When Monte Carlo and Optimization met in a Markovian dance

Gersende Fort

CNRS

Institut de Mathématiques de Toulouse, France

ICTS "Advances in Applied Probability", Bengaluru, August 2019.

Part IV - talk: Stochastic Proximal-Gradient based algorithms: is Nesterov acceleration efficient ?

Based on joint works with

- Yves Atchadé (Univ. Michigan, USA)
- Eric Moulines (Ecole Polytechnique, France)
- Edouard Ollier (ENS Lyon, France)
- Laurent Risser (IMT, France)
- Adeline Samson (Univ. Grenoble Alpes, France)
- Jean-François Aujol (Univ. de Bordeaux, France)
- Charles Dossal (Univ. de Toulouse, France)

and published in the papers (or works in progress)

- Convergence of the Monte-Carlo EM for curved exponential families (Ann. Stat., 2003)
- On Perturbed Proximal-Gradient algorithms (JMLR, 2017)
- Stochastic Proximal Gradient Algorithms for Penalized Mixed Models (Stat. and Computing, 2018)
- Stochastic FISTA algorithms : so fast ? (IEEE workshop SSP, 2018)
- Rates of convergence of perturbed FISTA-based algorithms (arXiv 2019)

This talk : solve a computational issue

• Find

$$\theta_* \in \operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$$
(1)

where

- $g: \mathbb{R}^p \to (0, +\infty]$ is **not smooth**, but is **convex** and proper, lower semi-continuous

- the set $\Theta\subseteq \mathbb{R}^p$ (extension to any Hilbert possible; not done) is defined by: $\Theta=\{g<\infty\}$

- $f: \Theta \to \mathbb{R}$ is not explicit / intractable, ∇f exists but is not explicit / intractable

• In this talk: numerical tools to solve (1) based on first order methods; convergence analysis in the "convex case".

Motivations: example 1

 $\theta_* \in \operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$

• Large scale learning

$$f(\theta) = \sum_{i=1}^{N} f_i(\theta)$$

and g is a regularization on the parameter θ .

• Intractability comes from the large value of N.

• Key:

 $\nabla f(\theta) = N\mathbb{E}[f_I(\theta)]$ I unif. on $\{1, \dots, N\}$,

 \rightarrow Monte Carlo approximation \rightarrow sampling distribution indep. of θ .

Motivations: example 2

 $\theta_* \in \operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$

• Inference in latent variable model <see Lecture 1>

$$f(\theta) = -\log \int p(Y_{1:N}, x; \theta) \, \mathrm{d}\nu(x)$$

and g is a regularization on the parameter θ .

• Intractability comes from the non explicit integral.

$$\nabla f(\theta) = -\int \partial_{\theta} \left(\log p(Y_{1:N}, x; \theta) \right) \, \mathrm{d}\pi_{\theta}(x)$$

 \rightarrow Monte Carlo approximation \rightarrow sampling distribution is the a posteriori distribution of x given $Y_{1:N}$ and depends on θ .

• Generally, f is not convex.

Motivations: example 3

 $\theta_* \in \operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$

• Binary graphical models: $Y^{(n)} \in \{0,1\}^p$ i.i.d. so that the negative log-likelihood

$$f(\theta) = -\sum_{n=1}^{N} \left(\sum_{i=1}^{p} \theta_{i} Y_{i}^{(n)} + \sum_{1 \le i < j \le p} \theta_{ij} \mathbb{1}_{Y_{i}^{(n)} = Y_{j}^{(n)}} \right) + N \log Z_{\theta}$$

and g is a regularization on the parameter θ .

• Intractability comes from the non explicit normalizing constant Z_{θ} .

• Key:

$$\nabla f(\theta) = \sum_{x \in \{0,1\}^p} H(\theta, x) \ \pi_{\theta}(x) \qquad \pi_{\theta}(x) = \frac{1}{Z_{\theta}} \exp\left(\sum_{i=1}^p \theta_i x_i + \sum_{1 \le i < j \le p} \theta_{ij} \mathbf{1}_{x_i = x_j}\right)$$

 \rightarrow Monte Carlo approximation \rightarrow sampling distribution depends on θ and is known up to a normalization constant.

