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Outline

o Stochastic Approximation

o Examples of SA: stochastic gradient and beyond
Stochastic Gradient is an example of SA, but SA encompasses broader scenarios (compressed stochastic

gradient; Reinforcement Learning via TD learning; Computational Statistics via EM)

Understanding the behavior of these algorithms and designing improved algorithms require new insights that

depart from the study of traditional SG algorithms.

o Non-asymptotic analysis

best strategy after T iterations, complexity analysis

o Variance Reduction for SA

Improved SA schemes.

o Conclusion
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Stochastic Approximation

Stochastic Approximation
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Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a mean field h : R% — Rd, solve
weR?d sit. h(w)=0

Available: for all w, stochastic oracles of h(w).

The Stochastic Approximation method:

Choose: a sequence of step sizes {v; }, and an initial value wgo € R,
Repeat:
Wt+1 = Wi + Ver1 H(wg, Xp41)

where H(wy, X41) is a stochastic oracle of h(wy).
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SA: Wrt1 = Wi + Y41 H(wi, X41) with an oracle H(wy, Xj11) =~ h(wy)

ODE with vector field h

o A function t € [0,400) — w; € R? sit.

dw
wo = wo, 7; = h(wt).

o A fixed point w* is a root of h. d = 2. For five initial values w(),
the solution t +— .

o Under assumptions (Lyapunov), lim; dist(wy, £) = 0.

o {h=0}CL.

A Lyapunov function for h

o V:RY [0, +00), continuously differentiable, and
inf-compact.

o t+— V(w;) decreasing i.e. (VV(wy), h(we)) <0
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SA: Wrt1 = Wi + Y41 H(wi, X41) with an oracle H(wy, Xj11) =~ h(wy)

ODE with vector field h

o A function t € [0,400) — w; € R? sit.

dw
wo = wo, 7; = h(wt).

o A fixed point w* is a root of h. d = 2. For five initial values w(),
the solution t +— .

o Under assumptions (Lyapunov), lim; dist(wy, £) = 0.

o {h=0}CL.

A Lyapunov function for h

o V:RY [0, +00), continuously differentiable, and
inf-compact.

o t+— V(w;) decreasing i.e. (VV (W), h(we)) <0

SA is an approximation (x2): Euler and oracle

Upt1 = Uk + Yet1 h(ug) Wit1 = Wk + Vi1 H(wk, Xky1)
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Algorithm: W1 = W + Yet1 H(wk, Xg41) with an oracle H(wy, X1 1) =~ h(wy)
° v >0
° Xk = +o0
o The oracles can be unbiased E [H(wk, Xk+1)|pasty] = h(wk)
or biased E [H(wk, Xp41)|pasty] # h(wk)
o limg S5 o vk (H(wk, Xi41) — h(w)) exists (wpl)

unbiased case with bounded variance: 3 vZ < oo

o hmk Yk = 0
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Lyapunov for ODE

o t— V(w;) decreasing i.e.

(VV(ﬁz), h(ﬁt» <0

Lyapunov for the theory of SA
o The Lyapunov fct is not monotone along the random path {wg,k > 0}

(VV(w),h(w)) <0

A Robbins-Siegmund type inequality Robbins and Siegmund (1971)

E[V(wik41)lpasty] < V(wk) +ve+1 (VV(wr), h(wr)) + Ye+1 Pk

pr. depends on the conditional bias and conditional L2-moment of the oracle.

o For the (a.s.) boundedness of the random path, and its convergence.
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o Stochastic Approximation for solving:

VR(w) =0 when VR(w) = E[H(w, X)]

o Stochastic Approximation for solving a fixed point equation:

Tw)=w  when T(w):E[ﬁ(w,X)]

o The Lyapunov function assumption: minimizes V' through steps in the directions
given by the vector field h
(VV(w), h(w)) <0
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Examples of SA: Stochastic Gradient
and beyond

