# **Stochastic Approximation Beyond Gradient**

Gersende Fort CNRS

Institut de Mathématiques de Toulouse

#### In collaboration with

- Aymeric Dieuleveut,
- Eric Moulines,
- Hoi-To Wai,

Ecole Polytechnique, CMAP, France Ecole Polytechnique, CMAP, France Chinese Univ. of Hong-Kong, Hong-Kong

#### Publications:

Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning

HAL-03979922 arXiv:2302.11147 IEEE Trans. on Signal Processing, 2023

A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm

HAI-03029700 NeurIPS, 2020

#### Partly funded by

Fondation Simone et Cino Del Duca, Project OpSiMorE

ANR AAPG-2019, Project MASDOL



#### **Outline**

- Stochastic Approximation
- Examples of SA: stochastic gradient and beyond
   Stochastic Gradient is an example of SA, but SA encompasses broader scenarios (compressed stochastic gradient; Reinforcement Learning via TD learning; Computational Statistics via EM)

Understanding the behavior of these algorithms and designing improved algorithms require new insights that depart from the study of traditional SG algorithms.

- Non-asymptotic analysis
   best strategy after T iterations, complexity analysis
- Variance Reduction for SA Improved SA schemes.
- Conclusion

# **Stochastic Approximation**

## Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

# Stochastic Approximation: is a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

#### Problem:

Given a mean field  $h: \mathbb{R}^d \to \mathbb{R}^d$ , solve

$$\omega \in \mathbb{R}^d \qquad \text{s.t.} \quad h(\omega) = 0$$

Available: for all  $\omega$ , stochastic oracles of  $h(\omega)$ .

#### The Stochastic Approximation method:

Choose: a sequence of step sizes  $\{\gamma_k\}_k$  and an initial value  $\omega_0\in\mathbb{R}^d.$ 

Repeat:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$

where  $H(\omega_k, X_{k+1})$  is a stochastic oracle of  $h(\omega_k)$ .

# **Examples of SA: Stochastic Gradient and beyond**

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

#### Stochastic Gradient is a SA method

Find a root of 
$$h$$
:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$
 where  $H(\omega_k, X_{k+1}) \approx h(\omega_k)$ 

#### SG is a root finding algorithm

• designed to solve  $\nabla R(\omega) = 0$ 

$$\nabla R(\omega) = 0$$

#### SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \, \widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

#### Stochastic Gradient is a SA method

Find a root of h:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$
 where  $H(\omega_k, X_{k+1}) \approx h(\omega_k)$ 

#### SG is a root finding algorithm

- designed to solve  $\nabla R(\omega) = 0$

#### SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

#### Empirical Risk Minimization for batch data

$$R(\omega) = \frac{1}{n} \sum_{i=1}^n \ell(\omega, Z_i) \qquad \qquad h(\omega) = -\frac{1}{n} \sum_{i=1}^n \mathsf{D}_{10} \ell(\omega, Z_i)$$

$$H(\omega,X_{k+1}) = -\frac{1}{\mathrm{b}}\sum_{i \in X_{k+1}} \mathrm{D}_{10}\ell(\omega,Z_i) \hspace{1cm} X_{k+1} \text{ a random subset of } \{1,\ldots,n\}, \text{ cardinal b.}$$

7/31 DATA, LJK, January 2024

#### Stochastic Gradient is a SA method

Find a root of h:

$$\omega_{k+1}=\omega_k+\gamma_{k+1}\ H(\omega_k,X_{k+1})$$
 where  $H(\omega_k,X_{k+1})\approx h(\omega_k)$ 

#### SG is a root finding algorithm

• designed to solve  $\nabla R(\omega) = 0$ 

$$\nabla R(\omega) = 0$$

#### SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \,\widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020), Non-convex case; Bottou et al (2018); Ghadimi and Lan (2013)

