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Intertwined, why 7



To improve Monte Carlo methods targetting: dmr = wdu
e he "naive" MC sampler depends on design parameters in R? or in infinite dimension 0

e [ heoretical studies caracterize an optimal choice of theses parameters 0, by

6, € © s.t. /H(Q,a:) dr(z) =0

or

0, € argmin@€@/0(9,x) dr(z) = 0.

e Strategies:

- Strategy 1: a preliminary "machinery" for the approximation of 604; then run
the MC sampler with 6 < 0,

- Strategy 2: learn 0 and sample concomitantly



To make optimization methods tractable

e Intractable objective function
0 s.t. h(f) =0 when h is not explicit h(0) = /XH(G,:I:) dmg(x)

or
argmingee)/)(C(H,a:) dmg(x)
e Intractable auxiliary quantities

Ex-1 Gradient-based methods

VF(0) = /XHw,x) drg(a)

Ex-2 Majorize-Minimization methods

at iteration t,  f(0) < Fi(§) = /X Hy(0,7) dry o(x)

e Strategies: Use Monte Carlo techniques to approximate the unknown quantities



In this talk, Markov !

—  » 8 = 0 >
— X _~P, (X, )——» X~ PouiX ) o

e from the Monte Carlo point of view:

which conditions on the updating scheme for convergence of the sampler 7
Case: Markov chain Monte Carlo sampler

e from the optimization point of view:

which conditions on the Monte Carlo approximation for convergence of the
stochastic optimization 7

Case: Stochastic Approximation methods with Markovian inputs

e Application to a Computational Machine Learning pbm: penalized Maximum
Likelihood through Stochastic Proximal-Gradient methods



Part I:
Theory of controlled (or adaptivey Markov chains



Example 1/ Adapted Markov chain Monte Carlo samplers

e Hastings-Metropolis algorithm, with Gaussian proposal and target dn on X C R

Proposal: i1 ~ Ng(Xy,0)
Accept-Reject X, = { ?jl \(/)Vti’rt]zrsvrizzability a(Xt, Yit1)
summarized: X;1q ~ Pp(Xy,-)
e "Optimal" choice of the covariance matrix 6
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Example 1 (to follow)/ Adapted Markov chain Monte Carlo samplers

e T he algorithm

Sample Xiqp1 ~ Py, (Xy,-)
SA scheme: [, = empirical cov matrix of X;.,, 1 computed from [}, X,
0,1 = (2.38)%d 1y

e In this example, a family of transition kernels {Fy,0 € ©} and

VO, Py invariant w.r.t.m

e Convergence results: (saksman-Vihola, 2010; F.-Moulines-Priouret, 2012)

- limy 6 = Qopt

- the distribution of (X;); converges to 7 (conditions on the tails of =)
- strong LLN, CLT for the samples {X;}+



Example 2/ Adapted Importance sampling by Wang-Landau approaches
e A highly multimodal target density dr on X C R%,

e A family of proposal mecanisms: Given a partition Xq,---, Xy of X,

4 dr(z)
dmg(x) 1x.(x) ~
(@) 2 ) Sy

1=
e Optimal proposal: dmg, with 04(i) = fxidﬂ(u),

0= (0(1),---,0(I)) a weight vector

e 0., unique limiting value of a Stochastic Approximation scheme

I
with mean field /XH(Q,X) dmg(z)  and Hy(8,2) = 6() | 1x(z) — > 0(j)1x (2)
j=1
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Example 2 (to follow)/ Adapted Importance sampling by Wang-Landau
approaches

e T he algorithm

Sample: X1 ~ Py, (Xy,-), where mgFPy = my
SA scheme: 9t—|—1 = 0 + 'Yt—|—1H(0ta Xt—|—1)

e In this example, a family of transition kernels {Fy,0 € @} such that

V0, Py invariant w.r.t. my

e Convergence results: (F.-Jourdain-Lelievre-Stoltz-2015,2017,2018)

- 0; converges to 04 a.s.;

- the distribution of X; converges to dmy_;

- 0; is an estimate of the importance ratio [dn/dmg [(z), constant along each X;.



Is a “theory” required 7?7
YES ! convergence can be lost by the adaption mecanism

Even in a simple case when

Vo € O, Py invariant wrt dm,

one can define a simple adaption mecanism
Xyyi|pastyy ~ Py, (X, ) 0t € 0(X1:t)
such that

imE[f(X0] # [ f dr.

