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I. Problem and Motivations
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The problem

Stochastic Optimization

• Solve �� ��0 ∈ 1
n

∑n
i=1 Gi(s) + ∂g(s) s ∈ Rq

where
- the fct g : Rq → (−∞,+∞] is lower semi-continuous, convex
- with domain S := {s ∈ Rq : g(s) < +∞}
- the function Gi : Rq → Rq

• Requirements: Design and study an algorithm such that
- possibly Preconditioned operators

B−1 Gi(s) B is a q × q positive definite matrix

- possibly approximated preconditioned operators
- finite-sum challenge: solution via a stochastic procedure with variance reduction.
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Motivations

Gradient-based algorithms for non convex optimization

Appli. 1: Gradient-based algorithms (1/2)

argmins∈Rq
1

n

n∑
i=1

`i(s) + g(s)

• Ex. in statistical Learning
g is a regularization term, or an a priori on the parameter s
`i is a loss function associated to the example #i

• When
- The fct g : Rq → (−∞,+∞] is lower semi-continuous, convex
- with domain S := {s ∈ Rq : g(s) < +∞}
- s 7→ `i(s) is C1 on S no convexity assumptions on the `i’s

• Often, ”solved” by

0 ∈
1

n

n∑
i=1

∇`i(s) + ∂g(s) s ∈ Rq
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Motivations

Gradient-based algorithms for non convex optimization

Appli. 1: Gradient-based algorithms (2/2)

0 ∈
1

n

n∑
i=1

∇`i(s) + +∂g(s) s ∈ Rq

Under smoothness assumptions on the `i’s,
• Forward-Backward splitting:

st+ 1
2

= st − γt+1
1

n

n∑
i=1

∇`i(st)

st+1 = proxγt+1 g

(
st+ 1

2

)
where Moreau (1965)

proxγ g(s) := argminRqγ g(·) + 1
2
‖ · −s‖2



Stochastic Variable Metric Forward-Backward with variance reduction

Motivations

Gradient-based algorithms for non convex optimization

Appli. 1: Gradient-based algorithms (2/2)

0 ∈
1

n

n∑
i=1

∇`i(s) + +∂g(s) s ∈ Rq

Under smoothness assumptions on the `i’s,
• Forward-Backward splitting:

st+ 1
2

= st − γt+1
1

b

∑
i∈Bt+1

∇`i(st)

st+1 = proxγt+1 g

(
st+ 1

2

)
where Moreau (1965)

proxγ g(s) := argminRqγ g(·) + 1
2
‖ · −s‖2



Stochastic Variable Metric Forward-Backward with variance reduction

Motivations

Gradient-based algorithms for non convex optimization

Appli. 1: Gradient-based algorithms (2/2)

0 ∈
1

n

n∑
i=1

∇`i(s) + +∂g(s) s ∈ Rq

Under smoothness assumptions on the `i’s,
• Forward-Backward splitting:

st+ 1
2

= st − γt+1
1

b

∑
i∈Bt+1

B−1∇`i(st)
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(
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where see e.g. Hiriart-Urruty and Lemaréchal (1996)

proxBγ g(s) := argminRq γ g(·) + 1
2
‖ · −s‖2B

• Remark: Preconditioned gradients
- for acceleration Chouzenoux et al (2014), Repetti et al (2014)

- variable metric on the gradient =⇒ variable metric on the proximal
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0 ∈
1

n

n∑
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∇`i(s) + +∂g(s) s ∈ Rq

Under smoothness assumptions on the `i’s,
• Forward-Backward splitting:
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2
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1

b

∑
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st+1 = proxBγt+1 g

(
st+ 1

2

)
where see e.g. Hiriart-Urruty and Lemaréchal (1996)

proxBγ g(s) := argminRq γ g(·) + 1
2
‖ · −s‖2B

Let us go beyond:

- variance reduction of the mini
batch approximation

- approximated gradient: ∇̂`i(st)

• Remark: Preconditioned gradients
- for acceleration Chouzenoux et al (2014), Repetti et al (2014)

- variable metric on the gradient =⇒ variable metric on the proximal
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Motivations