#### Empirical Risk Minimization for batch data

$$R(\omega) = \frac{1}{n} \sum_{i=1}^n \ell(\omega, Z_i) \qquad \qquad h(\omega) = -\frac{1}{n} \sum_{i=1}^n \mathsf{D}_{10} \ell(\omega, Z_i)$$

$$H(\omega,X_{k+1}) = -\frac{1}{\mathrm{b}}\sum_{i \in X_{k+1}} \mathrm{D}_{10}\ell(\omega,Z_i) \hspace{1cm} X_{k+1} \text{ a random subset of } \{1,\ldots,n\}, \text{ cardinal b.}$$

#### SG is a SA algorithm with goal: optimization

- for convex and non-convex optimization

• Key property: 
$$\langle \nabla R(\omega), h(\omega) \rangle = -\|\nabla R(\omega)\|^2 \leq 0$$

7/31 DATA, LJK, January 2024

# SA beyond the gradient case

The "gradient case":

- the mean field h is a gradient:  $h(\omega) = -\nabla R(\omega)$
- $\bullet \ \ \text{the oracle is unbiased:} \quad \ \mathbb{E}\left[H(\omega,X)\right] = h(\omega)$

SA beyond the gradient case: two examples.

# Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:

- State  $s \in \mathcal{S}$ ,  $Card(\mathcal{S}) = n$ .
- Markov process: transition matrix P,  $\pi P = \pi$
- Reward  $\mathsf{R}(s,s')$  P,  $\pi$  and R depend on the policy  $\mu$
- Value function:

$$\lambda \in (0, 1)$$

$$\forall s \in \mathcal{S}, \quad V_{\star}(s) := \sum_{t>0} \lambda^t \mathbb{E}\left[\mathsf{R}(S_t, S_{t+1}) \middle| S_0 = s\right].$$



▶ The value function evaluation is a root-finding problem

Linear Function Approximation:  $V^{\omega} \in \operatorname{Span}(\phi_1, \cdots, \phi_d)$ 

find  $V^{\omega} \Leftrightarrow \text{find } \Phi\omega \Leftrightarrow \text{find } \omega \in \mathbb{R}^d$ 

# Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:

- State  $s \in \mathcal{S}$ ,  $Card(\mathcal{S}) = n$ .
- Markov process: transition matrix P,  $\pi P = \pi$
- Reward R(s, s')P,  $\pi$  and R depend on the policy  $\mu$
- Value function:

$$\lambda \in (0, 1)$$

$$\forall s \in \mathcal{S}, \quad V_{\star}(s) := \sum_{t \geq 0} \lambda^t \mathbb{E} \left[ \mathsf{R}(S_t, S_{t+1}) \middle| S_0 = s \right].$$



▶ The value function evaluation is a root-finding problem

Bellman equation:  $BV_{+} - V_{+} = 0$ 

$$\mathrm{B}V(s) := \mathbb{E}\left[\mathrm{R}(S_0,S_1) + \lambda V(S_1) | S_0 = s\right]$$

Linear Function Approximation:  $V^{\omega} \in \operatorname{Span}(\phi_1, \dots, \phi_d)$ 

find 
$$V^{\omega} \Leftrightarrow \text{find } \Phi\omega \Leftrightarrow \text{find } \omega \in \mathbb{R}^d$$

► TD(0) with linear function approximation is SA

Sutton (1987): Tsitsiklis and Van Rov (1997)

TD(0) is a SA with mean field 
$$h(\omega) := \Phi' \operatorname{diag}(\pi) \ (\mathsf{B}\Phi\omega - \Phi\omega)$$

$$\text{Oracle:} \qquad H(\omega, (S_k, S_{k+1}, R(S_k, S_{k+1}))) := \left( \mathsf{R}(S_k, S_{k+1}) + \lambda [\Phi \omega]_{S_{k+1}} - [\Phi \omega]_{S_k} \right) \left( \Phi_{S_k,:} \right)'$$

9/31 DATA, LJK, January 2024

# **Stochastic Expectation-Maximization**

In the curved exponential family

Dempster et al (1977)

$$\operatorname{argmin}_{\theta} - \log \int_{\mathcal{X}} p(x; \theta) \nu(dx) \qquad p(x; \theta) > 0$$