A {0, 1}-valued chain {X;}; defined by Xi41 ~ Px,(X¢, ) where the transition matrices are

Py = [(1 t_oto) (1 t_otO)} P = [(1 t_ltl) (1 t—ltl)]

Then Py and P; are invariant w.r.t [1/2,1/2] but {X;} is a Markov chain invariant w.r.t. [t1,t0]



Convergence results

e T he framework:

a filtration {F:,t > 0} on (2, A, P)

a Fr-adapted X x ©-valued process {(X¢,0¢),t > 0} defined on (£2,.4)

a family of transition kernels {FPy,0 € ©} on a general state space (X, X)
a conditional distribution satisfying

E [f(Xt+1)|]-“t} = /P@t(Xt,dzC)f(aj) f bounded continuous

and a convergence (in some sense) of the kernels {F,,t > 0}

e Questions:
- convergence in distribution of X; 7
- limit theorems

e Hereafter:
- focus on the convergence in distribution
- e CRP



Assumptions (1/3) Invariant distribution

Vo € ©, dmy s.t. the kernel Fy invariant wrt my



Assumptions (2/3) (Generalized) Containment condition

e Uniform-in-0 ergodicity condition
sup || Py (z; ) — mgllrv < Cp’
0c©
In practice: a drift and a minorization condition — explicit control of ergodicity

PpV < AgV + by, Py(z,-) > Spvp(+) for z € {V < 2bp(1 — Ag) ™ — 1}

e A generalized condition: for any € > 0, there exists a non-decreasing sequence
re S.t. limgre(t)/t = 0 and

e(t :
lim sup It 1P () o Kt—re() ) —Wet_r€<t>’|TV] =€
- Controlled rate of growth—in—@ here, rc(t) = t°
1P (x; ) — mgllTv < Cg py

t=7 ||6¢]| < 0o a.s. limsupt™" (Cy, v (1—pg)~ ') < oo as.
t



Assumptions (3/3) (Generalized) Diminishing adaptation condition

e When uniform-in-6 ergodic condition, check
M E [D(6;,0;-1)] = O

where D(6,0") = sup, ||Py(z,-) — Py(z, )| Tv.

e Otherwise: for any ¢ > 0,

re(t)—1
IME | > DO (t)+jr Or—re(t)) | = O
j=0
e In practice
- Prove a Lipschitz property D(6,0") <C|6 -0

- Use the definition of Qt as a function of (XE)Egt and possibly other "external" sampled points
- Require controls of the form E[W (X/,)], solved e.g. by drift inequalities

E[W(X)|Fr—1] = Py,_ W (Xp_1) < Xg,_ W(Xp_1) +bg,_,



Convergence in Distribution (when 7wy = 7= for any 0)

Under these conditions, for any bounded function f,

IME[f(X9)] = [ f(2) dr(x)



In the literature

(Roberts-Rosenthal,2007; F.-Moulines-Priouret,2012; F.-Moulines-Priouret-Vandekerkhove,2012)

e Based on strenghtened "containment" and "diminishing adaptation" conditions,
- strong Law of Large Numbers for {f(X:)}: and {f(0+, X¢)}
- Central Limit Theorem for {f(X;)}+

e In the case 6 € RP but also in more general situations: 6 may be a distribution
case of "interacting" MCMC. (Del Moral-Doucet, 2010)

eResults in the case each kernel Py has its own invariant distribution my:

Iip’]E[f(Xt)] = Iign /f(:c) dmg, (x) (RHS, assumed constant a.s.)



AS a conclusion of this part 1

e A family of ergodic kernels; to adapt the parameters 6;, a strategy based on
the past of the algorithm

e [ he easiest situation:
- uniform-in-60 ergodicity conditions

e Far more flexible but also more technical:
- an ergodic behavior depending on 6
- and the rate of growth of ¢+ |6;| is controlled

e In both cases,
- the updating rule 0, — 0,41 is s.t. the adaption is diminishing along iterations.



Part II.

Stochastic Approximation with Markovian
dynamics



Stochastic Approximation (SA) methods

e Designed to solve on © C RP: h(0) =0 when h is not explicit but

h(0) = /X H(6, x) dmy(z)

e Algorithm:

- Choose: a deterministic positive (decreasing) sequence {~v:}+ s.t. > ;v = +o0
- Initialisation: 0 = Ojhit € ©, Xo = Zjnit

- Until convergence:

Xiq1 ~ Py, (Xt,-) Orr1 = 0t + 1 H(O, Xy41)

where Py inv. wrt my.