Expectation Maximization in the statistic space

Appli. 2: Expectation-Maximization for curved exponential families (1/2)
Dempster et al (1977), Wu (1983)

• For inference by ML in latent variable models ex. mixture models

argminθ∈Θ −
1

n

n∑
i=1

log

∫
Z
p(Yi, z; θ) dµ(z) Θ ⊆ Rd

with complete data likelihood from the curved exponential family McLachlan and Krishnan (2008)

log p(Yi, z; θ) = 〈si(z), φ(θ)〉 − ψ(θ)

M step θ := T(s)

E step s := n−1
∑n
i=1 s̄i(θ)

s̄i(θ) := E [si(Z); θ, i]

• In the θ space

θt+1 = T

(
1

n

n∑
i=1

s̄i(θt)

)
T(n−1

n∑
i=1

s̄i(θ))− θ = 0

• In the statistic space

st+1 =
1

n

n∑
i=1

s̄i (T (st))
1

n

n∑
i=1

s̄i(T(s))− s = 0
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Motivations

Expectation Maximization in the statistic space

Appli. 2: Expectation-Maximization for curved exponential families (2/2)

• EM in the statistic space solves the problem�� ��0 = 1
n

∑n
i=1 {s̄i (T(s))− s} and s ∈ S ,

• EM in the statistic space is a preconditioned gradient algorithm Delyon et al (1999), Fort et al

(2020)

1

n

n∑
i=1

s̄i (T(s))− s = −B(s)−1∇W (s)

• Inexact preconditioned gradients: Celeux and Diebolt (1985), Wei and Tanner (1990), Delyon et al (1999), Fort

and Moulines (2003)

s̄i(τ) :=

∫
Z
si(z)

p(Yi, z; τ) dµ(z)∫
p(Yi, u; τ) dµ(u)

random approximations, MCMC

• Incremental EM algorithms: the finite sum setting addressed via stochastic EM in
the statistic space. Neal and Hinton (1998), Ng and McLachlan (2003), Cappé and Moulines (2009), Chen et al (2018),

Karimi et al (2019), Fort et al (2020, 2021)



Stochastic Variable Metric Forward-Backward with variance reduction

Motivations

Expectation Maximization in the statistic space

Appli. 2: Expectation-Maximization for curved exponential families (2/2)

• EM in the statistic space solves the problem�� ��0 = 1
n

∑n
i=1 {s̄i (T(s))− s} and s ∈ S ,

• EM in the statistic space is a preconditioned gradient algorithm Delyon et al (1999), Fort et al

(2020)

1

n

n∑
i=1

s̄i (T(s))− s = −B(s)−1∇W (s)

• Inexact preconditioned gradients: Celeux and Diebolt (1985), Wei and Tanner (1990), Delyon et al (1999), Fort

and Moulines (2003)

s̄i(τ) :=

∫
Z
si(z)

p(Yi, z; τ) dµ(z)∫
p(Yi, u; τ) dµ(u)

random approximations, MCMC

• Incremental EM algorithms: the finite sum setting addressed via stochastic EM in
the statistic space. Neal and Hinton (1998), Ng and McLachlan (2003), Cappé and Moulines (2009), Chen et al (2018),
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Contributions

Contributions �� ��0 ∈ 1
n

∑n
i=1 Gi(s) + ∂g(s) s ∈ Rq

• see e.g. Hiriart-Urruty and Lemaréchal (1996)

s = proxBγ g(s+ γ h) iff 0 ∈ −Bh+ ∂g(s)

↪→ (Variable Metric) Forward-Backward

• We propose an algorithm
- forward step: preconditioned forward operators

hi(s,B) := −B−1 Gi(s)

possibly approximated ̂hi(s,B),
- addresses the finite sum setting by minibatches & variance reduction
- backward step: proximity operator associated to g proxγg , assumed exact

• We provide explicit convergence bounds in expectation
discuss the complexity of the algorithm (w.r.t. n and the tolerance ε)

discuss the impact of the approximations on the hi’s
in the non convex case.
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Contributions

