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@ Stochastic Approximation: the algorithm and the Lyapunov framework

Stochastic Approximation:
an iterative stochastic algorithm, for finding zeros of a vector field.

@ Examples of SA: stochastic gradient and beyond

Stochastic Gradient is an example of SA, but SA encompasses broader scenarios

© Non-asymptotic analysis

best strategy after T iterations, complexity analysis
@ Variance reduction

@ Conclusion
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Stochastic Approximation

Stochastic Approximation
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Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a vector field h : R4 — Rd, solve
weR?d sit. h(w)=0

Available: for all w, stochastic oracles of h(w).

The Stochastic Approximation method:

Choose: a sequence of positive step sizes {7x}x and an initial value wg € R?.
Repeat:
W1 = Wk + Vo1 H(wg, Xp41)

where H(wy, Xi41) is a stochastic oracle of h(wy).

Rmbk: here, the field h is defined on Rd; and for all w € R?,

Example: h(w) is an expectation; H(w, X}, 4 1) is a Monte Carlo approximation.
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SA: Wrt1 = Wi + Y41 H(wi, X41) with an oracle H(wy, Xj11) =~ h(wy)

A Lyapunov function. V : R¢ — R+, C! and

inf-compact s.t. ' a

(VV(w),h(w)) <0
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SA: Wrt1 = Wi + Y41 H(wi, X41) with an oracle H(wy, Xj11) =~ h(wy)

A Lyapunov function. V : R¢ — R+, C! and

inf-compact s.t. ' a

(VV(w),h(w)) <0

o Key property

A Robbins-Siegmund type inequality Robbins and Siegmund (1971)

E [V(wit1)lpasty] < V(wk) +vk+1 (VV(0r), h(wr)) + Ye+1 ok

pi depends on the conditional bias and conditional LZ-moment of the oracles.

©

The Lyapunov fct is not monotone along the random path {wg, k > 0}

o Key property for the (a.s.) boundedness of the random path, and its convergence.

o SA is an optimization method for the minimization of V'
... but, converges to {(VV(-),h(-)) = 0}.
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Examples of SA: Stochastic Gradient
and beyond

Examples of SA: Stochastic Gradient and beyond
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Stochastic Gradient is a SA method

Find a root of h: W41 = Wi + Vo411 H(wk, Xp41) where H(wy, X11) = h(wy)

SG is a root finding algorithm

o designed to solve VR(w) =0

o for convex and non-convex optimization.

SG is a SA algorithm

—

W41 = Wk — Vet1 VR(wg)

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data R(w) = % T lw, Zy)
1 n

Vector field:  h(w) = —= > Vi l(w, Z;)
=1

1
Oracle: H(w, Xpy1) = —— Z Vwl(w, Z;); X1 is a random mini-batch, cardinal b.
P€X g1
Unbiased oracles: E[H(w, Xj11)] = h(w)
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Majorization-Minimization algorithms, with structured majorizing func-

tions

Expectation-Maximization, for curved exponential family Dempster et al (1977)
- SAEM, SA with biased or unbiased oracles Delyon et al (1999)

- Mini-batch EM, SA with unbiased oracles adapted from Online EM - Cappé and Moulines (2009)

MM algorithms for the minimization of F' : RP — R
AN
F()y<Q(,7), v F(r) = Q(r,7)

Q(‘v T) = <E [S(X T)L ¢()>

Structured majorizing fcts: parametric family,
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func-

Majorization-Minimization algorithms, with structured majorizing

tions

Expectation-Maximization, for curved exponential family Dempster et al (1977)
- SAEM, SA with biased or unbiased oracles Delyon et al (1999)

- Mini-batch EM, SA with unbiased oracles

adapted from Online EM - Cappé and Moulines (2009)

) MM algorithms for the minimization of F' : RP — R
\ /
\
F() <Q(,7), VT, F(r)=Q(r,7)

Q(‘v T) = <E [S(X T)L ¢()>

Structured majorizing fcts: parametric family,

Minimize

wy, ——— T(wyg) := argming (wg, $(0))
Majerize, et = E [S(X, T(wk))]

o A root-finding algorithm: ES(X,T(w))] —w=0
o Oracles = Monte Carlo approximations of the intractable expectation
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Value function in a Reward Markov process:

o Markov process (s¢); with stationary distribution 7

o taking values in §, Card(S) = n.

