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A control, why ?



To improve Monte Carlo methods targetting: dmr = wdu
e he "naive" MC sampler depends on design parameters in R? or in infinite dimension 0

e [ heoretical studies caracterize an optimal choice of theses parameters 0, by

6, € © s.t. /H(Q,a:) dr(z) =0

or

0, € argmin@€@/0(9,x) dr(z) = 0.

e Strategies:

- Strategy 1: a preliminary "machinery" for the approximation of 604; then run
the MC sampler with 6 < 0,

- Strategy 2: learn 0 and sample concomitantly



In this talk, Monte Carlo sampling !

» O > 0 >
— X _~P (X, ) X P (X ) e

e from the Monte Carlo point of view:
which conditions on the updating scheme for convergence of the sampler 7

Case: Markov chain Monte Carlo sampler

e from the optimization point of view:
which conditions on the Monte Carlo approximation for convergence of the

stochastic optimization 7
Case: Stochastic Approximation methods with Markovian inputs



Outline

e Part I. Motivating examples: adaptive and interacting Markov chain Monte
Carlo samplers.

e Part II. Ergodicity and limit theorems.



Part I: Motivating examples



1st Ex. Adaptive Hastings-Metropolis (1/3)

Symmetric Random Walk : proposal X, /5 ~ X; + N(0,IN)
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(d=1) Different values of I : [top] a path of the Markov chain. [bottom] auto-correlation function



1st Ex. Adaptive Hastings-Metropolis (2/3)

Pioneering works: Gelman, Roberts and Gilks (1996)

Level curves of the target and proposal densities

(d = 2) The level curves of the
target density, and of the pro-
posal distribution N (Xy, Id).

The optimal rule
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[ 2 But >, is unknown



1st Ex. Adaptive Hastings-Metropolis (3/3)

Pioneering works: Haario, Saksman and Tamminen (1999).

Iterate

eSample X, by a HM kernel with proposal N (X, D} Xipq1 ~ Pft(Xt, ).

eUpdate the unknonw prameter

|t
M1 = ] y Z (X — i) (Xp — fig)

= Xy = Fira1) (Xyaq — g )T =T
+t—|—1{( t4+1 — Be1) (Xep1 — A1) |

by one step of a Stochastic Approximation algorithm designed to solve

Er |(X —Ec[X])(X —E«[XDT| -T =0.



Adaptive Importance Sampling (1/6)

2nd EX.

The problem

e A highly multimodal target density dr on X C R¢

in R?)

N

the z-path of a cha

e Two samplers with different behaviors (plot
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2nd EXx. Adaptive IS by Wang Landau approaches (2/6)
T he strategy for choosing the proposal mechanism

e A family of proposal mechanisms obtained by biasing locally the target:
- given a partition &Xq,.--- , X7 of X,
- for any weight vector 6 = (60(1),---,0(1))

Z 1y, () dw((a)c)’ with 0x(2) 1=/ dm(u).

d _
mo(x) +

I
i:1

‘)
e Optimal proposal: dmy, <proof>

e Unfortunately, 6, unavailable.



2nd EXx. Adaptive IS by Wang Landau approaches (3/6)
If 7y, were available

e T he algorithm would be:

- Sample Xq,:--,Xp, -+ i.i.d. with distribution dmy, (or a MCMC with target
dmg, )
- Compute the importance ratio

dm

—(Xy) =1 Z Ly (Xp) 0x(2)

dmg, =1

e \When approximating an expectation, set

T
[oanm Y (Z L, (X0) 9*@) B(X0).
t=1

’[,_



2nd EXx. Adaptive IS by Wang Landau approaches (4/6)
0. and therefore dmy, are unknown, so 7
o 0x € R! collects [y dm forallie{1,--- I},
e 0, the unique root of § — [y H(6,z) dmp(x) € R! where for all i € {1,---,I}
I
Hi(0,2) 1= 0(i)1xy(2) —0() ) 1x,(x)0().
=1

thus suggesting the use of a Stochastic Approximation procedure: 0, ~ limy 0;

