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A control, why ?

.



To improve Monte Carlo methods targetting: dπ = π dµ

•The "naive" MC sampler depends on design parameters in Rp or in in�nite dimension θ

•Theoretical studies caracterize an optimal choice of theses parameters θ⋆ by

θ⋆ ∈ Θ s.t.

∫
H(θ, x) dπ(x) = 0

or

θ⋆ ∈ argminθ∈Θ

∫
C(θ, x) dπ(x) = 0.

• Strategies:
- Strategy 1: a preliminary "machinery" for the approximation of θ⋆; then run

the MC sampler with θ ← θ⋆

- Strategy 2: learn θ and sample concomitantly



In this talk, Monte Carlo sampling !

E
[
f(Xn+1)|Fn

]
= Pθn f(Xn)

• from the Monte Carlo point of view:

which conditions on the updating scheme for convergence of the sampler ?

Case: Markov chain Monte Carlo sampler

• from the optimization point of view:

which conditions on the Monte Carlo approximation for convergence of the

stochastic optimization ?

Case: Stochastic Approximation methods with Markovian inputs



Outline

• Part I. Motivating examples: adaptive and interacting Markov chain Monte

Carlo samplers.

• Part II. Ergodicity and limit theorems.



.

Part I: Motivating examples

.



1st Ex. Adaptive Hastings-Metropolis (1/3)

Symmetric Random Walk : proposal Xt+1/2 ∼ Xt +N (0,Γ)
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(d=1) Di�erent values of Γ : [top] a path of the Markov chain. [bottom] auto-correlation function



1st Ex. Adaptive Hastings-Metropolis (2/3)

Pioneering works: Gelman, Roberts and Gilks (1996)

Level curves of the target and proposal densities
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1st Ex. Adaptive Hastings-Metropolis (3/3)

Pioneering works: Haario, Saksman and Tamminen (1999).

Iterate

•Sample Xt+1 by a HM kernel with proposal N (Xt, Γ̂t): Xt+1 ∼ P
Γ̂t
(Xt, ·).

•Update the unknonw prameter

Γ̂t+1 =
1

t+1

t+1∑
ℓ=1

(Xℓ − µ̂ℓ)(Xℓ − µ̂ℓ)
⊤

= Γ̂t +
1

t+1

{
(Xt+1 − µ̂t+1)(Xt+1 − µ̂t+1)

⊤ − Γ̂t

}
by one step of a Stochastic Approximation algorithm designed to solve

Eπ

[
(X − Eπ[X])(X − Eπ[X])⊤

]
− Γ = 0.



2nd Ex. Adaptive Importance Sampling (1/6)

The problem

• A highly multimodal target density dπ on X ⊆ Rd.
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• Two samplers with di�erent behaviors (plot: the x-path of a chain in R2)
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2nd Ex. Adaptive IS by Wang Landau approaches (2/6)

The strategy for choosing the proposal mechanism

• A family of proposal mechanisms obtained by biasing locally the target:

- given a partition X1, · · · ,XI of X ,
- for any weight vector θ = (θ(1), · · · , θ(I))

dπθ(x) =
1∑I

i=1
θ⋆(i)
θ(i)

I∑
i=1

1Xi(x)
dπ(x)

θ(i)
, with θ⋆(i) :=

∫
Xi

dπ(u).

• Optimal proposal: dπθ⋆ <proof>

• Unfortunately, θ⋆ unavailable.



2nd Ex. Adaptive IS by Wang Landau approaches (3/6)

If πθ⋆ were available

• The algorithm would be:

- Sample X1, · · · , Xn, · · · i.i.d. with distribution dπθ⋆ (or a MCMC with target

dπθ⋆)

- Compute the importance ratio

dπ

dπθ⋆
(Xk) = I

I∑
i=1

1Xi(Xk) θ⋆(i)

• When approximating an expectation, set∫
ϕdπ ≈

I

T

T∑
t=1

 I∑
i=1

1Xi(Xt) θ⋆(i)

 ϕ(Xt).