o Reward R(s, s’) RSS) |)
o Value function: @ (@ D) S
VseS, Vi(s) := > A'E[R(St, St 41)]S0 = 5] .
t>0
The Bellman equation B[V]-V =0

IE[R(SQ,Sl)+)\V(Sl)|SO=S]7V(S)=O, Vs e S

Algorithm TD(0): with linear fct approximation: V¢ := ®w = w1 ®1(-) + -+ + waPa(-)

TD(0) is a SA Sutton (1987); Tsitsiklis and Van Roy (1997)
with mean field h(w) := ®' diag(w) (B[Pw] — Pw)

Oracle:  H(w, (S, Spi1, R(Sks Spy1))) = (R(Sk, Sp1) + AV (Spp1) = V¥ (Sp)) (g, )
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Understanding the behavior of SA algorithms and designing improved algorithms
require new insights that depart from the study of traditional SG algorithms.

What is the “gradient case” 7

o the mean field h is a gradient:  h(w) = —VR(w)
o the oracle is unbiased: E[H(w,X)] = h(w)
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Non-asymptotic analysis

Non-asymptotic analysis
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» Asymptotic convergence analysis, when the horizon tends to infinity
Benveniste et al (1987/2012), Benaim (1999), Kushner and Yin (2003), Borkar (2009)

o almost-sure convergence of the sequence {wy,k > 0}
o to (a connected component of) the set £ := {w : (VV(w), h(w)) = 0}
o CLT, ---

» Non-asymptotic analysis

Given a total number of iterations T'

o After T calls to an oracle, what can be obtained ?
e-approximate stationary point and sample complexity

o How many iterations to reach an e-approximate stationary point

Ve>0, E[W(we) <e
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wWrt1 = Wi + Ye+1 H(wg, Xgy1)

Lyapunov function V' and control W

There exist V : R? — [0, +00), W : R — [0, +-00) and positive constants s.t.

o Vand W: Yw (VV(w),h(w)) < —pW(w)
o V smooth Vw,w [|[VV(w) = VV ()| € Ly |jw — ||
h(w) V(w) W (w)
Gradient case —VR(w) R(w) H’l(w)H2
and R convex wy solution —VR(w) 0.5]lw — wy |2 — (w — Wy, h(W))
and R strongly cx  w solution —VR(w) 0.5|lw — wy |2 W = V or, as above
Stochastic EM S(T(w)) — w F(T(w)) ()12
TD(0) P, solution &' D(BPw — dw) 0.5]|w — wy |2 (w— wyx) D' DP(w — wy)
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wWrt1 = Wi + Ye+1 H(wg, Xgy1)

On the oracles and the mean field

There exist non-negative constants s.t.

o The mean field Vo [[h(w)]|? < co+ c1 W(w)

for all k, almost-surely,

o Bias IIE [H<ka Xk+1)|]'_lc} — h(w)lI? < 70 + T W (wi)

H 2 2 2
o Variance E [IlH(wk, Xpp1) — E [H@k,xkﬂ)‘fk] 12| 7] < 08 + 03w (w)

o If biased oracles ie. 7o + 71 > 0,
IV V(@)I?
vev (VTo/2 + V7)) < p, cy :(=sup —————
w W (w)

Includes cases:

o Biased oracles, unbiased oracles

@ Bounded variance of the oracles, unbounded variance of the oracles

15/25
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Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that v € (0, Ymax), n > o0?4e; >0

2(p —D1)
Ly m

Ymax ‘=

Then, there exist non-negative constants s.t. for any T 2 1

T
E[V(wo
3 e g ()] < 2 el
1 D=1 ek D o1 Vele
T 2
+ Ly mo 72521 R
D=1 Yeke
2521 Yk

