Monte Carlo methods and Optimization: Intertwinings

Gersende Fort

CNRS

Institut de Mathématiques de Toulouse, France

Monte Carlo Methods, Sydney, July 2019.

Intertwined, why ?

.

.

To improve Monte Carlo methods targetting: $d\pi = \pi d\mu$

•The "naive" MC sampler depends on design parameters in \mathbb{R}^p or in infinite dimension heta

•Theoretical studies caracterize an optimal choice of theses parameters θ_{\star} by

$$\theta_{\star} \in \Theta \text{ s.t. } \int H(\theta, x) \, \mathrm{d}\pi(x) = 0$$

or

$$\theta_{\star} \in \operatorname{argmin}_{\theta \in \Theta} \int C(\theta, x) \, d\pi(x) = 0.$$

• Strategies:

- Strategy 1: a preliminary "machinery" for the approximation of θ_{\star} ; then run the MC sampler with $\theta \leftarrow \theta_{\star}$

- Strategy 2: learn $\boldsymbol{\theta}$ and sample **concomitantly**

To make optimization methods tractable

• Intractable objective function

 θ s.t. $h(\theta) = 0$ when h is not explicit $h(\theta) = \int_X H(\theta, x) d\pi_{\theta}(x)$

or

$$\operatorname{argmin}_{\theta\in\Theta} \int_{\mathsf{X}} C(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$$

Intractable auxiliary quantities
 Ex-1 Gradient-based methods

$$\nabla f(\theta) = \int_{\mathsf{X}} H(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$$

Ex-2 Majorize-Minimization methods

at iteration
$$t$$
, $f(\theta) \leq F_t(\theta) = \int_X H_t(\theta, x) \ d\pi_{t,\theta}(x)$

• Strategies: Use Monte Carlo techniques to approximate the unknown quantities

In this talk, Markov !

- from the Monte Carlo point of view: which conditions on the updating scheme for convergence of the sampler ? Case: Markov chain Monte Carlo sampler
- from the optimization point of view: which conditions on the Monte Carlo approximation for convergence of the stochastic optimization ?
 Case: Stochastic Approximation methods with Markovian inputs
- Application to a Computational Machine Learning pbm: penalized Maximum Likelihood through Stochastic Proximal-Gradient methods

Part I: Theory of controlled (or adaptive) Markov chains

•

.

Example 1/ Adapted Markov chain Monte Carlo samplers

• Hastings-Metropolis algorithm, with Gaussian proposal and target d π on X $\subseteq \mathbb{R}^d$

Proposal:
$$Y_{t+1} \sim \mathcal{N}_d(X_t, \theta)$$

Accept-Reject $X_{t+1} = \begin{cases} Y_{t+1} & \text{with probability } \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

summarized: $X_{t+1} \sim P_{\theta}(X_t, \cdot)$

• "Optimal" choice of the covariance matrix θ

$$\theta_{\text{opt}} = \frac{(2.38)^2}{d} \operatorname{Cov}_{\pi}(X) = \frac{(2.38)^2}{d} \Gamma_{\text{opt}}$$

Example 1 (to follow) / Adapted Markov chain Monte Carlo samplers

• The algorithm

Sample $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$ SA scheme: $\Gamma_{t+1} =$ empirical cov matrix of $X_{1:t+1}$ computed from Γ_t, X_{t+1} $\theta_{t+1} = (2.38)^2 d^{-1} \Gamma_{t+1}$

• In this example, a family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$ and

 $\forall \theta, P_{\theta} \text{ invariant w.r.t.} \pi$

- Convergence results: (Saksman-Vihola, 2010; F.-Moulines-Priouret, 2012)
- $\lim_t \theta_t = \theta_{\text{opt}}$
- the distribution of $(X_t)_t$ converges to π (conditions on the tails of π)
- strong LLN, CLT for the samples $\{X_t\}_t$

Example 2/ Adapted Importance sampling by Wang-Landau approaches

- A highly multimodal target density $d\pi$ on $X \subseteq \mathbb{R}^d$.
- A family of proposal mecanisms: Given a partition X_1, \cdots, X_I of X,

$$d\pi_{\theta}(x) \propto \sum_{i=1}^{I} \mathbf{1}_{X_{i}}(x) \ \frac{d\pi(x)}{\theta(i)}, \qquad \theta = (\theta(1), \cdots, \theta(I)) \text{ a weight vector}$$