For gradient-based algorithms

For gradient-based algorithms

g non-cvx finite
sum

red var Precond
Approx.
forward

hi ’s

refs

Ghadimi and Lan (2013), Reddi et al (2016)
Allen-Zhu and Hazan (2016)
Nguen et al (2017), Allen-Zhu (2018)
Fang et al (2018), Dongruo et al (2020)

Ghadimi et al (2016), Karimi et al (2016)

Li and Li (2018), Wang et al (2019)
Zhang and Xiao (2019), Nhan et al (2020)
Metel and Takeda (2021)

unbiased
& bounded

Yun et al (2021)

(un)biased

Atchade et al (2017)

(un)biased

our contribution
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Contributions

For EM algorithms

For EM algorithms

g non-cvx finite
sum

red var Precond
Approx.
forward

hi ’s

refs

(un)biased

Celeux and Doebolt (1985)
Wei and Tanner (1990)
Delyon et al (1999)
Fort and Moulines (2003)

Neal and Hinton (1998)
Cappé and Moulines (2009)

Chen et al (2018), Karimi et al (2019)
Fort et al (2020)

(un)biased

our contribution
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3P-SPIDER

III. The 3P-SPIDER algorithm
Perturbed Proximal Preconditioned Stochastic Path-Integrated Differential EstimatoR
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3P-SPIDER

3P-SPIDER, step by step

3P-SPIDER
Algorithm: 3P-SPIDER

Ŝ
0,kin

0
= Ŝinit, B

0,kin
0

= Binit

for t = 1, · · · , kout do

Ŝt,0 = Ŝ
t−1,kin

t−1
, Ŝt,−1 = Ŝ

t−1,kin
t−1

,

Bt,0 = B
t−1,kin

t−1

Sample a batch Bt,0 of size b′t in {1, · · · , n}, with or without replacement.

For all i ∈ Bt,0, compute δt,0,i equal to or approximating hi(Ŝt,0, Bt,0).

St,0 = (b′t)
−1∑

i∈Bt,0
δt,0,i

for k = 0, · · · , kin
t − 1 do

Sample a mini batch Bt,k+1 of size b in {1, · · · , n}, with or without replacement

Choose Bt,k+1, a positive definite matrix

For all i ∈ Bt,k+1, compute δt,k+1,i ≈ hi(Ŝt,k, Bt,k+1)− hi(Ŝt,k−1, Bt,k)

St,k+1 = St,k + b−1∑
i∈Bt,k+1

δt,k+1,i

Ŝ
t,k+ 1

2
= Ŝt,k + γt,k+1 St,k+1

Ŝt,k+1 = proxt,k(Ŝt,k+ 1
2
), where proxt,k := prox

Bt,k+1
γt,k+1 g

.
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3P-SPIDER

3P-SPIDER, step by step

Algorithm: Variable Metric Forward-Backward + Finite sum (with variance reduction)

Ŝ
0,kin

0
= Ŝinit, B

0,kin
0

= Binit

for t = 1, · · · , kout do

Ŝt,0 = Ŝ
t−1,kin

t−1
, Ŝt,−1 = Ŝ

t−1,kin
t−1

,

Bt,0 = B
t−1,kin

t−1

Sample a batch Bt,0 of size b′t in {1, · · · , n}, with or without replacement.

For all i ∈ Bt,0, compute δt,0,i equal to or approximating hi(Ŝt,0, Bt,0).

St,0 = (b′t)
−1∑

i∈Bt,0
δt,0,i

for k = 0, · · · , kin
t − 1 do

Sample a mini batch Bt,k+1 of size b in {1, · · · , n}, with or without replacement

Choose Bt,k+1, a positive definite matrix

St,k+1 = b−1∑
i∈Bt,k+1

hi(Ŝt,k, Bt,k+1)

Ŝ
t,k+ 1

2
= Ŝt,k + γt,k+1 St,k+1

Ŝt,k+1 = proxt,k(Ŝt,k+ 1
2
), where proxt,k := prox

Bt,k+1
γt,k+1 g

.
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i∈Bt,k+1

hi(Ŝt,k, Bt,k+1)+
(

St,k − b−1∑
i∈Bt+1

hi(Ŝt,k−1, Bt,k)
)

