When Monte Carlo and Optimization met in a Markovian dance

Gersende Fort

CNRS

Institut de Mathématiques de Toulouse, France

ICTS "Advances in Applied Probability", Bengaluru, August 2019.

Part III.

Stochastic Approximation with Markovian dynamics

.

Stochastic Approximation (SA) methods with Markovian dynamics

• Designed to solve on $\Theta \subseteq \mathbb{R}^p$: $h(\theta) = 0$ when h is not explicit but

$$h(\theta) = \int_{\mathsf{X}} H(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$$

Robbins-Monro, 1951; Benveniste-Métivier-Priouret, 1990; Kushner-Yin, 2003; Borkar, 2008

- Algorithm:
- Choose: a deterministic positive sequence $\{\gamma_t\}_t$ s.t. $\sum_t \gamma_t = +\infty$
- Initialisation: $\theta_0 = \theta_{init} \in \Theta, X_0 = x_{init}$
- Until convergence:

$$X_{t+1} \sim P_{\theta_t}(X_t, \cdot) \qquad \qquad \theta_{t+1} = \theta_t + \gamma_{t+1} \ H(\theta_t, X_{t+1})$$

where P_{θ} admits $d\pi_{\theta}$ as its unique inv distribution.

• A perturbation of a time-discretized ODE $\dot{\theta}_s = h(\theta_s)$

$$\theta_{t+1} = \theta_t + \gamma_{t+1} \ h(\theta_t) + \gamma_{t+1} \eta_{t+1} \qquad \eta_{t+1} := H(\theta_t, X_{t+1}) - h(\theta_t)$$

A biased perturbation

$$h(\theta) = \int_{\mathsf{X}} H(\theta, x) \, \mathrm{d}\pi_{\theta}(x)$$

At each iteration

$$\theta_{t+1} = \theta_t + \gamma_{t+1} \left(h(\theta_t) + \eta_{t+1} \right) \qquad \eta_{t+1} := H(\theta_t, X_{t+1}) - h(\theta_t)$$

• Usually, cond. to the past, $X_{t+1} \sim d\pi_{\theta_t}$ so that

$$\mathbb{E}\left[H(\theta_t, X_{t+1})|\mathcal{F}_t\right] = h(\theta_t)$$
 i.e. $\mathbb{E}\left[\eta_{t+1}|\mathcal{F}_t\right] = 0.$

• In the present case, cond. to the past, $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$ so that

$$\mathbb{E}\left[H(\theta_t, X_{t+1})|\mathcal{F}_t\right] - h(\theta_t) = \int_{\mathsf{X}} \left(P_{\theta_t}(X_t, \mathsf{d} x) - \mathsf{d} \pi_{\theta_t}(x)\right) H(\theta_t, x)$$

A **biased** approximation !

Is the bias vanishing ?

At each iteration

 $\theta_{t+1} = \theta_t + \gamma_{t+1} h(\theta_t) + \gamma_{t+1} \eta_{t+1} \qquad \eta_{t+1} := H(\theta_t, X_{t+1}) - h(\theta_t)$

Two strategies:

• The mini-batch approach. Make the perturbation vanishing by sampling more and more points at each iteration

$$h(\theta_t) \approx \frac{1}{m_{t+1}} \sum_{j=1}^{m_{t+1}} H(\theta_t, X_{j,t+1}) \qquad \mathbb{E}\left[\eta_{t+1} | \mathcal{F}_t\right] = O(m_{t+1}^{-1})$$

Possible: choose $\gamma_t = \gamma$ if $m_t \to +\infty$ at some convenient rate.

• (***) The SA regime. Choose a vanishing stepsize $\gamma_t \rightarrow 0$ but a single Monte Carlo sample at each iteration.

Convergence analysis for SA: the successive steps

• Required: there exists a non-negative *Lyapunov* function *V*:

$$V(\theta_{t+1}) \leq V(\theta_t) - \gamma_{t+1} \phi^2(\theta_t) + \gamma_{t+1} \underbrace{W_{t+1}}_{\text{signed}}.$$

whose level sets are compact subsets of Θ , and ϕ is s.t. that

$$\inf_{\text{compact}\subset \Theta \backslash \mathcal{L}} \phi^2 > 0,$$

with

$$\mathcal{L} := \{ \phi^2 = 0 \} \subset \{ V \le M_0 \}.$$

• Step 1: The sequence $\{\theta_t\}_t$ is stable i.e. (w.p.1) there exists a compact subset \mathcal{K} of Θ such that $\theta_t \in \mathcal{K}$ for any t.

