

N

∫
X

∂θ log p(x, θ) dπθ(x) (3)

where

dπθ(x) :=
p(x, θ) dµ(x)∫
X
p(u, θ) dµ(u)

=
p(x, θ) dµ(x)

exp(N`N (θ))
(4)

is the a posteriori distribution (of the latent variables, given the ob-
servations, when the parameter is θ) which is known up to a nor-
malizing constant. In this example, the computation of the gradient
∇f is not explicit; the gradient is an expectation with respect to a
distribution known up to a normalizing constant; this integral can be
approximated by a Monte Carlo sum computed from the output of
an MCMC sampler (see e.g. [3, Chapter 6]), thus providing a biased
stochastic approximation of the exact gradient: note indeed that if
{Xj,θ, j ≥ 0} is a (non stationary) ergodic Markov chain produced
by an MCMC sampler with target dπθ , then for any positive mea-
surable function h

E

[
1

m

m∑
j=1

h(Xj,θ)

]
−
∫
h dπθ 6= 0

but this bias vanishes when m→∞ (see e.g. [4, Chapter 13]).

The second situation corresponds to the computation of the Pe-
nalized Maximum Likelihood estimator in a binary graphical model.



Denote by Y := (Y (1), · · · , Y (N)) the N {0, 1}p-valued observa-
tions, modeled as independent and identically distributed under the
distribution

πθ(dx) :=
1

Zθ
exp

 p∑
i=1

θixi +
∑

1≤i<j≤p

θij1xi=xj

 µ(dx)

where x = (x1, · · · , xp) ∈ {0, 1}p, µ is the counting measure on
X := {0, 1}p, and Zθ is the normalizing constant

Zθ :=
∑

u∈{0,1}p
exp

 p∑
i=1

θiui +
∑

1≤i<j≤p

θij1ui=uj

 , (5)

which is intractable when p is large (the sum is over 2p points). In
this example, since the unknown parameter is of length d = p(p +
1)/2 which is often far larger than the number of observations N , g
is introduced as a regularization term and f is again the normalized
negative log-likelihood:

f(θ) = −`N (θ) := − logZθ +

p∑
i=1

θi

(
1

N

N∑
n=1

Y
(n)
i

)

+
∑

1≤i<j≤p

θij

(
1

N

N∑
n=1

1
Y

(n)
i =Y

(n)
j

)
.

The gradient of f is given by

∂θif(θ) := −
∫
X

xi dπθ(x) +
1

N

N∑
n=1

Y
(n)
i (6)

∂θijf(θ) := −
∫
X

1xi=xj dπθ(x) +
1

N

N∑
n=1

1
Y

(n)
i =Y

(n)
j

. (7)

Hence, ∇f is intractable since it is equal, up to an explicit quantity
depending upon the observations Y, to an expectation over a finite
set of cardinal 2p; the distribution dπθ is known up to a normaliz-
ing constant, so these expectations can be approximated by a biased
Monte Carlo sum computed from the output of an MCMC sampler
targeting dπθ .

A numerical tool to overcome the intractability of f could rely
on an approximation of this function itself, combined with an opti-
mization technique of zero-order. For example, in (2), the intractable
integral could be approximated by a Monte Carlo sum with points
sampled under the distribution of the missing data x; and in (5), the
intractable sum could be approximated by a Monte Carlo sum with
points sampled under the uniform distribution on {0, 1}p. Never-
theless, in Statistics, this strategy is known to be inefficient, since it
consists in sampling points (in the first example, it consists in imput-
ing the missing variables) under a distribution which does not take
into account the statistical information (such as the observations in
the first example, or the statistical model in the second example). On
the contrary, as shown by (3) and (6)-(7), an optimization method
based on first-order techniques necessitates a Monte Carlo approxi-
mation that is able to take into account this knowledge: in the first
example, the samples are drawn under the a posteriori distribution
(see (4)) and in the second example, the samples are drawn under
the statistical model πθ . This explains the success of first-order
optimization techniques to overcome the numerical intractability of
Maximum Likelihood estimators.