+ cvv/T0
22:1 Yele

ne =2(p —by) —vpLyng >0

o 1y depends on the bias and variance of the oracles; 1o > 0.
@ For unbiased oracles: 7o =b; =0

o Better bounds when V' = W: not discussed here ex.: SGD for strongly cvx fct; TD(0)
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The strategy

o Choose a constant stepsize = 4= dmax A V2E[V(w0)]
P e ST TR A ey VT
o Random stopping: return wg,. where Ry ~U({0,---,T —1})
or when W is convex: return the averaged iterate -1 Z;F;Ul W
yields

<2\/2LV770\/IE[V(WO)}V 8E [V (wo)] Le V7o

E [W(wr
[ (WT’, )] - (p—b1)v/f ’Ymax(p_bl)T Vp_bl

When 7 = 0 i.e. unbiased oracles, or bias scaling with W, it is an optimal control in expectation.

When 79 > 0:
- the term can not be made small with constant step size

- ad-hoc strategies: play with "design parameters” to make this term small.
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For all € > 0, let T(e) C N s.t. for all T € T (e), E [W(wr,)] <e

For unbiased oracles,

T (€) = [Te, +00) with

Ly (1
T. := 8E[V (wo)] L)/ﬂv (72 v )

o Low precision regime: ¢ > 2ng/n1,

L X
T. = 4E[V (wo)] W;Q =, oy = Jmax

o High precision regime: € € (0,2n0/m],

noLyv Y= pc
p?e?’ 2o Ly

Mg = SE[V(wo)}
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EM h(w) = %Z;”zl Si(T(w)) —w  where Si(r) == [y Si(x)w(x; 7)da
The SA-EM oracle

o Monte Carlo sum with m points,

o case "Self-normalized Importance Sampling”: bias 8o/m and variance (1 /m.

Complexity
For all € > 0, let 7 (¢) C N2 s.t. for all (T,m) € T (e), E [W(wr,)] <e
- 16E[V (w()](1 + 72 /m) y 32E[V (w()]52 Ly . dcy
- v2 . ke mo2 . k262 T (1 = K)vmine
For low precision regime,
C1 Ca
Te = —, me = —, costeomp = Te (nme costyic + costopt )
€ €
Other rates for low precision regime.
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Variance Reduction within SA

Variance Reduction within SA
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o Add a random variable to the natural oracle H(w, X)

@ Control variates U, classical in Monte Carlo:

E[H(w,X)+ U] =E[H(w, X)] Var (H(w, X) + U) < Var (H(w, X)) .

Introduced in Stochastic Gradient, in the case finite sum

o) = % S hiw)
=1

Extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al
(2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)
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Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR
Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting: h(w) = Zhi(w) and n large

o At iteration #(k + 1), a natural oracle for h(wy) is

1
H(wg, Xpy1) == T Z hi(wk) X}y 41 mini-batch from {1, ..., n}, of size b

1€X k11

@ The SPIDER oracle is

1 1
HSp = = g h(wk)—l- HSP - E wk 1)
k+1 - T
* b 1eX Vk b EXg
S oracle
for h(wi—1) oracle

for h(wg_1)

o Implementation: refresh the control variate every Kj, iterations

22/25
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Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in

sA

RQO: unknown weights, means and covariances.

SPIDER-SA

A R A AR R Ry 4 —_—

———
2
20 0 E) & 100 120 140
epoch
Estimation of 20 parameters, one path of SA Estimation of 20 parameters, one path of SPIDER-SA
jxt0® 20 opochs § 0 40 epochs
Squared norm of the mean field h, af- 4 *

ter 20 and 40 epochs; for SA and three

variance reduction methods

] Is = =

) A SVRSA  SPDERSA E3 Frsa SVRSA  SPDERSA

Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.

10°)

8105
10

No of examples
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For a fixed accuracy level, for different values of the problem size n, display
the number of examples processed to reach the accuracy level (mean nbr over

50 indep runs).
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Conclusion

Conclusion
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Conclusion

o SA methods with non-gradient mean field and/or biased oracles - in ML and
compurational statistics.

o A non-asymptotic analysis for general Stochastic Approximation schemes

o For finite sum field h: variance reduction within SA via control variates.

o Oracles, from Markovian examples

o Roots of h =0, on Q C R%

o Federated SA: compression, control variateS, partial participation, heterogeneity,
local iterations, ...
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