2nd Ex. Adaptive IS by Wang Landau approaches (4/6)

θ⋆ and therefore dπθ⋆ are unknown, so ?

• θ⋆ ∈ RI collects
∫
Xi dπ for all i ∈ {1, · · · , I},

• θ⋆ the unique root of θ 7→
∫
X H(θ, x) dπθ(x) ∈ RI where for all i ∈ {1, · · · , I}

Hi(θ, x) := θ(i)1X (i)(x)− θ(i)
I∑

j=1

1Xj(x)θ(j).

thus suggesting the use of a Stochastic Approximation procedure: θ⋆ ≈ limt θt

θt+1 = θt + γt+1H(θt, Xt+1) Xt+1 ∼ dπθt

• This update scheme is a normalized counter of the number of visits to Xi



2nd Ex. Adaptive IS by Wang Landau approaches (5/6)

The algorithm: Wang-Landau based procedures

• Initialisation: a weight vector θ0
Repeat for t = 1, · · · , T
- sample a point Xt+1 ∼ dπθt
- update the estimate of θ⋆

θt+1 = θt + γt+1H(θt, Xt+1) .

where Xt+1 ∼ Pθt(Xt, ·) and Pθ inv. wrt dπθ.

• Expected:
- the convergence of θt to θ⋆: SA scheme, fed with adaptive (controlled) MCMC

sampler,

- the convergence of the distribution of Xt to dπθ⋆



2nd Ex. Adaptive IS by Wang Landau approaches (6/6)

Does it work ? Plot: convergence of θt and �rst exit times from one mode
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▶ see F, Kuhn, Jourdain, Lelièvre,

Stoltz (2014); F, Jourdain,

Lelièvre, Stoltz (2015,2017,2018)

for studies of these Wang-Landau

bases algorithms; including

self-tuned SA update rules (γt is

random).
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Conclusion of the 2nd example

• Iterative sampler

•Each iteration combines : (i) a sampling step Xt+1 ∼ Pθt(Xt, ·); and (ii) a step

from an optimization algo. to update the knownledge of some optimal parameter.

• The points {X1, · · · , Xt, · · · } can be seen as the output of a controlled Markov

chain

E
[
f(Xt+1)|Ft

]
= Pθt(Xt, ·) Ft := σ(X0:t, θ0)

where Pθ has dπθ as its unique invariant distribution.

• The convergence of the parameter θt is the convergence of a SA scheme with

"controlled Markovian" dynamics

θt+1 = θt + γt+1H(θt, Xt+1)



3rd Ex. the Adaptive Equi-Energy sampler (1/4) extend the EE sampler by Kou-

Zhou-Wong, 2006

• We discussed the case when θ ∈ Rp. But there are more general situations: θ

may be a distribution case of "interacting" MCMC. (Del Moral-Doucet, 2010; F.-Moulines-Priouret, 2012;

Schreck-F.-Moulines, 2013; F.-Moulines-Priouret-Vandekerkhove, 2016

• Both interacting and tempering and adaptive algorithm.

• Interacting: run K chains in parallel, s.t. chain #k is built by using the

points of chain #(k − 1). Except the chain #1.

• Tempering: given β1 < · · · < βK = 1, chain #k is designed to target dπβk.

• Adaptive: the mecanism of interaction is learnt on the �y.



3rd Ex. the Adaptive Equi-Energy sampler (2/4)
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3rd Ex. the Adaptive Equi-Energy sampler (3/4)
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3rd Ex. the Adaptive Equi-Energy sampler (4/4)

• In this example, θ is homogeneous to an empirical distribution (random proba-

bility measure).

• For this adaptive sampler Schreck-F.-Moulines (2013): convergence in distribution, law

of large numbers.