0141 = Ot + 41 H (O, Xyqo1) Xi41 ~ dmy,

e T his update scheme is a normalized counter of the number of visits to &



2nd EX. Adaptive IS by Wang Landau approaches (5/6)
The algorithm: Wang-Landau based procedures

e Initialisation: a weight vector 6
Repeat fort =1, ---.,T

- sample a point X;, 1 ~ dmy,

- update the estimate of 0,

Orr1 =0t +vi41 H(O Xy 1)
where Xt—l—l ~ Pgt(Xt, ) and Py inv. wrt dmg.

e EXpected:

- the convergence of 6; to 0. SA scheme, fed with adaptive (controlled) MCMC
sampler,

- the convergence of the distribution of X; to dmy,



2nd EXx. Adaptive IS by Wang Landau approaches (6/6)

Does it work ? Plot: convergence of 6; and first exit times from one mode

» see F, Kuhn, Jourdain, Leliévre,

Stoltz (2014); F, Jourdain,

Lelievre, Stoltz (2015,2017,2018)
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Conclusion of the 2nd example
e Iterative sampler

eEach iteration combines : (i) a sampling step X;4; ~ Fy,(X¢,-); and (ii) a step
from an optimization algo. to update the knownledge of some optimal parameter.

e The points {X4,---,X,---} can be seen as the output of a controlled Markov
chain

E|f(Xi40)|Ft| = Po(X1,)  Fr:=0(Xou,00)

where Fy has dmg as its unique invariant distribution.

e [ he convergence of the parameter 6; is the convergence of a SA scheme with
"controlled Markovian'" dynamics

Or41 = 0t + vpp1 H(Or, Xy41)



3rd Ex. the Adaptive Equi-Energy sampler (1/4) extend the EE sampler by Kou-
Zhou-Wong, 2006

e We discussed the case when 6 € RP. But there are more general situations: 6
may be a distribution case of "interacting" MCMC. (Del Moral-Doucet, 2010; F.-Moulines-Priouret, 2012;
Schreck-F.-Moulines, 2013; F.-Moulines-Priouret-Vandekerkhove, 2016

e Both interacting and tempering and adaptive algorithm.

e Interacting: run K chains in parallel, s.t. chain #k is built by using the
points of chain #(k — 1). Except the chain #1.

e Tempering: given 81 < --- < B = 1, chain #k is designhed to target drPk.

e Adaptive: the mecanism of interaction is learnt on the fly.



3rd Ex. the Adaptive Equi-Energy sampler (2/4)
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3rd Ex. the Adaptive Equi-Energy sampler (3/4)

Target density : mixture of 2-dim Gaussian
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3rd Ex. the Adaptive Equi-Energy sampler (4/4)

e In this example, 6 is homogeneous to an empirical distribution (random proba-
bility measure).

e For this adaptive sampler schreck-F.-Moulines (2013): convergence in distribution, law
of large numbers.

e For the non-adaptive sampler: convergence anaysis in Kou-Zhou-Wong, 2006; Atchadé,
2010; Andrieu-Jasra-Doucet-Del Moral, 2011; F.-Moulines-Priouret, 2012: F.-Moulines-Priouret-VVandekerkhove,
2014

e General results when 6 is not necessarily in RP: convergence in distribution, law
of Iarge numbers, CLT in F.-Moulines-Priouret, 2012; F.-Moulines-Priouret-Vandekerkhove, 2014



Conclusion of this first part (1/3): is a theory required ?

» en - er1+1
| -
v v
—» X _~P_(X,)) > X ~Py. (X )

n+1 Bn' n n+2



Conclusion of this first part (2/3): Yes !
YES ! convergence can be lost by the adaption mechanism

Even in a simple case when

Vo € O, Py invariant wrt dm,

one can define a simple adaption mechanism
Xyy1|pastyy ~ Py, (X4, ) 0r € 0(X1:t)
such that

iME[f(X0] # [ f dr.



Conclusion of the first part (3/3): look !

Fix tg,t1 € (0,1) s.t. tog+t1 = 1.

A {0, 1}-valued chain {X;}; defined by Xy41 ~ Px,(Xt,-) where the transition
matrices are
to (1 —to) t1 (1—t1)
P — P p—
0 (1 —1tp) to (1—t1) t1

T hen

e Py and P; are invariant w.r.t [1/2,1/2]

e But {X;} is a Markov chain invariant w.r.t. [tq1,tp].

