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A dance, why 7



To improve Monte Carlo methods targetting: dmr = wdu
e he "naive" MC sampler depends on design parameters in R? or in infinite dimension 0

e [ heoretical studies caracterize an optimal choice of theses parameters 0, by

6, € © s.t. /H(Q,a:) dr(z) =0

or

0, € argmin@€@/0(9,x) dr(z) = 0.

e Strategies:

- Strategy 1: a preliminary "machinery" for the approximation of 604; then run
the MC sampler with 6 < 0,

- Strategy 2: learn 0 and sample concomitantly



To make optimization methods tractable

e Intractable objective function
0 s.t. h(f) =0 when h is not explicit h(0) = /XH(G,:I:) dmg(x)

or
argmingee)/)(C(H,a:) dmg(x)
e Intractable auxiliary quantities

Ex-1 Gradient-based methods

VF(0) = /XHw,x) drg(a)

Ex-2 Majorize-Minimization methods

at iteration t,  f(0) < Fi(§) = /X Hy(0,7) dry o(x)

e Strategies: Use Monte Carlo techniques to approximate the unknown quantities



In this talk, Markov !

—  » 8 = 0 >
— X _~P, (X, )——» X~ PouiX ) o

e from the Monte Carlo point of view:

which conditions on the updating scheme for convergence of the sampler 7
Case: Markov chain Monte Carlo sampler

e from the optimization point of view:

which conditions on the Monte Carlo approximation for convergence of the
stochastic optimization 7

Case: Stochastic Approximation methods with Markovian inputs

e (Talk) Application to a Computational Machine Learning pbm: penalized
Maximum Likelihood through Stochastic Proximal-Gradient based methods



Part I: Motivating examples



1st Ex. Adaptive Importance sampling by Wang-Landau approaches (1/6)

The problem
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e A highly multimodal target density dn on X



1st Ex. (2/6)
The strategy for choosing the proposal mecanism

e A family of proposal mecanisms obtained by biasing locally the target:
- given a partition Xq,--- ,X; of X,
- for any weight vector 6 = (60(1),---,0(1))

dm(x)

drg(z) = Z () g With 6.0) = /X.dw(u).

I
i:1

‘)
e Optimal proposal: dmy, <proof>

e Unfortunately, 6, unavailable.



1st Ex. (3/6)
If 79, were available

e T he algorithm would be:

- Sample Xq,:--,Xp, -+ i.i.d. with distribution dmy, (or a MCMC with target
dmg, )
- Compute the importance ratio

dm

—(Xy) =1 Z 1y (Xg) 0+(7)

dmg, =1

e When approximating an expectation, set

T
[oanm Y (Z 1x,(X0) e*@)) P(X0).
t=1

’[,_



1st Ex. (4/6)
0. and therefore dmy, are unknown, so 7
o 0, € R! collects [y dr for all i e {1,---, I},
e 0, the unique root of § — [y H(0,z) dmy(xz) € R! where for all i € {1,--- I}
I
H;(0,2) 1= 0(i) 1y (x) — 0() Y 1x,(2)0(5).
=1

thus suggesting the use of a Stochastic Approximation procedure: 0, ~ limy 0;

0141 = Ot + 41 H (O, Xyqo1) Xi41 ~ dmy,

e This update scheme is a normalized counter of the number of visits to X;
<proof>



1st Ex. (5/6)
The algorithm: Wang-Landau based procedures

e Initialisation: a weight vector 6
Repeat fort =1, ---.,T

- sample a point X;, 1 ~ dmy,

- update the estimate of 0,

Orr1 =0t +vi41 H(O Xy 1)
where Xt—l—l ~ Pgt(Xt, ) and Py inv. wrt dmg.

e EXpected:

- the convergence of 6; to 0. SA scheme, fed with adaptive (controlled) MCMC
sampler,

- the convergence of the distribution of X; to dmy,



1st Ex. (6/6)

Does it work ? Plot: convergence of 6; and first exit times from one mode

» see F, Kuhn, Jourdain, Leliévre,

Stoltz (2014); F, Jourdain,

Lelievre, Stoltz (2015,2017,2018)
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Conclusion of the 1st example
e Iterative sampler

eEach iteration combines : (i) a sampling step X;y; ~ Fy, (X, -); and (ii) an
optimization step to update the knownledge of some optimal parameter.

e The points {X4,---,X,---} can be seen as the output of a controlled Markov
chain

E|f(Xi40)|Ft| = Po(X1,)  Fr:=0(Xou,00)

where Fy has dmg as its unique invariant distribution.

e [ he convergence of the parameter 6; is the convergence of a SA scheme with
"controlled Markovian'" dynamics

Or41 = 0t + vpp1 H(Or, Xy41)



2nd Example: penalized ML in latent variable models (1/6)

e An example from Pharmacokinetic:

- N patients.

- At time 0: dose D of a drug.

- For patient #:, observations Y;q, - -- ,YZ-JZ. giving the evolution of the concentra-
tion at times ¢;1,--- ,¢;7.

e The model:
Yii=F <t7jj7 Xq;) + € €ij i N0, 02)
where X, € RV is modeled as
X; = Z;84d; e R" d; "X A7 (0,9) and independent of e,
and Z; known matrix s.t. each row of X; has in intercept (fixed effect) and

covariates.

e Statistical analysis: (i) estimation of 8 = (8,52,$2), under sparsity constraints
on f; (ii) selection of the covariates based on 3.