- Optimal proposal: $d\pi_{\theta_{\star}}$ with $\theta_{\star}(i) = \int_{X_i} d\pi(u)$,
- θ_{\star} , unique limiting value of a Stochastic Approximation scheme

with mean field
$$\int_X H(\theta, X) \, \mathrm{d}\pi_{\theta}(x)$$
 and $H_i(\theta, x) = \theta(i) \left(\mathbf{1}_{X_i}(x) - \sum_{j=1}^I \theta(j) \mathbf{1}_{X_j}(x) \right)$.

Example 2 (to follow) / Adapted Importance sampling by Wang-Landau approaches

• The algorithm

Sample: $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$, where $\pi_{\theta} P_{\theta} = \pi_{\theta}$ SA scheme: $\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$

- In this example, a family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$ such that $\forall \theta, P_{\theta}$ invariant w.r.t. π_{θ}
- Convergence results: (F.-Jourdain-Lelievre-Stoltz-2015,2017,2018)
- θ_t converges to θ_{\star} a.s.;
- the distribution of X_t converges to $d\pi_{\theta_{\star}}$;
- θ_t is an estimate of the importance ratio $[d\pi/d\pi_{\theta_\star}](x)$, constant along each X_i.

Is a "theory" required ?

YES ! convergence can be lost by the adaption mecanism

Even in a simple case when

 $\forall \theta \in \Theta, \qquad P_{\theta} \text{ invariant wrt } d\pi,$

one can define a simple adaption mecanism

 $X_{t+1}|\mathsf{past}_{1:t} \sim P_{\theta_t}(X_t, \cdot) \qquad \theta_t \in \sigma(X_{1:t})$ such that

$$\lim_t \mathbb{E}\left[f(X_t)\right] \neq \int f \, \mathrm{d}\pi.$$

A {0,1}-valued chain { X_t }_t defined by $X_{t+1} \sim P_{X_t}(X_t, \cdot)$ where the transition matrices are $P_0 = \begin{bmatrix} t_0 & (1-t_0) \\ (1-t_0) & t_0 \end{bmatrix} \qquad P_1 = \begin{bmatrix} t_1 & (1-t_1) \\ (1-t_1) & t_1 \end{bmatrix}$

Then P_0 and P_1 are invariant w.r.t [1/2, 1/2] but $\{X_t\}$ is a Markov chain invariant w.r.t. $[t_1, t_0]$

Convergence results

- The framework:
- a filtration $\{\mathcal{F}_t, t \geq 0\}$ on $(\Omega, \mathcal{A}, \mathbb{P})$
- a \mathcal{F}_t -adapted X × Θ -valued process $\{(X_t, \theta_t), t \geq 0\}$ defined on (Ω, \mathcal{A})
- a family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$ on a general state space (X, \mathcal{X})
- a conditional distribution satisfying

 $\mathbb{E}\left[f(X_{t+1})|\mathcal{F}_t\right] = \int P_{\theta_t}(X_t, dx)f(x) \qquad f \text{ bounded continuous}$

and a convergence (in some sense) of the kernels $\{P_{\theta_t}, t \ge 0\}$

- Questions:
- convergence in distribution of \boldsymbol{X}_t ?
- limit theorems
- Hereafter:
- focus on the convergence in distribution
- $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^p$

Assumptions (1/3) Invariant distribution

 $\forall \theta \in \Theta, \exists \pi_{\theta} \text{ s.t. the kernel } P_{\theta} \text{ invariant wrt } \pi_{\theta}$

Assumptions (2/3) (Generalized) Containment condition

• Uniform-in- θ ergodicity condition

$$\sup_{\theta \in \Theta} \|P_{\theta}^{r}(x; \cdot) - \pi_{\theta}\|_{\mathsf{TV}} \leq C\rho^{r}$$

