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and published in the papers (or works in progress)

- Convergence of the Monte-Carlo EM for curved exponential families (Ann. Stat., 2003)

- On Perturbed Proximal-Gradient algorithms (JMLR, 2017)

- Stochastic Proximal Gradient Algorithms for Penalized Mixed Models (Stat. and Computing,

2018)

- Stochastic FISTA algorithms : so fast ? (IEEE workshop SSP, 2018)

- Rates of convergence of perturbed FISTA-based algorithms (arXiv 2019)



This talk : solve a computational issue

• Find

θ∗ ∈ argminθ∈Θ (f(θ) + g(θ)) (1)

where

- g : Rp → (0,+∞] is not smooth, but is convex and proper, lower semi-

continuous

- the set Θ ⊆ Rp (extension to any Hilbert possible; not done) is de�ned by:

Θ = {g <∞}
- f : Θ → R is not explicit / intractable, ∇f exists but is not explicit /

intractable

• In this talk: numerical tools to solve (1) based on �rst order methods; conver-

gence analysis in the "convex case".



Motivations: example 1

θ∗ ∈ argminθ∈Θ (f(θ) + g(θ))

• Large scale learning

f(θ) =
N∑
i=1

fi(θ)

and g is a regularization on the parameter θ.

• Intractability comes from the large value of N .

• Key:

∇f(θ) = NE [fI(θ)] I unif. on {1, · · · , N},

→ Monte Carlo approximation → sampling distribution indep. of θ.



Motivations: example 2

θ∗ ∈ argminθ∈Θ (f(θ) + g(θ))

• Inference in latent variable model <see Lecture 1>

f(θ) = − log
∫
p(Y1:N , x; θ) dν(x)

and g is a regularization on the parameter θ.

• Intractability comes from the non explicit integral.

• Key:

∇f(θ) = −
∫
∂θ (log p(Y1:N , x; θ)) dπθ(x)

→ Monte Carlo approximation → sampling distribution is the a posteriori distri-

bution of x given Y1:N and depends on θ.

• Generally, f is not convex.



Motivations: example 3

θ∗ ∈ argminθ∈Θ (f(θ) + g(θ))

• Binary graphical models: Y (n) ∈ {0,1}p i.i.d. so that the negative log-likelihood

f(θ) = −
N∑
n=1

 p∑
i=1

θiY
(n)
i +

∑
1≤i<j≤p

θij1Y (n)
i =Y

(n)
j

+N logZθ

and g is a regularization on the parameter θ.

• Intractability comes from the non explicit normalizing constant Zθ.

• Key:

∇f(θ) =
∑

x∈{0,1}p
H(θ, x) πθ(x) πθ(x) =

1

Zθ
exp(

p∑
i=1

θixi +
∑

1≤i<j≤p
θij1xi=xj)

→ Monte Carlo approximation→ sampling distribution depends on θ and is known

up to a normalization constant.

• Here, f is convex.



If ∇f were available: a numerical solution (1/2)

θ∗ ∈ argminθ∈Θ (f(θ) + g(θ))

• Assumptions:
- the function g : Rp → (0,+∞] is convex, proper, lower semi-continuous

- set Θ = {g <∞}
- the function f : Θ→ R is C1, with Lipschitz gradient (of constant L)

• The proximal operator (Moreau, 1962) : given γ > 0:

Proxγ,g(θ) := argminτ∈Θ

(
g(τ) +

1

2γ
‖τ − θ‖2

)
- well de�ned under the assumptions on g

- when g = 0, Proxγ,g(τ) = τ

- when g is the indicator function of a closed set, it is the projection

- computation explicit, or not. In this talk: assumed explicit.



If ∇f were available: a numerical solution (2/2)

• The proximal-gradient (PG) algorithm Given a sequence of positive step

sizes {γt}t, it is de�ned by

θt+1 = Proxγt+1,g

(
θt − γt+1∇f(θt)

)
Beck-Teboulle, 2010; Combettes-Pesquet, 2011; Parikh-Boyd,2013

• It is a Majorize-Minorization algorithm:
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For any γ ∈ (0,1/L),

f(θ) + g(θ) ≤ f(θt) + 〈∇f(θt); θ − θt〉+
L

2
‖θ − θt‖2 + g(θ)

≤ f(θt) + 〈∇f(θt); θ − θt〉+
1

2γ
‖θ − θt‖2 + g(θ),

the minimization of the RHS is the computation of

Proxγ,g (θt − γ∇f(θt))

It holds: (f + g)(θt+1) ≤ (f + g)(θt)



Perturbed PG

Prox-Gdt: θt+1 = Proxγt+1,g

(
θt − γt+1∇f(θt)

)
• When the gradient is intractable, a natural idea

θt+1 = Proxγt+1,g

(
θt − γt+1∇̂f(θt)

)
• When the gradient is an expectation: ∇̂f(θt) can rely on a Monte Carlo ap-

proximation

• Questions:
- Su� cond on the approximation so that this perturbed algorithm inherits the

behavior of the (exact) PG.

