Stochastic Approximation Beyond Gradient

Gersende Fort
CNRS
Institut de Mathématiques de Toulouse

In collaboration with

- Aymeric Dieuleveut,
- Eric Moulines,
- Hoi-To Wai,

Ecole Polytechnique, CMAP, France
Ecole Polytechnique, CMAP, France

Chinese Univ. of Hong-Kong, Hong-Kong

Publications:
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning HAL-03979922 arXiv:2302.11147 IEEE Trans. on Signal Processing, 2023

A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm

Partly funded by

Fondation Simone et Cino Del Duca, Project OpSiMorE

ANR AAPG-2019, Project MASDOL
anr ${ }^{\circ}$

- Stochastic Approximation
- Examples of SA: stochastic gradient and beyond

Stochastic Gradient is an example of SA, but SA encompasses broader scenarios (compressed stochastic gradient; Reinforcement Learning via TD learning; Computational Statistics via EM)

Understanding the behavior of these algorithms and designing improved algorithms require new insights that depart from the study of traditional SG algorithms.

- Non-asymptotic analysis
best strategy after T iterations, complexity analysis
- Variance Reduction for SA

Improved SA schemes.

- Conclusion

Stochastic Approximation

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Stochastic Approximation: is a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:
Given a mean field $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, solve

$$
\omega \in \mathbb{R}^{d} \quad \text { s.t. } \quad h(\omega)=0
$$

Available: for all ω, stochastic oracles of $h(\omega)$.

The Stochastic Approximation method:
Choose: a sequence of step sizes $\left\{\gamma_{k}\right\}_{k}$ and an initial value $\omega_{0} \in \mathbb{R}^{d}$. Repeat:

$$
\omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)
$$

where $H\left(\omega_{k}, X_{k+1}\right)$ is a stochastic oracle of $h\left(\omega_{k}\right)$.

Examples of SA: Stochastic Gradient and beyond

Stochastic Approximation
Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Conclusion

Stochastic Gradient is a SA method

Find a root of $h: \quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)$ where $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$

SG is a root finding algorithm

- designed to solve $\quad \nabla R(\omega)=0$

SG is a SA algorithm

$$
\omega_{k+1}=\omega_{k}-\gamma_{k+1} \widehat{\nabla R\left(\omega_{k}\right)}
$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Stochastic Gradient is a SA method

Find a root of $h: \quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)$ where $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$

SG is a root finding algorithm

- designed to solve $\quad \nabla R(\omega)=0$

SG is a SA algorithm

$$
\omega_{k+1}=\omega_{k}-\gamma_{k+1} \widehat{\nabla R\left(\omega_{k}\right)}
$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

$$
\begin{aligned}
R(\omega) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(\omega, Z_{i}\right) \quad h(\omega)=-\frac{1}{n} \sum_{i=1}^{n} \mathrm{D}_{10} \ell\left(\omega, Z_{i}\right) \\
H\left(\omega, X_{k+1}\right) & =-\frac{1}{\mathrm{~b}} \sum_{i \in X_{k+1}} \mathrm{D}_{10} \ell\left(\omega, Z_{i}\right) \quad X_{k+1} \text { a random subset of }\{1, \ldots, n\}, \text { cardinal b. }
\end{aligned}
$$

Stochastic Gradient is a SA method

Find a root of $h: \quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)$ where $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$

SG is a root finding algorithm

- designed to solve $\quad \nabla R(\omega)=0$

SG is a SA algorithm

$$
\omega_{k+1}=\omega_{k}-\gamma_{k+1} \widehat{\nabla R\left(\omega_{k}\right)}
$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

$$
\begin{aligned}
R(\omega) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(\omega, Z_{i}\right) \quad h(\omega)=-\frac{1}{n} \sum_{i=1}^{n} \mathrm{D}_{10} \ell\left(\omega, Z_{i}\right) \\
H\left(\omega, X_{k+1}\right) & =-\frac{1}{\mathrm{~b}} \sum_{i \in X_{k+1}} \mathrm{D}_{10} \ell\left(\omega, Z_{i}\right) \quad X_{k+1} \text { a random subset of }\{1, \ldots, n\}, \text { cardinal b. }
\end{aligned}
$$

SG is a SA algorithm with goal: optimization

- for convex and non-convex optimization
- Key property: $\quad\langle\nabla R(\omega), h(\omega)\rangle=-\|\nabla R(\omega)\|^{2} \leq 0$

SA beyond the gradient case

The "gradient case":

- the mean field h is a gradient: $\quad h(\omega)=-\nabla R(\omega)$
- the oracle is unbiased: $\mathbb{E}[H(\omega, X)]=h(\omega)$

SA beyond the gradient case: two examples.

Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation
A Markov Reward Process:

- State $s \in \mathcal{S}, \quad \operatorname{Card}(\mathcal{S})=n$.
- Markov process: transition matrix $P, \pi P=\pi$
- Reward $\mathrm{R}\left(s, s^{\prime}\right)$
P, π and R depend on the policy μ
- Value function:

$$
\lambda \in(0,1)
$$

$$
\forall s \in \mathcal{S}, \quad V_{\star}(s):=\sum_{t \geq 0} \lambda^{t} \mathbb{E}\left[\mathrm{R}\left(S_{t}, S_{t+1}\right) \mid S_{0}=s\right]
$$

- The value function evaluation is a root-finding problem

Bellman equation:
$\mathrm{B} V_{\star}-V_{\star}=0$

$$
\mathrm{B} V(s):=\mathbb{E}\left[\mathbb{R}\left(S_{0}, S_{1}\right)+\lambda V\left(S_{1}\right) \mid S_{0}=s\right]
$$

Linear Function Approximation: $\quad V^{\omega} \in \operatorname{Span}\left(\phi_{1}, \cdots, \phi_{d}\right)$

$$
\text { find } V^{\omega} \Leftrightarrow \text { find } \Phi \omega \Leftrightarrow \text { find } \omega \in \mathbb{R}^{d}
$$

Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:

- State $s \in \mathcal{S}, \quad \operatorname{Card}(\mathcal{S})=n$.
- Markov process: transition matrix $P, \pi P=\pi$
- Reward $\mathrm{R}\left(s, s^{\prime}\right) \quad \mathrm{P}, \pi$ and R depend on the policy μ
- Value function: $\quad \lambda \in(0,1)$

$$
\forall s \in \mathcal{S}, \quad V_{\star}(s):=\sum_{t \geq 0} \lambda^{t} \mathbb{E}\left[\mathrm{R}\left(S_{t}, S_{t+1}\right) \mid S_{0}=s\right] .
$$

- The value function evaluation is a root-finding problem

Bellman equation: $\quad \mathrm{B} V_{\star}-V_{\star}=0$

$$
\mathrm{B} V(s):=\mathbb{E}\left[\mathbb{R}\left(S_{0}, S_{1}\right)+\lambda V\left(S_{1}\right) \mid S_{0}=s\right]
$$

Linear Function Approximation: $\quad V^{\omega} \in \operatorname{Span}\left(\phi_{1}, \cdots, \phi_{d}\right)$

$$
\text { find } V^{\omega} \Leftrightarrow \text { find } \Phi \omega \Leftrightarrow \text { find } \omega \in \mathbb{R}^{d}
$$

- TD(0) with linear function approximation is SA Sutton (1987); Tsitsiklis and Van Roy (1997)
$\operatorname{TD}(0)$ is a SA with mean field $\quad h(\omega):=\Phi^{\prime} \operatorname{diag}(\pi)(\mathrm{B} \Phi \omega-\Phi \omega)$
Oracle:

$$
H\left(\omega,\left(S_{k}, S_{k+1}, R\left(S_{k}, S_{k+1}\right)\right)\right):=\left(\mathrm{R}\left(S_{k}, S_{k+1}\right)+\lambda[\Phi \omega]_{S_{k+1}}-[\Phi \omega]_{S_{k}}\right)\left(\Phi S_{S_{k}},:\right)^{\prime}
$$

Stochastic Expectation-Maximization

$$
\operatorname{argmin}_{\theta}-\log \int_{\mathcal{X}} p(x ; \theta) \nu(\mathrm{d} x) \quad p(x ; \theta)>0
$$