- ► EM is a root-finding algorithm
  - EM is a Majorize-Minimization algorithm
  - The majorizing function defined by  $\int_{\mathcal{X}} S(x)\pi(x;\theta_k)\nu(\mathrm{d}x)$
  - Fixed points of EM:

Delyon et al (1999)

$$\theta_{\star} := \mathsf{T}(s_{\star}) \quad \text{with} \quad s_{\star} \text{ s.t. } \bar{\mathsf{S}}\left(\mathsf{T}\left(s_{\star}\right)\right) - s_{\star} = 0$$





In the curved exponential family

Dempster et al (1977)

$$\operatorname{argmin}_{\theta} - \log \int_{\mathcal{X}} p(x; \theta) \nu(dx) \qquad p(x; \theta) > 0$$

- ► EM is a root-finding algorithm
  - EM is a Majorize-Minimization algorithm
  - The majorizing function defined by  $\int_{\mathcal{X}} S(x)\pi(x;\theta_k)\nu(dx)$
  - Fixed points of EM:

$$\theta_{\star} := \mathsf{T}(s_{\star}) \quad \text{with} \quad s_{\star} \text{ s.t. } \bar{\mathsf{S}}\left(\mathsf{T}\left(s_{\star}\right)\right) - s_{\star} = 0$$





▶ When S intractable, the most popular/efficient Stochastic EM is SA

$$\bar{\mathsf{S}}(\cdot) := \int_{\mathcal{X}} S(x) \pi(x; \cdot) \, \nu(\mathrm{d} x) \qquad \text{or (and)} \qquad \bar{\mathsf{S}}(\cdot) := \frac{1}{n} \, \sum_{i=1}^n \bar{\mathsf{S}}_i(\cdot),$$

Stochastic EM is a SA with mean field  $h(\omega) := \bar{S}(T(\omega)) - \omega$ 

[U,B] Oracle for SAEM:  $H(\omega,X_{k+1}) := m^{-1} \sum_{\ell=1}^m S(X_{k+1,\ell}) - \omega \qquad X_{k+1,\cdot} \sim \text{ MCMC } \pi(\cdot;\mathsf{T}(\omega))$ 

[U] Oracle for mini-batch EM:  $H(\omega,X_{k+1}) := \mathsf{b}^{-1} \sum_{i \in X_{k+1}} \bar{\mathsf{S}}_i(\mathsf{T}(\omega)) - \omega$ 

# SA: why does it work?

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

# Stochastic Approximation: the intuition

$$\text{SA:} \qquad \omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}) \qquad \text{ with an oracle } \ H(\omega_k, X_{k+1}) \approx h(\omega_k)$$

#### ODE with vector field h

• A function  $t \in [0, +\infty) \mapsto \overline{w}_t \in \mathbb{R}^d$  s.t.

$$\overline{w}_0 = \omega_0, \qquad \frac{d\overline{w}_t}{dt} = h(\overline{w}_t).$$

- A fixed point  $\omega^*$  is a root of h.
- Under assumptions (Lyapunov),  $\lim_t \operatorname{dist}(\overline{w}_t, \mathcal{L}) = 0$ .
- $\bullet \ \{h=0\} \subseteq \mathcal{L}.$



d=2. For five initial values  $\omega_0$ ,

the solution  $t\mapsto \overline{w}_t$ .

#### A Lyapunov function for h



•  $t\mapsto V(\overline{w}_t)$  decreasing i.e.  $\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle \leq 0$ 



# **Stochastic Approximation: the intuition**

$$\text{SA:} \qquad \omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}) \qquad \text{ with an oracle } \ H(\omega_k, X_{k+1}) \approx h(\omega_k)$$

#### ODE with vector field h

• A function  $t \in [0, +\infty) \mapsto \overline{w}_t \in \mathbb{R}^d$  s.t.

$$\overline{w}_0 = \omega_0, \qquad \frac{d\overline{w}_t}{dt} = h(\overline{w}_t).$$

- A fixed point  $\omega^*$  is a root of h.
- Under assumptions (Lyapunov),  $\lim_t \operatorname{dist}(\overline{w}_t, \mathcal{L}) = 0$ .
- $\{h=0\}\subset\mathcal{L}$ .



d=2. For five initial values  $\omega_0$ ,

the solution  $t\mapsto \overline{w}_t$ .

