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Intertwined, why ?

.



To improve Monte Carlo methods targetting: dπ = π dµ

•The "naive" MC sampler depends on design parameters in Rp or in in�nite dimension θ

•Theoretical studies caracterize an optimal choice of theses parameters θ? by

θ? ∈ Θ s.t.

∫
H(θ, x) dπ(x) = 0

or

θ? ∈ argminθ∈Θ

∫
C(θ, x) dπ(x) = 0.

• Strategies:
- Strategy 1: a preliminary "machinery" for the approximation of θ?; then run

the MC sampler with θ ← θ?

- Strategy 2: learn θ and sample concomitantly



To make optimization methods tractable

• Intractable objective function

θ s.t. h(θ) = 0 when h is not explicit h(θ) =
∫
X
H(θ, x) dπθ(x)

or

argminθ∈Θ

∫
X
C(θ, x) dπθ(x)

• Intractable auxiliary quantities

Ex-1 Gradient-based methods

∇f(θ) =
∫
X
H(θ, x) dπθ(x)

Ex-2 Majorize-Minimization methods

at iteration t, f(θ) ≤ Ft(θ) =
∫
X
Ht(θ, x) dπt,θ(x)

• Strategies: Use Monte Carlo techniques to approximate the unknown quantities



In this talk, Markov !

• from the Monte Carlo point of view:

which conditions on the updating scheme for convergence of the sampler ?

Case: Markov chain Monte Carlo sampler

• from the optimization point of view:

which conditions on the Monte Carlo approximation for convergence of the

stochastic optimization ?

Case: Stochastic Approximation methods with Markovian inputs

• Application to a Computational Machine Learning pbm: penalized Maximum

Likelihood through Stochastic Proximal-Gradient methods



.

Part I:

Theory of controlled (or adaptive) Markov chains

.



Example 1/ Adapted Markov chain Monte Carlo samplers

• Hastings-Metropolis algorithm, with Gaussian proposal and target dπ on X ⊆ Rd

Proposal: Yt+1 ∼ Nd(Xt, θ)

Accept-Reject Xt+1 =

{
Yt+1 with probability α(Xt, Yt+1)
Xt otherwise

summarized: Xt+1 ∼ Pθ(Xt, ·)

• "Optimal" choice of the covariance matrix θ

θopt =
(2.38)2

d
Covπ(X) =

(2.38)2

d
Γopt



Example 1 (to follow)/ Adapted Markov chain Monte Carlo samplers

• The algorithm

Sample Xt+1 ∼ Pθt(Xt, ·)
SA scheme: Γt+1 = empirical cov matrix of X1:t+1 computed from Γt, Xt+1

θt+1 = (2.38)2d−1Γt+1

• In this example, a family of transition kernels {Pθ, θ ∈ Θ} and

∀θ, Pθ invariant w.r.t.π

• Convergence results: (Saksman-Vihola, 2010; F.-Moulines-Priouret, 2012)

- limt θt = θopt

- the distribution of (Xt)t converges to π (conditions on the tails of π)

- strong LLN, CLT for the samples {Xt}t



Example 2/ Adapted Importance sampling by Wang-Landau approaches

• A highly multimodal target density dπ on X ⊆ Rd.

• A family of proposal mecanisms: Given a partition X1, · · · ,XI of X,

dπθ(x) ∝
I∑

i=1

1Xi(x)
dπ(x)

θ(i)
, θ = (θ(1), · · · , θ(I)) a weight vector

• Optimal proposal: dπθ? with θ?(i) =
∫
Xi

dπ(u),

• θ?, unique limiting value of a Stochastic Approximation scheme

with mean �eld

∫
X

H(θ,X) dπθ(x) and Hi(θ, x) = θ(i)

1Xi
(x)−

I∑
j=1

θ(j)1Xj
(x)

 .
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Example 2 (to follow)/ Adapted Importance sampling by Wang-Landau

approaches

• The algorithm

Sample: Xt+1 ∼ Pθt(Xt, ·), where πθPθ = πθ

SA scheme: θt+1 = θt + γt+1H(θt, Xt+1)

• In this example, a family of transition kernels {Pθ, θ ∈ Θ} such that

∀θ, Pθ invariant w.r.t. πθ

• Convergence results: (F.-Jourdain-Lelievre-Stoltz-2015,2017,2018)

- θt converges to θ? a.s.;

- the distribution of Xt converges to dπθ?;

- θt is an estimate of the importance ratio [dπ/dπθ?](x), constant along each Xi.