Examples of SA: Stochastic Gradient and beyond
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Find a root of h: W41 = Wi + Vo411 H(wk, Xp41) where H(wy, X11) = h(wy)

SG is a root finding algorithm
o designed to solve VR(w) =0

SG is a SA algorithm
We+1 = Wk — Ye+1 VR(w)

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)
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Stochastic Gradient is a SA metho

Find a root of h: W41 = Wi + Vo411 H(wk, Xp41) where H(wy, X11) = h(wy)

SG is a root finding algorithm
o designed to solve VR(w) =0

SG is a SA algorithm
We+1 = Wk — Ye+1 VR(w)

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data
1 1
R(w) = — > £w, Zi) h(w) = == >~ Diob(w, Z;)
n n
i=1 i=1
1
H(w, Xpy1) = —— Z Dio4(w, Z;) Xj41 arandom subset of {1,...,n}, cardinal b.
i€Xp
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Find a root of h: W41 = Wi + Vo411 H(wk, Xp41) where H(wy, X11) = h(wy)

SG is a root finding algorithm
o designed to solve VR(w) =0

SG is a SA algorithm
We+1 = Wk — Ye+1 VR(w)

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

1 12
R(w) = — > £w, Zi) h(w) = == 3" D10l(w, Z;)
™i=1 ™ i=1
1
H(w, Xpy1) = == Z Dio4(w, Z;) Xj41 arandom subset of {1,...,n}, cardinal b.

i€Xp

SG is a SA algorithm with goal: optimization

o for convex and non-convex optimization.
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The “gradient case”:

o the mean field h is a gradient:  h(w) = —VR(w)
o the oracle is unbiased: E[H(w,X)] = h(w)

SA beyond the gradient case: two examples.
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by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:
o State s € S, Card(S) =n.

o Markov process: transition matrix P, 7P =7 S«
o Reward R(s,s’) P, 7 and R depend on the policy 1 R(SyS,0n)
o Value function: X € (0,1) Srre—]|
VseS, Vi (s) ::ZA‘E[R(Sz,SHlHSo:S]-
t>0

» The value function evaluation is a root-finding problem

Bellman equation: BV, —-V,=0 BV (s) := E[R(Sg, S1) + AV (S1)|Sg = s]
Linear Function Approximation: V“ € Span(¢1,---,dq)
find V¥ & find dw < find w € R?
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by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:
o State s € S, Card(S) =n.

o Markov process: transition matrix P, 7P =7 S«
o Reward R(s,s’) P, 7 and R depend on the policy 1 R(SyS,0n)
o Value function: X € (0,1) R
VseS, Vi (s) ::ZAtIE[R(SmSt-Fl)lSO:S]-
t>0

» The value function evaluation is a root-finding problem

Bellman equation: BV, —-V,=0 BV (s) := E[R(Sg, S1) + AV (S1)|Sg = s]
Linear Function Approximation: V“ € Span(¢1,---,dq)
find V¥ & find dw < find w € R?

» TD(0) with linear function approximation is SA Sutton (1987); Tsitsiklis and Van Roy (1997)

TD(0) is a SA with mean field h(w) := &' diag(n) (BPw — dw)

Oracle:  H(w, (Sk, Sgy15 R(S, Sp11))) 1= (R(Sk, Skt1) + A[®ls, - [qm]sk) (@s,.)

OptAzur, October 2023 13/30



In the curved exponential family Dempster et al (1977)

argming — log/ p(z; 0) v(dx) p(x;0) >0
x
» EM is a root-finding algorithm

o EM is a Majorize-Minimization algorithm
o The majorizing function defined by [, S(z)7r(x; 05)v(dz)

o Fixed points of EM: Delyon et al (1999)

Ox = T(sx) with sxst. S(T(s4)) —5«=0
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In the curved exponential family Dempster et al (1977)

argming — log/ p(z; 0) v(dx) p(x;0) >0
x
» EM is a root-finding algorithm

o EM is a Majorize-Minimization algorithm
o The majorizing function defined by [, S(z)7r(x; 05)v(dz)

o Fixed points of EM: Delyon et al (1999)