• Here, f is convex.

If ∇f were available: a numerical solution (1/2)

 $\theta_* \in \operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$

- Assumptions:
- the function $g:\mathbb{R}^p
 ightarrow (0,+\infty]$ is convex, proper, lower semi-continuous
- set $\Theta = \{g < \infty\}$
- the function $f: \Theta \to \mathbb{R}$ is C^1 , with **Lipschitz gradient** (of constant L)
- The proximal operator (Moreau, 1962) : given $\gamma > 0$:

$$\operatorname{Prox}_{\gamma,g}(\theta) := \operatorname{argmin}_{\tau \in \Theta} \left(g(\tau) + \frac{1}{2\gamma} \|\tau - \theta\|^2 \right)$$

- well defined under the assumptions on \boldsymbol{g}
- when g = 0, $\operatorname{Prox}_{\gamma,g}(\tau) = \tau$
- when \boldsymbol{g} is the indicator function of a closed set, it is the projection
- computation explicit, or not. In this talk: assumed explicit.

If ∇f were available: a numerical solution (2/2)

• The proximal-gradient (PG) algorithm Given a sequence of positive step sizes $\{\gamma_t\}_t$, it is defined by

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g} \left(\theta_t - \gamma_{t+1} \nabla f(\theta_t) \right)$$

Beck-Teboulle, 2010; Combettes-Pesquet, 2011; Parikh-Boyd, 2013

• It is a Majorize-Minorization algorithm:

For any $\gamma \in (0, 1/L)$,

$$f(\theta) + g(\theta) \leq f(\theta_t) + \langle \nabla f(\theta_t); \theta - \theta_t \rangle + \frac{L}{2} \|\theta - \theta_t\|^2 + g(\theta)$$
$$\leq f(\theta_t) + \langle \nabla f(\theta_t); \theta - \theta_t \rangle + \frac{1}{2\gamma} \|\theta - \theta_t\|^2 + g(\theta),$$
the minimization of the RHS is the computation of Prox _{$\gamma,g (\theta_t - \gamma \nabla f(\theta_t))$}

It holds: $(f+g)(\theta_{t+1}) \leq (f+g)(\theta_t)$

Perturbed PG

Prox-Gdt:
$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g} \left(\theta_t - \gamma_{t+1} \nabla f(\theta_t) \right)$$

• When the gradient is intractable, a natural idea

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g}\left(\theta_t - \gamma_{t+1}\widehat{\nabla f(\theta_t)}\right)$$

- When the gradient is an expectation: $\widehat{\nabla f(\theta_t)}$ can rely on a Monte Carlo approximation
- Questions:
- Suff cond on the approximation so that this perturbed algorithm inherits the behavior of the (exact) PG.
- Rate of convergence
- Implementation issues in the Monte Carlo case.

Stability result

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g}\left(\theta_t - \gamma_{t+1}\widehat{\nabla f(\theta_t)}\right)$$

•(F.-Moulines, 2020; work in progress)

Under conditions essentially of the form of those on the following slide, it can be proved that the Chen's technique provides a self-stabilized perturbed proximalgradient algorithm.

Convergence result

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g} \left(\theta_t - \gamma_{t+1} \widehat{\nabla f(\theta_t)} \right)$$

