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Stochastic Approximation

Stochastic Approximation: solve the root-finding problem

Solve
ω ∈ Rd s.t. h(ω) = 0

when only stochastic estimates of the mean field h are available.

by an iterative algorithm

ωk+1 = ωk + γk+1 H(ωk, Xk+1)

where
• γk+1 is a positive step size

• H(ωk, Xk+1) is a stochastic oracle for h(ωk).

Time discretization of the ODE
dω

dt
= h (ω(t))

yields τk+1 = τk + γk+1 h(τk).
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Stochastic Approximation

Beyond the gradient case

The gradient case:

• Solve argminωf(ω) “by” solving ∇f = 0 when −∇f(ω) = E [H(ω,X)]

Expected Risk Minimization
for batch data f(ω) = (1/n)

∑n
i=1 ℓ(ω, Zi)

for streaming data f(ω) = E [ℓ(ω,X)]

• Available oracles given ωk, a random variable Xk+1 and the stochastic gradient
term H(ωk, Xk+1).

Expected Risk Minimization
for batch data H(ω,Xk+1) = −D10ℓ(ω, ZXk+1

) Xk+1 ∈ {1, · · · , n}
for streaming data H(ω,Xk+1) = −D10ℓ(ω,Xk+1)

Two extensions:

• The function h is not necessarily a gradient

• The oracle can be biased

E
[
H(ωk, Xk+1)

∣∣∣Fk

]
̸= h(ωk) Fk := σ(ω0, X1, . . . , Xk)



Stochastic Approximation Beyond Gradient

Two examples of SA beyond gradient

II. Two examples of SA beyond gradient



Stochastic Approximation Beyond Gradient

Two examples of SA beyond gradient

1st ex.: Compressed gradient

• Compression operator C(x, U), if the cost of storing/transmitting C(x, U) is less
than the cost of storing/transmitting x

• First family:
ωk+1 = ωk + γk+1 C(H(ωk, Xk+1), Uk+1)

Ex. The Gauss-Southwell coordinate descent estimator C(x, u) = xueu u ∈ {1, · · · , d}

• Second family:

ωk+1 = ωk + γk+1H(C(ωk, Uk+1), Xk+1)

Ex. Stoch Gdt for deep learning, the Straight-Through Estimator quantizes the model ωk before computing the oracle.

• Third family:
ωk+1 = C (ωk + γk+1H(ωk, Xk+1), Uk+1)

Ex. Low precision Stoch Gdt: the model is quantized after computing the oracle.
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Two examples of SA beyond gradient

2nd ex.: Stochastic Expectation Maximization in the curved exponential family

• The goal

argminθf(θ) := − log

∫
D
p(x; θ) ν(dx) p(x; θ) = ξ(x) exp(⟨S(x), ϕ(θ)⟩−ψ(θ))

• The EM algorithm

θk
E-step−−−−−−−−−−−−−−→

compute an expectation
S̄(θk)

M-step−−−−−→
optimize

θk+1 := T(S̄(θk))

sk :=S̄(θk)
M-step−−−−−→
optimize

T(sk)
E-step−−−−→ sk+1 := S̄(T(sk))

where

S̄(θ) :=

∫
D
S(x)π(x; θ) ν(dx) T(s) := argminθψ(θ) − ⟨s, ϕ(θ)⟩

• Limiting points of EM

EM finds θ⋆ solving the root-
finding pbm

T(S̄(θ)) = θ

or

EM finds s⋆ solving the root-
finding pbm

S̄(T(s)) = s

and then set

θ⋆ = T(s⋆).
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Two examples of SA beyond gradient

Which oracle of S̄ , in order to solve

S̄(T(ω))− ω = 0 S̄(T(ω)) :=

∫
S(x)π(x;T(ω)) ν(dx)

• Stochastic Approximation EM (SAEM) when S̄ intractable

ωk+1 = ωk + γk+1

(
1

M

M∑
m=1

S(Xk+1,m)− ωk

)

where Xk+1,m obtained from self-normalized importance sampling, MCMC, · · ·

• Mini-batch EM: when S(x) := (1/n)
∑n

i=1 Si(x) and large n

ωk+1 = ωk + γk+1

1

b

∑
i∈Xk+1

S̄i(T(ωk))− ωk

 .