In practice: a drift and a minorization condition \rightarrow explicit control of ergodicity

$$P_{\theta}V \le \lambda_{\theta}V + b_{\theta}, \qquad P_{\theta}(x, \cdot) \ge \delta_{\theta}\nu_{\theta}(\cdot) \text{ for } x \in \{V \le 2b_{\theta}(1 - \lambda_{\theta})^{-1} - 1\}$$

• A generalized condition: for any $\epsilon > 0$, there exists a non-decreasing sequence r_{ϵ} s.t. $\lim_{t} r_{\epsilon}(t)/t = 0$ and

$$\limsup_{t} \mathbb{E} \left[\|P_{\theta_{t-r_{\epsilon}(t)}}^{r_{\epsilon}(t)}(X_{t-r_{\epsilon}(t)}; \cdot) - \pi_{\theta_{t-r_{\epsilon}(t)}}\|_{\mathsf{TV}} \right] \leq \epsilon$$

- Controlled rate of growth-in- θ here, $r_{\epsilon}(t) = t^{\bullet}$

 $\|P_{\theta}^{r}(x;\cdot) - \pi_{\theta}\|_{\mathsf{TV}} \leq C_{\theta} \rho_{\theta}^{r}$ $t^{-\tau} \|\theta_{t}\| < \infty \quad \text{a.s.} \qquad \limsup_{t} t^{-\tilde{\tau}} \left(C_{\theta_{t}} \vee (1 - \rho_{\theta_{t}})^{-1}\right) < \infty \text{ a.s.}$

Assumptions (3/3) (Generalized) Diminishing adaptation condition

• When uniform-in- θ ergodic condition, check

$$\lim_{t} \mathbb{E}\left[D(\theta_t, \theta_{t-1})\right] = \mathbf{C}$$

where $D(\theta, \theta') = \sup_{x} \|P_{\theta}(x, \cdot) - P_{\theta'}(x, \cdot)\|_{\mathsf{TV}}$.

• Otherwise: for any $\epsilon > 0$,

$$\lim_{t} \mathbb{E} \left[\sum_{j=0}^{r_{\epsilon}(t)-1} D(\theta_{t-r_{\epsilon}(t)+j}, \theta_{t-r_{\epsilon}(t)}) \right] = 0$$

- In practice
- Prove a Lipschitz property $D(\theta, \theta') \leq C \|\theta \theta'\|$
- Use the definition of $heta_t$ as a function of $(X_\ell)_{\ell \leq t}$ and possibly other "external" sampled points
- Require controls of the form $\mathbb{E}[W(X_{\ell})]$, solved e.g. by drift inequalities

 $\mathbb{E}\left[W(X_{\ell})|\mathcal{F}_{\ell-1}\right] = P_{\theta_{\ell-1}}W(X_{\ell-1}) \le \lambda_{\theta_{\ell-1}}W(X_{\ell-1}) + b_{\theta_{\ell-1}}$

Convergence in Distribution (when $\pi_{\theta} = \pi$ for any θ)

Under these conditions, for any bounded function f,

 $\lim_{t} \mathbb{E}\left[f(X_t)\right] = \int f(x) \, \mathrm{d}\pi(x)$

In the literature

(Roberts-Rosenthal, 2007; F.-Moulines-Priouret, 2012; F.-Moulines-Priouret-Vandekerkhove, 2012)

- Based on strenghtened "containment" and "diminishing adaptation" conditions,
- strong Law of Large Numbers for $\{f(X_t)\}_t$ and $\{f(\theta_t, X_t)\}_t$
- Central Limit Theorem for $\{f(X_t)\}_t$

• In the case $\theta \in \mathbb{R}^p$ but also in more general situations: θ may be a distribution case of "interacting" MCMC. (Del Moral-Doucet, 2010)

•Results in the case each kernel P_{θ} has its own invariant distribution π_{θ} :

 $\lim_{t} \mathbb{E} \left[f(X_t) \right] = \lim_{t} \int f(x) \, d\pi_{\theta_t}(x) \qquad (\mathsf{RHS}, \text{ assumed constant a.s.})$

As a conclusion of this part I

• A family of ergodic kernels; to adapt the parameters θ_t , a strategy based on the past of the algorithm

- The easiest situation:
- uniform-in- θ ergodicity conditions
- Far more flexible but also more technical:
- an ergodic behavior depending on θ
- and the rate of growth of $t \mapsto |\theta_t|$ is controlled

• In both cases,

- the updating rule $\theta_t \longrightarrow \theta_{t+1}$ is s.t. the adaption is diminishing along iterations.