- Set $\mathcal{L} := \operatorname{argmin}_{\Theta}(f+g)$ $\eta_{t+1} := \widehat{\nabla f(\theta_t)} \nabla f(\theta_t).$
- •(Atchadé-F.-Moulines, 2017) Assume
- the function g convex, lower semi-continuous; f convex, C^1 and its gradient is Lipschitz with constant L; \mathcal{L} is non empty.
- Stepsize: $\sum_t \gamma_t = +\infty$ and $\gamma_t \in (0, 1/L]$.
- Convergence of the series

$$\sum_{t} \gamma_{t+1}^2 \|\eta_{t+1}\|^2, \qquad \sum_{t} \gamma_{t+1} \eta_{t+1},$$

where $A_t = \operatorname{Prox}_{\gamma_{t+1},g}(\theta_t - \gamma_{t+1} \nabla f(\theta_t)).$

$$\sum_{t} \gamma_{t+1} \left\langle \mathsf{A}_{t}, \eta_{t+1} \right\rangle$$

Then there exists $\theta_{\star} \in \mathcal{L}$ such that $\lim_{t} \theta_{t} = \theta_{\star}$.

• It is a deterministic result. Holds also "a.s." in the case of stochastic approximations of the gradient.

Sketch of proof

The proof relies on

ullet a Lyapunov inequality - which uses the convexity of f and g

$$\|\theta_{t+1} - \theta_{\star}\|^{2} \leq \|\theta_{t} - \theta_{\star}\|^{2} - \underbrace{2\gamma_{t+1}\left((f+g)(\theta_{t+1}) - \min(f+g)\right)}_{\text{non-negative}} \underbrace{-2\gamma_{t+1}\left\langle\mathsf{A}_{t} - \theta_{\star}; \eta_{t+1}\right\rangle + 2\gamma_{t+1}^{2}\|\eta_{t+1}\|^{2}}_{\text{signed noise}}$$

• (an extension of) the Robbins-Siegmund lemma: Let $\{v_t\}_t$ and $\{\chi_t\}_t$ be non-negative sequences and $\{\xi_t\}_t$ be such that $\sum_t \xi_t$ exists. If for any $t \ge 0$,

 $v_{t+1} \le v_t - \chi_{t+1} + \xi_{t+1}$

then $\sum_t \chi_t < \infty$ and $\lim_t v_t$ exists.

Note: deterministic lemma, signed noise.

What about Nesterov-based acceleration ?

Let $\{\lambda_t\}_t$ be a positive sequence s.t. $\gamma_{t+1}\lambda_t(\lambda_t-1) \leq \gamma_t\lambda_{t-1}^2$. Ex. $\gamma_t = \gamma$ and $\lambda_t = O(t)$.

• The algorithm: define the sequence $\{\theta_t\}_t$ by

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g} \left(\tau_t - \gamma_{t+1} \nabla f(\tau_t) \right), \qquad \tau_{t+1} = \theta_{t+1} + \frac{\lambda_t - 1}{\lambda_{t+1}} \left(\theta_{t+1} - \theta_t \right)$$

Nesterov, 2004; Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

• Known:

Proximal-gradient $(f+g)(\theta_t) - \min(f+g) = O\left(\frac{1}{t}\right)$ Accelerated PG $(f+g)(\theta_t) - \min(f+g) = O\left(\frac{1}{t^2}\right)$

• Do we have the same acceleration when replacing the gradient with an approximation ?

Convergence results for the perturbed Accelerated PG

•(F.-Risser-Atchadé-Moulines, 2018) Sufficient conditions on λ_t, γ_t and on the errors

$$\tilde{\eta}_{t+1} := \widehat{\nabla f(\tau_t)} - \nabla f(\tau_t)$$

so that:

- the limit $\lim_t \gamma_t \lambda_t^2 ((f+g)(\theta_t) \min(f+g))$ exists.
- explicit upper bound for this quantity.

• (Aujol-Dollal-F.-Moulines, 2019) Sufficient conditions for the case

$$\gamma_t = \gamma, \qquad \qquad \lambda_t = O(t^d), d \in (0, 1).$$

implying

- the limit $\lim_t \gamma_t \lambda_t^2 ((f+g)(\theta_t) \min(f+g))$ exists.
- explicit upper bound for this quantity.
- convergence of the parameters $\{\theta_t\}_t$.

