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Part IV - talk:

Stochastic Proximal-Gradient based algorithms: is
Nesterov acceleration efficient ?



Based on joint works with

Yves Atchadé (Univ. Michigan, USA)

Eric Moulines (Ecole Polytechnique, France)
Edouard Ollier (ENS Lyon, France)

Laurent Risser (IMT, France)

Adeline Samson (Univ. Grenoble Alpes, France)

- Jean-Frangois Aujol (Univ. de Bordeaux, France)
Charles Dossal (Univ. de Toulouse, France)

and published in the papers (or works in progress)

- Convergence of the Monte-Carlo EM for curved exponential families (Ann. Stat., 2003)

- On Perturbed Proximal-Gradient algorithms (JMLR, 2017)

- Stochastic Proximal Gradient Algorithms for Penalized Mixed Models (Stat. and Computing,
2018)

- Stochastic FISTA algorithms : so fast ? (IEEE workshop SSP, 2018)

- Rates of convergence of perturbed FISTA-based algorithms (arXiv 2019)



This talk : solve a computational issue

e Find

0« € argmingeg (f(0) + g(0)) (1)

where

- g . RP — (0,4o0c] is not smooth, but is convex and proper, lower semi-
continuous

- the set © C RP (extension to any Hilbert possible; not done) is defined by:
© = {g < oo}

- f . © — R is not explicit / intractable, V[ exists but is not explicit /
intractable

e In this talk: numerical tools to solve (1) based on first order methods; conver-
gence analysis in the "convex case".



Motivations: example 1

0x € argmingecg (f(0) + g(0))

e Large scale learning

N
f0) = > fi(6)
i=1

and g is a regularization on the parameter 6.
e Intractability comes from the large value of V.

o Key:

Vf(0) = NE[fr(0)] I unif. on {1,--- N},

— Monte Carlo approximation — sampling distribution indep. of 6.



Motivations: example 2

0x € argmingecg (f(0) + g(0))

e Inference in latent variable model <see Lecture 1>

£(0) = =109 [ p(¥1.x,2:6) dv(a)

and g is a regularization on the parameter 6.
e Intractability comes from the non explicit integral.

o Key:

V1(0) =~ [ 9 (logp(¥1.y,:0)) dry(a)

— Monte Carlo approximation — sampling distribution is the a posteriori distri-
bution of = given Y7.-5 and depends on 6.

e Generally, f is not convex.



Motivations: example 3

6+ € argmingce (£(6) + g(6))
e Binary graphical models: y(n) ¢ {0, 1}Pi.i.d. so that the negative log-likelihood

N
f(@) = — Z (Z @ Y(n) + Z szlY(n):Y.(n)) + N log Z@
J

n=1 1<i<j<p U
and g is a regularization on the parameter 6.

e Intractability comes from the non explicit normalizing constant Z,.

o Key:

Vf(0) = Z H(0,x) mg(x) mp(x) = —exp(z 0,x; + Z 9]‘1:1:7;::1:]-)

z€{0,1}P Z 1<i<5<p
— Monte Carlo approximation — sampling distribution depends on 6 and is known
up to a normalization constant.

e Here, f is convex.



If V/ were available: a numerical solution (1/2)

0x € argmingecg (f(0) + g(0))

e Assumptions:

- the function g : RP — (0, +o0] is convex, proper, lower semi-continuous
-set © = {g < 0}

- the function f: © — R is C'1, with Lipschitz gradient (of constant L)

e [ he proximal operator (moreau, 1962) . given v > 0O:

: 1
Proxy,4(0) := argmin ceo (g(T) + Z”T — 0||2>

well defined under the assumptions on g

when g = 0, Proxy (1) =7

when g is the indicator function of a closed set, it is the projection
computation explicit, or not. In this talk: assumed explicit.



If V/ were available: a numerical solution (2/2)

e The proximal-gradient (PG) algorithm Given a sequence of positive step
sizes {7t}+, it is defined by

Qt—l—l — PI’OX%_H,Q (Ht — 'Yt—l—lvf(et))

Beck-Teboulle, 2010; Combettes-Pesquet, 2011; Parikh-Boyd,2013

e It is a Majorize-Minorization algorithm:

For any v € (0,1/L),

FO) +9(0) < (6 + (VI (00— ) + 2116 — 01> + (6)

< (0 + (VF(0:);0 — 0) + %H@ — 02 + g(6),

the minimization of the RHS is the computation of
Prox,,q (0: — vV f(04))

It holds: (f +g)(0r41) < (f +9)(6)



Perturbed PG

Prox-Gdt: 641 = Proxy, 1. (61 — 741V /(60))

e \When the gradient is intractable, a natural idea

041 = ProXy, 1. (9t - %+1Vf(9t))

—_—

e When the gradient is an expectation: Vf(6;) can rely on a Monte Carlo ap-
proximation

e Questions:

- Suff cond on the approximation so that this perturbed algorithm inherits the
behavior of the (exact) PG.