3. PERTURBED FISTA

The examples introduced in Section 2 motivate the use of gradient-
based iterative methods for solving (1). Since g is not necessarily
differentiable, a natural idea to generalize gradient descent proce-
dures is to combine explicit and implicit gradients. The convexity
assumption on g allows to define the proximal operator [5]: for any
γ > 0, τ ∈ Rd

Proxγ,g(τ) := argminθ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
; (8)

here, ‖·‖ denotes the Euclidean norm associated with the scalar
product 〈·, ·〉. Solving the optimization problem (8) is equivalent to
solving an implicit gradient equation involving the sub-differential
of g [6]. On the other hand, Nesterov introduced an acceleration
scheme of the deterministic gradient method that is known to con-
verge at a rate O(1/n2), where n is the number of iterations (see
[7]). Combining this gradient approach for f , the proximal operator
for g, and the Nesterov acceleration, yields FISTA [1]. Given two
positive step-size sequences {γn, n ≥ 1} and {tn, n ≥ 0}, define
the FISTA sequence {θn, n ≥ 1} by: for n ≥ 1,

ϑn := θn +
tn−1 − 1

tn
(θn − θn−1) (9)

θn+1 := Proxγn+1,g (ϑn − γn+1∇f(ϑn)) ; (10)

θ0 ∈ Θ, t0 = 1. The convergence of the sequence {(f+g)(θn), n ≥
0} to min(f + g) at the rate O(1/n2) is known (see [1, Section 4])
under convenient assumptions; the link between this algorithm and a
time discretization of a second-order Ordinary Differential Equation
was recently addressed (see [8], see also [9]). A natural extension of
FISTA to the case when only an approximation Hn+1 of∇f(ϑn) is
available, consists in replacing (10) with

θn+1 := Proxγn+1,g (ϑn − γn+1Hn+1) (11)

thus introducing at each iteration of the algorithm, an error En+1 :=
γn+1 (Hn+1 −∇f(ϑn)) before applying the proximal operator.
When, in the framework A2, this approximation is a Monte Carlo
sum computed from the output {Xjn, j ≥ 0} of an MCMC sampler
with target distribution dπϑn , the error is

En+1 = γn+1

(
1

mn+1

mn+1∑
j=1

H(ϑn, Xjn)−
∫
H(ϑn, ·) dπϑn

)
;

mn+1 is the number of Monte Carlo points at iteration n+ 1.
A natural question, which we now address, is about the condi-

tions on the perturbations {En, n ≥ 0} which guarantee the conver-
gence of Perturbed FISTA (P-FISTA). We provide sufficient condi-
tions on the approximation

ηn+1 := Hn+1 −∇f(ϑn)

and on the sequences {γn, n ≥ 1}, {tn, n ≥ 0} ensuring that P-
FISTA described by (9) and (11) inherits the same limiting behavior
as FISTA when the number of iterations n tends to infinity. When
tn = 1 for any n ≥ 1, P-FISTA is a Perturbed Proximal-Gradient
(P-PG) algorithm [10]: a convergence analysis with an emphasis to
the case of a biased Monte Carlo approximation of the gradient can
be found in [11]; see also [12] for the case∇f is of the form

∇f(θ) = φ(θ)+
〈
S(θ), ψ(θ)

〉
, S(θ) :=

∫
S(x) dπθ(x), (12)



as it occurs in (6)-(7) and in (3) when p(·, θ) is from a curved
exponential family; and for a discussion on the link between
this algorithm and the Stochastic Expectation-Maximization al-
gorithms. Theorem 1 establishes the convergence of the sequence
{(f + g)(θn), n ≥ 0} to min(f + g) and provides an explicit
control of this convergence. These results are established under the
following assumptions. Set

zn := θn + tn
(
Proxγn+1,g(ϑn − γn+1∇f(ϑn))− θn

)
.

A3 a) The function f is convex and the set L := argminΘ(f + g)
is non empty.

b) t0 = 1, and for any n ≥ 1 : tn ≥ 1 and γn ∈ ]0, 1/L] whereL is
given by A1. Furthermore, τn := γnt

2
n−1−γn+1tn(tn−1) ≥ 0.

c) The series
∑
n γn+1tn 〈zn − θ?, ηn+1〉 exists for some θ? ∈ L.

Theorem 1 Let {θn, n ≥ 0} be the P-FISTA sequence. Set
F (θ) := (f + g)(θ) − min(f + g). Assume A1 and A3a-c).
Then limn γn+1t

2
nF (θn) exists and for θ? given by A3c),

γn+1t
2
nF (θn+1) +

1

2
‖zn − θ?‖2 +

n∑
k=1

τkF (θk) ≤ Bn

where τk is given by A3b) and

Bn := γ1F (θ1) +
1

2
‖θ1 − θ?‖2 +

n∑
k=1

γ2
k+1t

2
k ‖ηk+1‖2

−
n∑
k=1

γk+1tk 〈zk − θ?, ηk+1〉

is uniformly bounded.