Ŝ
t,k+ 1

2
= Ŝt,k + γt,k+1 St,k+1

Ŝt,k+1 = proxt,k(Ŝt,k+ 1
2
), where proxt,k := prox

Bt,k+1
γt,k+1 g

.
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3P-SPIDER, step by step

Zoom on the variance reduction by SPIDER Fang et al (2018), Nguyen et al (2017), Wang et al (2019)

• The SPIDER control variate: if St approximates n−1
∑n
i=1 pi(st−1) then

St+1 :=
1

b

∑
i∈Bt+1

pi(st) +

St −
1

b

∑
i∈Bt+1

pi(st−1)

 ≈
1

n

n∑
i=1

pi(st)

• Biased control variate ! F. and Moulines (2022, Proposition 7.3.)

E
[
St+1

∣∣∣Pastt
]
6=

1

n

n∑
i=1

pi(st)

Refresh regularly the control variate:
Outer loops

- initialize the control variate
- repeat kin inner loops of the stochastic VMFB algorithm
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3P-SPIDER

3P-SPIDER, step by step

Algorithm: 3P-SPIDER = VMFB + Finite sum with var red + Perturbed forward step

Ŝ
0,kin

0
= Ŝinit, B

0,kin
0

= Binit

for t = 1, · · · , kout do

Ŝt,0 = Ŝ
t−1,kin

t−1
, Ŝt,−1 = Ŝ

t−1,kin
t−1

Bt,0 = B
t−1,kin

t−1

Sample a batch Bt,0 of size b′t in {1, · · · , n}, with or without replacement.

For all i ∈ Bt,0, compute δt,0,i equal to or approximating hi(Ŝt,0, Bt,0).

St,0 = (b′t)
−1∑

i∈Bt,0
δt,0,i

for k = 0, · · · , kin
t − 1 do

Sample a mini batch Bt,k+1 of size b in {1, · · · , n}, with or without replacement

Choose Bt,k+1, a positive definite matrix

For all i ∈ Bt,k+1, compute δt,k+1,i ≈ hi(Ŝt,k, Bt,k+1)− hi(Ŝt,k−1, Bt,k)

St,k+1 = b−1∑
i∈Bt,k+1

δt,k+1,i + St,k

Ŝ
t,k+ 1

2
= Ŝt,k + γt,k+1 St,k+1

Ŝt,k+1 = proxt,k(Ŝt,k+ 1
2
), where proxt,k := prox

Bt,k+1
γt,k+1 g

.
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3P-SPIDER

3P-SPIDER, step by step

IV. On an example
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Logistic regression with random effects

Logistic regression with random effects: the model Details in F.and Moulines (2022)

• Given :
- Observations Y1, · · · , Yn in {−1, 1}; independent
- Covariates X1, · · · , Xn in Rd

• Random effects Zi

P(Yi = 1
∣∣∣Zi) =

1

1 + exp(X>i Zi)
Zi

i.i.d.∼ Nd(θ, σ2I).

• Estimation of θ by penalized ML

argminθ∈Rd −
1

n

n∑
i=1

log

∫
1

1 + exp(YiX>i zi)
exp

(
−

1

2σ2
‖θ − zi‖2

)
dzi + τ‖θ‖2.

• Remark: the minimizers are in a compact set K := {θ ∈ Rd : ‖θ‖2 ≤ ln(4)/τ}.
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Logistic regression with random effects: the model Details in F.and Moulines (2022)
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- Covariates X1, · · · , Xn in Rd

• Random effects Zi

P(Yi = 1
∣∣∣Zi) =

1

1 + exp(X>i Zi)
Zi

i.i.d.∼ Nd(θ, σ2I).

• Estimation of θ by penalized ML

argminθ∈Rd −
1

n

n∑
i=1

log

∫
1

1 + exp(YiX>i zi)
exp

(
−

1

2σ2
‖θ − zi‖2

)
dzi + τ‖θ‖2.

• Remark: the minimizers are in a compact set K := {θ ∈ Rd : ‖θ‖2 ≤ ln(4)/τ}.
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Logistic regression with random effects

In this example

n = 24 989 examples; d = 21.

3P-SPIDER ≡ an EM in the statistic space.

proxBγg : projection on a compact set.