• For the non-adaptive sampler: convergence anaysis in Kou-Zhou-Wong, 2006; Atchadé,

2010; Andrieu-Jasra-Doucet-Del Moral, 2011; F.-Moulines-Priouret, 2012; F.-Moulines-Priouret-Vandekerkhove,

2014

• General results when θ is not necessarily in Rp: convergence in distribution, law

of large numbers, CLT in F.-Moulines-Priouret, 2012; F.-Moulines-Priouret-Vandekerkhove, 2014



Conclusion of this �rst part (1/3): is a theory required ?



Conclusion of this �rst part (2/3): Yes !

YES ! convergence can be lost by the adaption mechanism

Even in a simple case when

∀θ ∈ Θ, Pθ invariant wrt dπ,

one can de�ne a simple adaption mechanism

Xt+1|past1:t ∼ Pθt(Xt, ·) θt ∈ σ(X1:t)

such that

lim
t

E [f(Xt)] ̸=
∫

f dπ.



Conclusion of the �rst part (3/3): look !

Fix t0, t1 ∈ (0,1) s.t. t0 + t1 = 1.

A {0,1}-valued chain {Xt}t de�ned by Xt+1 ∼ PXt
(Xt, ·) where the transition

matrices are

P0 =

[
t0 (1− t0)

(1− t0) t0

]
P1 =

[
t1 (1− t1)

(1− t1) t1

]
Then

• P0 and P1 are invariant w.r.t [1/2,1/2]

• But {Xt} is a Markov chain invariant w.r.t. [t1, t0].

{Xt} does not have the same invariant distribution as the one of P0 anf P1.



.

Part II: Convergence of Adaptive/Controlled
Markov chains

.



Convergence results

• The framework:
- a �ltration {Ft, t ≥ 0} on (Ω,A,P)
- a Ft-adapted X ×Θ-valued process {(Xt, θt), t ≥ 0} de�ned on (Ω,A)
- a family of transition kernels {Pθ, θ ∈ Θ} on a general state space (X ,X )
- a conditional distribution satisfying

E
[
f(Xt+1)|Ft

]
=

∫
Pθt(Xt,dx)f(x) f bounded continuous

and a convergence (in some sense) of the kernels {Pθt, t ≥ 0}

BEWARE: the chain {Xt}t is NOT a Markov chain

• Questions:
- convergence in distribution of Xt ?

- limit theorems (SLLN, CLT)

• Hereafter:
- focus on the convergence in distribution; then few words on CLT.

- focus �rst on θ ∈ Θ ⊆ Rp; then few words on a more general situation.



Assumptions (1/3) Invariant distribution

∀θ ∈ Θ, ∃πθ s.t. the kernel Pθ invariant wrt πθ



Assumptions (2/3) (Generalized) Containment condition

• Uniform-in-θ ergodicity condition

sup
θ∈Θ
∥P r

θ (x; ·)− πθ∥TV ≤ Cρr ρ ∈ (0,1).

In practice: a drift and a minorization condition → explicit control of ergodicity

PθV ≤ λθV + bθ, Pθ(x, ·) ≥ δθνθ(·) for x ∈ {V ≤ 2bθ(1− λθ)
−1 − 1}

• [Weakened Cond.] for any ϵ > 0, there exists a non-decreasing sequence rϵ s.t.

limt rϵ(t)/t = 0 and

lim sup
t

E
[
∥P rϵ(t)

θt−rϵ(t)
(Xt−rϵ(t); ·)− πθt−rϵ(t)

∥TV

]
≤ ϵ

- Controlled rate of growth-in-θ here, rϵ(t) = t•

∥P r
θ (x; ·)− πθ∥TV ≤ Cθ ρ

r
θ t−τ ∥θt∥ <∞ a.s. lim sup

t
t−τ̃

(
Cθt ∨ (1− ρθt)

−1
)
<∞ a.s.



Assumptions (3/3) (Generalized) Diminishing adaptation condition

• Uniform-in-θ ergodic condition,

lim
t

E
[
D(θt, θt−1)

]
= 0

where D(θ, θ′) = supx ∥Pθ(x, ·)− Pθ′(x, ·)∥TV.