- EM is a root-finding algorithm
- EM is a Majorize-Minimization algorithm
- The majorizing function defined by $\int_{\mathcal{X}} S(x) \pi\left(x ; \theta_{k}\right) \nu(\mathrm{d} x)$
- Fixed points of EM: Delyon et al (1999)

$$
\theta_{\star}:=\mathrm{T}\left(s_{\star}\right) \quad \text { with } \quad s_{\star} \text { s.t. } \overline{\mathrm{S}}\left(\mathrm{~T}\left(s_{\star}\right)\right)-s_{\star}=0
$$

θ_{x+1}

Stochastic Expectation-Maximization

$$
\operatorname{argmin}_{\theta}-\log \int_{\mathcal{X}} p(x ; \theta) \nu(\mathrm{d} x) \quad p(x ; \theta)>0
$$

- EM is a root-finding algorithm
- EM is a Majorize-Minimization algorithm

- The majorizing function defined by $\int_{\mathcal{X}} S(x) \pi\left(x ; \theta_{k}\right) \nu(\mathrm{d} x)$
- Fixed points of EM: Delyon et al (1999)

$$
\theta_{\star}:=\mathrm{T}\left(s_{\star}\right) \quad \text { with } \quad s_{\star} \text { s.t. } \overline{\mathrm{S}}\left(\mathrm{~T}\left(s_{\star}\right)\right)-s_{\star}=0
$$

When $\overline{\mathrm{S}}$ intractable, the most popular/efficient Stochastic EM is SA

$$
\overline{\mathrm{S}}(\cdot):=\int_{\mathcal{X}} S(x) \pi(x ; \cdot) \nu(\mathrm{d} x) \quad \text { or (and) } \quad \overline{\mathrm{S}}(\cdot):=\frac{1}{n} \sum_{i=1}^{n} \overline{\mathrm{~S}}_{i}(\cdot),
$$

Stochastic EM is a SA with mean field $\quad h(\omega):=\overline{\mathrm{S}}(\mathrm{T}(\omega))-\omega$
[U,B] Oracle for SAEM: $\quad H\left(\omega, X_{k+1}\right):=m^{-1} \sum_{\ell=1}^{m} S\left(X_{k+1, \ell}\right)-\omega \quad X_{k+1, \cdot} \sim \operatorname{MCMC} \pi(\cdot ; \mathrm{T}(\omega))$
[U] Oracle for mini-batch EM: $\quad H\left(\omega, X_{k+1}\right):=\mathrm{b}^{-1} \sum_{i \in X_{k+1}} \overline{\mathrm{~S}}_{i}(\mathrm{~T}(\omega))-\omega$

SA: why does it work?

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work ?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Stochastic Approximation: the intuition

SA: $\quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right) \quad$ with an oracle $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$
ODE with vector field h

- A function $t \in[0,+\infty) \mapsto \bar{w}_{t} \in \mathbb{R}^{d}$ s.t.

$$
\bar{w}_{0}=\omega_{0}, \quad \frac{d \bar{w}_{t}}{d t}=h\left(\bar{w}_{t}\right)
$$

- A fixed point ω^{\star} is a root of h.
- Under assumptions (Lyapunov), $\lim _{t} \operatorname{dist}\left(\bar{w}_{t}, \mathcal{L}\right)=0$.

- $\{h=0\} \subseteq \mathcal{L}$.

A Lyapunov function for h

- $V: \mathbb{R}^{d} \rightarrow[0,+\infty)$, continuously differentiable, and inf-compact.
- $t \mapsto V\left(\bar{w}_{t}\right)$ decreasing i.e. $\quad\left\langle\nabla V\left(\bar{w}_{t}\right), h\left(\bar{w}_{t}\right)\right\rangle \leq 0$

Stochastic Approximation: the intuition

SA: $\quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right) \quad$ with an oracle $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$
ODE with vector field h

- A function $t \in[0,+\infty) \mapsto \bar{w}_{t} \in \mathbb{R}^{d}$ s.t.

$$
\bar{w}_{0}=\omega_{0}, \quad \frac{d \bar{w}_{t}}{d t}=h\left(\bar{w}_{t}\right) .
$$

- A fixed point ω^{\star} is a root of h.
- Under assumptions (Lyapunov), $\lim _{t} \operatorname{dist}\left(\bar{w}_{t}, \mathcal{L}\right)=0$.

- $\{h=0\} \subseteq \mathcal{L}$.