Is a �theory� required ?

YES ! convergence can be lost by the adaption mecanism

Even in a simple case when

∀θ ∈ Θ, Pθ invariant wrt dπ,

one can de�ne a simple adaption mecanism

Xt+1|past1:t ∼ Pθt(Xt, ·) θt ∈ σ(X1:t)

such that

lim
t

E [f(Xt)] 6=
∫
f dπ.

A {0,1}-valued chain {Xt}t de�ned by Xt+1 ∼ PXt(Xt, ·) where the transition matrices are

P0 =
[

t0 (1− t0)
(1− t0) t0

]
P1 =

[
t1 (1− t1)

(1− t1) t1

]
Then P0 and P1 are invariant w.r.t [1/2,1/2] but {Xt} is a Markov chain invariant w.r.t. [t1, t0]



Convergence results

• The framework:

- a �ltration {Ft, t ≥ 0} on (Ω,A,P)

- a Ft-adapted X×Θ-valued process {(Xt, θt), t ≥ 0} de�ned on (Ω,A)

- a family of transition kernels {Pθ, θ ∈ Θ} on a general state space (X,X )

- a conditional distribution satisfying

E
[
f(Xt+1)|Ft

]
=
∫
Pθt(Xt,dx)f(x) f bounded continuous

and a convergence (in some sense) of the kernels {Pθt, t ≥ 0}

• Questions:

- convergence in distribution of Xt ?

- limit theorems

• Hereafter:
- focus on the convergence in distribution

- θ ∈ Θ ⊆ Rp



Assumptions (1/3) Invariant distribution

∀θ ∈ Θ, ∃πθ s.t. the kernel Pθ invariant wrt πθ



Assumptions (2/3) (Generalized) Containment condition

• Uniform-in-θ ergodicity condition

sup
θ∈Θ
‖P rθ (x; ·)− πθ‖TV ≤ Cρr

In practice: a drift and a minorization condition → explicit control of ergodicity

PθV ≤ λθV + bθ, Pθ(x, ·) ≥ δθνθ(·) for x ∈ {V ≤ 2bθ(1− λθ)−1 − 1}

• A generalized condition: for any ε > 0, there exists a non-decreasing sequence

rε s.t. limt rε(t)/t = 0 and

lim sup
t

E
[
‖P rε(t)θt−rε(t)

(Xt−rε(t); ·)− πθt−rε(t)‖TV

]
≤ ε

- Controlled rate of growth-in-θ here, rε(t) = t•

‖P rθ (x; ·)− πθ‖TV ≤ Cθ ρrθ

t−τ ‖θt‖ <∞ a.s. lim sup
t

t−τ̃
(
Cθt ∨ (1− ρθt)

−1
)
<∞ a.s.



Assumptions (3/3) (Generalized) Diminishing adaptation condition

• When uniform-in-θ ergodic condition, check

lim
t

E
[
D(θt, θt−1)

]
= 0

where D(θ, θ′) = supx ‖Pθ(x, ·)− Pθ′(x, ·)‖TV.

• Otherwise: for any ε > 0,

lim
t

E

rε(t)−1∑
j=0

D(θt−rε(t)+j, θt−rε(t))

 = 0

• In practice

- Prove a Lipschitz property D(θ, θ′) ≤ C ‖θ − θ′‖
- Use the de�nition of θt as a function of (X`)`≤t and possibly other "external" sampled points

- Require controls of the form E [W (X`)], solved e.g. by drift inequalities

E
[
W (X`)|F`−1

]
= Pθ`−1

W (X`−1) ≤ λθ`−1
W (X`−1) + bθ`−1



Convergence in Distribution (when πθ = π for any θ)