• [Weakened cond.] For any ϵ > 0,

lim
t

E

rϵ(t)−1∑
j=1

D(θt−rϵ(t)+j, θt−rϵ(t))

 = 0

In practice
- Prove a Lipschitz property D(θ, θ′) ≤ C ∥θ − θ′∥
- Use the de�nition of θt as a function of (Xℓ)ℓ≤t and possibly other "external" sampled points
- Require controls of the form E [W (Xℓ)], solved e.g. by drift inequalities

E [W (Xℓ)|Fℓ−1] = Pθℓ−1W (Xℓ−1) ≤ λθℓ−1W (Xℓ−1) + bθℓ−1



Convergence in distribution (1/3)

When πθ = π for any θ

Under these conditions, for any bounded function f ,

lim
t

E [f(Xt)] =
∫

f(x) dπ(x)

Sketch of proof :

E [f(Xt)]−
∫

f(x) dπ(x) = E [f(Xt)]− E
[
P r
θt−r

f(Xt−r)
]
+ E

[
P r
θt−r

f(Xt−r)
]
−
∫

f(x) dπ(x)

| · | ≤
∣∣E [f(Xt)]− E

[
P r
θt−r

f(Xt−r)
]∣∣+ ∥f∥∞ E

[
sup
θ
∥P r

θ (Xt−r, ·)− π∥TV

]
∣∣E [f(Xt)]− E

[
P r
θt−r

f(Xt−r)
]∣∣ ≤ r−1∑

j=1

E
[
D
(
θt−r+j, θt−r

)]



Convergence in distribution (2/3)

When each kernel Pθ has its own invariant distribution πθ, with an explicit

expression

• Under these three conditions, and
- there exists a constant α s.t. limt

∫
f dπθt = α a.s.

then

lim
t

E [f(Xt)] = α.

• Corollary: if {πθt}t converges weakly to π a.s., then α =
∫
f dπ for any bounded

continuous function f .



Convergence in distribution (3/3)

When πθ exists but its expression is unknown

It is the most technical case: how to prove the convergence of
∫
f dπθt when only

properties on the kernels Pθt are available ?

We write∫
fdπθt −

∫
f dπθ⋆ =

(∫
f dπθt −

∫
f(y)P k

θt
(x,dy))

)
+

(∫
P k
θt
(x,dy)f(y)−

∫
P k
θ⋆(x,dy)f(y)

)
+

(∫
P k
θ⋆(x,dy)f(y)−

∫
f dπθ⋆

)
and control the blue terms by a condition on the ergodicity of the transition

kernels. For the red one,

P k
θt
f(x)− P k

θ⋆f(x) =
∫ (

Pθt(x,dy)− Pθ⋆(x,dy)
)
P k−1
θ⋆

f(y)

+
∫

Pθt(x,dy)
(
P k−1
θt

f(y)− P k−1
θ⋆

f(y)
)



Convergence in distribution (3/3) (to follow)

Starting from :

∀x ∈ X , A ∈ X , ∃Ωx,A, P(Ωx,A) = 1 ∀ω ∈ Ωx,A lim
t

Pθt(ω)(x,A) = Pθ⋆
(x,A),

the steps are:

∀x ∈ X , ∃Ωx, P(Ωx) = 1 ∀ω ∈ Ωx lim
t

Pθt(ω)(x, ·)
w−→ Pθ⋆

(x, ·)

↪→ Tool: separable metric space X (ex. Polish)

∃Ω′, P(Ω′) = 1 ∀ω ∈ Ω′, x ∈ X lim
t

Pθt(ω)(x, ·)
w−→ Pθ⋆

(x, ·),

↪→ Tool: Polish space X + equicontinuity of {Pθf − Pθ⋆f, θ ∈ Θ}

∃Ω⋆, P(Ω⋆) = 1 ∀ω ∈ Ω⋆ lim
t

P k
θt(ω)

(x, ·) w−→ P k
θ⋆
(x, ·),

↪→ Tool: Feller properties of the kernels {Pθ, θ ∈ Θ}.