A Lyapunov function for h

- $V: \mathbb{R}^{d} \rightarrow[0,+\infty)$, continuously differentiable, and inf-compact.
- $t \mapsto V\left(\bar{w}_{t}\right)$ decreasing i.e. $\quad\left\langle\nabla V\left(\bar{w}_{t}\right), h\left(\bar{w}_{t}\right)\right\rangle \leq 0$

SA is an approximation ($\times 2$): Euler and oracle

$$
u_{k+1}=u_{k}+\gamma_{k+1} h\left(u_{k}\right) \quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)
$$

$$
\omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)
$$

Lyapunov for the theory of SA

- Assume there exists a Lyapunov fct: smooth, inf-compact and

$$
\langle\nabla V(\omega), h(\omega)\rangle \leq 0
$$

A Robbins-Siegmund type inequality

$$
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \text { past }_{k}\right] \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), h\left(\omega_{k}\right)\right\rangle+\gamma_{k+1} \rho_{k}
$$

ρ_{k} depends on the conditional bias and conditional L^{2}-moment of the oracle.

- For the (a.s.) boundedness of the random path, and its convergence.

Stochastic Approximation: the step sizes and the oracles

Algorithm: $\quad \omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right) \quad$ with an oracle $H\left(\omega_{k}, X_{k+1}\right) \approx h\left(\omega_{k}\right)$

- $\gamma_{k}>0$
- $\sum_{k} \gamma_{k}=+\infty$
- The oracles can be unbiased or biased

$$
\begin{aligned}
& \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \text { past }_{k}\right]=h\left(\omega_{k}\right) \\
& \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \text { past }_{k}\right] \neq h\left(\omega_{k}\right)
\end{aligned}
$$

- $\lim _{K} \sum_{k=0}^{K} \gamma_{k}\left(H\left(\omega_{k}, X_{k+1}\right)-h\left(\omega_{k}\right)\right)$ exists (wp1)

$$
\text { unbiased case with bounded variance: } \sum_{k} \gamma_{k}^{2}<\infty
$$

- $\lim _{k} \gamma_{k}=0$

Non-asymptotic analysis

Abstract

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Analyses

- Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Benaïm (1999), Kushner and Yin (2003), Borkar (2009)

- almost-sure convergence of the sequence $\left\{\omega_{k}, k \geq 0\right\}$
- to (a connected component of) the set $\mathcal{L}:=\{\omega:\langle\nabla V(\omega), h(\omega)\rangle=0\}$
- CLT, ...
- Non-asymptotic analysis

Given a total number of iterations T

- After T calls to an oracle, what can be obtained ?
ϵ-approximate stationary point and sample complexity
- How many iterations to reach an ϵ-approximate stationary point

$$
\forall \epsilon>0, \quad \mathbb{E}\left[W\left(\omega_{\bullet}\right)\right] \leq \epsilon
$$

The assumptions

$\omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)$

Lyapunov function V and control W
There exist $V: \mathbb{R}^{d} \rightarrow[0,+\infty), W: \mathbb{R}^{d} \rightarrow[0,+\infty)$ and positive constants s.t.

- V and W :
- V smooth
$\forall \omega, \omega^{\prime}\left\|\nabla V(\omega)-\nabla V\left(\omega^{\prime}\right)\right\| \leq L_{V}\left\|\omega-\omega^{\prime}\right\|$

		$h(\omega)$	$V(\omega)$	$W(\omega)$		
Gradient case		$-\nabla R(\omega)$	$R(\omega)$	$\\|h(\omega)\\|^{2}$		
and R convex	ω_{\star} solution	$-\nabla R(\omega)$	$0.5\left\\|\omega-\omega_{\star}\right\\|^{2}$	$-\left\langle\omega-\omega_{\star}, h(\omega)\right\rangle$		
and R strongly cvx	ω_{\star} solution	$-\nabla R(\omega)$	$0.5\left\\|\omega-\omega_{\star}\right\\|^{2}$	$W=V$ or, as above		
		$\bar{s}(\mathrm{~T}(\omega))-\omega$	$F(\mathrm{~T}(\omega))$	$\\|h(\omega)\\|^{2}$		
Stochastic EM		$\Phi^{\prime} D(\mathrm{~B} \Phi \omega-\Phi \omega)$	$0.5\left\\|\omega-\omega_{\star}\right\\|^{2}$	$\left(\omega-\omega_{\star}\right)^{\prime} \Phi^{\prime} D \Phi\left(\omega-\omega_{\star}\right)$		
TD (0)	$\Phi \omega_{\star}$ solution	$\Phi^{\prime}(\omega)$				

The assumptions
$\omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right)$

On the oracles and the mean field
There exist non-negative constants s.t.