- Rate of convergence

- Implementation issues in the Monte Carlo case.



Stability result
Op+1 = Proxy,, 1.9 (9t - %+1Vf(9t)>
® (F.-Moulines, 2020; work in progress)
Under conditions essentially of the form of those on the following slide, it can be

proved that the Chen’s technique provides a self-stabilized perturbed proximal-
gradient algorithm.



Cconvergence result
Oj+1 = Proxy,, g (9t - %5+1Vf(9t)>
Set L :=argming(f+ g) 41 = Vf(0:) — V().

® (Atchadé-F.-Moulines, 2017) ASsume

- the function ¢ convex, lower semi-continuous; f convex, C1 and its gradient is
Lipschitz with constant L; £ is non empty.

- Stepsize: >,y = +oo and ~ € (0,1/L].

- Convergence of the series

S v lmll?, > Ve 1M41, > Y+ <At>77t—|—1>
Z n n

where A; = PrOXVH_l,g(@t — ’Yt—|—1vf(0t))-

Then there exists 05 € L such that limy60; = 0.

e It is a deterministic result. Holds also "a.s." in the case of stochastic approxi-
mations of the gradient.



Sketch of proof
The proof relies on

e a Lyapunov inequality - which uses the convexity of f and g

1041 — 0ul1? <116t = 017 = 2741 ((f + 9)(Brr1) —min(f +9))  —2%et1 (A — Ous met1) + 29241 [Imeta |1

non-negative signed noise

e (an extension of) the Robbins-Siegmund lemma:

Let {v:}+ and {x:}+ be non-negative sequences and {&}+ be such that > ; & exists.
If for any t > 0O,

Vi1 S v — Xp41 T &1

then >, xt < co and lim; vy exists.

Note: deterministic lemma, signed noise.



WwWhat about Nesterov-based acceleration ?

Let {)\;}; be a positive sequence s.t. v 1 (N — 1) < %)\752_1.
Ex. v+ =~ and A\ = O(1).

e The algorithm: define the sequence {60;}; by
A — 1
At+1

0141 = Proxy, 1.9 (7t — 141V F(1)), Ti41 = Op41 +

Nesterov, 2004; Tseng(2008), Beck-Teboulle(2009)
Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

e Known:
Proximal-gradient (f +9)(6r) —min(f +9) = O (%>
Accelerated PG (f +9)(0r) —min(f +g) =0 (t%)

<9t+1 — 9t)

e Do we have the same acceleration when replacing the gradient with an approx-

imation 7



Convergence results for the perturbed Accelerated PG

o (F.-Risser-Atchadé-Moulines, 2018) Sufficient conditions on A, and on the errors

fr1 i= V() — V()

so that:

- the limit limsy A2 ((f + ¢9)(0:) — min(f + g)) exists.
- explicit upper bound for this quantity.

e (Aujol-Dollal-F.-Moulines, 2019) Sufficient conditions for the case
"=, A\t = O(t"),d € (0,1).

implying

- the limit limyy A2 ((f + ¢9)(0:) — min(f + g)) exists.
- explicit upper bound for this quantity.

- convergence of the parameters {6;}.



Case of Monte Carlo approximations of the gradient (1/6)

Vi) = [ (6, ) drg, (@),

e Idea 1: sample points Xq ;1q, -- ,th+1,t+1 approximating dmy,
S 1 mi41
V(o) = > H(O4, Xpy41)
Mt4+1 k=1
e Idea 2 when H(0,z) = ¢(0) + (S(x);¥(0)), V() = ¢(0) + ([ Sdmg; (6))
V() = 6(6:) + (Spp1:9(60) )
where

3 3 1 N
St+1 = St + 0141 Y. H(0y, Xpi41) — St
T+1 =1

for some positive "step size" 0,4 1. (see F-Ollier-Samson, 2018)

e Hereafter: case of "idea 1".