Part II. Stochastic Approximation with Markovian dynamics

.

.

Stochastic Approximation (SA) methods

- Designed to solve on $\Theta \subseteq \mathbb{R}^p$: $h(\theta) = 0$ when h is not explicit but $h(\theta) = \int_X H(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$
- Algorithm:
- Choose: a deterministic positive (decreasing) sequence $\{\gamma_t\}_t$ s.t. $\sum_t \gamma_t = +\infty$
- Initialisation: $\theta_0 = \theta_{init} \in \Theta, X_0 = x_{init}$
- Until convergence:

$$X_{t+1} \sim P_{\theta_t}(X_t, \cdot) \qquad \qquad \theta_{t+1} = \theta_t + \gamma_{t+1} \ H(\theta_t, X_{t+1})$$

where P_{θ} inv. wrt π_{θ} .

Beware! a **biased** approximation

$$\mathbb{E}\left[H(\theta_t, X_{t+1})|\mathcal{F}_t\right] - h(\theta_t) = \int_{\mathsf{X}} \left(P_{\theta_t}(X_t, \mathsf{d}x) - \mathsf{d}\pi_{\theta_t}(x)\right) H(\theta_t, x)$$

Convergence analysis for SA: the successive steps

1- The sequence $\{\theta_t\}_t$ is stable i.e. (w.p.1) there exists a compact subset \mathcal{K} of Θ such that $\theta_t \in \mathcal{K}$ for any t.

2- Convergence of $\{\theta_t\}_t$ to \mathcal{L} (or to a connected component of \mathcal{L} ; or to a point $\theta_{\star} \in \mathcal{L}$).

• Required: there exists a non-negative Lyapunov function V:

$$V(\theta_{t+1}) \leq V(\theta_t) - \gamma_{t+1} \phi^2(\theta_t) + \gamma_{t+1} \underbrace{W_{t+1}}_{\text{signed}}.$$

whose level sets are compact subsets of Θ , and ϕ is s.t. that $\inf_{\text{compact} \subset \Theta \setminus \mathcal{L}} \phi^2 > 0 \quad \text{with } \mathcal{L} := \{\phi^2 = 0\} \subset \{V \leq M_{\star}\}.$

Control of the "noise":

$$\sup_{t} |\sum_{k=1}^{t} \gamma_{k+1} \left(H(\theta_k, X_{k+1}) - h(\theta_k) \right)|$$

Stability: a crucial point - Different strategies

• Stable by definition:

 $\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$

quite unlikely

 \bullet Force the stability by a projection on a compact subset ${\cal K}$

 $\theta_{t+1} = \Pi_{\mathcal{K}} \left(\theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) \right)$

Limiting points: in $\mathcal{L} \cap \mathcal{K}$. How to choose \mathcal{K} ?

• Use the Chen's technique: projection on growing compact subsets. (Chen-Zhu, 1986)

Self-stabilized Stochastic Approximation (the Chen's technique)

Choose compact subsets $\{\mathcal{K}_i\}_{i\geq 0}$ s.t. $\bigcup_i \mathcal{K}_i = \Theta$ and $\mathcal{K}_i \subset \mathcal{K}_{i+1}$.

• (Start - Block 1): $\theta_0 = \theta_{init} \in \mathcal{K}_0$ and $X_0 = x_{init}$ and repeat for $t \ge 0$

 $X_{t+1} \sim P_{\theta_t}(X_t, \cdot) \qquad \theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$ until $\theta_{t+1} \notin \mathcal{K}_0$. Set $T_1 = t + 1$.

