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Part III.

Stochastic Approximation

with
Markovian dynamics



Stochastic Approximation (SA) methods with Markovian dynamics

e Designed to solve on © C RP: h(0) =0 when h is not explicit but

h(0) = /X H(6, x) dmy(z)
Robbins-Monro, 1951; Benveniste-Métivier-Priouret, 1990; Kushner-Yin, 2003; Borkar, 2008
e Algorithm:
- Choose: a deterministic positive sequence {v:}+ s.t. > ;v = 4o
- Initialisation: 0 = Oihit € ©, Xo = Zjnit
- Until convergence:

X1~ Py, (Xy,-) Ort1 = 0t + 41 H(O, Xpq1)

where Fy admits dmy as its unique inv distribution.

e A perturbation of a time-discretized ODE 65 = h(6s)

Or+1 = 0t + ve4-1 h(Or) +ve-1m141 41 = H (0, Xy41) — h(6;)



A biased perturbation

h(0) = /X H(6, x) dmy(z)

At each iteration

Or41 = 0t + Y41 (h(Qt) + 77t—|—1) N1 = H(O, Xy 1) — h(6t)

e Usually, cond. to the past, X; ;1 ~ dwet so that

EH(6:, X 41)IF| = h(6) Qe E|na|F] = 0.

e In the present case, cond. to the past, X; 4 ~ Py, (X¢,-) so that

E [H(0 X, Fe] = h(6) = [ (Py, (X, d2) = dmy,(2)) H (6, )

A biased approximation !



Is the bias vanishing 7

At each iteration

Or41 = 0t + Vi1 h(0r) + Ye 1741 41 = H (O, Xyg1) — h(6t)

Two strategies:

e T he mini-batch approach. Make the perturbation vanishing by sampling more
and more points at each iteration

1 mi4q -
h(0;) ~ > H(0nXju41) B |mpalFe) =0(mi k)

Possible: choose v = ~ if my — +o00 at some convenient rate.

e (xxx) The SA regime. Choose a vanishing stepsize v+ — 0 but a single Monte
Carlo sample at each iteration.



Convergence analysis for SA: the successive steps

e Required: there exists a non-negative Lyapunov function V:

V(0 < V() — 2(¢9 Wiaq .
(Op41) < V(0r) — 441 0°(0r) + V41 .t—I—i
signe

whose level sets are compact subsets of ©, and ¢ is s.t. that

inf $> > 0,
compactCcO\L

with

L:={¢* =0} C {V < Mp}.

e Step 1: The sequence {6;}; is stable i.e. (w.p.1) there exists a compact subset
JIC of © such that 0; € IC for any t.

e Step 2: Convergence of {0;}; to £ (or to a connected component of L; or to a
point 6, € £).



Stability: a crucial point (1/2)
e Roughly, the control of the noise is

12
sup| 3= Vi1 (H Ok, Xjg1) = h(0r)) | < o0
k=1

e In our case,
Xit1 ~ Py (Xi),  h(0) = [ H(6,2)dmp(a).
(a) How to control "uniformly-in-0" the difference
Py(z,-) —dmy

when 6 € {0t > 0} a random set ? <see Lecture 2> such a "containment
condition" is realistic when "6; is stable".

(b) note that X, ~ P (X,_1,-) and the "diminishing adaptation condition"
<see Lecture 2> will also play a role.



Stability: a crucial point (2/2) - Different strategies

e Stable by definition:

Or4+1 = 0t + ve-1H (O, Xy41)

quite unlikely --- hum, really unlikely !

e Force the stability by a projection on a compact subset IC

Or41 = Nic (0 + vg1H (01, Xo41))

Limiting points: in LN K. How to choose IC 7

e Use the Chen’s technique: projection on growing compact subsets.
(Chen-Guo-Gao, 1988)



Self-stabilized Stochastic Approximation (the Chen’s technique)
Choose compact subsets {;};~0 of © s.t. ; £; = © and K; C ;4 1.

e (Start - Block 1):

0o = Oinit € Ko and Xg = =i, and repeat for ¢ > 0
X1~ Py, (Xy,-) Or+1 = Ot + -1 H (01, Xy11)

until 9t—|—1 ¢ Ko. Set Th =t+ 1.

e (Stop & re-start, Block ¢+ 1)
01, = Oinit, X1, = Zinit and repeat for ¢t > 0

XTptt+1 ~ Fop o (X148 ) 0T, +t+1 = 01,4+ + Vgtt+1H O, 44, X1\ 41 41)
until 9Tq‘|—t+1 §§ /Cq. Set Tq+1 = Tq +t+4+ 1.