MCMC approximation of the hi’s

finite sum with var red approx hi updates per epoch

EM 1

Online EM kin

3P-SPIDER odd: -
even: kin

minibatch MCMC

All of them, of the form Ŝnew = proxBγg(Ŝold + γH).

Compared through
- the sequence t 7→ θt
- a ”distance” to the limiting set: ‖proxBγg(Ŝold + γH)− Ŝold‖2B

γ2
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The variance reduction by SPIDER (1/2)

Show the benefits of

- many updates of the
iterates during the first
epochs (minibatch)

- the variance reduction
to control the variability
introduced by the mini-
batch

- a gain when increasing
the control variate effect.

Estimation of three components of θ.
Evolution of the three components of θ by ∆EM

r in green (top, left), ∆OEM
r in red (top, right), ∆t,k+1 for 3P-SPIDER in blue (bottom,

left) and ∆t,k+1 for 3P-SPIDER corr in black (bottom, right), as a function of the number of epochs
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Logistic regression with random effects

The variance reduction by SPIDER (2/2)

Show the benefits of

- many updates of the
iterates during the first
epochs (minibatch)

- the variance reduction
to control the variability
introduced by the mini-
batch

- a gain when increasing
the control variate effect.

Evolution of the squared norm of the iterates.
Mean value over 25 runs; (shadowed) min/max fluctuations
Evolution of ‖ŜEM

r ‖
2 in green (top, left), ‖ŜOEM

r ‖
2 in red (top, right), ∆t,k+1 for 3P-SPIDER in blue (bottom, left) and ∆t,k+1

for 3P-SPIDER corr in black (bottom, right), as a function of the number of epochs.
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Logistic regression with random effects

Fluctuations at convergence – Nbr of Monte Carlo points

Show the benefits of

- (same as before)

- a larger number of
Monte Carlo points

A larger step size from
epoch #7

Two strategies for the number of Monte Carlo points when approximating hi
Larger number on the right

Mean value over 25 runs; (shadowed) min/max fluctuations
Evolution of ∆EM

r in green, ∆OEM
r in red, ∆t,k+1 for 3P-SPIDER in blue and ∆t,k+1 for 3P-SPIDER corr in black, as a function of

the number of epochs. [left] m0 = mt = 2d
√
ne, [right] m0 = mt = 5d

√
ne.
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Logistic regression with random effects

Fluctuations at convergence – Role of kin

Show the benefits of

- (same as before)

- a larger minibatch size
and a lower number of
inner loops.

A larger step size from
epoch #7

Two strategies for the number of inner loops per epoch
Larger number on the right (⇒ smaller minibatch size)

Mean value over 25 runs; (shadowed) min/max fluctuations
Evolution of ∆OEM

r in red, ∆t,k+1 for 3P-SPIDER in blue and ∆t,k+1 for 3P-SPIDER corr in black, as a function of the number of

epochs. [left] kin = d
√
n/10e and b = dn/kine. [right] kin = d

√
n/2e and b = dn/kine.
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V. Convergence Analysis

in the case Bt,k+1 := B(Ŝt,k)
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Approximate ε-stationary point�� ��0 ∈ 1
n

∑n
i=1 Gi(s) + ∂g(s) s ∈ Rq

• For any γ > 0, B positive definite and h ∈ Rq see e.g. Hiriart-Urruty and Lemaréchal (1996)

s = proxBγ g(s+ γ h) iff 0 ∈ −Bh+ ∂g(s).

• A control along iterations of

∆?
t,k+1 := E

‖prox
B(Ŝt,k)
γt,k+1 g

(
Ŝt,k + γt,k+1 B(Ŝt,k)−1 n−1

∑n
i=1 Gi(Ŝt,k)

)
− Ŝt,k‖2B(Ŝt,k)

γ2
t,k+1


• Non-convex optimization: Lan (2020, Chapter 6)

1

kout

1

kin
t

kout∑
t=1

kin
t −1∑
k=0

∆?
t,k+1 = E [∆?