• (Stop & re-start, Block q + 1) $\theta_{T_q} = \theta_{\text{init}}, \quad X_{T_q} = x_{\text{init}} \text{ and repeat for } t \ge 0$ $X_{T_q+t+1} \sim P_{\theta_{T_q+t}}(X_{T_q+t}, \cdot) \quad \theta_{T_q+t+1} = \theta_{T_q+t} + \gamma_{q+t+1}H(\theta_{T_q+t}, X_{T_q+t+1})$ until $\theta_{T_q+t+1} \notin \mathcal{K}_q$. Set $T_{q+1} = T_q + t + 1$. When does self-stabilization SA "work" ? (1/3)

• If the number of "stop & re-start" is finite, it works !

then there exists L s.t. (a) $\{\theta_t\}_t$ is in the compact set \mathcal{K}_L (b) for any $t \ge 0$

 $X_{T_{L}+t+1} \sim P_{\theta_{T_{L}+t}}(X_{T_{L}+t}, \cdot) \qquad \theta_{T_{L}+t+1} = \theta_{T_{L}+t} + \gamma_{L+t+1} H(\theta_{T_{L}+t}, X_{T_{L}+t+1})$

• If it is not: as if with $\rho_{t+1} \leftarrow \gamma_{L+t+1}$ for arbitrarily large L:

 $\theta_0 = \theta_{\text{init}}, X_0 = x_{\text{init}}, \quad X_{t+1} \sim P_{\theta_t}(X_t, \cdot), \qquad \theta_{t+1} = \theta_t + \rho_{t+1} H(\theta_t, X_{t+1})$

if it is not finite (2/3)

•Lemma. Assume that h is continuous and there exists a C^1 non-negative function V s.t.

- the level sets $\{V \leq M\}$ are compact subset of Θ ;
- the set $\mathcal{L} = \{ \langle \nabla V; h \rangle = 0 \}$ is compact;
- and on \mathcal{L}^c , $\langle \nabla V; h \rangle < 0$.

Let $\theta_{\text{init}} \in \mathcal{K}_{\prime}$. Let M_0 be s.t. $\mathcal{K}_0 \cup \mathcal{L} \subset \{V \leq M_0\}$.

There exist $\delta, \lambda > 0$ such that

$$\left[\sup_{1\leq k\leq t}\rho_k\leq\lambda,\sup_{1\leq k\leq t}|\sum_{j=1}^k\rho_j\left(H(\theta_j,X_{j+1})-h(\theta_j)\right)|\leq\delta\right]\Longrightarrow\theta_{1:t}\in\{V\leq M_0+1\}.$$

if it is not finite (3/3)

 $\bullet \mathsf{Prove}$ for any $\textbf{compact subset}\ \mathcal{K}$

$$\lim_{L\to\infty} \mathbb{P}_{(x_{\text{init}},\theta_{\text{init}}),\gamma_{L+\bullet}} \left(\sup_{k\geq 1} \mathbb{1}_{\theta_{1:k}\in\mathcal{K}} \left| \sum_{j=1}^{k} \gamma_{L+j} \left(H(\theta_j, X_{j+1}) - h(\theta_j) \right) \right| > \delta \right) = 0.$$

• Apply the B-T inequality

$$\mathbb{E}_{(x_{\text{init}},\theta_{\text{init}})} \left[\sup_{k \ge 1} \mathbf{1}_{\theta_{1:k} \in \mathcal{K}} \left| \sum_{j=1}^{k} \rho_j \left(H(\theta_j, X_{j+1}) - h(\theta_j) \right) \right| \right]$$

• Use the decomposition below and use properties on **controlled** Markov chains since $X_{j+1} \sim P_{\theta_j}(X_j, \cdot)$.

The Poisson equation: \hat{H}_{θ} s.t. $\hat{H}_{\theta}(x) - P_{\theta}\hat{H}_{\theta}(x) = H(\theta, x) - h(\theta)$.

$$\sum_{j=1}^{k} \rho_{j} \left(H(\theta_{j}, X_{j+1}) - h(\theta_{j}) \right) = \sum_{j=1}^{k} \rho_{j} \left(\hat{H}_{\theta_{j}}(X_{j+1}) - P_{\theta_{j}} \hat{H}_{\theta_{j}}(X_{j}) \right) \\ + \sum_{j=1}^{k} \rho_{j} \left(P_{\theta_{j}} \hat{H}_{\theta_{j}}(X_{j}) - P_{\theta_{j+1}} \hat{H}_{\theta_{j+1}}(X_{j+1}) \right) + \sum_{j=1}^{k} \rho_{j} \left(P_{\theta_{j+1}} \hat{H}_{\theta_{j+1}}(X_{j+1}) - P_{\theta_{j}} \hat{H}_{\theta_{j}}(X_{j+1}) \right)$$