Ox = T(sx) with sxst. S(T(s4)) —5«=0

» When S intractable, the most popular/efiicient Stochastic EM is SA

- - 12
5() = [ S@)m(@i)vds)  or(and)  S() = = 38,0,

i=1

Stochastic EM is a SA with mean field h(w) := S(T(w)) —w
[UB] Oracle for SAEM:  H (w, Xpo 4 1) := m LS5 | S(Xpyq 0) —w  Xpyq,. ~ MCMCr(;T(w))

[U] Oracle for mini-batch EM:  H (w, Xp 1 1) := b~ 1 TieXpy, Si(T@) —w
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Non-asymptotic analysis

Non-asymptotic analysis
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» Asymptotic convergence analysis, when the horizon tends to infinity
Benveniste et al (1987/2012), Benaim (1999), Kushner and Yin (2003), Borkar (2009)

o almost-sure convergence of the sequence {wy,k > 0}
o to (a connected component of) the set £ := {w : (VV(w), h(w)) = 0}
o CLT, ---

» Non-asymptotic analysis

Given a total number of iterations T'

o After T calls to an oracle, what can be obtained ?
e-approximate stationary point and sample complexity

o How many iterations to reach an e-approximate stationary point

Ve>0, E[W(we) <e
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wWrt1 = Wi + Ye+1 H(wg, Xgy1)

Lyapunov function V' and control W

There exist V : R? — [0, +00), W : R — [0, +-00) and positive constants s.t.

o Vand W: Yw (VV(w),h(w)) < —pW(w)
o V smooth Vw,w [|[VV(w) = VV ()| € Ly |jw — ||
h(w) V(w) W (w)
Gradient case —VR(w) R(w) H’l(w)H2
and R convex wy solution —VR(w) 0.5]lw — wy |2 — (w — Wy, h(W))
and R strongly cx  w solution —VR(w) 0.5|lw — wy |2 W = V or, as above
Stochastic EM S(T(w)) — w F(T(w)) ()12
TD(0) P, solution &' D(BPw — dw) 0.5]|w — wy |2 (w— wyx) D' DP(w — wy)
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wWrt1 = Wi + Ye+1 H(wg, Xgy1)

On the oracles and the mean field

There exist non-negative constants s.t.

o The mean field Vo [[h(w)]|? < co+ c1 W(w)

for all k, almost-surely,

o Bias IIE [H<ka Xk+1)|]'_lc} — h(w)lI? < 70 + T W (wi)

H 2 2 2
o Variance E [IlH(wk, Xpp1) — E [H@k,xkﬂ)‘fk] 12| 7] < 08 + 03w (w)

o If biased oracles ie. 7o + 71 > 0,
IV V(@)I?
vev (VTo/2 + V7)) < p, cy :(=sup —————
w W (w)

Includes cases:

o Biased oracles, unbiased oracles

@ Bounded variance of the oracles, unbounded variance of the oracles

18/30
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Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that v € (0, Ymax), n > o0?4e; >0

2(p —D1)
Ly m

Ymax ‘=

Then, there exist non-negative constants s.t. for any T 2 1

T
E[V(wo
3 e g ()] < 2 el
1 D=1 ek D o1 Vele
T 2
+ Ly mo 72521 R
D=1 Yeke
2521 Yk

+ cvv/T0
22:1 Yele

ne =2(p —by) —vpLyng >0

o 1y depends on the bias and variance of the oracles; 1o > 0.
@ For unbiased oracles: 7o =b; =0

o Better bounds when V' = W: not discussed here ex.: SGD for strongly cvx fct; TD(0)
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After T iterations

o Reached with a constant step size

Ymax 2E[V (wo)]
Ve =7 = A =
2 VioLv VT

2Ly VEV)] |, SE[V(wo) = V&
(p—bi)VT Ymax(p—b1)T " p—b1

L T=1
T Z E[W(wg)] <
k=0

E[W(W\T)}

When T0 = 0 i.e. unbiased oracles, or bias scaling with W

o Random stopping: return wg, where Ry ~U({0,--- , T —1})

o When W is convex: return the Polyak-Ruppert-Juditsky averaged iterate
=1 ZT_l w
k=0 “k

o Upper bound depending on 7 1/\/T
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For all € > 0, let T(e) C N s.t. for all T € T (e), E [W(wr,)] <e