τ ] random stopping rule, τ
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Assumptions

Assumptions (1/2)

A1 The non-smooth convex function g
g : Rq → (−∞,+∞] is proper, lower semicontinuous and convex.
Set S := {s ∈ Rq : g(s) < +∞}.

A2 Precond. Forward operators are globally Lipschitz
Set h̄i := hi(·,B(·)).
For all i ∈ {1, · · · , n}, ∃Li > 0 s.t. ∀s, s′ ∈ S,

‖h̄i(s)− h̄i(s
′)‖ ≤ Li ‖s− s′‖.

Set L2 := n−1
∑n
i=1 L

2
i .

A3 Smooth Lyapunov function
There exists W : Rq → R, C1 on S; ∇W is globally LẆ -Lipschitz on S s.t.

∀s ∈ S, ∇W (s) =
1

n

n∑
i=1

Gi(s) ;

A3’ Uniformly bounded spectrum of the preconditioning matrices
There exist positive definite matrices B(s) s.t. h̄i(s) = −B(s)−1Gi(s).
There exist 0 < vmin ≤ vmax < +∞ s.t. s ∈ S, vmin‖ · ‖2 ≤ ‖ · ‖2B(s)

≤ vmax‖ · ‖2.
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Assumptions

Assumptions (2/2)

A4 On the approximations of the hi

• Conditionally to the past, {δt,k+1,i, i ∈ Bt,k+1} independent.
• There exist non negative constants Cb, Cv , Cvb and non decreasing deterministic
sequence {mt,k, k ≥ 1} and {Mt,k, k ≥ 1} s.t. almost-surely

‖
1

n

n∑
i=1

µt,k+1,i‖ ≤
Cb

mt,k+1
.

1

n

n∑
i=1

σ2
t,k+1,i ≤

Cv

Mt,k+1
,

1

n

n∑
i=1

‖µt,k+1,i −
1

n

n∑
j=1

µt,k+1,j‖2 ≤
C2
vb

M̄2
t,k+1

.

Cb Cv Cvb

exact 0 0 0
deterministic ≥ 0 0 ≥ 0
random, unbiased 0 ≥ 0 0
random, biased > 0 ≥ 0 ≥ 0

where

(error) ξt,k+1,i := δt,k+1,i − {h̄i(Ŝt,k)− h̄i(Ŝt,k−1)}

(bias) µt,k+1,i := E
[
ξt,k+1,i

∣∣∣Past
]

(variance) σ2
t,k+1,i := E

[
‖ξt,k+1,i − µt,k+1,i‖2

∣∣∣Past
]
.
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Main result

Theorem F. and Moulines (2022, Theorem 4.1)

Assume A1 to A4. Choose the step sizes {γt,k+1} s.t.

γt,k+1

(
1 +

2Cb

mt,k+1

)
≤ γt,k ,

Λt,k+1 :=
γt,kLẆ
vmin

+ γ2
t,kL

2 2vmaxkin
t

vminb

(
1 +

2Cvb√
b M̄t,k+1

)
∈ (0, 1/2) .

kout∑
t=1

kin
t∑

k=1

γt,k

(
1

2
− Λt,k+1

){
E
[
∆?
t,k

]
+ E

[
D?t,k

]}
≤ E

[
W (Ŝ1,0) + g(Ŝ1,0)

]
−min
S

(W + g) (Init. of the algorithm)

+ vmax

kout∑
t=1

γt,0 k
in
t E

[
‖Et‖2

]
+ vmax

kout∑
t=1

kin
t∑

k=1

(
kin
t − k + 1

)
γt,k Ut,k ,

(Init. of the control variates) (Approximation of the hi’s)

where

Et := St,0 − h̄(Ŝt,0) Ut,k :=
2Cb

mt,k
+

C2
b

m2
t,k

+
Cv

bMt,k
+

2Cvb√
b M̄t,k

+
C2
vb

b M̄2
t,k

.
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Sketch of proof

Key ingredient for the proof: Lyapunov function

• The classical proof does not work

W (st+1) ≤W (st) + 〈∇W (st), st+1 − st〉+
LẆ

2
‖st+1 − st‖2
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Sketch of proof

Key ingredient for the proof: Lyapunov function

• The classical proof does not work

E
[
W (st+1)