Case of Monte Carlo approximations of the gradient (1/6) $\nabla f(\theta_t) = \int H(\theta_t, x) \, \mathrm{d}\pi_{\theta_t}(x),$

• Idea 1: sample points $X_{1,t+1}, \cdots, X_{m_{t+1},t+1}$ approximating $d\pi_{\theta_t}$

$$\widehat{\nabla f(\theta_t)} := \frac{1}{m_{t+1}} \sum_{k=1}^{m_{t+1}} H(\theta_t, X_{k,t+1})$$

• Idea 2 when $H(\theta, x) = \phi(\theta) + \langle S(x); \psi(\theta) \rangle$, $\nabla f(\theta) = \phi(\theta) + \langle \int S d\pi_{\theta}; \psi(\theta) \rangle$ $\widehat{\nabla f(\theta_t)} := \phi(\theta_t) + \langle \tilde{S}_{t+1}; \psi(\theta_t) \rangle$

where

$$\tilde{S}_{t+1} = \tilde{S}_t + \delta_{t+1} \left(\frac{1}{m_{t+1}} \sum_{k=1}^{m_{t+1}} H(\theta_t, X_{k,t+1}) - \tilde{S}_t \right)$$

for some positive "step size" δ_{t+1} . (see F.-Ollier-Samson, 2018)

• Hereafter: case of "idea 1".

Case of Monte Carlo approximation of the gradient (2/6)

- This is a again an intertwinings of Monte Carlo and Optimization: at each iteration
- sample points $X_{1,t+1}, \dots, X_{m_{t+1},t+1}$ from a Markov chain converging to $d\pi_{\theta_t}$.
- update the parameter

$$\theta_{t+1} = \operatorname{Prox}_{\gamma_{t+1},g} \left(\theta_t - \gamma_{t+1} \ \frac{1}{m_{t+1}} \sum_{j=1}^{m_{t+1}} H(\theta_t, X_{j,t+1}) \right)$$

• We will see that we can have $m_t = m(= 1)$ ("SA rule") or $m_t \to \infty$ ("mini-batch rule").

Case of Monte Carlo approximation of the gradient (3/6)

• Conditions on the design parameters γ_t, m_t, λ_t , on the sampling mecanism, in order to observe, w.p.1., the convergence to a minimizer ?

• Is there a choice of the design parameters γ_t, m_t, λ_t to reach the same rate of convergence as the exact PG (and observe the benefit of the Nesterov acceleration ?) What about averaging strategy ?

• The answers will use:

$$\left| \mathbb{E} \left[\frac{1}{m_{t+1}} \sum_{i=1}^{m_{t+1}} H(\theta_t, X_{i,t+1}) \middle| \mathcal{F}_t \right] - \int H(x, \theta_t) \, \pi_{\theta_t}(\mathrm{d}x) \right| \leq \frac{C(\theta_t, X_{m_t,t})}{m_{t+1}}$$
$$\mathbb{E} \left[\left| \frac{1}{m_{t+1}} \sum_{i=1}^{m_{t+1}} H(\theta_t, X_{i,t+1}) - \int H(x, \theta_t) \, \pi_{\theta_t}(\mathrm{d}x) \right|^p \middle| \mathcal{F}_t \right] \leq \frac{\tilde{C}(\theta_t, X_{m_t,t})}{m_{t+1}^{p/2}}$$

These results depend on **ergodic properties** of the MCMC sampler at iteration t; and it is easier when the controls can be indep of θ_t (stability !!)