#### A Lyapunov function for h



•  $t \mapsto V(\overline{w}_t)$  decreasing i.e.  $\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle < 0$ 

$$\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle \le 0$$



SA is an approximation ( $\times 2$ ): Euler and oracle

$$u_{k+1} = u_k + \gamma_{k+1} \ h(u_k)$$
  $\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$ 

12/31 DATA, LJK, January 2024

# Stochastic Approximation: stability and convergence via a Lyapunov function

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$





#### Lyapunov for the theory of SA

• Assume there exists a Lyapunov fct: smooth, inf-compact and

$$\langle \nabla V(\omega), h(\omega) \rangle \leq 0$$

A Robbins-Siegmund type inequality

Robbins and Siegmund (1971)

$$\mathbb{E}\left[V(\omega_{k+1})|\operatorname{past}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), h(\omega_{k}) \right\rangle + \gamma_{k+1} \rho_{k}$$

 $\rho_k$  depends on the conditional bias and conditional  $L^2$ -moment of the oracle.

• For the (a.s.) boundedness of the random path, and its convergence.

# Stochastic Approximation: the step sizes and the oracles

Algorithm:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

with an oracle  $H(\omega_k, X_{k+1}) \approx h(\omega_k)$ 

- $\bullet$   $\gamma_k > 0$
- $\bullet \ \textstyle\sum_k \gamma_k = +\infty$
- The oracles can be unbiased or biased

- $$\begin{split} & \mathbb{E}\left[H(\omega_k, X_{k+1})| \mathrm{past}_k\right] = h(\omega_k) \\ & \mathbb{E}\left[H(\omega_k, X_{k+1})| \mathrm{past}_k\right] \neq h(\omega_k) \end{split}$$
- $\lim_K \sum_{k=0}^K \gamma_k \ (H(\omega_k, X_{k+1}) h(\omega_k))$  exists (wp1)

unbiased case with bounded variance:  $\sum_k \, \gamma_k^2 < \infty$ 

•  $\lim_k \gamma_k = 0$ 

# Non-asymptotic analysis

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

## **Analyses**

▶ Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Benaïm (1999), Kushner and Yin (2003), Borkar (2009)

- $\bullet$  almost-sure convergence of the sequence  $\{\omega_k, k \geq 0\}$
- to (a connected component of) the set  $\mathcal{L} := \{\omega : \langle \nabla V(\omega), h(\omega) \rangle = 0\}$
- CLT, · · ·

#### ► Non-asymptotic analysis

Given a total number of iterations T

• After T calls to an oracle, what can be obtained ?

 $\epsilon$ -approximate stationary point and sample complexity

ullet How many iterations to reach an  $\epsilon$ -approximate stationary point

$$\forall \epsilon > 0, \quad \mathbb{E}\left[W(\omega_{\bullet})\right] \leq \epsilon$$

# The assumptions

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

## Lyapunov function ${\cal V}$ and control ${\cal W}$

There exist  $V: \mathbb{R}^d \to [0, +\infty)$ ,  $W: \mathbb{R}^d \to [0, +\infty)$  and positive constants s.t.

- $\bullet \ V \ \text{and} \ W : \\ \hspace{0.5in} \forall \omega \ \left\langle \nabla V(\omega), h(\omega) \right\rangle \leq -\rho \, W(\omega)$
- $\quad \quad \quad \quad \forall \omega, \omega' \ \, \| \nabla V(\omega) \nabla V(\omega') \| \leq L_V \| \omega \omega' \|$