Stochastic Approximation Beyond Gradient

Non-asymptotic convergence bounds in expectation

III. Non-asymptotic convergence bounds in expectation



Stochastic Approximation Beyond Gradient

Non-asymptotic convergence bounds in expectation

The assumptions ωk+1 = ωk + γk+1 H(ωk, Xk+1)

On the oracles, for some W ≥ 0:

L2-moment E
[
∥H(ωk, Xk+1)∥2

]
< ∞

Growth of the mean field ∃c0, c1, ∀ω ∥h(ω)∥2 ≤ c0 + c1W (ω)

Bias ∃τ0, τ1, ∀k ∥E
[
H(ωk, Xk+1)

∣∣∣Fk] − h(ωk)∥2 ≤ τ0 + τ1W (ωk) a.s.

Variance
∃σ0, σ1, ∀k, E

[
∥H(ωk, Xk+1) − E

[
H(ωk, Xk+1)

∣∣∣Fk] ∥2
∣∣∣Fk] ≤ σ2

0 + σ2
1W (ωk) a.s.

Ex. Gradient: W (ω) = ∥∇f(ω)∥2 Stoch EM:W (ω) = ∥S̄(T(ω)) − ω∥2

A smooth Lyapunov function: V

Lower bounded infω V (ω) > −∞

Smooth fct V is C1 and ∃LV , ∥∇V (ω) − ∇V (ω′)∥ ≤ LV ∥ω − ω′∥

Lyapunov V and control W ∃ρ ≥ 0, ∀ω ⟨∇V (ω), h(ω)⟩ ≤ −ρW (ω)

Ex. Gradient: V (ω) = f(ω) Stoch EM: V (ω) = f(T(ω))

If biased oracles i.e. τ0 + τ1 > 0, additional conditions

cV := sup
ω

∥∇V (ω)∥2

W (ω)
< ∞,

√
cV (

√
τ0/2 +

√
τ1) < ρ.
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Non-asymptotic convergence bounds in expectation

Main theorem

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

In addition to the previous assumptions, assume that γk ∈ (0, γmax). Then, for
any T ≥ 1

T−1∑
k=0

γk+1µk+1∑T−1
ℓ=0 γℓ+1µℓ+1

E [W (ωk)]

≤ 2
E [V (ω0)]−minV∑T−1

ℓ=0 γℓ+1µℓ+1

initial cond.

+ LV η0

∑T−1
k=0 γ

2
k+1∑T−1

ℓ=0 γℓ+1µℓ+1

+ 2b0

∑T−1
k=0 γk+1∑T−1

ℓ=0 γℓ+1µℓ+1

b0 = 0 iff unbiased oracles

• Meaningful results under the assumptions

min
ω:d(ω,{h=0})>ϵ

W (ω) > 0 ∀ϵ > 0
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Non-asymptotic convergence bounds in expectation

A Robbins-Siegmund type inequality

Lemma 9, Dieuleveut-F.-Moulines-Wai (2023)

E
[
V (ωk+1)

∣∣∣Fk

]
≤ V (ωk) − γk+1 µk+1︸ ︷︷ ︸

positive for
γk+1 small enough

W (ωk)

+ γk+1 b0︸︷︷︸
≥ 0 and zero

iff unbiased oracles

+ γ2k+1
~b

• From the assumptions on the Lyapunov function V

V (ωk+1) ≤ V (ωk) +
〈
∇V (ωk), ωk+1 − ωk

〉
+
LV

2
∥ωk+1 − ωk∥2.

• Use
ωk+1 − ωk = γk+1h(ωk) + γk+1

(
H(ωk,Xk+1) − h(ωk)

)
.