Case of Monte Carlo approximation of the gradient (4/6) - with $m_t \rightarrow \infty$

- •For the almost-sure convergence of $\{\theta_t\}_t$ given by Perturbed-PG
- Conditions on m_t, γ_t :

$$\sum_{t} \gamma_t = +\infty, \qquad \sum_{t} \frac{\gamma_t^2}{m_t} < \infty; \qquad \sum_{t} \frac{\gamma_t}{m_t} < \infty$$

- Conditions on the Markov kernels:

There exist $\lambda \in (0, 1), b < \infty, p \ge 2$ and a measurable function $W : X \to [1, +\infty)$ such that $\begin{aligned} \sup_{\theta \in \Theta} |H_{\theta}|_{W} < \infty, \qquad \sup_{\theta \in \Theta} P_{\theta} W^{p} \le \lambda W^{p} + b. \end{aligned}$ In addition, for any $\ell \in (0, p]$, there exist $C < \infty$ and $\rho \in (0, 1)$ such that for any $x \in X$, $\begin{aligned} \sup_{\theta \in \Theta} \|P_{\theta}^{t}(x, \cdot) - \pi_{\theta}\|_{W^{\ell}} \le C \rho^{t} W^{\ell}(x). \end{aligned}$

• Rate of cvg of the functional in L^q for the averaged sequence $\bar{\theta}_t := t^{-1} \sum_{k=1}^t \theta_k$:

(2)

 $\gamma_t = \gamma_{\star}, \quad m_t = O(t) \Rightarrow \text{rate of cvge } O(1/t)$

Beware ! Rate after $O(t^2)$ Monte Carlo samples. Given a MC budget of O(t), the rate is $O(1/\sqrt{t})$.

Case of Monte Carlo approximation of the gradient (5/6) - with $m_t = m$

- •For the almost-sure convergence of $\{\theta_t\}_t$ given by Perturbed-PG
- Condition on the step size:

$$\sum_{t} \gamma_t = +\infty \qquad \sum_{t} \gamma_t^2 < \infty \qquad \sum_{t} |\gamma_{t+1} - \gamma_t| < \infty$$

- Condition on the Markov chain

same as in the case "increasing batch size" + regularity-in- θ of the Poisson equation

- Condition on the Prox:

$$\sup_{\gamma \in (0,1/L]} \sup_{\theta \in \Theta} \gamma^{-1} \| \operatorname{Prox}_{\gamma,g}(\theta) - \theta \| < \infty.$$

• Rate of cvg of the functional in L^q for the averaged sequence $\bar{\theta}_t := t^{-1} \sum_{k=1}^t \theta_k$: $\gamma_t = \gamma_* t^{-a}, \ a \in [1/2, 1], \qquad m_t = m_* \Longrightarrow$ rate of cvge $O(1/\sqrt{t})$ Rate after O(t) Monte Carlo samples.

Case of Monte Carlo approximation of the gradient (6/6) - what about acceleration strategies ?

• F.-Risser-Atchadé-Moulines, 2018

$$\lim_{t} t^{2} \quad ((f+g)(\theta_{t}) - \min(f+g)) < \infty \quad \text{a.s.}$$
$$\sup_{t} t^{2} \quad \mathbb{E}\left[(f+g)(\theta_{t}) - \min(f+g)\right] < \infty$$

with

$$\lambda_t = O(t), \qquad \gamma_t = \gamma \qquad m_t = O(t^3)$$

- Given a MC budget of O(t):
- the rate is $O(1/\sqrt{t})$
- the same rate as the (perturbed) Proximal-Gradient with an averaging strategy.

• Other strategies $\lambda_t = O(t^d)$ for some $d \in (0,1)$: no improvements, still this " $O(1/\sqrt{t})$ "

Conclusion

• the design paraemeters (+ the sampling mecanism of the Monte Carlo approx of the gradient) can be chosen in such a way that the stochastically perturbed algorithm inherits the same limiting behavior (convergence) as the exact algorithm.

• the design parameters can be chosen in such a way that the stochastically perturbed algorithm inherits the same rates of convergence as the exact algorithms (PG, accelerated PG).

• nevertheless, when taking into account the Monte Carlo computational cost: the stochastic algorithms **can not go** beyond the " $1/\sqrt{t}$ " rate. All these results are obtained with Monte Carlo strategies:

m points in the Monte Carlo sum \Rightarrow variance O(1/m).

• Conclusions based on the asymptotic rate of cvg. What is the verdict of numerical analyses ?