|                                       |                               | $h(\omega)$                         | $V(\omega)$                         | $W(\omega)$                                                     |
|---------------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| Gradient case                         |                               | $-\nabla R(\omega)$                 | $R(\omega)$                         | $  h(\omega)  ^2$                                               |
| and $R$ convex                        | $\omega_{\star}$ solution     | $-\nabla R(\omega)$                 | $0.5 \ \omega - \omega_{\star}\ ^2$ | $-\langle \omega - \omega_{\star}, h(\omega) \rangle$           |
| and $R$ strongly $\operatorname{cvx}$ | $\omega_{\star}$ solution     | $-\nabla R(\omega)$                 | $0.5 \ \omega - \omega_{\star}\ ^2$ | W = V or, as above                                              |
|                                       |                               |                                     |                                     |                                                                 |
| Stochastic EM                         |                               | $\bar{s}(T(\omega)) - \omega$       | $F(T(\omega))$                      | $  h(\omega)  ^2$                                               |
|                                       |                               |                                     |                                     |                                                                 |
| TD(0)                                 | $\Phi\omega_{\star}$ solution | $\Phi' D(B\Phi\omega - \Phi\omega)$ | $0.5 \ \omega - \omega_{\star}\ ^2$ | $(\omega - \omega_{\star})'\Phi'D\Phi(\omega - \omega_{\star})$ |

# The assumptions

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

On the oracles and the mean field

There exist non-negative constants s.t.

• The mean field

$$\forall \omega \|h(\omega)\|^2 \le c_0 + c_1 W(\omega)$$

for all k, almost-surely,

Bias

$$\|\mathbb{E}\left[H(\omega_k, X_{k+1})\middle|\mathcal{F}_k\right] - h(\omega_k)\|^2 \le \tau_0 + \tau_1 W(\omega_k)$$

Variance

$$\mathbb{E}\left[\left\|H(\omega_k,X_{k+1}) - \mathbb{E}\left[H(\omega_k,X_{k+1})\middle|\mathcal{F}_k\right]\right\|^2\middle|\mathcal{F}_k\right] \leq \sigma_0^2 + \sigma_1^2W(\omega_k)$$

• If biased oracles i.e.  $\tau_0 + \tau_1 > 0$ ,

$$\sqrt{c_V} \ (\sqrt{\tau_0}/2 + \sqrt{\tau_1}) < \rho, \qquad \qquad c_V := \sup_{\omega} \frac{\|\nabla V(\omega)\|^2}{W(\omega)} < \infty.$$

Includes cases:

- Biased oracles, unbiased oracles
- Bounded variance of the oracles, unbounded variance of the oracles

# A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that  $\gamma_k \in (0, \gamma_{\max})$ ,

$$\eta_1 \ge \sigma_1^2 + c_1 > 0$$

$$\gamma_{\max} := \frac{2(\rho - b_1)}{L_V \, \eta_1}$$

Then, there exist non-negative constants s.t. for any  $T \geq 1$ 

$$\sum_{k=1}^{T} \frac{\gamma_k \mu_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{k-1})\right] \leq 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + L_V \eta_0 \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell}$$

$$\mu_\ell = 2(\rho - \mathfrak{b}_1) - \gamma_\ell L_V \eta_1 > 0$$

- $\eta_\ell$  depends on the bias and variance of the oracles;  $\eta_0>0$ .
- For unbiased oracles:  $\tau_0 = b_1 = 0$
- Better bounds when V = W; not discussed here

ex.: SGD for strongly cvx fct; TD(0)

A Lyapunov function V with  $L_V$ -Lipschitz gradient

$$V(\omega_{k+1}) \le V(\omega_k) + \langle \nabla V(\omega_k), \omega_{k+1} - \omega_k \rangle + \frac{L_V}{2} \|\omega_{k+1} - \omega_k\|^2$$

$$V(\omega_{k+1}) \le V(\omega_k) + \left\langle \nabla V(\omega_k), \frac{\omega_{k+1} - \omega_k}{2} \right\rangle + \frac{L_V}{2} \frac{\|\omega_{k+1} - \omega_k\|^2}{\|\omega_{k+1} - \omega_k\|^2}$$