• Negative term:
〈
∇V (ωk), γk+1 h(ωk)

〉
≤ −ργk+1W (ωk)

• Apply the conditional expectations E
[
·
∣∣∣Fk]

and use the assumptions on the bias and variance of the oracles.
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Non-asymptotic convergence bounds in expectation

Corollary 1: which parameter ?

On the left hand side:
T−1∑
k=0

γk+1µk+1∑T−1
ℓ=0

γℓ+1µℓ+1

E
[
W (ωk)

]

• If W is convex,

W

(
T−1∑
k=0

γk+1µk+1∑T−1
ℓ=0 γℓ+1µℓ+1

ωk

)
≤

T−1∑
k=0

γk+1µk+1∑T−1
ℓ=0 γℓ+1µℓ+1

W (ωk)

adopt a convex combination of the iterates

• Otherwise,

T−1∑
k=0

γk+1µk+1∑T−1
ℓ=0 γℓ+1µℓ+1

W (ωk) = E [W (ωR)] P(R = k) ∝ γk+1µk+1.

stop at a random time / choose randomly one of the iterates
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Non-asymptotic convergence bounds in expectation

Corollary 2: Constant step size

γ :=
γmax

2
∧O

(
1

√
T

)
then

1

T

T−1∑
k=0

E
[
W (ωk)

]
≤ B︸︷︷︸

null
iff unbiased oracles

+
A1
√
T

∧
A2

T

• If unbiased oracles,
the RHS goes to zero when T → +∞ by choosing γk = γmax/

√
T

the convergence rate of SA is O(1/
√
T ).

• If biased oracles: the RHS can not be made small when the step sizes are constant.
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Non-asymptotic convergence bounds in expectation

Corollary 3: ϵ-approximate stationarity

In non-convex optimization: in general, it is intractable to find a global minimum or to
test if a point is a local minimum.

• Stationarity as a convergence criterion: For a precision ϵ, find a random stopping
time R s.t.

E [W (ωR)] ≤ ϵ.

• When the oracles are unbiased: choose R uniform on {1, · · · , T} for T larger than

T (ϵ) :=
A3

ϵ2
∨
A4

ϵ
.

high-precision regime: T (ϵ) = O(1/ϵ2) step size γϵ = O(ϵ)
low-precision regime: T (ϵ) = O(1/ϵ) step size γϵ = γmax/2

• Section III-A, Dieuleveut-F.-Moulines-Wai (2023) explicit constants, not detailed here
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Variance reduction by SPIDER

Control variates

• The oracles are not unique:

E [H(ω,X)] = h(ω) =⇒ E [H(ω,X) + U ] = h(ω) where E[U ] = 0.

• Choose U correlated with the natural oracle H(ω,X) s.t.

Var (H(ω,X) + U) << Var (H(ω,X))
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Variance reduction by SPIDER

The SPIDER control variate when h is a finite sum
Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR

For problems of the form

ω : h(ω) = 0 when h(ω) =
1

n

n∑
i=1

hi(ω) and n large

• At iteration #k, a natural oracle for h(ωk) is

H(ωk, Xk+1) :=
1

b

∑
i∈Xk+1

hi(ωk) Xk+1mini-batch from {1, . . . , n}, of size b

• The SPIDER oracle is

Hsp
k+1 :=

1

b

∑
i∈Xk+1

hi(ωk) + Hsp
k︸︷︷︸

oracle
for h(ωk−1)

−
1

b

∑
i∈Xk+1

hi(ωk−1)

︸ ︷︷ ︸
oracle

for h(ωk−1)
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Variance reduction by SPIDER

Efficiency ... via plots (here)
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Conclusion

• A unifying framework for SA, that covers gradient SA, non-gradient SA, possibly
with biased oracles is introduced.

• Explicit controls of convergence in expectation are provided.

• From which are deduced: stopping rules strategies, constant step sizes strategies,
rates of convergence.
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