- The mean field $\quad \forall \omega\|h(\omega)\|^{2} \leq c_{0}+c_{1} W(\omega)$
for all k, almost-surely,
- Bias

$$
\left\|\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-h\left(\omega_{k}\right)\right\|^{2} \leq \tau_{0}+\tau_{1} W\left(\omega_{k}\right)
$$

- Variance

$$
\mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)-\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\|^{2} \mid \mathcal{F}_{k}\right] \leq \sigma_{0}^{2}+\sigma_{1}^{2} W\left(\omega_{k}\right)
$$

- If biased oracles i.e. $\tau_{0}+\tau_{1}>0$,

$$
\sqrt{{ }^{c} V}\left(\sqrt{\tau_{0}} / 2+\sqrt{\tau_{1}}\right)<\rho, \quad \quad c_{V}:=\sup _{\omega} \frac{\|\nabla V(\omega)\|^{2}}{W(\omega)}<\infty .
$$

Includes cases:

- Biased oracles, unbiased oracles
- Bounded variance of the oracles, unbounded variance of the oracles

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)
Assume also that $\gamma_{k} \in\left(0, \gamma_{\max }\right)$,

$$
\eta_{1} \geq \sigma_{1}^{2}+c_{1}>0
$$

$$
\gamma_{\max }:=\frac{2\left(\rho-\mathrm{b}_{1}\right)}{L_{V} \eta_{1}}
$$

Then, there exist non-negative constants s.t. for any $T \geq 1$

$$
\begin{aligned}
& \sum_{k=1}^{T} \frac{\gamma_{k} \mu_{k}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \mathbb{E}\left[W\left(\omega_{k-1}\right)\right] \leq 2 \frac{\mathbb{E}\left[V\left(\omega_{0}\right)\right]}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
&+L_{V} \eta_{0} \frac{\sum_{k=1}^{T} \gamma_{k}^{2}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
&+c_{V} \sqrt{\tau_{0}} \frac{\sum_{k=1}^{T} \gamma_{k}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
& \mu_{\ell}=2\left(\rho-\mathrm{b}_{1}\right)-\gamma_{\ell} L_{V} \eta_{1}>0
\end{aligned}
$$

- η_{ℓ} depends on the bias and variance of the oracles; $\eta_{0}>0$.
- For unbiased oracles: $\tau_{0}=\mathrm{b}_{1}=0$
- Better bounds when $V=W$; not discussed here

Sketch of proof of the Theorem

A Lyapunov function V with L_{V}-Lipschitz gradient

$$
V\left(\omega_{k+1}\right) \leq V\left(\omega_{k}\right)+\left\langle\nabla V\left(\omega_{k}\right), \omega_{k+1}-\omega_{k}\right\rangle+\frac{L_{V}}{2}\left\|\omega_{k+1}-\omega_{k}\right\|^{2}
$$

Sketch of proof of the Theorem

$$
V\left(\omega_{k+1}\right) \leq V\left(\omega_{k}\right)+\left\langle\nabla V\left(\omega_{k}\right), \quad \omega_{k+1}-\omega_{k}\right\rangle+\frac{L_{V}}{2} \quad\left\|\omega_{k+1}-\omega_{k}\right\|^{2}
$$

The definition of the iterative scheme

$$
V\left(\omega_{k+1}\right) \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), H\left(\omega_{k}, X_{k+1}\right)\right\rangle+\frac{L_{V}}{2} \gamma_{k+1}^{2}\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2}
$$

Sketch of proof of the Theorem

$$
V\left(\omega_{k+1}\right) \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \quad H\left(\omega_{k}, X_{k+1}\right)\right\rangle+\frac{L_{V}}{2} \gamma_{k+1}^{2}\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2}
$$

The conditional expectation

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

Sketch of proof of the Theorem

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \quad \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