In the literature, SA with Markovian dynamics

(F,2015; F.-Moulines-Schreck-Vihola,2016; Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

- In the case $heta \in \mathbb{R}^p$,
- Sufficient conditions for the convergence
- Central Limit Theorems (along a converging path) for both the sequence $\{\theta_t\}_t$ and the averaged sequence

$$\bar{\theta}_t = \frac{1}{t} \sum_{k=1}^t \theta_k$$

- Distributed SA
- Some results in the infinite dimensional framework for θ ; with i.i.d. dynamics.

Part III: Stochastic Proximal-Gradient algorithms

.

.

Penalized Maximum Likelihood inference

- An intractable log-likelihood of the observations $Y_{1:n}$
- Ex: Latent variable models

$$\ell(Y_{1:n};\theta) = \log \int p(Y_{1:n},x;\theta) \, \mathrm{d}\nu(x)$$

• A sparsity condition on θ through a **non smooth and convex** penalty - Ex-1: $g(\theta) = \lambda \|\theta\|_1$

Monte Carlo approximations for gradient-based optimization methods

• In this "latent variable model" example, as in many examples:

$$\nabla f(\theta) = \int H(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$$

where π_{θ} : (the a posteriori) distribution known up to a normalization constant (dependance upon $Y_{1:n}$ omitted)

 \hookrightarrow intractable integral.

• If the gradient were available: iterative algorithm

 $u_{t+1} = \operatorname{Prox}_{\gamma_{t+1}g}\left(u_t - \gamma_{t+1}\nabla f(u_t)\right) \qquad \operatorname{Prox}_{\gamma_g}(\tau) = \operatorname{argmin}_u\left(g(u) + \frac{1}{2\gamma}\|u - \tau\|^2\right)$

• Since it is not: iterative algorithm

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1}g} \left(\theta_t - \gamma_{t+1} \; \frac{1}{m_{t+1}} \sum_{k=1}^{m_{t+1}} H(\theta_t, X_{t+1,k}) \right)$$

$$X_{t+1,k} \sim P_{\theta_t}(X_{t+1,k-1},\cdot)$$

Questions

- Does the stochastic version inherit the same asymptotic behavior as the (exact) Gradient-Proximal algorithm ? i.e. convergence of $\{\theta_t\}_t$

- How to choose the stepsize sequence $\{\gamma_t\}_t$?

- How to choose the number of Monte Carlo samples m_t ? Is the "SA regime" (i.e. $m_t = 1$) possible ?

- What about the rate of convergence ?

- Is the rate improved by Nesterov-based acceleration ? is it improved by Averaging techniques ?

Assumptions

• On the non-smooth part: $g : \mathbb{R}^p \to [0, \infty]$, is not identically $+\infty$, convex and lower semi-continuous.

• On the smooth part: $f : \mathbb{R}^p \to \mathbb{R}$ is **convex**, C^1 on \mathbb{R}^p and there exists L such that for any θ, θ'

 $\|\nabla f(\theta) - \nabla f(\theta')\| \le L \|\theta - \theta'\|$

• On the solution set: $\mathcal{L} := \operatorname{argmin}_{\theta}(f+g) = \{\theta = \operatorname{Prox}_{\gamma g}(\theta - \gamma \nabla f(\theta))\}$ is a non empty subset of $\Theta = \{g < \infty\}.$

• On the stepsize: $\sum_t \gamma_t = \infty$

• On the perturbation $\eta_{t+1} := m_{t+1}^{-1} \sum_{j=1}^{m_{t+1}} H(\theta_t, X_{t+1,j}) - h(\theta_t)$: the series

