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Stochastic Approximation (SA) methods with Markovian dynamics

• Designed to solve on Θ ⊆ Rp: h(θ) = 0 when h is not explicit but

h(θ) =
∫
X
H(θ, x) dπθ(x)

Robbins-Monro, 1951; Benveniste-Métivier-Priouret, 1990; Kushner-Yin, 2003; Borkar, 2008

• Algorithm:

- Choose: a deterministic positive sequence {γt}t s.t.
∑
t γt = +∞

- Initialisation: θ0 = θinit ∈ Θ, X0 = xinit

- Until convergence:

Xt+1 ∼ Pθt(Xt, ·) θt+1 = θt + γt+1 H(θt, Xt+1)

where Pθ admits dπθ as its unique inv distribution.

• A perturbation of a time-discretized ODE θ̇s = h(θs)

θt+1 = θt + γt+1 h(θt)+γt+1ηt+1 ηt+1 := H(θt, Xt+1)− h(θt)



A biased perturbation

h(θ) =
∫
X
H(θ, x) dπθ(x)

At each iteration

θt+1 = θt + γt+1

(
h(θt) + ηt+1

)
ηt+1 := H(θt, Xt+1)− h(θt)

• Usually, cond. to the past, Xt+1 ∼ dπθt so that

E
[
H(θt, Xt+1)|Ft

]
= h(θt) i.e. E

[
ηt+1|Ft

]
= 0.

• In the present case, cond. to the past, Xt+1 ∼ Pθt(Xt, ·) so that

E
[
H(θt, Xt+1)|Ft

]
− h(θt) =

∫
X

(
Pθt(Xt,dx)− dπθt(x)

)
H(θt, x)

A biased approximation !



Is the bias vanishing ?

At each iteration

θt+1 = θt + γt+1 h(θt) + γt+1ηt+1 ηt+1 := H(θt, Xt+1)− h(θt)

Two strategies:

• The mini-batch approach. Make the perturbation vanishing by sampling more

and more points at each iteration

h(θt) ≈
1

mt+1

mt+1∑
j=1

H(θt, Xj,t+1) E
[
ηt+1|Ft

]
=O(m−1

t+1)

Possible: choose γt = γ if mt → +∞ at some convenient rate.

• (???) The SA regime. Choose a vanishing stepsize γt → 0 but a single Monte

Carlo sample at each iteration.



Convergence analysis for SA: the successive steps

• Required: there exists a non-negative Lyapunov function V :

V (θt+1) ≤ V (θt)− γt+1 φ
2(θt) + γt+1 Wt+1︸ ︷︷ ︸

signed

.

whose level sets are compact subsets of Θ, and φ is s.t. that

inf
compact⊂Θ\L

φ2 > 0,

with

L := {φ2 = 0} ⊂ {V ≤M0}.
{θ:  V(θ) ≤ M

 1 
} 

{θ:  V(θ) ≤ M
 0 

} 

 L  

• Step 1: The sequence {θt}t is stable i.e. (w.p.1) there exists a compact subset

K of Θ such that θt ∈ K for any t.

• Step 2: Convergence of {θt}t to L (or to a connected component of L; or to a

point θ? ∈ L).



Stability: a crucial point (1/2)

• Roughly, the control of the noise is

sup
t
|

t∑
k=1

γk+1

(
H(θk, Xk+1)− h(θk)

)
| <∞

• In our case,

Xk+1 ∼ Pθk(Xk, ·), h(θ) =
∫
H(θ, x)dπθ(x).

(a) How to control "uniformly-in-θ" the di�erence

Pθ(x, ·)− dπθ

when θ ∈ {θt, t ≥ 0} a random set ? <see Lecture 2> such a "containment

condition" is realistic when "θt is stable".

(b) note that Xk ∼ Pθk−1
(Xk−1, ·) and the "diminishing adaptation condition"

<see Lecture 2> will also play a role.