The proof of this theorem is given in the technical report [13, Theo-
rem 13]. It relies on the key property (see [13, Lemma 23]):

τkF (θk) + γk+1t
2
kF (θk+1) +

1

2
‖z̃k+1 − θ?‖2

≤ γkt2k−1F (θk) +
1

2
‖z̃k − θ?‖2 − γk+1tk 〈z̃k+1 − θ?, ηk+1〉 ,

for any k ≥ 1, where z̃k := θk + tk (θk+1 − θk). This theo-
rem extends the results in [1] to the case ηn 6= 0. It general-
izes [8, Theorems 5.1. and 5.2.] which address the case when
tn = 1 +n/(α− 1) for some α ≥ 3 and γk = γ ∈ ]0, 1/L] for any
k ≥ 1. Theorem 1 covers both deterministic and stochastic pertur-
bations. In the stochastic case, this general statement has two major
consequences: first, when the assumption A3c) holds almost-surely,
then the conclusion of the theorem holds almost-surely; second, the
explicit control of F (θn) through the expression of Bn can be used
to derive almost-sure controls of the convergence of (f + g)(θn) to
min(f+g), but also Lp-controls, controls with high probability, etc.

We now apply this theorem in the context A2 when Hn+1 is a
Monte Carlo sum computed with mn+1 points {Xjn, j ≤ mn+1}
sampled by an MCMC sampler with target dπϑn . When {γn, n ≥
1} is non-increasing, the condition A3b) is satisfied with tn = O(n)
(choose for example tn = 1 +n/2). Checking the condition A3c) is
more or less technical, depending on the Monte Carlo strategy: does
mn → +∞ or is it constant over iterations? The second situation is
clearly the most technical (see e.g. the mathematical derivations for

the study of P-PG algorithms in [11, Section 3.1.]) and in this pa-
per, we only address the case when limnmn = +∞: it means that
the computational cost of the Monte Carlo approximation increases
along iterations, but this yields a vanishing bias of the Monte Carlo
error ηn+1 when n→∞. Under suitable conditions on the MCMC
sampler (see [11, Assumption H5]) and assuming Θ is bounded, we
have (see [11, Proposition 5])

sup
n
m2
n+1 E

[
‖E [ηn+1|Fn]‖2

]
<∞, (13)

mn+1 E
[
‖ηn+1 − E [ηn+1|Fn]‖2 |Fn

]
≤ Cn a.s., (14)

where Fn is the σ-field associated with the past of the algorithms
{Xjk, 1 ≤ j ≤ mk+1, k ≤ n − 1} and Cn is a random variable
such that supn E [Cpn] < ∞ for some p > 1. Using standard tools
for the convergence of martingales (see e.g. [14]) and since a series
with positive general term converges almost-surely as soon as its
expectation is finite, we prove that A3c) holds if (see [13, Corollary
14]) ∑

n

γn+1tnm
−1
n+1 +

∑
n

γ2
n+1t

2
nm
−1
n+1 <∞. (15)

Let us detail these conditions in the case tn = O(n), γn ∼ γ?n
−a

for some a ∈ [0, 2[ and mn ∼ m?(lnn)b nc; the conditions
limn γn+1t

2
n = +∞ and (15) are verified by choosing

either (a ∈ [0, 1] , c = 3− 2a) or (a ∈ [1, 2[ , c = 2− a) (16)

and b > 1. In both cases, we have

lim
n
n2−a F (θn) exists a.s. (17)

and by using the expression of Bn in Theorem 1, we also have

sup
n
n2−a E [F (θn)] <∞. (18)

From Theorem 1 and (15), we also obtain

sup
n

n∑
k=1

kF (θk) <∞ a.s., sup
n

n∑
k=1

k E [F (θk)] <∞. (19)

Eqs. (17) and (18) show that the best convergence rate of the se-
quence {(f + g)(θn), n ≥ 0} to min(f + g) is n−2, for the almost-
sure convergence and the convergence in expectation as well. This
rate is similar to the rate of FISTA (see [1] and [8], itself known to
be optimal) and in that sense, it is optimal. Nevertheless, P-FISTA
reaches this rate when a = 0, which means that the number of Monte
Carlo points mn increases at the rate O(n3) up to logarithmic terms
(we have indeed by (16): c = 3 − 2a = 3). Therefore, since the
number of iterations to reach a given precision δ > 0 is O(δ−1/2),

the Monte Carlo computational cost increases like O
(∑δ−1/2

k=1 k3
)

that is like O(δ−2). The Monte Carlo computational cost is un-
changed if we choose a ∈ ]0, 1[ and c = 3 − 2a: the rate of con-
vergence after n iterations is O(na−2), the number of iterations to
reach a precision δ is O(δ1/(a−2)), the computational cost increases
like O(δ(4−2a)/(a−2)) = O(δ−2).