 $\sum_{t} \gamma_t \eta_t, \qquad \sum_{t} \gamma_t^2 \|\eta_t\|^2, \qquad \sum_{t} \gamma_t \langle T_{\gamma_t}(\theta_{t-1}); \eta_t \rangle$

converge

Results (Atchade-F-Moulines, 2017)

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1}g} \left(\theta_t - \gamma_{t+1} \ \frac{1}{m_{t+1}} \sum_{k=1}^{m_{t+1}} H(\theta_t, X_{t+1,k}) \right)$$

- Convergence of the iterates $\{\theta_t\}_t$: there exists $\theta_{\star} \in \mathcal{L}$ s.t. $\lim_t \theta_t = \theta_{\star}$.
- For non-negative weights $\{a_{k,t}\}_k$ s.t. $\sum_{k=1}^t a_{k,t} = 1$, an explicit upper bound of $(f+g)(\bar{\theta}_t) \min(f+g) \le \sum_{k=1}^t a_{k,t} (f+g)(\theta_k) \min(f+g) \le \cdots$

where

$$\bar{\theta}_t = \sum_{k=1}^t a_{k,t} \,\theta_k$$

Rates of convergence on the functional $(f+g)(\theta_t) - \min(f+g)$

- Rate of the exact algorithm: O(1/t)
- Stochastic version with increasing batch size
- After t iterations, the same rate by choosing

$$\gamma_t = \gamma$$
 $m_t = t$ $\overline{\theta}_t = t^{-1} \sum_{k=1}^t \theta_k$

- BUT the total Monte Carlo cost is $O(t^2)$: complexity $O(1/\sqrt{t})$.
- Stochastic version with fixed batch size
- After t iteratons, a rate $O(1/\sqrt{t})$ by choosing

$$\gamma_t = t^{-1/2} \qquad m_t = m \qquad \overline{\theta}_t = t^{-1} \sum_{k=1}^t \theta_k$$

- the total Monte Carlo cost is O(t): complexity $O(1/\sqrt{t})$.

Nesterov's acceleration, rate of convergence of the functional

$$u_{t+1} = \operatorname{Prox}_{\gamma_{t+1}g} \left(\vartheta_t - \gamma_{t+1} \nabla f(\vartheta_t) \right) \qquad \qquad \vartheta_t = u_t + \frac{\mu_{t-1} - 1}{\mu_t} (u_t - u_{t-1})$$

where $\mu_t = O(t)$.

- Rate of the exact algorithm: $O(1/t^2)$
- Stochastic version with increasing batch size
 After t iterations, the same rate by choosing

$$\gamma_t = \gamma \qquad \qquad m_t = t^3 \qquad \theta_t$$

- BUT the total Monte Carlo cost is $O(t^4)$: complexity $O(1/\sqrt{t})$.

Conclusion

(F.-Risser-Atchade-Moulines, 2018; F-Ollier-Samson, 2019)

Given a Monte Carlo budget *t*:

• The (perturbed) Proximal-Gradient combined with averaging has the same complexity as the (perturbed) Nesterov-accelerated Proximal-Gradient: $O(1/\sqrt{t})$

 Nesterov-accelerated Proximal-Gradient + weighted averaging strategies: no improvement

• Nesterov-accelerated Proximal-Gradient + other relaxations $\mu_t = O(t^d)$ for some $d \in (0, 1)$: no improvement

Joint works with

- Yves Atchade, Univ. Michigan, France
- Jean-François Aujol, Univ. Bordeaux, France
- Stéphane Crepey, Univ. Evry, France
- Charles Dossal, Univ. Toulouse, France
- Pierre Gach, Univ. Toulouse, France
- Emmanuel Gobet, Ecole Polytechnique, France
- Benjamin Jourdain, ENPC, France
- Tony Lelievre, ENPC, France
- Eric Moulines, Ecole Polytechnique, France
- Pierre Priouret, Univ. Paris 6, France
- Laurent Risser, Univ. Toulouse, France
- Adeline Samson, Univ. Grenoble-Alpes, France
- Amandine Schreck, Telecom ParisTech, France
- Gabriel Stoltz, ENPC, France
- Pierre Vandekerkhove, Univ. Marne-la-Vallée, France
- Matti Vihola, Univ. Jyvaskyla, Finland