The mean field h and the bias term

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-\mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-\mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \quad \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)\right\|^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

Cond $L^{2}=$ Cond Var $+(\text { Cond Exp })^{2}$

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-\mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)-\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\|^{2} \mid \mathcal{F}_{k}\right] \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2}\left\|\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right) \mid \mathcal{F}_{k}\right] & \leq V\left(\omega_{k}\right)+\gamma_{k+1} \quad\left\langle\nabla V\left(\omega_{k}\right), \mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\gamma_{k+1}\left\langle\nabla V\left(\omega_{k}\right), \quad \mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-\mathrm{h}\left(\omega_{k}\right)\right\rangle \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H\left(\omega_{k}, X_{k+1}\right)-\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]\right\|^{2} \mid \mathcal{F}_{k}\right] \\
& +\frac{L_{V}}{2} \gamma_{k+1}^{2}\left\|\mathbb{E}\left[H\left(\omega_{k}, X_{k+1}\right) \mid \mathcal{F}_{k}\right]-\mathrm{h}\left(\omega_{k}\right)+\mathrm{h}\left(\omega_{k}\right)\right\|^{2}
\end{aligned}
$$

By assumptions: the drift term, the bias and variance of the oracles, and the mean field are controlled by W.
Apply the expectation.
There exist constants s.t. for any $k \geq 0$,

$$
\begin{aligned}
\mathbb{E}\left[V\left(\omega_{k+1}\right)\right] & \leq \mathbb{E}\left[V\left(\omega_{k}\right)\right]-\gamma_{k+1} \quad\left(\rho-\mathrm{b}_{1}-\gamma_{k} \frac{L_{V} \eta_{1}}{2}\right) \quad \mathbb{E}\left[W\left(\omega_{k}\right)\right] \\
& +\gamma_{k+1} \mathrm{~b}_{0}+\gamma_{k+1}^{2} \frac{L_{V} \eta_{0}}{2}
\end{aligned}
$$

A drift term for γ_{k} small enough. Sum from $k=0$ to $k=T-1$; conclude.

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)
Assume also that $\gamma_{k} \in\left(0, \gamma_{\max }\right)$,

$$
\eta_{1} \geq \sigma_{1}^{2}+c_{1}>0
$$

$$
\gamma_{\max }:=\frac{2\left(\rho-\mathrm{b}_{1}\right)}{L_{V} \eta_{1}}
$$

Then, there exist non-negative constants s.t. for any $T \geq 1$

$$
\begin{aligned}
& \sum_{k=1}^{T} \frac{\gamma_{k} \mu_{k}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \mathbb{E}\left[W\left(\omega_{k-1}\right)\right] \leq 2 \frac{\mathbb{E}\left[V\left(\omega_{0}\right)\right]}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
&+L_{V} \eta_{0} \frac{\sum_{k=1}^{T} \gamma_{k}^{2}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
&+c_{V} \sqrt{\tau_{0}} \frac{\sum_{k=1}^{T} \gamma_{k}}{\sum_{\ell=1}^{T} \gamma_{\ell} \mu_{\ell}} \\
& \mu_{\ell}=2\left(\rho-\mathrm{b}_{1}\right)-\gamma_{\ell} L_{V} \eta_{1}>0
\end{aligned}
$$

- η_{ℓ} depends on the bias and variance of the oracles; $\eta_{0}>0$.
- For unbiased oracles: $\tau_{0}=\mathrm{b}_{1}=0$
- Better bounds when $V=W$; not discussed here

After T iterations

- Reached with a constant step size

$$
\gamma_{k}=\gamma:=\frac{\gamma_{\max }}{2} \wedge \frac{\sqrt{2 \mathbb{E}\left[V\left(\omega_{0}\right)\right]}}{\sqrt{\eta_{0} L_{V}} \sqrt{T}}
$$

$$
\underbrace{\frac{1}{T} \sum_{k=0}^{T-1} \mathbb{E}\left[W\left(\omega_{k}\right)\right]}_{\mathbb{E}\left[W\left(\omega_{\mathcal{R}_{T}}\right)\right]} \leq \frac{2 \sqrt{2 L_{V} \eta_{0}} \sqrt{\mathbb{E}\left[V\left(\omega_{0}\right)\right]}}{\left(\rho-b_{1}\right) \sqrt{T}} \vee \frac{8 \mathbb{E}\left[V\left(\omega_{0}\right)\right]}{\gamma_{\max }\left(\rho-b_{1}\right) T}+c_{V} \frac{\sqrt{\tau_{0}}}{\rho-b_{1}}
$$