For unbiased oracles,

T (€) = [Te, +00) with

Ly (1
T. := 8E[V (wo)] ”°p2V (72 v )

o Low precision regime: ¢ > 2ng/n1,

mLy = “Ymax
p2e’ 2

Te = 4E[V(wo)]

o High precision regime: ¢ € (0,2n0/m],

)l noLyv pe

T. = 8E[V v -
<= SEVGol o 77 oLy
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EM h(w) = %Z;”zl Si(T(w)) —w  where Si(r) == [y Si(x)w(x; 7)da
The SA-EM oracle

o Monte Carlo sum with m points,

o case Self-normalized Importance Sampling: biased oracles, with bias 8o/m and
variance B1/m.

Complexity
For all € > 0, let T(e) C N2 s.t. for all (T,m) € T (e), E[W(wr,)] <e.

- 16E[V (w()](L + o1 2/m) Y 32E[V (wg)]53 Ly, acy,

2 2 2.2 -
ve. Ke mue . Kee® 1 — K)VYmin€
min min ‘ ( )¥min

For high precision regime,

Cq Cs
Te=—, me = —, costeomp = Te (nme costyic + costopt )
€ €

Other rates for low precision regime.
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Sketch of proof of the Theorem

A Lyapunov function V' with Ly -Lipschitz gradient

L
V(wit1) < V(wr) + (VV k), k1 = wi) + - llwkr = wi]®
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Sketch of proof of the Theorem

L
V(wien) S V@r) + (TVr), wipr —wi )+ - fwres = wl®

The definition of the iterative scheme
Ly
5 Yk

V(wg+1) < V(wk) + 7641 (VV(wg), H(wk, Xg41)) + H (s X )1
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Sketch of proof of the Theorem

Ly
V(we+1) < V(wk)+ve+1 <VV(wk)7 H(wi, Xpt1) >+7%§+1 | H (wie, Xe+1)11°
The conditional expectation

E[V(wk+1)|Fr] < V(wk) + k41 {(VV(wr), E [H(wk, Xk+1)|Fr])

Ly T . 21
+7’72+1‘—* | H (wk, Xg+1) 17| Fr
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E [V (@it1)|Fi] € Vwr) +ver1 (VV i), E[H e, Xer1)Fe] )
L
+ Vi B I @, Xegn) 17175
The mean field h and the bias term
E [V(wk+1)|Fr] < V(wk) + Ye+1 (VV(wi), h(wr))
+ Y1 (VV(wi), E[H(wk, Xk41)|Fr] — h(wk))

Ly . .
+ 5 E [ H r, X1 7 ]

OptAzur, October 2023 23/30



E[V(wit1)|Fr] < V(wr) + Y1 (VV(wr), h(wy))
+ Y41 (VV(wr), E[H(wk, Xk41)|Fr] — h(wr))
F IR E 1B, Xr) IP17]
Cond L? = Cond Var + (Cond Exp)?
E [V(wk+1)|Fr] £ V(wk) + k41 (VV(wr), h(wk))
+ Ye41 (VV(wr), E[H (wk, Xet1)|Fr] — h(wk))

Ly o . R B
+ V4 E [\ H(wi, Xut1) — E[H(wh, Xet1) |1 Fe] 1121 Fs
Ly . . .
+7"/7§+1‘ ~ ”(!/v‘}.»-\},Jr\H}—A ‘2
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E[V(wkt1)|Fr] £ V(wk) + o411 (VV(wk), h(ws))
+ Y41 <VV(wk), E [H(wk, Xx41)|Fr] — h(wg) >

L ) . . . 12
+ 7‘/7@1 E [HHM. s Xa1) — E[H(wi, Xit1)|Fr] | \}",,}
LV 2 2
+ 5 Vk+1 | E[H(wk, Xk+1)|Fr] —h(we) +  h(we) ||

By assumptions: the drift term, the bias and variance of the oracles, and the mean
field are controlled by W.
Apply the expectation.