See F.-Moulines-Priouret, 2012)



In the literature

(Roberts-Rosenthal,2007; Atchadé-F.-Moulines-Priouret, 2011; F.-Moulines-Priouret,2012; F.-Moulines-Priouret-

Vandekerkhove, 2012)

• Extensions of the su�cient conditions for "convergence in distribution" to the

case

- when NO uniform-in-θ ergodic behavior of the transition kernels {Pθ}θ i.e. neither

the state space X nor the parameter space Θ have to be �nite / countable / compact

- without requiring convergence of the sequence {θt}t as a preliminary step for

the proof (when πθ = π)

- without assuming the stability of the sequence {θt}t as a preliminary step for

the proof

- each kernel may have its own invariant distribution, explicitly known or not.

• Based on strenghtened "containment" and "diminishing adaptation" conditions,
- strong Law of Large Numbers for {f(Xt)}t and {f(θt, Xt)}t
- Central Limit Theorem for {f(Xt)}t (see below)



Strong Law of Large Numbers

Under additional assumptions strenghtening the conditions between

- the diminishing adaptation condition

DV (θt, θt−1) = sup
x

∥Pθt(x, ·)− Pθt−1(x, ·)∥V
V (x)

- the rate of convergence of the kernels Pθ to stationarity

- the stability (control of growth in t) of the sequence {θt}t

• for any measurable function f such that supx |f |/V <∞

lim
T

1

T

T∑
t=1

f(Xt) = lim
t

∫
f(x) dπθt(x) a.s.

when the RHS exists a.s.

• Extensions: SLLN for (x, θ) 7→ f(x, θ).



Central Limit Theorem (1/2)

1√
T

T∑
t=1

(
f(Xt)−

∫
fdπθ⋆

)
=

1√
T

T∑
t=1

(
f(Xt)−

∫
f dπθt−1

)
+

1√
T

T∑
t=1

(∫
f dπθt−1 −

∫
f dπθ⋆

)

Under the assumptions

- each kernel Pθ is geometrically ergodic (drift, minorization)

- Trade o�: diminishing adaptation, moment conditions, stability of {θt}t
- "containment": rate of ergodicity, moment conditions, stability of {θt}t

• CLT for the �rst part, with limiting variance given by

σ2(f) = lim
T

1

T

T∑
t=1

F (θt, Xt)

where <comment on the Poisson equation>

F (θ, x) = Pθ(Λθf)
2 − (PθΛθf)

2, Λθf = (I − Pθ)
−1f



Central Limit Theorem (2/2)

For the second part:

- Restricted to algorithms satisfying <comment>

E
[
f(X0:t)|θ0:t−1

]
=

∫
f(x0:t) dν(x0)

t∏
j=1

Pθj−1(xj−1,dxj)

- Upon noting the linearization

πθ(f)− πθ⋆(f) = πθ⋆(Pθ − Pθ⋆)Λθ⋆f + πθ(Pθ − Pθ⋆)Λθ⋆(Pθ − Pθ⋆)Λθ⋆f

- Assuming: a CLT with variance γ2(f) for the �rst part, and a cvg in Prob to zero

for the second part

• A global CLT with additive variance

1√
T

T∑
t=1

(
f(Xt)−

∫
fdπθ⋆

)
d−→ N

(
0, σ2(f) + γ2(f)

)



As a conclusion of this part II

• A family of ergodic kernels {Pθ}θ∈Θ; to adapt the parameters θt, a strategy

based on the past of the algorithm.

• The easiest situation:
- uniform-in-θ ergodicity conditions (i.e. roughly: may be true if the sequence

{θt}t remains in a compact set ... )

• Far more �exible but also more technical:

- an ergodic behavior depending on θ

- and the rate of growth of t 7→ |θt| is controlled

• In both cases,

- the updating rule θt −→ θt+1 is s.t. the adaption is diminishing along iterations.