When $\tau_{0}=0$ i.e. unbiased oracles, or bias scaling with W

- Random stopping: return $\omega_{\mathcal{R}_{T}}$ where $\mathcal{R}_{T} \sim \mathcal{U}(\{0, \cdots, T-1\})$
- When W is convex: return the Polyak-Ruppert-Juditsky averaged iterate $T^{-1} \sum_{k=0}^{T-1} \omega_{k}$
- Upper bound depending on $T: \propto 1 / \sqrt{T}$

For all $\epsilon>0$, let $\mathcal{T}(\epsilon) \subset \mathbb{N}$ s.t. for all $T \in \mathcal{T}(\epsilon), \quad \mathbb{E}\left[W\left(\omega_{\mathcal{R}_{T}}\right)\right] \leq \epsilon$.

For unbiased oracles,

$$
\mathcal{T}(\epsilon)=\left[T_{\epsilon},+\infty\right) \text { with }
$$

$$
T_{\epsilon}:=8 \mathbb{E}\left[V\left(\omega_{0}\right)\right] \frac{\eta_{0} L_{V}}{\rho^{2}}\left(\frac{1}{\epsilon^{2}} \vee \frac{\eta_{1}}{2 \eta_{0} \epsilon}\right)
$$

- Low precision regime: $\epsilon>2 \eta_{0} / \eta_{1}$,

$$
T_{\epsilon}=4 \mathbb{E}\left[V\left(\omega_{0}\right)\right] \frac{\eta_{1} L_{V}}{\rho^{2} \epsilon}, \quad \gamma=\frac{\gamma_{\max }}{2}
$$

- High precision regime: $\epsilon \in\left(0,2 \eta_{0} / \eta_{1}\right]$,

$$
T_{\epsilon}=8 \mathbb{E}\left[V\left(\omega_{0}\right)\right] \frac{\eta_{0} L_{V}}{\rho^{2} \epsilon^{2}}, \quad \gamma=\frac{\rho \epsilon}{2 \eta_{0} L_{V}}
$$

EM $\quad h(\omega)=\frac{1}{n} \sum_{i=1}^{n} \overline{\mathrm{~S}}_{i}(\mathrm{~T}(\omega))-\omega \quad$ where $\quad \overline{\mathrm{S}}_{i}(\tau):=\int_{\mathcal{X}} S_{i}(x) \pi(x ; \tau) \mathrm{d} x$
The SA-EM oracle

- Monte Carlo sum with m points,
- case Self-normalized Importance Sampling: biased oracles, with bias β_{0} / m and variance β_{1} / m.

Complexity

For all $\epsilon>0$, let $\mathcal{T}(\epsilon) \subset \mathbb{N}^{2}$ s.t. for all $(T, m) \in \mathcal{T}(\epsilon)$,

$$
\mathbb{E}\left[W\left(\omega_{\mathcal{R}_{T}}\right)\right] \leq \epsilon .
$$

$$
T \geq \frac{16 \mathbb{E}\left[V\left(\omega_{0}\right)\right]\left(1+\sigma_{1}^{2} / m\right)}{v_{\min }^{2} \kappa \epsilon} \vee \frac{32 \mathbb{E}\left[V\left(\omega_{0}\right)\right] \bar{\sigma}_{0}^{2} L_{V}}{m v_{\min }^{2} \kappa^{2} \epsilon^{2}} \quad m \geq \frac{4 c_{b}}{(1-\kappa) v_{\min } \epsilon}
$$

For high precision regime,

$$
T_{\epsilon}=\frac{C_{1}}{\epsilon}, \quad m_{\epsilon}=\frac{C_{2}}{\epsilon}, \quad \operatorname{cost}_{\mathrm{comp}}=T_{\epsilon}\left(n m_{\epsilon} \operatorname{cost}_{\mathrm{MC}}+\operatorname{cost}_{\mathrm{opt}}\right)
$$

Other rates for low precision regime.