Stability: a crucial point (2/2) - Di�erent strategies

• Stable by de�nition:

θt+1 = θt + γt+1H(θt, Xt+1)

quite unlikely · · · hum, really unlikely !

• Force the stability by a projection on a compact subset K

θt+1 = ΠK
(
θt + γt+1H(θt, Xt+1)

)

Limiting points: in L ∩ K. How to choose K ?

• Use the Chen's technique: projection on growing compact subsets.

(Chen-Guo-Gao, 1988)



Self-stabilized Stochastic Approximation (the Chen's technique)

Choose compact subsets {Ki}i≥0 of Θ s.t.
⋃
iKi = Θ and Ki ⊂ Ki+1.

• (Start - Block 1):

θ0 = θinit ∈ K0 and X0 = xinit and repeat for t ≥ 0

Xt+1 ∼ Pθt(Xt, ·) θt+1 = θt + γt+1H(θt, Xt+1)

until θt+1 /∈ K0. Set T1 = t+ 1.

•· · ·

• (Stop & re-start, Block q + 1)

θTq = θinit, XTq = xinit and repeat for t ≥ 0

XTq+t+1 ∼ PθTq+t
(XTq+t, ·) θTq+t+1 = θTq+t + γq+t+1H(θTq+t, XTq+t+1)

until θTq+t+1 /∈ Kq. Set Tq+1 = Tq + t+ 1.

•· · ·



When is self-stabilized SA successful ? (1/4)

• Ans.: when the number of "stop & re-start" is �nite !

then there exists L s.t.

(a) {θt}t is in the compact set KL
(b) at TL: XTL = xinit and θTL = θinit

(c) for any t ≥ 0

XTL+t+1 ∼ PθTL+t
(XTL+t, ·) θTL+t+1 = θTL+t + γL+t+1H(θTL+t, XTL+t+1)

• If the number is not �nite: as if with ρt+1 ← γL+t+1 for arbitrarily large L:

θ0 = θinit, X0 = xinit,

Xt+1 ∼ Pθt(Xt, ·), θt+1 = θt + ρt+1H(θt, Xt+1),

until some �nite time t? such that θt?+1 /∈ KL.

For arbitrarily small sequence {γL+t}t, the algorithm exits from compact subset.



When is self-stabilized SA successful ? (2/4)

When the number of "stop & restart" is �nite. How to ensure this condition ?

Below, a set of sufficient conditions, not the weakest ones;

just to show the mecanism more easily

• Θ = Rp

• Assumption 1. A function V : Θ → (0,+∞), continuously di�erentiable such

that

compact level sets {V ≤M}, 〈∇V (τ), h(τ)〉 ≤ 0, sup
compact⊂Lc

〈∇V (τ), h(τ)〉 < 0,

where L := {τ : 〈∇V (τ), h(τ)〉 = 0} is bounded and in {V ≤M0}.

• Assumption 2. The function h is Lipschitz on compact subsets.

• Assumption 3. limt γt = 0.



When is self-stabilized SA successful ? (3/4)

Let M0 be s.t. L ∪ K0 ⊂ {V ≤M0}.
Fix M0 < M1 < M2.

Given positive step sizes {ρt}t
and a sequence of "noises" {ηt}t, de�ne

{θ:  V(θ) ≤ M
1  

} 

 L 

{θ:  V(θ) ≤ M
0  

} 

{θ:  V(θ) ≤ M
2  

} 

τ̄0 = τ0 = τinit ∈ K0

τt+1 = τt + ρt+1

(
h(τt) + ηt+1

)
, τ̄t+1 = τ̄t + ρt+1h(τt)

• Step 1. For any t ≥ 0, <proof and expression of ∆t>

‖τt+1 − τ̄t+1‖2 ≤∆2
t+1 := xxx

By induction. ‖τ0 − τ̄0‖2 = 0 = ∆0.