• Step 2: Convergence of $\{\theta_t\}_t$ to \mathcal{L} (or to a connected component of \mathcal{L} ; or to a point $\theta_{\star} \in \mathcal{L}$).

Stability: a crucial point (1/2)

• Roughly, the control of the noise is

$$\sup_{t} \left| \sum_{k=1}^{t} \gamma_{k+1} \left(H(\theta_k, X_{k+1}) - h(\theta_k) \right) \right| < \infty$$

• In our case,

$$X_{k+1} \sim P_{\theta_k}(X_k, \cdot), \qquad h(\theta) = \int H(\theta, x) \mathrm{d}\pi_{\theta}(x).$$

(a) How to control "uniformly-in- θ " the difference

$$P_{\theta}(x,\cdot) - \mathsf{d}\pi_{\theta}$$

when $\theta \in \{\theta_t, t \ge 0\}$ a random set ? <see Lecture 2> such a "containment condition" is realistic when " θ_t is stable".

(b) note that $X_k \sim P_{\theta_{k-1}}(X_{k-1}, \cdot)$ and the "diminishing adaptation condition" <see Lecture 2> will also play a role.

Stability: a crucial point (2/2) - Different strategies

• Stable by definition:

 $\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$

quite unlikely · · · hum, really unlikely !

 \bullet Force the stability by a projection on a compact subset ${\cal K}$

 $\theta_{t+1} = \Pi_{\mathcal{K}} \left(\theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) \right)$

Limiting points: in $\mathcal{L} \cap \mathcal{K}$. How to choose \mathcal{K} ?

• Use the Chen's technique: projection on growing compact subsets. (Chen-Guo-Gao, 1988)

Self-stabilized Stochastic Approximation (the Chen's technique)

Choose compact subsets $\{\mathcal{K}_i\}_{i\geq 0}$ of Θ s.t. $\bigcup_i \mathcal{K}_i = \Theta$ and $\mathcal{K}_i \subset \mathcal{K}_{i+1}$.

• (Start - Block 1): $\theta_0 = \theta_{init} \in \mathcal{K}_0$ and $X_0 = x_{init}$ and repeat for $t \ge 0$

 $X_{t+1} \sim P_{\theta_t}(X_t, \cdot) \qquad \theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$ until $\theta_{t+1} \notin \mathcal{K}_0$. Set $T_1 = t + 1$.

• (Stop & re-start, Block q + 1) $\theta_{T_q} = \theta_{\text{init}}, \quad X_{T_q} = x_{\text{init}} \text{ and repeat for } t \ge 0$ $X_{T_q+t+1} \sim P_{\theta_{T_q+t}}(X_{T_q+t}, \cdot) \quad \theta_{T_q+t+1} = \theta_{T_q+t} + \gamma_{q+t+1}H(\theta_{T_q+t}, X_{T_q+t+1})$ until $\theta_{T_q+t+1} \notin \mathcal{K}_q$. Set $T_{q+1} = T_q + t + 1$.

• Ans.: when the number of "stop & re-start" is finite !

then there exists L s.t.

- (a) $\{\theta_t\}_t$ is in the compact set \mathcal{K}_L
- (b) at T_L : $X_{T_L} = x_{\text{init}}$ and $\theta_{T_L} = \theta_{\text{init}}$
- (c) for any $t \ge 0$

$$X_{T_L+t+1} \sim P_{\theta_{T_L+t}}(X_{T_L+t}, \cdot) \qquad \theta_{T_L+t+1} = \theta_{T_L+t} + \gamma_{L+t+1} H(\theta_{T_L+t}, X_{T_L+t+1})$$

• If the number is not finite: as if with $\rho_{t+1} \leftarrow \gamma_{L+t+1}$ for arbitrarily large L:

 $\theta_0 = \theta_{\text{init}}, X_0 = x_{\text{init}},$ $X_{t+1} \sim P_{\theta_t}(X_t, \cdot), \qquad \theta_{t+1} = \theta_t + \rho_{t+1} H(\theta_t, X_{t+1}),$

until some **finite** time t_{\star} such that $\theta_{t_{\star}+1} \notin \mathcal{K}_L$.

For arbitrarily small sequence $\{\gamma_{L+t}\}_t$, the algorithm exits from compact subset.

When the number of "stop & restart" is finite. How to ensure this condition ?