There exist constants s.t. for any k& > 0,

E[V(@rt1)] < E[V@i)] — 41 (p — b= va"l) E (W (wi)]

Lv no

+ Yk41bo +’Y§+1 2

A drift term for 5 small enough. Sum from k =0 to k =T — 1; conclude.
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Variance Reduction within SA

Variance Reduction within SA
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o Choose U correlated with the natural oracle H(w, X) s.t.

Var (H(w, X) + U) < Var (H(w, X))

o Bias
E[H(w,X)+ U] =E[H(w,X)] where E[U]=0.

@ Control variates classical in Monte Carlo; introduced in Stochastic Gradient;
extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al
(2020)

Riemannian non-convex optimization: Han and Gao (2022)
Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)
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Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR
Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting: h(w) = Zhi(w) and n large

o At iteration #(k + 1), a natural oracle for h(wy) is

1
H(wg, Xpy1) == T Z hi(wk) X}y 41 mini-batch from {1, ..., n}, of size b

1€X k11

@ The SPIDER oracle is

1 1
HSp = = g h(wk)—l- HSP - E wk 1)
k+1 - T
* b 1eX Vk b EXg
S oracle
for h(wi—1) oracle

for h(wg_1)

o Implementation: refresh the control variate every Kj, iterations

26/30
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Application

sA

Stochastic EM with ctt step size, mixture of twelve Gaussian in

Herates

Estimation of 20 parameters, one path of SA

5
Squared norm of the mean field h, af-

ter 20 and 40 epochs; for SA and three 2

variance reduction methods R

Application

OptAzur, October 2023

R20.

unknown weights, means and covariances.

SPIDER-SA

20 W 50 100 120 140

80
epoch

Estimation of 20 parameters, one path of SPIDER-SA

103 20 epocts Jat0? 40 epochs
.
-
e | - oo
1 T H
B ‘ ‘ TEd

- ;l ;l : -
o /== ==
EY e SVRSA  SPDERSA

SVRSA  SPDERSA

Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.

For a fixed accuracy level, for different values of the problem size n, display
the number of examples processed to reach the accuracy level (mean nbr over

50 indep runs).
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Conclusion

Conclusion
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Conclusion

o SA methods with non-gradient mean field and/or biased oracles - in ML and
compurational statistics.

o A non-asymptotic analysis for general Stochastic Approximation schemes, and
variance reduction via control variates.

©

Oracles, from Markovian examples

Roots of h =0, on a Q C R4

©

o Federated SA: compression, control variateS, partial participation, heterogeneity,
local iterations, ...
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Compression: when frugal algorithms are mandatory

Compression operator C:

® a mapping z — C(z,U)
o s.t. for any = € R, the cost for storing/transmitting C(z, U) is lower than the
cost for storing/transmitting x.

o examples: projection, quantization

@ random or deterministic
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Compression: when frugal algorithms are mandatory

Compression operator C:

® a mapping z — C(z,U)
o s.t. for any = € R, the cost for storing/transmitting C(z, U) is lower than the
cost for storing/transmitting x.

o examples: projection, quantization

o random or deterministic
Compression within a Stochastic Gradient step:
Wit+1 = wi +Yet1 C( H(wi, Xp41)  Up1)
increasing interest in distributed optimization
Wet1 = Wk +Ye+1 H (C(wr, Up11), Xgt1)
gradient at a perturbed iterate: Straight-Through Estimator
W1 = C(wp +vet1 H(wr, Xp41) s Ury1)

low-precision SG
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