Beware! a biased approximation

E [H(00, Xp )| 7] = h(0) = | (Py, (X, do) — drg,(2)) H(6, )



Convergence analysis for SA: the successive steps

1- The sequence {0;}+ is stable i.e. (w.p.1l) there exists a compact subset I of
© such that 6; € IC for any t.

2- Convergence of {0:}; to £ (or to a connected component of £; or to a point
Ox € L).

e Required: there exists a non-negative Lyapunov function V:

V(6 < V() — (6 Wiy .
(Orr1) < V(0) — 741 907(0) + vig1 Wiga
signed
whose level sets are compact subsets of ©, and ¢ is s.t. that

inf % >0 with £ :={¢° =0} C {V < M}
compactCO\L

Control of the "noise":

t

sup | E Yi+1 (H Ok, X4+1) — h(0r)) |
t
k=1




Stability: a crucial point - Different strategies

e Stable by definition:

Or4+1 = 0t + ve-1H (O, Xy41)

quite unlikely

e Force the stability by a projection on a compact subset IC

Or41 = Nic (0 + vg1H (01, Xo41))

Limiting points: in LN K. How to choose IC 7

e Use the Chen’s technique: projection on growing compact subsets.
(Chen-Zhu, 1986)



Self-stabilized Stochastic Approximation (the Chen’s technique)
Choose compact subsets {IC;};~0 s.t. U; K; =© and C; C K4 1.

e (Start - Block 1):

0o = Oinit € Ko and Xg = =i, and repeat for ¢ > 0
X1~ Py, (Xy,-) Or+1 = Ot + -1 H (01, Xy11)

until 9t—|—1 ¢ Ko. Set Th =t+ 1.

e (Stop & re-start, Block ¢+ 1)
01, = Oinit, X1, = Zinit and repeat for ¢t > 0

XTptt+1 ~ Fop o (X148 ) 0T, +t+1 = 01,4+ + Vgtt+1H O, 44, X1\ 41 41)
until 9Tq‘|—t+1 §§ /Cq. Set Tq+1 = Tq +t+4+ 1.



When does self-stabilization SA "work" ? (1/3)
e If the number of "stop & re-start" is finite, it works !

then there exists L s.t.
(@) {6+}+ is in the compact set K,
(b) for any ¢t > 0

XTpt+1 ~ Pop (X144 7) O, 4441 = O, 44 + Vo441 HOT, 14, X7y 44-1)

o If it is not: as if with py;4 1 < vyp4441 fOr arbitrarily large L:

0o = Oinit, Xo = Tinit, X¢41 ~ Py, (X3, ), Ory1 =0t + pryp1 H (O, X4y 1)



if it is not finite (2/3)

eLemma. Assume that A is continuous and there exists a C'! non-negative func-

tion V s.t.

- the level sets {V < M} are compact subset of ©;
- the set £ = {(VV;h) = 0} is compact;

- and on L€, (VV; h) <O.

Let 0;hit € K. Let Mg be s.t. Kgu L C {V < Mp}.

There exist 6, A\ > 0 such that

k

sup pr. < \, sup H(0;, X Ch(0)) | < 8| = 014 € [V < Mg+ 11,
1<k<tpk 1< k<t|jzlp=7( (0, Xj41) (J)>| t €1 o+1}



if it is not finite (3/3)

eProve for any compact subset C

>5)=0.

k
> Y45 (H(O5, Xj41) — h(6)))
j=1

|

e Use the decomposition below and use properties on controlled Markov chains
since X]_|_1 ~ ng(Xj, )

Lll—>moo P(xinitaeinit)ﬂ’L—ko (22':1) Lo, e

e Apply the B-T inequality

k
> pj (H(Qjan—l—l) - h(ej))
=1

E(winitﬁinit)

sup 19 L.
b1 1:k

The Poisson equation: Hy s.t. Hy(x) — PyHy(z) = H(6,z) — h(0).

k k
ij (H(Qjan—l—l) — h(ej)) = ij (Flgj(XHl) - Pﬂjﬁ@j(Xj))
j=1 j=1

k

k
+ Z Pj (P9jﬁ9j(Xj) - P9j+1ﬁ9j+1(Xj+1)> + Z Pj (P9j+1g9j+1(Xj+1) - Pejg@j(Xj-l-l))
j=1 Jj=1



In the literature, SA with Markovian dynamics
(F,2015; F.-Moulines-Schreck-Vihola,2016; Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

e In the case 0 € RP,

- Sufficient conditions for the convergence

- Central Limit Theorems (along a converging path) for both the sequence {Ht}t and the
averaged sequence

_ 1 L
Or==> 0
t =1

- Distributed SA

e Some results in the infinite dimensional framework for 6; with i.i.d. dynamics.