The definition of the iterative scheme

$$V(\omega_{k+1}) \leq V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), \frac{H(\omega_k, X_{k+1})}{2} \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \left\| H(\omega_k, X_{k+1}) \right\|^2$$

$$V(\omega_{k+1}) \leq V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), \frac{H(\omega_k, X_{k+1})}{2} \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \frac{\|H(\omega_k, X_{k+1})\|^2}{\|H(\omega_k, X_{k+1})\|^2}$$

The conditional expectation

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]\right\rangle + \frac{L_{V}}{2}\gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, X_{k+1})\right\|^{2} |\mathcal{F}_{k}\right]$$

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \frac{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]}{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]} \right\rangle + \frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\|H(\omega_{k}, X_{k+1})\|^{2} |\mathcal{F}_{k}\right]$$

The mean field h and the bias term

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \frac{\mathsf{h}(\omega_{k})}{\mathsf{h}(\omega_{k})} \right\rangle \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})\right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \, \mathbb{E}\left[\left\|H(\omega_{k}, X_{k+1})\right\|^{2} |\mathcal{F}_{k}\right] \end{split}$$

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_k\right] &\leq V(\omega_k) + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbf{h}(\omega_k) \rangle \\ &+ \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbb{E}\left[H(\omega_k, X_{k+1})|\mathcal{F}_k\right] - \mathbf{h}(\omega_k) \rangle \\ &+ \frac{L_V}{2} \gamma_{k+1}^2 \boxed{\mathbb{E}\left[\|H(\omega_k, X_{k+1})\|^2 |\mathcal{F}_k\right]} \end{split}$$

$$\begin{split} \operatorname{\mathsf{Cond}} \ L^2 &= \operatorname{\mathsf{Cond}} \operatorname{\mathsf{Var}} + (\operatorname{\mathsf{Cond}} \operatorname{\mathsf{Exp}})^2 \\ & \mathbb{E} \left[ V(\omega_{k+1}) | \mathcal{F}_k \right] \leq V(\omega_k) + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathsf{h}(\omega_k) \rangle \\ & + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbb{E} \left[ H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] - \mathsf{h}(\omega_k) \rangle \\ & + \frac{L_V}{2} \gamma_{k+1}^2 \, \mathbb{E} \left[ \left\| H(\omega_k, X_{k+1}) - \mathbb{E} \left[ H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] \right\|^2 | \mathcal{F}_k \right] \\ & + \frac{L_V}{2} \gamma_{k+1}^2 \, \left\| \mathbb{E} \left[ H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] \right\|^2 \end{split}$$

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \underbrace{\left\langle \nabla V(\omega_{k}), \mathsf{h}(\omega_{k}) \right\rangle} \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \underbrace{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})} \right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \underbrace{\mathbb{E}\left[\|H(\omega_{k}, X_{k+1}) - \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]\|^{2}|\mathcal{F}_{k}\right]} \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \| \underbrace{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})} + \underbrace{\left\|\mathsf{h}(\omega_{k})\right\|^{2}} \end{split}$$

By assumptions: the drift term, the bias and variance of the oracles, and the mean field are controlled by W.

Apply the expectation.

There exist constants s.t. for any  $k \geq 0$ ,

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})\right] &\leq \mathbb{E}\left[V(\omega_{k})\right] - \gamma_{k+1} \boxed{ \left(\rho - \mathbf{b_1} - \gamma_k \frac{L_V \eta_1}{2}\right)} \\ &+ \gamma_{k+1} \mathbf{b_0} + \gamma_{k+1}^2 \frac{L_V \eta_0}{2} \end{split}$$

A drift term for  $\gamma_k$  small enough. Sum from k=0 to k=T-1; conclude.