Under these conditions, for any bounded function f ,

lim
t

E [f(Xt)] =
∫
f(x) dπ(x)



In the literature

(Roberts-Rosenthal,2007; F.-Moulines-Priouret,2012; F.-Moulines-Priouret-Vandekerkhove,2012)

• Based on strenghtened "containment" and "diminishing adaptation" conditions,

- strong Law of Large Numbers for {f(Xt)}t and {f(θt, Xt)}t
- Central Limit Theorem for {f(Xt)}t

• In the case θ ∈ Rp but also in more general situations: θ may be a distribution

case of "interacting" MCMC. (Del Moral-Doucet, 2010)

•Results in the case each kernel Pθ has its own invariant distribution πθ:

lim
t

E [f(Xt)] = lim
t

∫
f(x) dπθt(x) (RHS, assumed constant a.s.)



As a conclusion of this part I

• A family of ergodic kernels; to adapt the parameters θt, a strategy based on

the past of the algorithm

• The easiest situation:

- uniform-in-θ ergodicity conditions

• Far more �exible but also more technical:

- an ergodic behavior depending on θ

- and the rate of growth of t 7→ |θt| is controlled

• In both cases,

- the updating rule θt −→ θt+1 is s.t. the adaption is diminishing along iterations.



.

Part II.

Stochastic Approximation with Markovian
dynamics

.



Stochastic Approximation (SA) methods

• Designed to solve on Θ ⊆ Rp: h(θ) = 0 when h is not explicit but

h(θ) =
∫
X
H(θ, x) dπθ(x)

• Algorithm:

- Choose: a deterministic positive (decreasing) sequence {γt}t s.t.
∑
t γt = +∞

- Initialisation: θ0 = θinit ∈ Θ, X0 = xinit

- Until convergence:

Xt+1 ∼ Pθt(Xt, ·) θt+1 = θt + γt+1 H(θt, Xt+1)

where Pθ inv. wrt πθ.

Beware! a biased approximation

E
[
H(θt, Xt+1)|Ft

]
− h(θt) =

∫
X

(
Pθt(Xt,dx)− dπθt(x)

)
H(θt, x)



Convergence analysis for SA: the successive steps

1- The sequence {θt}t is stable i.e. (w.p.1) there exists a compact subset K of

Θ such that θt ∈ K for any t.

2- Convergence of {θt}t to L (or to a connected component of L; or to a point

θ? ∈ L).

• Required: there exists a non-negative Lyapunov function V :

V (θt+1) ≤ V (θt)− γt+1 φ
2(θt) + γt+1 Wt+1︸ ︷︷ ︸

signed

.

whose level sets are compact subsets of Θ, and φ is s.t. that

inf
compact⊂Θ\L

φ2 > 0 with L := {φ2 = 0} ⊂ {V ≤M?}.

Control of the "noise":

sup
t
|

t∑
k=1

γk+1 (H(θk, Xk+1)− h(θk)) |

{θ:  V(θ) ≤ M
 1 

} 

{θ:  V(θ) ≤ M
 0 

} 

 L  



Stability: a crucial point - Di�erent strategies

• Stable by de�nition:

θt+1 = θt + γt+1H(θt, Xt+1)

quite unlikely

• Force the stability by a projection on a compact subset K

θt+1 = ΠK
(
θt + γt+1H(θt, Xt+1)

)

Limiting points: in L ∩ K. How to choose K ?

• Use the Chen's technique: projection on growing compact subsets.

(Chen-Zhu, 1986)



Self-stabilized Stochastic Approximation (the Chen's technique)

Choose compact subsets {Ki}i≥0 s.t.
⋃
iKi = Θ and Ki ⊂ Ki+1.

• (Start - Block 1):

θ0 = θinit ∈ K0 and X0 = xinit and repeat for t ≥ 0

Xt+1 ∼ Pθt(Xt, ·) θt+1 = θt + γt+1H(θt, Xt+1)

until θt+1 /∈ K0. Set T1 = t+ 1.