2nd Ex. (2/6)
Penalized Maximum Likelihood

e The likelihood of ¥V :={Y;;,1 <i < N,1 <j < J;} is not explicit:

- The distribution of Y j given X, is simple; the distribution of X, is simple.

- The joint distribution has an explicit expression - It is an example of latent
variable model:

log L(Y; 6) = log /p(Y,Cl?l:N; 0) dv(zy.n)

e Sparsity constraints on the parameter 6. through a penalty term ¢(6)

e T he penalized ML is of the form

argming (—log L(Y;0) + g(0))

with an intractable objective function.



2nd Ex. (3/6)
What about first-order methods for solving the optimization 7

e On the likelihood term:
- Usually regular enough so that the Gradient exists and <proof>

g p(Y,z;0) p(Y,z;60)du(zx)
p(Y,z;0) [p(Y,z,0)du(z)
= [ 8y (log p(¥; 2 6)) ()

the a posteriori distribution of = given Y
the dep upon Y is omitted

Vylog L(Y: 6) :/

- the a posteriori distribution is known up to a normalizing constant.

e On the penalty term
- May be non smooth, but: convex and lower semi-continuous
- Hence a Proximal operator (implicit gradient) is associated - <See the talk, on

tuesday afternoon>.



2nd Ex. (4/6)
What about EM-like methods for solving the optimization 7

e Expectation-Maximization introduced to solve below: modified for a minimizati

argmingco (Iog /Xp(x; 0)du(x) — g(@))

where the first part is untractable; by iterating two steps
- Expectation step

p(x; 0;) du(x)
[ p(z; 0:) du(z)

Q(0,0:) == /Iogp(az;é) - /Iogp(az;e) dmg, ()

- Minimization step

01 = argming (—Q(6,6;) 4+ g(0)) .

e 0— Q(0,0;) is an integral which is untractable; dmry is known up to a normalizing
constant.

see F,Moulines (2003); F,Ollier,Samson (2018)



2nd Ex. (5/6)

eBoth in EM-like approaches and in gradient-based approaches,
- faced with untractable auxiliary quantities of the form

/XH(H,:L‘) dmp, (x) (1)

at itreration ¢ of the optimization algorithm.
- untractable integral; dmy is often known up to a normalizing constant.

eWhat kind of stochastic approximation of the integral (1) at iteration ¢ ?
- Quadrature techniques: poor behavior w.r.t. the dimension of X
- L.i.d. samples from my to define a Monte Carlo approximation: not possible, in

general.
- use T samples from a MCMC sampler {Xj,t—l—laj > 0} with unique inv. dist.

dy, .-



2nd Ex. (6/6)

Does it work ?

see F,Moulines (2003)
for EM-1like approaches;
see Atchadée,F,Moulines
(2017) and
F,0llier,Samso (2018)
for gradient-based
approaches;

see F,0llier,Samson
(2018) for the parallel
between EM-like

and Gradient-based

techniques
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Conclusion of the 2nd example
e Iterative optimization technique

eEach iteration combines : (i) an update of the parameter; (ii) a sampling step
X141~ Pgt(Xj,H_l, -) to approximate auxiliary quantities.

e The convergence of {6;}; is the convergence of a stochastically perturbed itera-
tive optimization algorithm. At each iteration: an exact quantity | H(0,z) dmy, ()
IS approximated by a Monte Carlo sum

1 mt—l—l
/ H(0,z) dmg,(2) ~ S H(0, X 441)
mi41 1=1

e The points {X,;}, satisfy

E | f(Xj e+ DIF] = P (Xo441,°) Fi = 0(X:0:,00), Xogt1 = Xyt

where Fy has dmy as its unique invariant distribution.



Conclusion of this first part (1/3): is a theory required ?

» en - er1+1
| -
v v
—» X _~P_(X,)) > X ~Py. (X )

n+1 Bn' n n+2



Conclusion of this first part (2/3): is a theory required when sampling ?
YES ! convergence can be lost by the adaption mecanism

Even in a simple case when

Vo € O, Py invariant wrt dm,

one can define a simple adaption mecanism
Xyyi|pastyy ~ Py, (X, ) 0r € 0(X1:t)
such that

imE[f(X0] # [ f dr.

<proof> A {0, 1}-valued chain {X;}; defined by Xi41 ~ Px,(X¢,-) where the transition matrices are

t 1—t ¢ 1—t
Po= 101" ( to O)} Plz[u—ltl) ( t 1)]

Then Py and P; are invariant w.r.t [1/2,1/2] but {X;} is a Markov chain invariant w.r.t. [t1,t0]



Conclusion of this first part (3/3): is a theory required when optimizing ?
YES ! Unfortunately ,

e a biased approximation <proof>

1 my4-1
E > H(0, X1 )| Fe| =7 # [ H(O,2) dmg, ()
mi41 j—1 X

e For a reduced computational cost: a bias which we would like NOT vanishing
i.e. my=m(=1).

Ex. Stochastic Approximation with controlled Markovian dynamics

0141 = O + i1 H(Or, Xyq1) X1~ Py, (X¢,-)
= 0+ 41 [ H(0, 2)dm, () 4 (H(Xip1,00) — h(6)

h(6;) non centered