# A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that  $\gamma_k \in (0, \gamma_{\max})$ ,

$$\eta_1 \ge \sigma_1^2 + c_1 > 0$$

$$\gamma_{\max} := \frac{2(\rho - \mathsf{b}_1)}{L_V \, \eta_1}$$

Then, there exist non-negative constants s.t. for any  $T \geq 1$ 

$$\sum_{k=1}^{T} \frac{\gamma_k \mu_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{k-1})\right] \leq 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + L_V \eta_0 \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell}$$

- $\eta_\ell$  depends on the bias and variance of the oracles;  $\eta_0>0$ .
- For unbiased oracles:  $\tau_0 = b_1 = 0$
- Better bounds when V = W; not discussed here

ex.: SGD for strongly cvx fct; TD(0)

### After T iterations

• Reached with a constant step size

$$\gamma_k = \gamma := \frac{\gamma_{\text{max}}}{2} \wedge \frac{\sqrt{2\mathbb{E}[V(\omega_0)]}}{\sqrt{\eta_0 L_V \sqrt{T}}}$$

$$\underbrace{\frac{1}{T}\sum_{k=0}^{T-1}\mathbb{E}\left[W(\omega_k)\right]}_{\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]} \leq \frac{2\sqrt{2L_V\eta_0}\sqrt{\mathbb{E}\left[V(\omega_0)\right]}}{(\rho-b_1)\sqrt{T}} \vee \frac{8\mathbb{E}\left[V(\omega_0)\right]}{\gamma_{\max}(\rho-b_1)T} + c_V\frac{\sqrt{\tau_0}}{\rho-b_1}$$

When  $au_0=0$  i.e. unbiased oracles, or bias scaling with  ${\scriptscriptstyle W}$ 

- Random stopping: return  $\omega_{\mathcal{R}_T}$  where  $\mathcal{R}_T \sim \mathcal{U}(\{0,\cdots,T-1\})$
- When W is convex: return the Polyak-Ruppert-Juditsky averaged iterate  $T^{-1}\sum_{k=0}^{T-1}\omega_k$

• Upper bound depending on T:  $\propto 1/\sqrt{T}$ 

# *ϵ*-approximate stationary point, for unbiased oracles

 $\text{For all }\epsilon>0\text{, let }\mathcal{T}(\epsilon)\subset\mathbb{N}\text{ s.t. for all }T\in\mathcal{T}(\epsilon),\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]\leq\epsilon.$ 

For unbiased oracles,

$$\mathcal{T}(\epsilon) = [T_{\epsilon}, +\infty)$$
 with

$$T_{\epsilon} := 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2} \left( \frac{1}{\epsilon^2} \vee \frac{\eta_1}{2\eta_0 \epsilon} \right)$$

• Low precision regime:  $\epsilon > 2\eta_0/\eta_1$ ,

$$T_{\epsilon} = 4 \mathbb{E}[V(\omega_0)] \frac{\eta_1 L_V}{\rho_2^2 \epsilon}, \qquad \gamma = \frac{\gamma_{\text{max}}}{2}$$

• High precision regime:  $\epsilon \in (0, 2\eta_0/\eta_1]$ ,

$$T_{\epsilon} = 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2 \epsilon^2}, \qquad \gamma = \frac{\rho \epsilon}{2\eta_0 L_V}$$

# $\epsilon$ -approximate stationary point, when biased oracles: on an example

EM 
$$h(\omega) = \frac{1}{n} \sum_{i=1}^{n} \overline{S}_i(T(\omega)) - \omega$$
 where

$$\bar{\mathsf{S}}_i(\tau) := \int_{\mathcal{X}} S_i(x) \pi(x; \tau) \mathsf{d}x$$

#### The SA-EM oracle

- Monte Carlo sum with m points,
- case Self-normalized Importance Sampling: biased oracles, with bias  $\beta_0/m$  and variance  $\beta_1/m$ .

#### Complexity

 $\text{For all }\epsilon>0\text{, let }\mathcal{T}(\epsilon)\subset\mathbb{N}^2\text{ s.t. for all }(T,m)\in\mathcal{T}(\epsilon)\text{,}\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]\leq\epsilon.$ 

$$T \geq \frac{16\mathbb{E}[V(\omega_0)](1+{\sigma_1}^2/m)}{v_{\min}^2\kappa\epsilon} \vee \frac{32\mathbb{E}[V(\omega_0)]\bar{\sigma}_0^2L_V}{mv_{\min}^2\kappa^2\epsilon^2} \hspace{1cm} m \geq \frac{4c_b}{(1-\kappa)v_{\min}\epsilon}$$

For high precision regime,

$$T_{\epsilon} = \frac{C_1}{\epsilon}, \qquad m_{\epsilon} = \frac{C_2}{\epsilon}, \qquad \text{cost}_{\text{comp}} = T_{\epsilon} \left( n m_{\epsilon} \operatorname{cost}_{\text{MC}} + \operatorname{cost}_{\text{opt}} \right)$$

Other rates for low precision regime.