‖τt+1 − τ̄t+1‖2 = ‖τt − τ̄t + ρt+1ηt+1‖2 = ‖τt − τ̄t‖2 + ρ2
t+1‖ηt+1‖2 + 2ρt+1 〈τt − τ̄t, ηt+1〉

Hence

∆2
t+1 =

t∑
k=1

ρ2
k+1‖ηk+1‖2 + 2ρk+1 〈τk − τ̄k, ηk+1〉
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Given positive step sizes {ρt}t
and a sequence of "noises" {ηt}t, de�ne

{θ:  V(θ) ≤ M
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 L 

{θ:  V(θ) ≤ M
0  

} 

{θ:  V(θ) ≤ M
2  

} 

τ̄0 = τ0 = τinit ∈ K0

τt+1 = τt + ρt+1

(
h(τt) + ηt+1

)
, τ̄t+1 = τ̄t + ρt+1h(τt)

• Step 2. <proof> There exist ρmax, δmax > 0 s.t.

ρt+1 ≤ ρmax, ‖τt− τ̄t‖ ≤ δmax, τ̄t ∈ {V ≤M1}, τt ∈ {V ≤M2} ⇒ τ̄t+1 ∈ {V ≤M1}.
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{θ:  V(θ) ≤ M
0  

} 

{θ:  V(θ) ≤ M
2  

} 

τ̄0 = τ0 = τinit ∈ K0

τt+1 = τt + ρt+1

(
h(τt) + ηt+1

)
, τ̄t+1 = τ̄t + ρt+1h(τt)

• Step 3. <proof> There exist δmax > 0 s.t.

‖τt+1 − τ̄t+1‖ ≤ δmax, τ̄t+1 ∈ {V ≤M1} ⇒ τt+1 ∈ {V ≤M2}.

V (τt+1) ≤ V (τ̄t+1) + ‖∇V (τ̄t+1)‖ ‖τt+1 − τ̄t+1‖+ C ‖τt+1 − τ̄t+1‖2.
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Let M0 be s.t. L ∪ K0 ⊂ {V ≤M0}.
Fix M0 < M1 < M2.

Given positive step sizes {ρt}t
and a sequence of "noises" {ηt}t, de�ne

{θ:  V(θ) ≤ M
1  
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 L 

{θ:  V(θ) ≤ M
0  

} 

{θ:  V(θ) ≤ M
2  

} 

τ̄0 = τ0 = τinit ∈ K0

τt+1 = τt + ρt+1

(
h(τt) + ηt+1

)
, τ̄t+1 = τ̄t + ρt+1h(τt)

• Step 1. For any t ≥ 0,

‖τt+1 − τ̄t+1‖2 ≤∆2
t+1 :=

t∑
k=1

ρ2
k+1‖ηk+1‖2 + 2ρk+1

〈
τk − τ̄k, ηk+1

〉
• Step 2. There exist ρmax, δmax > 0 s.t.

ρt+1 ≤ ρmax, ‖τt− τ̄t‖ ≤ δmax, τ̄t ∈ {V ≤M1}, τt ∈ {V ≤M2} ⇒ τ̄t+1 ∈ {V ≤M1}.
• Step 3. There exist δmax > 0 s.t.

‖τt+1 − τ̄t+1‖ ≤ δmax, τ̄t+1 ∈ {V ≤M1} ⇒ τt+1 ∈ {V ≤M2}.



When is self-stabilized SA successful ? (4/4)

• Corollary: there exist ρmax, δmax > 0 dependent on Mi but indep of {ρt}t and {ηt}t s.t.

supt≤T ρt ≤ ρmax,
supt≤T ∆t ≤ δmax

}
⇒ ∀t ≤ T : τt ∈ {V ≤M2}, τ̄t ∈ {V ≤M1}.

• Theorem: <comment, proof>

If limt γt = 0 and, for any δ > 0 and any M1 < M2 (larger than M0)

lim
i→∞

Pγ
(i)

xinit,θinit

(
sup
t

t∑
k=1

{γ2
i+k+1‖ηk+1‖2 + γi+k+1

〈
θk − θ̄k, ηk+1

〉
}1θ1:t∈{V≤M2},θ̄1:t∈{V≤M1} ≥ δ

)
= 0

then, w.p.1, the number of "stop & restart" is �nite.