- Rate of convergence

- Implementation issues in the Monte Carlo case.



Stability result

θt+1 = Proxγt+1,g

(
θt − γt+1∇̂f(θt)

)

•(F.-Moulines, 2020; work in progress)

Under conditions essentially of the form of those on the following slide, it can be

proved that the Chen's technique provides a self-stabilized perturbed proximal-

gradient algorithm.



Convergence result

θt+1 = Proxγt+1,g

(
θt − γt+1∇̂f(θt)

)
Set L := argminΘ(f + g) ηt+1 := ∇̂f(θt)−∇f(θt).

•(Atchadé-F.-Moulines, 2017) Assume

- the function g convex, lower semi-continuous; f convex, C1 and its gradient is

Lipschitz with constant L; L is non empty.

- Stepsize:
∑
t γt = +∞ and γt ∈ (0,1/L].

- Convergence of the series∑
t

γ2
t+1‖ηt+1‖2,

∑
t

γt+1ηt+1,
∑
t

γt+1

〈
At, ηt+1

〉
where At = Proxγt+1,g(θt − γt+1∇f(θt)).

Then there exists θ? ∈ L such that limt θt = θ?.

• It is a deterministic result. Holds also "a.s." in the case of stochastic approxi-

mations of the gradient.



Sketch of proof

The proof relies on

• a Lyapunov inequality - which uses the convexity of f and g

‖θt+1− θ?‖2 ≤ ‖θt− θ?‖2− 2γt+1 ((f + g)(θt+1)−min(f + g))︸ ︷︷ ︸
non-negative

−2γt+1 〈At − θ?; ηt+1〉+ 2γ2
t+1‖ηt+1‖2︸ ︷︷ ︸

signed noise

• (an extension of) the Robbins-Siegmund lemma:

Let {vt}t and {χt}t be non-negative sequences and {ξt}t be such that
∑
t ξt exists.

If for any t ≥ 0,

vt+1 ≤ vt − χt+1 + ξt+1

then
∑
t χt <∞ and limt vt exists.

Note: deterministic lemma, signed noise.



What about Nesterov-based acceleration ?

Let {λt}t be a positive sequence s.t. γt+1λt(λt − 1) ≤ γtλ2
t−1.

Ex. γt = γ and λt = O(t).

• The algorithm: de�ne the sequence {θt}t by

θt+1 = Proxγt+1,g

(
τt − γt+1∇f(τt)

)
, τt+1 = θt+1 +

λt − 1

λt+1

(
θt+1 − θt

)
Nesterov, 2004; Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

• Known:

Proximal-gradient (f + g)(θt)−min(f + g) = O

(
1

t

)
Accelerated PG (f + g)(θt)−min(f + g) = O

(
1

t2

)

• Do we have the same acceleration when replacing the gradient with an approx-

imation ?



Convergence results for the perturbed Accelerated PG

•(F.-Risser-Atchadé-Moulines, 2018) Su�cient conditions on λt, γt and on the errors

η̃t+1 := ∇̂f(τt)−∇f(τt)

so that:

- the limit limt γt λ
2
t ((f + g)(θt)−min(f + g)) exists.

- explicit upper bound for this quantity.

•(Aujol-Dollal-F.-Moulines, 2019) Su�cient conditions for the case

γt = γ, λt = O(td), d ∈ (0,1).

implying

- the limit limt γt λ
2
t ((f + g)(θt)−min(f + g)) exists.

- explicit upper bound for this quantity.

- convergence of the parameters {θt}t.



Case of Monte Carlo approximations of the gradient (1/6)

∇f(θt) =
∫
H(θt, x) dπθt(x),

• Idea 1: sample points X1,t+1, · · · , Xmt+1,t+1 approximating dπθt

∇̂f(θt) :=
1

mt+1

mt+1∑
k=1

H(θt, Xk,t+1)

• Idea 2 when H(θ, x) = φ(θ) + 〈S(x);ψ(θ)〉, ∇f(θ) = φ(θ) +
〈∫
Sdπθ;ψ(θ)

〉
∇̂f(θt) := φ(θt) +

〈
S̃t+1;ψ(θt)

〉
where

S̃t+1 = S̃t + δt+1

 1

mt+1

mt+1∑
k=1

H(θt, Xk,t+1)− S̃t


for some positive "step size" δt+1. (see F.-Ollier-Samson, 2018)

• Hereafter: case of "idea 1".



Case of Monte Carlo approximation of the gradient (2/6)

• This is a again an intertwinings of Monte Carlo and Optimization: at each

iteration

- sample points X1,t+1, · · · , Xmt+1,t+1 from a Markov chain converging to dπθt.