# Variance Reduction within SA

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

#### Control variates for variance reduction

• Choose U correlated with the natural oracle  $H(\omega, X)$  s.t.

$$Var(H(\omega, X) + U) < Var(H(\omega, X))$$

Bias

$$\mathbb{E}\left[H(\omega,X)+U\right]=\mathbb{E}\left[H(\omega,X)\right]\quad\text{where}\quad\mathbb{E}[U]=0.$$

 Control variates classical in Monte Carlo; introduced in Stochastic Gradient; extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al (2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)

## The SPIDER control variate when h is a finite sum

Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR

Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting:  $h(\omega) = \frac{1}{n} \sum_{i=1}^n h_i(\omega) \qquad \text{and } n \text{ large}$ 

ullet At iteration #(k+1), a natural oracle for  $h(\omega_k)$  is

$$H(\omega_k,X_{k+1}):=\frac{1}{\mathsf{b}}\sum_{i\in X_{k+1}}h_i(\omega_k) \qquad X_{k+1} \text{ mini-batch from } \{1,\dots,n\}, \text{ of size b}$$

The SPIDER oracle is

$$H_{k+1}^{\mathrm{sp}} := \frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_k) + \underbrace{H_k^{\mathrm{sp}}}_{\text{for } h(\omega_{k-1})} - \underbrace{\frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_{k-1})}_{\text{oracle} \atop \text{for } h(\omega_{k-1})}$$

• Implementation: refresh the control variate every  $K_{\rm in}$  iterations

# Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in  $\mathbb{R}^{20}$ ; unknown weights, means and covariances.





Estimation of 20 parameters, one path of SA

Estimation of 20 parameters, one path of SPIDER-SA

Squared norm of the mean field h, after 20 and 40 epochs; for SA and three variance reduction methods





Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.



For a fixed accuracy level, for different values of the problem size n, display the number of examples processed to reach the accuracy level (mean nbr over 50 indep runs).

## Conclusion

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

#### **Conclusion**

- SA methods with non-gradient mean field and/or biased oracles in ML and compurational statistics.
- A non-asymptotic analysis for general Stochastic Approximation schemes, and variance reduction via control variates.
- Oracles, from Markovian examples
- Roots of h=0, on a  $\Omega\subset\mathbb{R}^d$
- Federated SA: compression, control variateS, partial participation, heterogeneity, local iterations, . . .

## **Compressed Stochastic Gradient**

Compression: when frugal algorithms are mandatory

## Compression operator $\mathcal{C}$ :

- $\bullet \ \ \text{a mapping} \ x \mapsto \mathcal{C}(x,U)$
- s.t. for any  $x \in \mathbb{R}^d$ , the cost for storing/transmitting  $\mathcal{C}(x,U)$  is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

## **Compressed Stochastic Gradient**

Compression: when frugal algorithms are mandatory

#### Compression operator C:

- ullet a mapping  $x\mapsto \mathcal{C}(x,U)$
- s.t. for any  $x \in \mathbb{R}^d$ , the cost for storing/transmitting  $\mathcal{C}(x,U)$  is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

#### Compression within a Stochastic Gradient step:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ \mathcal{C} \left( H(\omega_k, X_{k+1}), U_{k+1} \right)$$

increasing interest in distributed optimization

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H\left(\mathcal{C}(\omega_k, U_{k+1}), X_{k+1}\right)$$

gradient at a perturbed iterate: Straight-Through Estimator

$$\omega_{k+1} = \mathcal{C} \left( \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}), U_{k+1} \right)$$

low-precision SG