In case of Markovian dynamics, how to check the condition ? (1/2)

lim
i→∞

Pγ
(i)

xinit,θinit

(
sup
t

t∑
k=1

{γ2
i+k+1‖ηk+1‖2 + γi+k+1

〈
θk − θ̄k, ηk+1

〉
}1θ1:t∈{V≤M2},θ̄1:t∈{V≤M1} ≥ δ

)
= 0

ηk+1 = H(θk, Xk+1)−
∫
H(θk, x) dπθk(x) Xk+1 ∼ Pθk(Xk, ·) θk+1 = θk +γi+k+1H(θk, Xk+1)

• Step 0. Markov inequality

• Step 1.

lim
i→∞

Eγ
(i)

xinit,θinit

∑
k≥1

γ2
i+k+1‖ηk+1‖21θ1:k∈{V≤M2},θ̄1:k∈{V≤M1}

 = 0

• Step 2.

lim
i→∞

Eγ
(i)

xinit,θinit

sup
t≥1

∣∣∣∣∣∣
t∑

k=1

γi+k+1

〈
θk − θ̄k, ηk+1

〉∣∣∣∣∣∣1θ1:k∈{V≤M2},θ̄1:k∈{V≤M1}

 = 0



In case of Markovian dynamics, how to check the condition ? (2/2)

The tools:

• Uniform control: supθ∈{V≤M2} supx ‖H(θ, x)‖/W (x) <∞ for W ≥ 1.

• Uniform-in-θ geometric ergodicity conditions, in W2-norm. <containment condition>

• The Poisson equation: Ĥθ s.t. Ĥθ(x)− PθĤθ(x) = H(θ, x)− h(θ).

• Regularity in θ of the solution Ĥθ to the Poisson equation. <diminishing adapdation>

• The "chaining" rule: Xt+1 ∼ Pθt(Xt, ·).

• On the step sizes:
∑
t γ

2
t <∞.

Note that, by the self-stabilization: "uniform-in-θ" properties have to be veri�ed

along compact subsets {V ≤M}.

Refs: Andrieu-Moulines-Priouret, 2006; Fort-Moulines-Schreck-Vihola, 2016; Fort-Moulines, 2020.



And now, for the convergence of self-stabilized SA

• Similar conditions and techniques:

- after some random time TL, the sequence is given by

θTL = θinit, θTL+t+1 = θTL+t − γL+t+1H(θTL+t, XTL+t+1)

- and remains in a compact subset depending upon the path



In the literature, SA with Markovian dynamics

(Andrieu-Moulines-Priouret, 2005; F,2015; F.-Jourdain-Lelièvre-Stoltz, 2017-2018; F.-Moulines-Schreck-Vihola,2016;

Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

• In the case θ ∈ Rp,
- Su�cient conditions for stability and convergence under weaker conditions than

those here

- Central Limit Theorems (along a converging path) for both the sequence {θt}t and the

averaged sequence

θ̄t =
1

t

t∑
k=1

θk

- Random stepsize sequence {γt}t (a self-tuned mecanism)

- Distributed SA



In the literature, SA in in�nite dimension

• Most of the results on SA are in the case θ ∈ Rp. What about the case

θ : v 7→ θ(v) is a function in L2(ν) ?

see (Crepey-F.-Gobet-Stazhinski,2018)

• Motivation: uncertainty quanti�cation in SA∫
Hv(θ, x)πv(dx) = 0,

with an a priori dν on v.

• Goal: derive an algorithm that at the same time

- for ν-a.a. v, �nds θ(v) such that
∫
Hv(θ(v), x)πv(dx) = 0.

- provides the distribution of θ(V ) when V ∼ dν.

• Use a chaos expansion, and a SA in �nite but growing dimension

• Proof of convergence in the case: {Xt}t are i.i.d. in the SA algorithm.