In [11, Sections 3.1. and 3.2.], we studied the rate of con-
vergence for the P-PG algorithm (which corresponds to P-FISTA
applied with tn = 1 for any n): we proved that when γn = γ
and mn = O(n), the rate of convergence (in Lq , for q ≥ 1) of
F (θ̄n) to zero is O(1/n) - up to logarithmic terms - where θ̄n :=
n−1∑n

k=1 θk is the averaged value of the estimators (note that this
averaging strategy is a post-processing of the output of P-PG). It



means that a precision δ > 0 is reached afterO(1/δ) iterations, thus
involving O(δ−2) Monte Carlo draws.

As a conclusion, P-FISTA applied with convenient design pa-
rameters (the sequences {γn, n ≥ 1}, {tn, n ≥ 0} and the Monte
Carlo sample size {mn, n ≥ 1}) reaches the same rate of conver-
gence as FISTA after n iterations. This rate is far better than the
rate of the PG algorithm. Nevertheless, when taking into account the
Monte Carlo computational cost: combining a P-PG algorithm with
an averaging strategy or applying P-FISTA, is equivalent; in both
cases, O(δ−2) Monte Carlo samples are required in order to reach a
given precision δ.

(19) extends the results of [8] to general sequences {tn, n ≥ 0}
and {γn, n ≥ 0} and to the case {ηn, n ≥ 1} is a biased Stochastic
error. It also extends the results of [15, Theorem 2] to a non-constant
sequence {γn, n ≥ 0} and to the case ηn 6= 0. When tn = O(n)
and γn ∼ γ?n

−a for some a ∈ [0, 2[ we have τn = O(n1−a): the
rate is maximal by choosing, here again, a = 0 i.e. a constant step-
size sequence {γn, n ≥ 1}. Since the upper bound Bn is uniformly
bounded in n, Theorem 1 implies that

∑
n nF (θn) <∞.

We decided to give a strong emphasis on Theorem 1 applied
to the case the approximation Hn+1 is stochastic and biased (see
the quantity E [ηn+1|Fn] in (13) which is allowed to be non null)
since our work is motivated by the applications described in Sec-
tion 2. Nevertheless, all our results apply to the simpler case when
the Monte Carlo approximation is computed from independent and
identically distributed (i.i.d.) points. This i.i.d. context covers many
applications in Machine Learning such as problems called Large
scale convex optimization (see e.g. [16]) or problems related to on-
line learning; in these contexts, mn stands resp. for the number of
component functions in the Monte Carlo approximation, and for the
batch size in the online data processing.

4. BEYOND THE THEORY THROUGH A NUMERICAL
APPLICATION

We conclude this paper by a numerical analysis of the behavior of
some algorithms that are not fully understood yet, and for which a
theoretical study is in progress: we explore different strategies for
the sequence {tn, n ≥ 0} and for a Monte Carlo approximation of
the gradient. As a numerical example, we consider the optimization
of a likelihood in a binary graphical model (see Section 2), in the
case the penalty term is

g(θ) = λ
∑

1≤i<j≤p

|θij |+ µ

p∑
i=1

θ2
i ,

that is, a sparsity constraint on the off-diagonal parameters, and a
quadratic penalty for the diagonal ones. N independent data are
sampled (set as the last values of a long run of N independent
Markov chains with stationary distribution πθtrue ; the “true” pa-
rameter θtrue was chosen as a sparse upper triangular matrix, 195
off-diagonal entries are non zero. In the numerical illustration,
λ = 0.5

√
log(p)/N , µ = 0.5, N = 250, p = 100 and we use

the Wolff clustering algorithm [17] to sample a Markov chain with
target πθ .

