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.

A dance, why ?

.



To improve Monte Carlo methods targetting: dπ = π dµ

•The "naive" MC sampler depends on design parameters in Rp or in in�nite dimension θ

•Theoretical studies caracterize an optimal choice of theses parameters θ? by

θ? ∈ Θ s.t.

∫
H(θ, x) dπ(x) = 0

or

θ? ∈ argminθ∈Θ

∫
C(θ, x) dπ(x) = 0.

• Strategies:
- Strategy 1: a preliminary "machinery" for the approximation of θ?; then run

the MC sampler with θ ← θ?

- Strategy 2: learn θ and sample concomitantly



To make optimization methods tractable

• Intractable objective function

θ s.t. h(θ) = 0 when h is not explicit h(θ) =
∫
X
H(θ, x) dπθ(x)

or

argminθ∈Θ

∫
X
C(θ, x) dπθ(x)

• Intractable auxiliary quantities

Ex-1 Gradient-based methods

∇f(θ) =
∫
X
H(θ, x) dπθ(x)

Ex-2 Majorize-Minimization methods

at iteration t, f(θ) ≤ Ft(θ) =
∫
X
Ht(θ, x) dπt,θ(x)

• Strategies: Use Monte Carlo techniques to approximate the unknown quantities



In this talk, Markov !

• from the Monte Carlo point of view:

which conditions on the updating scheme for convergence of the sampler ?

Case: Markov chain Monte Carlo sampler

• from the optimization point of view:

which conditions on the Monte Carlo approximation for convergence of the

stochastic optimization ?

Case: Stochastic Approximation methods with Markovian inputs

• (Talk) Application to a Computational Machine Learning pbm: penalized

Maximum Likelihood through Stochastic Proximal-Gradient based methods



.

Part I: Motivating examples

.



1st Ex. Adaptive Importance sampling by Wang-Landau approaches (1/6)

The problem

• A highly multimodal target density dπ on X ⊆ Rd.
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• Two samplers with di�erent behaviors (plot: the x-path of a chain in R2)
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1st Ex. (2/6)

The strategy for choosing the proposal mecanism

• A family of proposal mecanisms obtained by biasing locally the target:

- given a partition X1, · · · ,XI of X,
- for any weight vector θ = (θ(1), · · · , θ(I))

dπθ(x) =
1∑I

i=1
θ?(i)
θ(i)

I∑
i=1

1Xi(x)
dπ(x)

θ(i)
, with θ?(i) :=

∫
Xi

dπ(u).

• Optimal proposal: dπθ? <proof>

• Unfortunately, θ? unavailable.



1st Ex. (3/6)

If πθ? were available

• The algorithm would be:

- Sample X1, · · · , Xn, · · · i.i.d. with distribution dπθ? (or a MCMC with target

dπθ?)

- Compute the importance ratio

dπ

dπθ?
(Xk) = I

I∑
i=1

1Xi(Xk) θ?(i)

• When approximating an expectation, set∫
φdπ ≈

I

T

T∑
t=1

 I∑
i=1

1Xi(Xt) θ?(i)

 φ(Xt).



1st Ex. (4/6)

θ? and therefore dπθ? are unknown, so ?

• θ? ∈ RI collects
∫
Xi

dπ for all i ∈ {1, · · · , I},

• θ? the unique root of θ 7→
∫
XH(θ, x) dπθ(x) ∈ RI where for all i ∈ {1, · · · , I}

Hi(θ, x) := θ(i)1X(i)(x)− θ(i)
I∑

j=1

1Xj(x)θ(j).

thus suggesting the use of a Stochastic Approximation procedure: θ? ≈ limt θt

θt+1 = θt + γt+1H(θt, Xt+1) Xt+1 ∼ dπθt

• This update scheme is a normalized counter of the number of visits to Xi
<proof>



1st Ex. (5/6)

The algorithm: Wang-Landau based procedures

• Initialisation: a weight vector θ0

Repeat for t = 1, · · · , T
- sample a point Xt+1 ∼ dπθt
- update the estimate of θ?