Below, a set of sufficient conditions, not the weakest ones; just to show the mecanism more easily

• $\Theta = \mathbb{R}^p$

• Assumption 1. A function $V : \Theta \to (0, +\infty)$, continuously differentiable such that

compact level sets $\{V \leq M\}$, $\langle \nabla V(\tau), h(\tau) \rangle \leq 0$, $\sup_{\text{compact} \subset \mathcal{L}^c} \langle \nabla V(\tau), h(\tau) \rangle < 0$, where $\mathcal{L} := \{\tau : \langle \nabla V(\tau), h(\tau) \rangle = 0\}$ is bounded and in $\{V \leq M_0\}$.

• Assumption 2. The function h is Lipschitz on compact subsets.

• Assumption 3. $\lim_t \gamma_t = 0$.

Let M_0 be s.t. $\mathcal{L} \cup \mathcal{K}_0 \subset \{V \leq M_0\}$. Fix $M_0 < M_1 < M_2$. Given positive step sizes $\{\rho_t\}_t$ and a sequence of "noises" $\{\eta_t\}_t$, define

$$\tau_{0} = \tau_{0} = \tau_{\text{init}} \in \mathcal{K}_{0} \tau_{t+1} = \tau_{t} + \rho_{t+1} \left(h(\tau_{t}) + \eta_{t+1} \right), \qquad \bar{\tau}_{t+1} = \bar{\tau}_{t} + \rho_{t+1} h(\tau_{t})$$

• Step 1. For any $t \ge 0$, <proof and expression of $\Delta_t >$

 $\|\tau_{t+1} - \bar{\tau}_{t+1}\|^2 \le \Delta_{t+1}^2 := xxx$

By induction. $\|\tau_0 - \bar{\tau}_0\|^2 = 0 = \Delta_0$.

 $\|\tau_{t+1} - \bar{\tau}_{t+1}\|^2 = \|\tau_t - \bar{\tau}_t + \rho_{t+1}\eta_{t+1}\|^2 = \|\tau_t - \bar{\tau}_t\|^2 + \rho_{t+1}^2 \|\eta_{t+1}\|^2 + 2\rho_{t+1} \langle \tau_t - \bar{\tau}_t, \eta_{t+1} \rangle$ Hence

$$\Delta_{t+1}^2 = \sum_{k=1}^t \rho_{k+1}^2 \|\eta_{k+1}\|^2 + 2\rho_{k+1} \langle \tau_k - \bar{\tau}_k, \eta_{k+1} \rangle$$

Let M_0 be s.t. $\mathcal{L} \cup \mathcal{K}_0 \subset \{V \leq M_0\}$. Fix $M_0 < M_1 < M_2$. Given positive step sizes $\{\rho_t\}_t$ and a sequence of "noises" $\{\eta_t\}_t$, define

$$\bar{\tau}_{0} = \tau_{0} = \tau_{\text{init}} \in \mathcal{K}_{0}$$

$$\tau_{t+1} = \tau_{t} + \rho_{t+1} \left(h(\tau_{t}) + \eta_{t+1} \right), \qquad \bar{\tau}_{t+1} = \bar{\tau}_{t} + \rho_{t+1} h(\tau_{t})$$

• Step 2. <proof> There exist $\rho_{max}, \delta_{max} > 0$ s.t.

 $\rho_{t+1} \leq \rho_{\max}, \|\tau_t - \bar{\tau}_t\| \leq \delta_{\max}, \bar{\tau}_t \in \{V \leq M_1\}, \tau_t \in \{V \leq M_2\} \Rightarrow \bar{\tau}_{t+1} \in \{V \leq M_1\}.$

Let M_0 be s.t. $\mathcal{L} \cup \mathcal{K}_0 \subset \{V \leq M_0\}$. Fix $M_0 < M_1 < M_2$. Given positive step sizes $\{\rho_t\}_t$ and a sequence of "noises" $\{\eta_t\}_t$, define

$$\bar{\tau}_{0} = \tau_{0} = \tau_{\text{init}} \in \mathcal{K}_{0}$$

$$\tau_{t+1} = \tau_{t} + \rho_{t+1} \left(h(\tau_{t}) + \eta_{t+1} \right), \qquad \bar{\tau}_{t+1} = \bar{\tau}_{t} + \rho_{t+1} h(\tau_{t})$$

• Step 3. <proof> There exist $\delta_{max} > 0$ s.t.