{X:} does not have the same invariant distribution as the one of Py anf P;.



Part II: Convergence of Adaptive/Controlled
Markov chains



Convergence results

e The framework:

a filtration {F,t > 0} on (2, A, P)

- a Jy-adapted X x ©-valued process {(X¢ 0¢),t > 0} defined on (£2,.A)

a family of transition kernels {Fy,0 € @} on a general state space (X, X)
a conditional distribution satisfying

E [f(Xt_|_1)|]-“t} = /P@t(Xt,dzC)f(aZ) f bounded continuous

and a convergence (in some sense) of the kernels {F,,t > 0}
BEWARE: the chain {X;}+ is NOT a Markov chain

e Questions:
- convergence in distribution of X; 7
- limit theorems (SLLN, CLT)

e Hereafter:
- focus on the convergence in distribution; then few words on CLT.
- focus first on 0 € ® C RP: then few words on a more general situation.



Assumptions (1/3) Invariant distribution

Vo € ©, dmy s.t. the kernel Fy invariant wrt my



Assumptions (2/3) (Generalized) Containment condition

e Uniform-in-0 ergodicity condition
géJDHPe(ZL‘ ) — mllTrv < Cp' p € (0,1).
In practice: a drift and a minorization condition — explicit control of ergodicity

PpV < AgV + by, Py(z,-) > Spvp(+) for z € {V < 2bp(1 — Ng) ™ — 1}

e [Weakened Cond.] for any ¢ > 0, there exists a non-decreasing sequence r¢ s.t.
limy Te(t)/t = 0 and

e(t :
llmtSUDE ||PT ( ) (Xt—re(t)' ) - Wet—re(t)HTV S ¢

- Controlled rate of growth-in-6 here, r.(t) = t*

15 (25 ) — moll v < C £ |16y < 00 a.s. limsupt=™ (Cy, v (1~ pg)7Y) < o0 as.
t



Assumptions (3/3) (Generalized) Diminishing adaptation condition

e Uniform-in-6 ergodic condition,
M E [D(6;,0;-1)] = O

where D(6,0") = sup, ||Py(z,-) — Py(z, )| Tv.

e [Weakened cond.] For any € > 0,

re(t)—1
“En Bl 2. DO+ Or—rap) | =0
J=1
In practice
- Prove a Lipschitz property D(@0,0") < C|lo—¢|

- Use the definition of 6, as a function of (X,),<, and possibly other "external" sampled points
- Require controls of the form E [W(X,)], solved e.g. by drift inequalities

E[W(X)|Fe-1] = Py, W(Xp—1) < Ao, W(Xy—1) + by, ,



Convergence in distribution (1/3)
When 7y = 7 for any 0

Under these conditions, for any bounded function f,

IME[f(X)] = [ f() dn(a)

Sketch of proof :
E [f(X0)] — / f(@) dn(z) =E[f(X)] —E [P} f(Xi)] +E [Py f(Xi0)] - / f(z) dn(z)
| < ‘]E [f(X)] —E [Pé,rf(Xt—r)} { + [[fllc E [Slgp | Py (Xt—r,-) — 7T|Tv]

r—1
B[ (X)) =B [F_ f(Xe)]| €D E[D (01t 06) ]

j=1



Convergence in distribution (2/3)

When each kernel Py has its own invariant distribution 7y, with an explicit
expression

e Under these three conditions, and
- there exists a constant a s.t. lim; | fdmy, = a a.s.

then

IME [f(X)] = a.

e Corollary: if {my, }; converges weakly to 7 a.s., then a = | fdr for any bounded
continuous function f.