Variance Reduction within SA

Stochastic Approximation
 Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

- Choose U correlated with the natural oracle $H(\omega, X)$ s.t.

$$
\operatorname{Var}(H(\omega, X)+U)<\operatorname{Var}(H(\omega, X))
$$

- Bias

$$
\mathbb{E}[H(\omega, X)+U]=\mathbb{E}[H(\omega, X)] \quad \text { where } \quad \mathbb{E}[U]=0
$$

- Control variates classical in Monte Carlo; introduced in Stochastic Gradient; extended to SA

```
Survey on Variance Reduction in ML: Gower et al (2020)
Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al
(2020)
Riemannian non-convex optimization: Han and Gao (2022)
Mirror Descent: Luo et al (2022)
Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)
```

Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR
Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting: $\quad h(\omega)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(\omega) \quad$ and n large

- At iteration $\#(k+1)$, a natural oracle for $h\left(\omega_{k}\right)$ is

$$
H\left(\omega_{k}, X_{k+1}\right):=\frac{1}{\mathbf{b}} \sum_{i \in X_{k+1}} h_{i}\left(\omega_{k}\right) \quad x_{k+1} \text { mini-batch from }\{1, \ldots, n\} \text {, of size b }
$$

- The SPIDER oracle is

$$
H_{k+1}^{\mathrm{sp}}:=\frac{1}{\mathrm{~b}} \sum_{i \in X_{k+1}} h_{i}\left(\omega_{k}\right)+\underbrace{H_{k}^{\mathrm{sp}}}_{\substack{\text { oracle } \\
\text { for } h\left(\omega_{k-1}\right)}}-\underbrace{\frac{1}{\mathrm{~b}} \sum_{i \in X_{k+1}} h_{i}\left(\omega_{k-1}\right)}_{\begin{array}{c}
\text { oracle } \\
\text { for } h\left(\omega_{k-1}\right)
\end{array}}
$$

- Implementation: refresh the control variate every $K_{\text {in }}$ iterations

Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in \mathbb{R}^{20}; unknown weights, means and covariances.

Estimation of 20 parameters, one path of SA

Estimation of 20 parameters, one path of SPIDER-SA

Squared norm of the mean field h, after 20 and 40 epochs; for SA and three variance reduction methods

Application: Stochastic EM with ctt step size, mixture of two Gaussian in \mathbb{R}, unknown means.

For a fixed accuracy level, for different values of the problem size n, display the number of examples processed to reach the accuracy level (mean nbr over 50 indep runs).

Conclusion

Abstract

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

- SA methods with non-gradient mean field and/or biased oracles - in ML and compurational statistics.
- A non-asymptotic analysis for general Stochastic Approximation schemes, and variance reduction via control variates.
- Oracles, from Markovian examples
- Roots of $h=0$, on a $\Omega \subset \mathbb{R}^{d}$
- Federated SA: compression, control variateS, partial participation, heterogeneity, local iterations, ...

Compressed Stochastic Gradient

Compression: when frugal algorithms are mandatory
Compression operator \mathcal{C} :

- a mapping $x \mapsto \mathcal{C}(x, U)$
- s.t. for any $x \in \mathbb{R}^{d}$, the cost for storing/transmitting $\mathcal{C}(x, U)$ is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

Compressed Stochastic Gradient

Compression: when frugal algorithms are mandatory
Compression operator \mathcal{C} :

- a mapping $x \mapsto \mathcal{C}(x, U)$
- s.t. for any $x \in \mathbb{R}^{d}$, the cost for storing/transmitting $\mathcal{C}(x, U)$ is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

Compression within a Stochastic Gradient step:

$$
\omega_{k+1}=\omega_{k}+\gamma_{k+1} \mathcal{C}\left(H\left(\omega_{k}, X_{k+1}\right), U_{k+1}\right)
$$

increasing interest in distributed optimization

$$
\omega_{k+1}=\omega_{k}+\gamma_{k+1} H\left(\mathcal{C}\left(\omega_{k}, U_{k+1}\right), X_{k+1}\right)
$$

gradient at a perturbed iterate: Straight-Through Estimator

$$
\omega_{k+1}=\mathcal{C}\left(\omega_{k}+\gamma_{k+1} H\left(\omega_{k}, X_{k+1}\right), U_{k+1}\right)
$$