θt+1 = θt + γt+1H(θt, Xt+1) .

where Xt+1 ∼ Pθt(Xt, ·) and Pθ inv. wrt dπθ.

• Expected:
- the convergence of θt to θ?: SA scheme, fed with adaptive (controlled) MCMC

sampler,

- the convergence of the distribution of Xt to dπθ?



1st Ex. (6/6)

Does it work ? Plot: convergence of θt and �rst exit times from one mode
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I see F, Kuhn, Jourdain, Lelièvre,

Stoltz (2014); F, Jourdain,

Lelièvre, Stoltz (2015,2017,2018)

for studies of these Wang-Landau

bases algorithms; including

self-tuned SA update rules (γt is

random).
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Conclusion of the 1st example

• Iterative sampler

•Each iteration combines : (i) a sampling step Xt+1 ∼ Pθt(Xt, ·); and (ii) an

optimization step to update the knownledge of some optimal parameter.

• The points {X1, · · · , Xt, · · · } can be seen as the output of a controlled Markov

chain

E
[
f(Xt+1)|Ft

]
= Pθt(Xt, ·) Ft := σ(X0:t, θ0)

where Pθ has dπθ as its unique invariant distribution.

• The convergence of the parameter θt is the convergence of a SA scheme with

"controlled Markovian" dynamics

θt+1 = θt + γt+1H(θt, Xt+1)



2nd Example: penalized ML in latent variable models (1/6)

• An example from Pharmacokinetic:

- N patients.

- At time 0: dose D of a drug.

- For patient #i, observations Yi1, · · · , YiJi giving the evolution of the concentra-

tion at times ti1, · · · , tiJi.

• The model:

Yij = F
(
tij, Xi

)
+ εij εij

i.i.d.∼ N (0, σ2)

where Xi ∈ RL is modeled as

Xi = Ziβ + di ∈ RL di
i.i.d.∼ NL(0,Ω) and independent of ε•

and Zi known matrix s.t. each row of Xi has in intercept (�xed e�ect) and

covariates.

• Statistical analysis: (i) estimation of θ = (β, σ2,Ω), under sparsity constraints

on β; (ii) selection of the covariates based on β̂.



2nd Ex. (2/6)

Penalized Maximum Likelihood

• The likelihood of Y := {Yij,1 ≤ i ≤ N,1 ≤ j ≤ Ji} is not explicit:
- The distribution of Yi,j given Xi is simple; the distribution of Xi is simple.

- The joint distribution has an explicit expression - It is an example of latent

variable model:

logL(Y ; θ) = log
∫
p(Y, x1:N ; θ) dν(x1:N)

• Sparsity constraints on the parameter θ: through a penalty term g(θ)

• The penalized ML is of the form

argminΘ (− logL(Y ; θ) + g(θ))

with an intractable objective function.



2nd Ex. (3/6)

What about �rst-order methods for solving the optimization ?

• On the likelihood term:

- Usually regular enough so that the Gradient exists and <proof>

∇θ logL(Y ; θ) =
∫
∂θ p(Y, x; θ)

p(Y, x; θ)

p(Y, x; θ) dµ(x)∫
p(Y, z; θ) dµ(z)

=
∫
∂θ (log p(Y, x; θ)) dπθ(x)︸ ︷︷ ︸

the a posteriori distribution of x given Y
the dep upon Y is omitted

- the a posteriori distribution is known up to a normalizing constant.

• On the penalty term

- May be non smooth, but: convex and lower semi-continuous

- Hence a Proximal operator (implicit gradient) is associated - <See the talk, on

tuesday afternoon>.



2nd Ex. (4/6)

What about EM-like methods for solving the optimization ?

• Expectation-Maximization introduced to solve below: modified for a minimization

argminθ∈Θ

(
log

∫
X
p(x; θ)dµ(x)− g(θ)

)
where the �rst part is untractable; by iterating two steps

- Expectation step

Q(θ, θt) :=
∫

log p(x; θ)
p(x; θt) dµ(x)∫
p(z; θt) dµ(z)

=
∫

log p(x; θ) dπθt(x)

- Minimization step

θt+1 := argminθ (−Q(θ, θt) + g(θ)) .