Case of Monte Carlo approximation of the gradient (2/6)

e This is a again an intertwinings of Monte Carlo and Optimization: at each
iteration

- sample points Xy ;44,-- ,th+1,t_|_1 from a Markov chain converging to dmy,.

- update the parameter

1 mt—|—1
Or+1 = Proxy,, 1,9 | 0t — 741 > H(04, X 141)

e We will see that we can have m; = m(= 1) (“SA rule") or m; — oo ("mini-batch
rule").



Case of Monte Carlo approximation of the gradient (3/6)

e Conditions on the design parameters ¢, ms, Ay, ONn the sampling mecanism, in
order to observe, w.p.1l., the convergence to a minimizer 7

e Is there a choice of the design parameters ~;, ms, Ay to reach the same rate of
convergence as the exact PG (and observe the benefit of the Nesterov accelera-

tion 7) What about averaging strategy 7

e [ he answers will use:

1Y C(0;, X
E > H(04, X 141)|Fe| — | H(z,0p) mg,(da)| < (0t, Xy t)
mi4+1 ;=1 My 1
LN g C (0, X, t)
E Z H(9t>Xz',t—|—1) — /H(ac,@t) Wgt(d;p) ‘]-“t < p/;nt’
mi4+1 ;=1 mH—l

These results depend on ergodic properties of the MCMC sampler at iteration
t; and it is easier when the controls can be indep of 6; (stability 1)



Case of Monte Carlo approximation of the gradient (4/6) - with m; —

eFor the almost-sure convergence of {6;}; given by Perturbed-PG
- Conditions on my, ¢

2
thz—l—oo, Zﬁ<m; Zl<oo
t

¢ Mt ¢ Tt

- Conditions on the Markov kernels:

There exist A € (0,1), b < oo, p> 2 and a measurable function W : X — [1,4+oc0) such that

sup |Hplw < oo, sup PyWP < A\WP 4 b.
6cO 2e)

In addition, for any ¢ € (0, p], there exist C' < oo and p € (0,1) such that for any z € X,

sup || P§(z, -) — mollwe < Cp'W(z). (2)
0cO©

e Rate of cvg of the functional in .9 for the averaged sequence 4, := ¢! 2}221 0.

Vi =, my = O(t) = rate of cvge O(1/t)

Beware | Rate after O(t?) Monte Carlo samples. Given a MC budget of O(%),
the rate is O(1/v/1).



Case of Monte Carlo approximation of the gradient (5/6) - with m; = m

eFor the almost-sure convergence of {6:}; given by Perturbed-PG
- Condition on the step size:

S 4 = +oo S 9F < o0 S 1 — el < o0
t ¢ t
- Condition on the Markov chain

same as in the case "increasing batch size" -+ regularity-in-0 of the Poisson eqguation

- Condition on the Prox:
sup  supy Lt ||Prox, 4(0) — 0| < co.
~€(0,1/L]) 0€©
e Rate of cvg of the functional in .9 for the averaged sequence §, := ¢! 22:1 0.
v¢ = vt~ ¢, a€[1/2,1], my = mx == rate of cvge O(1/V/t)
Rate after O(t) Monte Carlo samples.



Case of Monte Carlo approximation of the gradient (6/6) - what about
acceleration strategies 7

o F-Risser-Atchadé-Moulines, 2018
imt? ((f +9)(6:) —min(f +9)) <co  as.
sgth E[(f +9)(6:) —min(f + g)] < oo

with

At = O(t), V¢ =y my = O(t3)

e Given a MC budget of O(%):
- the rate is O(1//t)
- the same rate as the (perturbed) Proximal-Gradient with an averaging strategy.

e Other strategies \; = O(t%) for some d € (0,1): no improvements, still this

"O(1/vt)"



Conclusion

e the design paraemeters (+ the sampling mecanism of the Monte Carlo approx
of the gradient) can be chosen in such a way that the stochastically perturbed
algorithm inherits the same limiting behavior (convergence) as the exact algo-
rithm.

e the design parameters can be chosen in such a way that the stochastically per-
turbed algorithm inherits the same rates of convergence as the exact algorithms
(PG, accelerated PG).

e nevertheless, when taking into account the Monte Carlo computational cost:
the stochastic algorithms can not go beyond the "1/\/E" rate. All these results
are obtained with Monte Carlo strategies:

m points in the Monte Carlo sum =- variance O(1/m).

e Conclusions based on the asymptotic rate of cvg. What is the verdict of
numerical analyses 7