•· · ·

• (Stop & re-start, Block q + 1)

θTq = θinit, XTq = xinit and repeat for t ≥ 0

XTq+t+1 ∼ PθTq+t
(XTq+t, ·) θTq+t+1 = θTq+t + γq+t+1H(θTq+t, XTq+t+1)

until θTq+t+1 /∈ Kq. Set Tq+1 = Tq + t+ 1.

•· · ·



When does self-stabilization SA "work" ? (1/3)

• If the number of "stop & re-start" is �nite, it works !

then there exists L s.t.

(a) {θt}t is in the compact set KL
(b) for any t ≥ 0

XTL+t+1 ∼ PθTL+t
(XTL+t, ·) θTL+t+1 = θTL+t + γL+t+1H(θTL+t, XTL+t+1)

• If it is not: as if with ρt+1 ← γL+t+1 for arbitrarily large L:

θ0 = θinit, X0 = xinit, Xt+1 ∼ Pθt(Xt, ·), θt+1 = θt + ρt+1H(θt, Xt+1)



if it is not �nite (2/3)

•Lemma. Assume that h is continuous and there exists a C1 non-negative func-

tion V s.t.

- the level sets {V ≤M} are compact subset of Θ;

- the set L = {〈∇V ;h〉 = 0} is compact;

- and on Lc, 〈∇V ;h〉 < 0.

Let θinit ∈ K′. Let M0 be s.t. K0 ∪ L ⊂ {V ≤M0}.

There exist δ, λ > 0 such that sup
1≤k≤t

ρk ≤ λ, sup
1≤k≤t

|
k∑

j=1

ρj
(
H(θj, Xj+1)− h(θj)

)
| ≤ δ

 =⇒ θ1:t ∈ {V ≤M0 + 1}.



if it is not �nite (3/3)

•Prove for any compact subset K

lim
L→∞

P(xinit,θinit),γL+•

sup
k≥1

1θ1:k∈K

∣∣∣∣∣∣
k∑

j=1

γL+j

(
H(θj, Xj+1)− h(θj)

)∣∣∣∣∣∣ > δ

 = 0.

• Apply the B-T inequality

E(xinit,θinit)

sup
k≥1

1θ1:k∈K

∣∣∣∣∣∣
k∑

j=1

ρj
(
H(θj, Xj+1)− h(θj)

)∣∣∣∣∣∣


• Use the decomposition below and use properties on controlled Markov chains

since Xj+1 ∼ Pθj(Xj, ·).

The Poisson equation: Ĥθ s.t. Ĥθ(x)− PθĤθ(x) = H(θ, x)− h(θ).

k∑
j=1

ρj
(
H(θj, Xj+1)− h(θj)

)
=

k∑
j=1

ρj
(
Ĥθj(Xj+1)− PθjĤθj(Xj)

)
+

k∑
j=1

ρj
(
PθjĤθj(Xj)− Pθj+1Ĥθj+1(Xj+1)

)
+

k∑
j=1

ρj
(
Pθj+1Ĥθj+1(Xj+1)− PθjĤθj(Xj+1)

)



In the literature, SA with Markovian dynamics

(F,2015; F.-Moulines-Schreck-Vihola,2016; Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

• In the case θ ∈ Rp,
- Su�cient conditions for the convergence

- Central Limit Theorems (along a converging path) for both the sequence {θt}t and the

averaged sequence

θ̄t =
1

t

t∑
k=1

θk

- Distributed SA

• Some results in the in�nite dimensional framework for θ; with i.i.d. dynamics.



.

Part III:
Stochastic Proximal-Gradient algorithms

.



Penalized Maximum Likelihood inference

• An intractable log-likelihood of the observations Y1:n

- Ex: Latent variable models

`(Y1:n; θ) = log
∫
p(Y1:n, x; θ) dν(x)

• A sparsity condition on θ through a non smooth and convex penalty

- Ex-1: g(θ) = λ‖θ‖1

• Solve

argminθ

 f(θ)︸ ︷︷ ︸
smooth, intractable

+ g(θ)︸ ︷︷ ︸
non smooth, convex, tractable





Monte Carlo approximations for gradient-based optimization methods

• In this "latent variable model" example, as in many examples:

∇f(θ) =
∫
H(θ, x) dπθ(x)

where πθ: (the a posteriori) distribution known up to a normalization constant

(dependance upon Y1:n omitted)

↪→ intractable integral.