When is self-stabilized SA successful 7 (1/4)
e Ans.: when the number of "stop & re-start'" is finite !

then there exists L s.t.

(@) {6+}+ is in the compact set K,
(b) at T: X, = zinit and O, = Oipjt
(c) forany ¢t >0

XTptt+1 ~ Fop (X1 410) O, +t41 = 01, 44 + Vore+1 HO1, 4, Xy 4441)

e If the number is not finite: as if with p;4 1 < 4,41 for arbitrarily large L:

0o = Oinit, X0 = Tinit;
Xiqp1 ~ Py, (Xy,-), Orr1 = 0t + pry1H (O, X4 1),
until some finite time ¢, such that 6, 4, ¢ K.

For arbitrarily small sequence {~4;}:, the algorithm exits from compact subset.



When is self-stabilized SA successful 7 (2/4)
When the number of 'stop & restart' is finite. How to ensure this condition 7

Below, a set of sufficient conditions, not the weakest omnes;

just to show the mecanism more easily
e © =RP

e Assumption 1. A function V : © — (0,+c0), continuously differentiable such
that

compact level sets {V < M}, (VV(7),h(7)) <0, sup (VV(7),h(71)) <O,
compactcC e

where L = {7 : (VV(7r),h(7)) = 0} is bounded and in {V < My}.
e Assumption 2. The function h is Lipschitz on compact subsets.

e Assumption 3. limy~; = 0.



When is self-stabilized SA successful 7 (3/4)

Let Mg be s.t. LUKy CH{V < Mp}.

Fix Mg < My < M>.

Given positive step sizes {p;}+

and a sequence of "noises" {n;:}+, define

To = 70 = Tinit € Ko
741 =7t + prg1 (B + mege1) T41 = Tt + pe1h(7t)
e Step 1. For any t > 0, <proof and expression of A;>

— 2 > .
|71 — Tig1ll® < Ay =z

By induction. |70 — T0||? = 0 = Ao.

1741 — Teg1ll® = It = 7 + prrmet1ll® = 7 — 7ll* + oicillmt1l® + 20041 (70 — T2, mig1)
Hence
t

A7 = prpalmerill® 4 20641 {7k — Tro Mrt1)
k=1



When is self-stabilized SA successful 7 (3/4)

Let Mg be s.t. LUKy CA{V < Mp}.

Fix Mg < M1 < Mo.

Given positive step sizes {p;}+

and a sequence of "noises" {n;}:, define

T0 = 70 = Tinit € Ko
741 =7t + pg (h(7e) + mpy1) Ti41 = Tt + pr4-1h(7t)
e Step 2. <proof> There exist pmax, dmax > 0 s.t.

pe+1 < pmax, ||t — Tl < dmax, Tt €{V < M1}, € {V < Mp} = 7441 € {V < M}




When is self-stabilized SA successful 7 (3/4)

Let Mg be s.t. LUKy CA{V < Mp}.

Fix Mg < M1 < Mo.

Given positive step sizes {p;}+

and a sequence of "noises" {n;}:, define

To = 70 = Tinit € Ko
741 =7t + pg (h(7e) + mpy1) Ti41 = Tt + pr4-1h(7t)
e Step 3. <proof> There exist dmax > 0O s.t.

1741 — Te41l] < Omax, i1 €{V < M1} = 141 € {V < Mo}

V(7i41) <V Fag1) + IVVGE+D 141 — Teall + C |71 — e |



When is self-stabilized SA successful 7 (3/4)

Let Mg be s.t. LUKy C{V < Mp}.

Fix Mg < M1 < M>.

Given positive step sizes {p;}+

and a sequence of "noises" {n;}:, define

T0 = 70 = Tinit € Ko
Ti41 =7t + prgr (h(m) +mt1) Tir1 = Tt + pry1h(7e)
e Step 1. For any t > 0,

t
=2 A2 . 2 2 _
|1 = Topal? < AZL = Y P allmerall® + 20k41 (Th — T it 1)
k=1

e Step 2. There exist pmax, dmax > 0O s.t.