Four algorithms are compared: Alg1 is a P-PG algorithm (that
is P-FISTA with tn = 1 for any n) with γn = O(1/

√
n) and mn =

O(
√
n). Alg2 to Alg4 are P-FISTA’s, all of them with γn = O(1)

and mn = O(n3) but they differ through the choice of the sequence
{tn, n ≥ 0} which is respectively of the form O(n), O(

√
n) and

O(nε) for some ε << 1. Since in our example, ∇f is of the form
(12), then Hn+1 = φ(θn) + 〈Sn+1, ψ(θn)〉 where

Sn+1 := m−1
n+1

mn+1∑
j=1

S(Xjn), (20)

for Alg1 to Alg4. Alg5 looks like Alg1 (it is a P-PG) except that
Sn+1 is computed iteratively along the iterations, so that it uses all
the past samples (see [12])

Sn+1 := (1− δn+1)Sn + δn+1m
−1
n+1

mn+1∑
j=1

S(Xjn); (21)

in the numerical example, we choose δn = O(n−0.9) and mn =
O(1). Each algorithm is run along nmax = 2000 iterations, and
these runs are repeated 100 times; mn is defined in such a way that
all the algorithms used roughly the same total number of Monte
Carlo points after nmax iterations. For each of the five algorithms,
we display on Figure 1[left] the boxplot (over the 100 runs) of
the number of non-null off-diagonal elements at iteration n, when
n ∈ {50, 500, 1000, 1500, 2000} iterations. We also display on
Figure 1[right] how often, over the 100 runs, each entry of θnmax

is non null: a white vertical line is 0%, a black one is 100%; the
entries are sorted so that the first p elements are the diagonal entries
(which are not affected by the L1 penalty, thus explaining p succes-
sive black horizontal lines for all the algorithms). The first row on
Figure 1[right] shows, as a reference, the vector θtrue.

Fig. 1. For different algorithms, [left] the number of non zero com-
ponents of θn when n ∈ {50, 500, 1000, 1500, 2000}; [right] af-
ter nmax iterations, probability to be non null for each component
θij , 1 ≤ i ≤ j ≤ p.

The plot on the left illustrates that Alg2 converges more rapidly
than Alg1. It also shows that among the P-FISTA strategies, there
may have a gain to use a sequence tn that tends to infinity at a slower
rate than O(n): a rigorous theoretical analysis of these strategies for
Stochastic perturbation of FISTA is an open question (see [18] for
deterministic perturbations).

Comparing Alg1 to Alg5 shows that a kind of smoothed gra-
dient as computed by (21) improves drastically the rate of conver-
gence: this idea was studied in [12] for P-PG; its use in P-FISTA is
also an open question.

The plot on the right illustrates again that the convergence of
Alg1 to Alg4 is slower that the one of Alg5. Note that the non-null
components at convergence of Alg5 are strongly related to those
of θtrue: how many components are equal depend of course of the
choice of λ, a question which is out of the scope of this paper.
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[3] O. Cappé, E. Moulines, and T. Rydén, Inference in hidden
Markov models, Springer Series in Statistics. Springer, New
York, 2005.

[4] S. Meyn and R. L. Tweedie, Markov chains and stochastic
stability, Cambridge University Press, Cambridge, second edi-
tion, 2009, With a prologue by Peter W. Glynn.

[5] J.J. Moreau, “Fonctions convexes duales et points proximaux
dans un espace hilbertien,” C. R. Acad. Sci. Paris, vol. 255, pp.
2897–2899, 1962.

[6] R.T. Rockafellar, “Monotone operators and the proximal point
algorithm,” SIAM J. Control Optimization, vol. 14, no. 5, pp.
877–898, 1976.

[7] Y. E. Nesterov, “A method for solving the convex programming
problem with convergence rate O(1/k2),” Dokl. Akad. Nauk
SSSR, vol. 269, no. 3, pp. 543–547, 1983.

[8] H. Attouch and Z. Chbani, “Fast inertial dynamics and
FISTA algorithms in convex optimization. Perturbation as-
pects,” Tech. Rep., arXiv 1507.01367, 2015.

[9] A. Cabot, H. Engler, and S. Gadat, “On the long time behav-
ior of second order differential equations with asymptotically
small dissipation,” Trans. Amer. Math. Soc., vol. 361, no. 11,
pp. 5983–6017, 2009.

[10] P. L. Combettes and J.C. Pesquet, “Proximal splitting methods
in signal processing,” in Fixed-point algorithms for inverse
problems in science and engineering, vol. 49 of Springer Op-
tim. Appl., pp. 185–212. Springer, New York, 2011.
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