• θ 7→ Q(θ, θt) is an integral which is untractable; dπθ is known up to a normalizing

constant.

see F,Moulines (2003); F,Ollier,Samson (2018)



2nd Ex. (5/6)

•Both in EM-like approaches and in gradient-based approaches,

- faced with untractable auxiliary quantities of the form∫
X
H(θ, x) dπθt(x) (1)

at itreration t of the optimization algorithm.

- untractable integral; dπθ is often known up to a normalizing constant.

•What kind of stochastic approximation of the integral (1) at iteration t ?

- Quadrature techniques: poor behavior w.r.t. the dimension of X

- I.i.d. samples from πθt to de�ne a Monte Carlo approximation: not possible, in

general.

- use T samples from a MCMC sampler {Xj,t+1, j ≥ 0} with unique inv. dist.

dπθt.



2nd Ex. (6/6)

Does it work ?

see F,Moulines (2003)

for EM-like approaches;

see Atchadé,F,Moulines

(2017) and

F,Ollier,Samso (2018)

for gradient-based

approaches;

see F,Ollier,Samson

(2018) for the parallel

between EM-like

and Gradient-based

techniques
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Conclusion of the 2nd example

• Iterative optimization technique

•Each iteration combines : (i) an update of the parameter; (ii) a sampling step

Xj+1,t+1 ∼ Pθt(Xj,t+1, ·) to approximate auxiliary quantities.

• The convergence of {θt}t is the convergence of a stochastically perturbed itera-

tive optimization algorithm. At each iteration: an exact quantity
∫
H(θ, x) dπθt(x)

is approximated by a Monte Carlo sum∫
H(θ, x) dπθt(x) ≈

1

mt+1

mt+1∑
j=1

H(θ,Xj,t+1)

• The points {Xj,t+1}j satisfy

E
[
f(Xj,t+1)|Ft

]
= P

j
θt

(X0,t+1, ·) Ft := σ(X:,0:t, θ0), X0,t+1 = Xmt,t

where Pθ has dπθ as its unique invariant distribution.



Conclusion of this �rst part (1/3): is a theory required ?



Conclusion of this �rst part (2/3): is a theory required when sampling ?

YES ! convergence can be lost by the adaption mecanism

Even in a simple case when

∀θ ∈ Θ, Pθ invariant wrt dπ,

one can de�ne a simple adaption mecanism

Xt+1|past1:t ∼ Pθt(Xt, ·) θt ∈ σ(X1:t)

such that

lim
t

E [f(Xt)] 6=
∫
f dπ.

<proof> A {0,1}-valued chain {Xt}t de�ned by Xt+1 ∼ PXt(Xt, ·) where the transition matrices are

P0 =
[

t0 (1− t0)
(1− t0) t0

]
P1 =

[
t1 (1− t1)

(1− t1) t1

]
Then P0 and P1 are invariant w.r.t [1/2,1/2] but {Xt} is a Markov chain invariant w.r.t. [t1, t0]



Conclusion of this �rst part (3/3): is a theory required when optimizing ?

YES ! Unfortunately ,

• a biased approximation <proof>

E

 1

mt+1

mt+1∑
j=1

H(θ,Xj,t+1)
∣∣∣Ft

 = ? 6=
∫
X
H(θ, x) dπθt(x)

• For a reduced computational cost: a bias which we would like NOT vanishing

i.e. mt = m(= 1).

Ex. Stochastic Approximation with controlled Markovian dynamics

θt+1 = θt + γt+1H(θt, Xt+1) Xt+1 ∼ Pθt(Xt, ·)

= θt + γt+1

∫
H(θt, x)dπθt(x)︸ ︷︷ ︸

h(θt)

+γt+1

(
H(Xt+1, θt)− h(θt)

)
︸ ︷︷ ︸

non centered