∣∣∣Ft] ≤W (st) +
〈
∇W (st),E

[
st+1 − st

∣∣∣Ft]〉+
LẆ

2
E
[
‖st+1 − st‖2

∣∣∣Ft]
E
[
st+1 − st

∣∣∣Ft] = −γt+1∇W (st) not true in our case
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[
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2
E
[
‖st+1 − st‖2

∣∣∣Ft]
E
[
st+1 − st

∣∣∣Ft] = −γt+1∇W (st) not true in our case

• In our case:

st+1 − st = prox
B(st)
γt+1 g (st + γt+1St+1)− st

E
[
St+1

∣∣∣Ft] 6= h(st) h(st) := −B−1(st)
1

n

n∑
i=1

Gi(st)



Stochastic Variable Metric Forward-Backward with variance reduction

Convergence analysis

Sketch of proof

Key ingredient for the proof: Lyapunov function

• The classical proof does not work

E
[
W (st+1)

∣∣∣Ft] ≤W (st) +
〈
∇W (st),E

[
st+1 − st

∣∣∣Ft]〉+
LẆ

2
E
[
‖st+1 − st‖2

∣∣∣Ft]
E
[
st+1 − st

∣∣∣Ft] = −γt+1∇W (st) not true in our case

• In our case:

st+1 − st = prox
B(st)
γt+1 g (st + γt+1St+1)− st

E
[
St+1

∣∣∣Ft] 6= h(st) h(st) := −B−1(st)
1

n

n∑
i=1

Gi(st)

• Another strategy for the Lyapunov function F. and Moulines (2022, Lemma 7.9. and Proposition 7.10)

E
[
W (st+1) + g(st+1)

∣∣∣Ft] ≤W (st) + g(st)

− γt+1(1/2 + o(γt+1))E
[
∆?
t+1 +D?t+1

]
+ γt+1E

[
‖St+1 − h(st)‖2B(st)

]
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Coro 1. The stepsize sequence

• Sufficient conditions :
- Constant when exact hi’s or randomly approximated with no bias
- Decreasing when deterministic approximation or randomly approximated with bias

hi(s)’s
No approx

Random, Unbiased
i.e. Cb = 0

Determ. approx
Random, Biased

i.e. Cb > 0
γ? γt,k ↓, γ? > max γt,k

γt,k+1 := γt,0

k∏
j=0

(
1 +

2Cb

mt,j+1

)−1

where

γt,0 <
1

4Lvmaxυ

b

kin
t

√L2
Ẇ

L2
+ 4vminvmax

kin
t

b
υ −

LẆ
L

 .
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Coro 2. Exact hi’s (i.e. Ut = 0) and Et = 0 and kin
t = kin

In order to satisfy

E [∆?
τ ] ≤ ε τ ∼ U

(
{1, · · · , kout} × {1, · · · , kin}

)

• Stepsize sequence : γ? = vmin
4L
Ẇ

independent of ε

• Size of the minibatches, nbr of inner loops, nbr of outer loops

b = O

(
√
n vminvmax

L

LẆ

)
kin = O

(√
n
LẆ
L

)
kout = O

(
1

ε
√
n

L

vmin

)

• Nbr of proximal steps and Nbr of calls to hi

Kprox = O

(
1

ε

LẆ
vmin

)
Kh̄ = O

(√
n

ε
L

√
vmax
√
vmin

)
In adequation with the literature when 3P-SPIDER ≡ Precond Proximal-Gdt Wang et al

(2019)

Complete the literature when 3P-SPIDER ≡ incremental EM Fort et al (2020)
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Coro 3. Unbiased Monte Carlo approximation of the hi’s

What is the cost of inexact preconditioned forward operators ?

• By choosing

E
[
‖Et‖2

]
= O

(
ε1−a′

(
√
nt)a′

)
, Mt,k+1 = O

(
n(a−ā)/2

ε1−a
ta (k + 1)ā

)

for some a′, a, ā ∈ [0, 1)

• then,

the same rates as with exact hi’s, at the price of a Monte Carlo complexity

KMC = O

(√
n

ε2

)
whatever a′, a, ā ∈ [0, 1)
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