P41 < pmax, |7t — Tl < dmax, 7t € {V < My}, € {V < Mo} =741 € {V < My}
e Step 3. There exist dmax > 0 s.t.

| 7t41 — Te1ll < 0max, i1 €{V < M1} = 11 € {V < Mo}



When is self-stabilized SA successful 7 (4/4)

e Corollary: there exist pmax, dmax > O dependent on M; but indep of {p:}; and {n.}: S.t.

SUPt<T Pt < pPmax;

S VE<T: 7 e{V< MY 7e{V <M}
SUDtSTAtS(Smax} - m €V = Mo}, 7 €1V < My}

e Theorem: <comment, proof>

If im;~y = 0 and, for any § > 0 and any My < M»> (larger than M)

t
. (©)] 2 2 —
im Pl . <Slil3 g {Virrtr e 12 4 vidrrr Ok — O, k1) Yo crv<nny G iv<nn) = 5) =0

1—00
k=1

then, w.p.1l, the number of "stop & restart" is finite.



In case of Markovian dynamics, how to check the condition 7 (1/2)

t
. (©)] 2 —
lim PZinityeinit <S|;|D Z{WZQ—{—]C—}—lHT’k‘FlH + Yi+k+1 <0k - 97{:7 nk+1>}101:t€{V§M2},§1;t€{V§M1} Z 5) =0

1—>00
k=1

Me+1 = H (O, Xi+1) —/H(Qk,l’) dmg, (x) Xi+1 ~ Py, (Xg, ) Or+1 = Ok +Vitrt+1H (O, Xp41)

e Step 0. Markov inequality

e Step 1.
im B S22 |21 . —0
im0 Tinit:dinit k>1%+k+1 Tet11l 201 ,e{V<M2},01e{V<M1}| —

e Step 2.

t
> Yirk41 (O — O kg1

) Linits

: (4)
lim E! - {sup

191:k€{V<M2},§1:k€{V<M1}] =0



In case of Markovian dynamics, how to check the condition ? (2/2)

The tools:

e Uniform control: supyc gy <,y SUP: [[H(0,2)||/W(z) < oo for W > 1.

e Uniform-in-0 geometric ergodicity conditions, in W2-norm. <containment condition>
e The Poisson equation: Hy s.t. Hy(x) — PyHy(x) = H(0,z) — h(0).

e Regularity in 6 of the solution ﬁg to the Poisson equation. <diminishing adapdation>
e The "chaining" rule: X, 1 ~ Py, (X¢,-).

e On the step sizes: ;77 < co.

Note that, by the self-stabilization: "uniform-in-0" properties have to be verified
along compact subsets {V < M }.

Refs: Andrieu-Moulines-Priouret, 2006; Fort-Moulines-Schreck-Vihola, 2016; Fort-Moulines, 2020.



And now, for the convergence of self-stabilized SA
e Similar conditions and techniques:

- after some random time T, the sequence is given by

01, = Oinit, O, 4141 = O, 44 — Vo441 HO1, 16, X7y 444-1)

- and remains in a compact subset depending upon the path



In the literature, SA with Markovian dynamics
(Andrieu-Moulines-Priouret, 2005; F,2015; F.-Jourdain-Leliévre-Stoltz, 2017-2018; F.-Moulines-Schreck-Vihola,2016;

Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

e In the case 0 € RP,
- Sufficient conditions for stability and convergence under weaker conditions than

those here
- Central Limit Theorems (along a converging path) for both the sequence {6;}; and the

averaged sequence

S
k=1

- Random stepsize sequence {v+}; (a self-tuned mecanism)
- Distributed SA



In the literature, SA in infinite dimension

e Most of the results on SA are in the case 6 € RP. What about the case
0 : v 0(v) is a function in L2(v) 7

see (Crepey-F.-Gobet-Stazhinski,2018)

e Motivation: uncertainty quantification in SA
/Hv(é’,x) mo(dz) = 0,

with an a priori dv on w.

e Goal: derive an algorithm that at the same time
- for v-a.a. v, finds 6(v) such that [ H,(0(v),x) my(dx) = 0.
- provides the distribution of (V) when V ~ dv.

e Use a chaos expansion, and a SA in finite but growing dimension

e Proof of convergence in the case: {X;}; are i.i.d. in the SA algorithm.