 $\|\tau_{t+1} - \overline{\tau}_{t+1}\| \leq \delta_{\max}, \overline{\tau}_{t+1} \in \{V \leq M_1\} \Rightarrow \tau_{t+1} \in \{V \leq M_2\}.$

 $V(\tau_{t+1}) \leq V(\bar{\tau}_{t+1}) + \|\nabla V(\bar{\tau}_{t+1})\| \|\tau_{t+1} - \bar{\tau}_{t+1}\| + C \|\tau_{t+1} - \bar{\tau}_{t+1}\|^2.$

Let M_0 be s.t. $\mathcal{L} \cup \mathcal{K}_0 \subset \{V \leq M_0\}$. Fix $M_0 < M_1 < M_2$. Given positive step sizes $\{\rho_t\}_t$ and a sequence of "noises" $\{\eta_t\}_t$, define

$$\overline{\tau}_0 = \tau_0 = \tau_{\text{init}} \in \mathcal{K}_0$$

$$\tau_{t+1} = \tau_t + \rho_{t+1} \left(h(\tau_t) + \eta_{t+1} \right), \qquad \overline{\tau}_{t+1} = \overline{\tau}_t + \rho_{t+1} h(\tau_t)$$

$$\overline{\tau}_{t+1} = \overline{\tau}_t + \rho_{t+1} h(\tau_t)$$

• Step 1. For any $t \ge 0$,

$$|\tau_{t+1} - \bar{\tau}_{t+1}||^2 \le \Delta_{t+1}^2 := \sum_{k=1}^t \rho_{k+1}^2 ||\eta_{k+1}||^2 + 2\rho_{k+1} \left\langle \tau_k - \bar{\tau}_k, \eta_{k+1} \right\rangle$$

• Step 2. There exist $\rho_{max}, \delta_{max} > 0$ s.t.

 $\rho_{t+1} \leq \rho_{\max}, \|\tau_t - \bar{\tau}_t\| \leq \delta_{\max}, \bar{\tau}_t \in \{V \leq M_1\}, \tau_t \in \{V \leq M_2\} \Rightarrow \bar{\tau}_{t+1} \in \{V \leq M_1\}.$ • Step 3. There exist $\delta_{\max} > 0$ s.t.

 $\|\tau_{t+1} - \overline{\tau}_{t+1}\| \leq \delta_{\max}, \overline{\tau}_{t+1} \in \{V \leq M_1\} \Rightarrow \tau_{t+1} \in \{V \leq M_2\}.$

• Corollary: there exist ρ_{\max} , $\delta_{\max} > 0$ dependent on M_i but indep of $\{\rho_t\}_t$ and $\{\eta_t\}_t$ s.t.

$$\sup_{t \leq T} \rho_t \leq \rho_{\max}, \\ \sup_{t \leq T} \Delta_t \leq \delta_{\max} \end{cases} \Rightarrow \forall t \leq T : \tau_t \in \{V \leq M_2\}, \overline{\tau}_t \in \{V \leq M_1\}.$$

• Theorem: <comment, proof>

If $\lim_t \gamma_t = 0$ and, for any $\delta > 0$ and any $M_1 < M_2$ (larger than M_0)

$$\lim_{i \to \infty} \mathbb{P}_{x_{\text{init}},\theta_{\text{init}}}^{\gamma^{(i)}} \left(\sup_{t} \sum_{k=1}^{t} \{ \gamma_{i+k+1}^{2} \| \eta_{k+1} \|^{2} + \gamma_{i+k+1} \left\langle \theta_{k} - \overline{\theta}_{k}, \eta_{k+1} \right\rangle \} \mathbf{1}_{\theta_{1:t} \in \{V \le M_{1}\}} \ge \delta \right) = 0$$

then, w.p.1, the number of "stop & restart" is finite.

In case of Markovian dynamics, how to check the condition ? (1/2)

$$\lim_{i \to \infty} \mathbb{P}_{x_{\text{init}},\theta_{\text{init}}}^{\gamma^{(i)}} \left(\sup_{t} \sum_{k=1}^{t} \{ \gamma_{i+k+1}^{2} \| \eta_{k+1} \|^{2} + \gamma_{i+k+1} \left\langle \theta_{k} - \bar{\theta}_{k}, \eta_{k+1} \right\rangle \} \mathbf{1}_{\theta_{1:t} \in \{V \le M_{2}\}, \bar{\theta}_{1:t} \in \{V \le M_{1}\}} \ge \delta \right) = 0$$

$$\eta_{k+1} = H(\theta_{k}, X_{k+1}) - \int H(\theta_{k}, x) \, \mathrm{d}\pi_{\theta_{k}}(x) \qquad X_{k+1} \sim P_{\theta_{k}}(X_{k}, \cdot) \qquad \theta_{k+1} = \theta_{k} + \gamma_{i+k+1} H(\theta_{k}, X_{k+1})$$