- update the parameter

θt+1 = Proxγt+1,g

θt − γt+1
1

mt+1

mt+1∑
j=1

H(θt, Xj,t+1)



• We will see that we can have mt = m(= 1) (�SA rule�) or mt →∞ ("mini-batch

rule").



Case of Monte Carlo approximation of the gradient (3/6)

• Conditions on the design parameters γt,mt, λt, on the sampling mecanism, in

order to observe, w.p.1., the convergence to a minimizer ?

• Is there a choice of the design parameters γt,mt, λt to reach the same rate of

convergence as the exact PG (and observe the bene�t of the Nesterov accelera-

tion ?) What about averaging strategy ?

• The answers will use:∣∣∣∣∣∣E
 1

mt+1

mt+1∑
i=1

H(θt, Xi,t+1)
∣∣∣∣Ft

− ∫ H(x, θt) πθt(dx)

∣∣∣∣∣∣ ≤ C(θt, Xmt,t)

mt+1

E

∣∣∣∣∣∣ 1

mt+1

mt+1∑
i=1

H(θt, Xi,t+1)−
∫
H(x, θt) πθt(dx)

∣∣∣∣∣∣
p ∣∣∣∣Ft

 ≤ C̃(θt, Xmt,t)

m
p/2
t+1

These results depend on ergodic properties of the MCMC sampler at iteration

t; and it is easier when the controls can be indep of θt (stability !!)



Case of Monte Carlo approximation of the gradient (4/6) - with mt →∞

•For the almost-sure convergence of {θt}t given by Perturbed-PG

- Conditions on mt, γt:∑
t

γt = +∞,
∑
t

γ2
t

mt
<∞;

∑
t

γt

mt
<∞

- Conditions on the Markov kernels:

There exist λ ∈ (0,1), b <∞, p ≥ 2 and a measurable function W : X→ [1,+∞) such that

sup
θ∈Θ
|Hθ|W <∞, sup

θ∈Θ
PθW

p ≤ λW p + b.

In addition, for any ` ∈ (0, p], there exist C <∞ and ρ ∈ (0,1) such that for any x ∈ X,

sup
θ∈Θ
‖P t

θ(x, ·)− πθ‖W ` ≤ CρtW `(x). (2)

• Rate of cvg of the functional in Lq for the averaged sequence θ̄t := t−1∑t
k=1 θk:

γt = γ?, mt = O(t)⇒ rate of cvge O(1/t)

Beware ! Rate after O(t2) Monte Carlo samples. Given a MC budget of O(t),

the rate is O(1/
√
t).



Case of Monte Carlo approximation of the gradient (5/6) - with mt = m

•For the almost-sure convergence of {θt}t given by Perturbed-PG

- Condition on the step size:∑
t

γt = +∞
∑
t

γ2
t <∞

∑
t

|γt+1 − γt| <∞

- Condition on the Markov chain

same as in the case "increasing batch size" + regularity-in-θ of the Poisson equation

- Condition on the Prox:

sup
γ∈(0,1/L]

sup
θ∈Θ

γ−1 ‖Proxγ,g(θ)− θ‖ <∞.

• Rate of cvg of the functional in Lq for the averaged sequence θ̄t := t−1∑t
k=1 θk:

γt = γ?t
−a, a ∈ [1/2,1], mt = m? =⇒ rate of cvge O(1/

√
t)

Rate after O(t) Monte Carlo samples.



Case of Monte Carlo approximation of the gradient (6/6) - what about

acceleration strategies ?

• F.-Risser-Atchadé-Moulines, 2018

lim
t
t2 ((f + g)(θt)−min(f + g)) <∞ a.s.

sup
t
t2 E [(f + g)(θt)−min(f + g)] <∞

with

λt = O(t), γt = γ mt = O(t3)

• Given a MC budget of O(t):

- the rate is O(1/
√
t)

- the same rate as the (perturbed) Proximal-Gradient with an averaging strategy.

• Other strategies λt = O(td) for some d ∈ (0,1): no improvements, still this

"O(1/
√
t)"



Conclusion

• the design paraemeters (+ the sampling mecanism of the Monte Carlo approx

of the gradient) can be chosen in such a way that the stochastically perturbed

algorithm inherits the same limiting behavior (convergence) as the exact algo-

rithm.

• the design parameters can be chosen in such a way that the stochastically per-

turbed algorithm inherits the same rates of convergence as the exact algorithms

(PG, accelerated PG).

• nevertheless, when taking into account the Monte Carlo computational cost:

the stochastic algorithms can not go beyond the "1/
√
t" rate. All these results

are obtained with Monte Carlo strategies:

m points in the Monte Carlo sum⇒ variance O(1/m).

• Conclusions based on the asymptotic rate of cvg. What is the verdict of

numerical analyses ?