Part III:
Stochastic Proximal-Gradient algorithims



Penalized Maximum Likelihood inference

e An intractable log-likelihood of the observations Yj .,
- Ex: Latent variable models

((Y1:0:0) =109 [ p(Yion, ;) dv(a)

e A sparsity condition on 6 through a non smooth and convex penalty
- BEx-1: g(9) = Al|9]|1

e Solve

argming £(0) + g(0)

smooth, intractable non smooth, convex, tractable



Monte Carlo approximations for gradient-based optimization methods

e In this "latent variable model" example, as in many examples:

VI©0) = [ H(0,2) dmy(a)

where my: (the a posteriori) distribution known up to a normalization constant

(dependance upon Yi., omitted)
— intractable integral.

e If the gradient were available: iterative algorithm

_ 1
Upt1 = ProxXy, ;g (Ut — ’Yt—l—lvf(ut)> Prox, ¢(7) = argmin, (9(“) + ZHU - 7'||2>
e Since it is not: iterative algorithm
]. mi4q
0141 = ProXy, 1 g | 0t — V41 —— > H(O4 X141 1) Xip1k~ Po,(Xpg1 —1,)
t k=1



Questions

- Does the stochastic version inherit the same asymptotic behavior as the (exact)
Gradient-Proximal algorithm 7 i.e. convergence of {6;};

- How to choose the stepsize sequence {~+}:7

- How to choose the number of Monte Carlo samples m; 7 Is the "SA regime"
(i.e. my = 1) possible 7

- What about the rate of convergence 7

- Is the rate improved by Nesterov-based acceleration 7 is it improved by Aver-
aging techniques 7



Assumptions

e On the non-smooth part: g : RP — [0, 0], is not identically +oco, convex and
lower semi-continuous.

e On the smooth part: f:RP — R is convex, C'! on R? and there exists L such
that for any 0,0’

IVF(0) = VO <L 60|

e On the solution set: £ :=argming(f + g) = {0 = Prox,4(0 — vV f(0))} is a non
empty subset of © = {g < oco}.

e On the stepsize: > ;v = oo

e On the perturbation 7,41 1= mt_+11 Z;-n:“{l H(0¢, X441 ) — h(0): the series

> nt, ST el > vt (T (0r—1); me)
t t t

converge



Results (Atchade-F-Moulines, 2017)

1 mt—|—1
Or4+1 = ProxXy, 19 | 0t — 741 > H(O4 X401 1)
Mi+1 k=1

e Convergence of the iterates {0;};: there exists 0, € £ s.t. lim;0; = 0.
e For non-negative weights {a; ;} S.t. 22:1 ap+ = 1, an explicit upper bound of

t
(f +9) (B:) —min(f +9) < > apy (F +9)(0) —min(f+g) < -
k=1

where

¢
0r = > a0
k=1



Rates of convergence on the functional (f + ¢)(0;) — min(f + g)
e Rate of the exact algorithm: O(1/t)

e Stochastic version with increasing batch size
- After t iterations, the same rate by choosing

¢
Ve ="y my =1t 9t=t_129k
k—1

- BUT the total Monte Carlo cost is O(t2): complexity O(1/+/1).

e Stochastic version with fixed batch size
- After t iteratons, a rate O(1/+/t) by choosing

vy =t 1/2 my =m Or=1t"13" 6

- the total Monte Carlo cost is O(t): complexity O(1/+/1).



Nesterov’s acceleration, rate of convergence of the functional

pe—1—1
U1 = PFOX%_HQ (1975 — Yt+1 Vf(ﬂﬂ) Y = ur + ! 1t (ut — ut—l)

where py = O(t).
e Rate of the exact algorithm: O(1/t%)

e Stochastic version with increasing batch size
- After t iterations, the same rate by choosing

V¢ = Y my = t° 04

- BUT the total Monte Carlo cost is O(t%): complexity O(1/v/t).



Conclusion
(F.-Risser-Atchade-Moulines,2018;F-Ollier-Samson,2019)

Given a Monte Carlo budget t:

e The (perturbed) Proximal-Gradient combined with averaging has the same
complexity as the (perturbed) Nesterov-accelerated Proximal-Gradient: O(1/+/t)

e Nesterov-accelerated Proximal-Gradient 4+ weighted averaging strategies: no
improvement

e Nesterov-accelerated Proximal-Gradient 4 other relaxations u; = O(td) for some
de (0,1): no improvement
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