Convergence in distribution (3/3)
When 7y exists but its expression is unknown

It is the most technical case: how to prove the convergence of | fdmy, when only
properties on the kernels Py, are available 7

We write

[ tamg,— [ famg, = ([ £amg,~ [ $() P (o,ay))
-+ ( / Py (z, dy) f(y) — / Péi(a:,dy)f(w) + ( / Py, (z, dy) f(y) - / / d%)

and control the blue terms by a condition on the ergodicity of the transition
kernels. For the red one,

Phf@) = PEF(2) = [ (P (e, 0dy) = Py, (2,d)) PE 2 f ()

+ [ Po (o, dy) (PR 1) = PEL W)



Convergence in distribution (3/3) (to follow)

Starting from :
Ve e X, A€ X, 3., P(Qua)=1 Vw€ Qa Iign Py ) (z, A) = Py (z, A),

the steps are:
Ve e X, 3Q., P(Q,) =1 Vw € Q. lim Py, (2, ) — Py (x,)

— Tool: separable metric space X (ex. Polish)

3¢, P(Q) =1 Vwe QU zeX lim Py, (x, ) = Py (x,),

— Tool: Polish space X + equicontinuity of {FPyf — Py f,0 ¢ ©}

aQ,, P(Q,) =1 Vw € Q. lim ng(w)(x, ) — Py (z,-),

— Tool: Feller properties of the kernels {Fy,0 € ©}.

See F.-Moulines-Priouret, 2012)



In the literature
(Roberts-Rosenthal,2007; Atchadé-F.-Moulines-Priouret, 2011; F.-Moulines-Priouret,2012; F.-Moulines-Priouret-
Vandekerkhove, 2012)

e Extensions of the sufficient conditions for "convergence in distribution" to the
case

- when NO uniform-in-6 ergodic behavior of the transition kernels {FPy}y i.e. neither
the state space X nor the parameter space © have to be finite / countable / compact

- without requiring convergence of the sequence {6:}; as a preliminary step for
the proof (when my = 7)

- without assuming the stability of the sequence {6:}; as a preliminary step for
the proof

- each kernel may have its own invariant distribution, explicitly known or not.

e Based on strenghtened "containment" and "diminishing adaptation" conditions,
- strong Law of Large Numbers for {f(X:)}: and {f(0+, X¢)}+
- Central Limit Theorem for {f(X:)}; (see below)



Strong Law of Large Numbers

Under additional assumptions strenghtening the conditions between
- the diminishing adaptation condition

| Pg,(z, ) — Py, _,(z,)|lv
V(x)
- the rate of convergence of the kernels Py to stationarity
- the stability (control of growth in t) of the sequence {0;};

Dy (6¢,0¢—1) = sup

e for any measurable function f such that sup,|f|/V < oo

im - Z F(X}) = Iign/f(a:) dmg, () a.s.

when the RHS exists a.s.

e Extensions: SLLN for (z,0) — f(x,0).



Central Limit Theorem (1/2)

1

%g (f(Xt)_/fdﬂ'Q*) Z%é (f(Xt)—/fdﬂetl) -l-ﬁZ(/fd?Tetl—/dee*)

t=1

Under the assumptions

- each kernel Py is geometrically ergodic (drift, minorization)

- Trade off: diminishing adaptation, moment conditions, stability of {0;}+
- "containment": rate of ergodicity, moment conditions, stability of {6},

e CLT for the first part, with limiting variance given by

2(F) =i Ly F(0;, X
o f —_— |7m?t; ts t)

where <comment on the Poisson equation>

F(0,2) = Py(Ngf)? — (PoNof)?, Nof = (I —Py) 1



Central Limit Theorem (2/2)

For the second part:
- Restricted to algorithms satisfying <comment>

t
E [f(Xo:)l0:-1] = [ F(w0:) du(zo) [] Po,_,(wj1,d2;)
e
- Upon noting the linearization

mwo(f) — 7o, (f) = 7o, (Pyp — P )Ng, [ + mo(FPy — Py, )No, (P — Py, )Ng, f

- Assuming: a CLT with variance ~?(f) for the first part, and a cvg in Prob to zero
for the second part

e A global CLT with additive variance

1 T
= ; (f(Xt) —/fdwe*) iw\/(O,aQ(f) +°(H)



AS a conclusion of this part II

e A family of ergodic kernels {Fy}ypco; to adapt the parameters 6;, a strategy
based on the past of the algorithm.

e [ he easiest situation:
- uniform-in-0 ergodicity conditions (i.e. roughly: may be true if the sequence

{0:}+ remains in a compact set ... )

e Far more flexible but also more technical:
- an ergodic behavior depending on 6
- and the rate of growth of ¢ — |6;| is controlled

e In both cases,
- the updating rule 6; — 0,41 is s.t. the adaption is diminishing along iterations.