• If the gradient were available: iterative algorithm

ut+1 = Proxγt+1 g

(
ut − γt+1∇f(ut)

)
Proxγ g(τ) = argminu

(
g(u) +

1

2γ
‖u− τ‖2

)

• Since it is not: iterative algorithm

θt+1 = Proxγt+1 g

θt − γt+1
1

mt+1

mt+1∑
k=1

H(θt, Xt+1,k)

 Xt+1,k ∼ Pθt(Xt+1,k−1, ·)



Questions

- Does the stochastic version inherit the same asymptotic behavior as the (exact)

Gradient-Proximal algorithm ? i.e. convergence of {θt}t

- How to choose the stepsize sequence {γt}t?

- How to choose the number of Monte Carlo samples mt ? Is the "SA regime"

(i.e. mt = 1) possible ?

- What about the rate of convergence ?

- Is the rate improved by Nesterov-based acceleration ? is it improved by Aver-

aging techniques ?



Assumptions

• On the non-smooth part: g : Rp → [0,∞], is not identically +∞, convex and

lower semi-continuous.

• On the smooth part: f : Rp → R is convex, C1 on Rp and there exists L such

that for any θ, θ′

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖

• On the solution set: L := argminθ(f + g) = {θ = Proxγ g(θ − γ∇f(θ))} is a non

empty subset of Θ = {g <∞}.

• On the stepsize:
∑
t γt =∞

• On the perturbation ηt+1 := m−1
t+1

∑mt+1
j=1 H(θt, Xt+1,j)− h(θt): the series∑

t

γtηt,
∑
t

γ2
t ‖ηt‖2,

∑
t

γt 〈Tγt(θt−1); ηt〉

converge



Results (Atchade-F-Moulines, 2017)

θt+1 = Proxγt+1 g

θt − γt+1
1

mt+1

mt+1∑
k=1

H(θt, Xt+1,k)



• Convergence of the iterates {θt}t: there exists θ? ∈ L s.t. limt θt = θ?.

• For non-negative weights {ak,t}k s.t.
∑t
k=1 ak,t = 1, an explicit upper bound of

(f + g)
(
θ̄t
)
−min(f + g) ≤

t∑
k=1

ak,t (f + g)(θk)−min(f + g) ≤ · · ·

where

θ̄t =
t∑

k=1

ak,t θk



Rates of convergence on the functional (f + g)(θt)−min(f + g)

• Rate of the exact algorithm: O(1/t)

• Stochastic version with increasing batch size

- After t iterations, the same rate by choosing

γt = γ mt = t θt = t−1
t∑

k=1

θk

- BUT the total Monte Carlo cost is O(t2): complexity O(1/
√
t).

• Stochastic version with �xed batch size

- After t iteratons, a rate O(1/
√
t) by choosing

γt = t−1/2 mt = m θt = t−1
t∑

k=1

θk

- the total Monte Carlo cost is O(t): complexity O(1/
√
t).



Nesterov's acceleration, rate of convergence of the functional

ut+1 = Proxγt+1 g

(
ϑt − γt+1 ∇f(ϑt)

)
ϑt = ut +

µt−1 − 1

µt
(ut − ut−1)

where µt = O(t).

• Rate of the exact algorithm: O(1/t2)

• Stochastic version with increasing batch size

- After t iterations, the same rate by choosing

γt = γ mt = t3 θt

- BUT the total Monte Carlo cost is O(t4): complexity O(1/
√
t).



Conclusion

(F.-Risser-Atchade-Moulines,2018;F-Ollier-Samson,2019)

Given a Monte Carlo budget t:

• The (perturbed) Proximal-Gradient combined with averaging has the same

complexity as the (perturbed) Nesterov-accelerated Proximal-Gradient: O(1/
√
t)

• Nesterov-accelerated Proximal-Gradient + weighted averaging strategies: no

improvement

• Nesterov-accelerated Proximal-Gradient + other relaxations µt = O(td) for some

d ∈ (0,1): no improvement
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