- Step 0. Markov inequality
- Step 1.

$$\lim_{i \to \infty} \mathbb{E}_{x_{\text{init}},\theta_{\text{init}}}^{\gamma^{(i)}} \left[\sum_{k \ge 1} \gamma_{i+k+1}^2 \|\eta_{k+1}\|^2 \mathbf{1}_{\theta_{1:k} \in \{V \le M_2\}, \bar{\theta}_{1:k} \in \{V \le M_1\}} \right] = 0$$

• Step 2.

$$\lim_{i \to \infty} \mathbb{E}_{x_{\text{init}},\theta_{\text{init}}}^{\gamma^{(i)}} \left[\sup_{k \ge 1} \left| \sum_{k=1}^{t} \gamma_{i+k+1} \left\langle \theta_k - \bar{\theta}_k, \eta_{k+1} \right\rangle \right| \mathbf{1}_{\theta_{1:k} \in \{V \le M_2\}, \bar{\theta}_{1:k} \in \{V \le M_1\}} \right] = 0$$

In case of Markovian dynamics, how to check the condition ? (2/2)The tools:

- Uniform control: $\sup_{\theta \in \{V \le M_2\}} \sup_x \|H(\theta, x)\| / W(x) < \infty$ for $W \ge 1$.
- Uniform-in- θ geometric ergodicity conditions, in W^2 -norm. <containment condition>
- The Poisson equation: \hat{H}_{θ} s.t. $\hat{H}_{\theta}(x) P_{\theta}\hat{H}_{\theta}(x) = H(\theta, x) h(\theta)$.
- Regularity in θ of the solution \hat{H}_{θ} to the Poisson equation. <diminishing adaptation>
- The "chaining" rule: $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$.
- On the step sizes: $\sum_t \gamma_t^2 < \infty$.

Note that, by the self-stabilization: "uniform-in- θ " properties have to be verified along compact subsets { $V \leq M$ }.

Refs: Andrieu-Moulines-Priouret, 2006; Fort-Moulines-Schreck-Vihola, 2016; Fort-Moulines, 2020.

And now, for the convergence of self-stabilized SA

• Similar conditions and techniques:

- after some random time T_L , the sequence is given by

 $\theta_{T_L} = \theta_{\text{init}}, \qquad \theta_{T_L+t+1} = \theta_{T_L+t} - \gamma_{L+t+1} H(\theta_{T_L+t}, X_{T_L+t+1})$

- and remains in a compact subset depending upon the path

In the literature, SA with Markovian dynamics

(Andrieu-Moulines-Priouret, 2005; F,2015; F.-Jourdain-Lelièvre-Stoltz, 2017-2018; F.-Moulines-Schreck-Vihola,2016; Morral-Bianchi-F.,2017; Crepey-F.-Gobet-Stazhinski,2018)

- In the case $\theta \in \mathbb{R}^p$,
- Sufficient conditions for stability and convergence under weaker conditions than those here
- Central Limit Theorems (along a converging path) for both the sequence $\{\theta_t\}_t$ and the averaged sequence

$$\bar{\theta}_t = \frac{1}{t} \sum_{k=1}^t \theta_k$$

- Random stepsize sequence $\{\gamma_t\}_t$ (a self-tuned mecanism)
- Distributed SA

In the literature, SA in infinite dimension

• Most of the results on SA are in the case $\theta \in \mathbb{R}^p$. What about the case $\theta : v \mapsto \theta(v)$ is a function in $L^2(v)$?

```
see (Crepey-F.-Gobet-Stazhinski,2018)
```

• Motivation: uncertainty quantification in SA

$$\int H_{\boldsymbol{v}}(\theta, x) \, \pi_{\boldsymbol{v}}(\mathrm{d}x) = 0,$$

with an a priori $d\nu$ on v.

- Goal: derive an algorithm that at the same time
 - for ν -a.a. v, finds $\theta(v)$ such that $\int H_{\boldsymbol{v}}(\theta(v), x) \pi_{\boldsymbol{v}}(dx) = 0$.
 - provides the distribution of $\theta(V)$ when $V \sim d\nu$.
- Use a chaos expansion, and a SA in finite but growing dimension
- Proof of convergence in the case: $\{X_t\}_t$ are i.i.d. in the SA algorithm.