Stochastic Approximation Beyond Gradient

Gersende Fort CNRS

Institut de Mathématiques de Toulouse

In collaboration with

- Aymeric Dieuleveut,
- Eric Moulines,
- Hoi-To Wai,

Ecole Polytechnique, CMAP, France Ecole Polytechnique, CMAP, France Chinese Univ. of Hong-Kong, Hong-Kong

Publications:

Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning

HAL-03979922 arXiv:2302.11147 IEEE Trans. on Signal Processing, 2023

A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm

HAI-03029700 NeurIPS, 2020

Partly funded by

Fondation Simone et Cino Del Duca, Project OpSiMorE

ANR AAPG-2019, Project MASDOL

Outline

- Stochastic Approximation
- Examples of SA: stochastic gradient and beyond
 Stochastic Gradient is an example of SA, but SA encompasses broader scenarios (compressed stochastic gradient; Reinforcement Learning via TD learning; Computational Statistics via EM)

Understanding the behavior of these algorithms and designing improved algorithms require new insights that depart from the study of traditional SG algorithms.

- Non-asymptotic analysis
 best strategy after T iterations, complexity analysis
- Variance Reduction for SA Improved SA schemes.
- Conclusion

Stochastic Approximation

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Stochastic Approximation: is a root-finding method

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a mean field $h: \mathbb{R}^d \to \mathbb{R}^d$, solve

$$\omega \in \mathbb{R}^d \qquad \text{s.t.} \quad h(\omega) = 0$$

Available: for all ω , stochastic oracles of $h(\omega)$.

The Stochastic Approximation method:

Choose: a sequence of step sizes $\{\gamma_k\}_k$ and an initial value $\omega_0\in\mathbb{R}^d.$

Repeat:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$

where $H(\omega_k, X_{k+1})$ is a stochastic oracle of $h(\omega_k)$.

Examples of SA: Stochastic Gradient and beyond

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Stochastic Gradient is a SA method

Find a root of
$$h$$
:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$
 where $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

SG is a root finding algorithm

• designed to solve $\nabla R(\omega) = 0$

$$\nabla R(\omega) = 0$$

SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \, \widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Stochastic Gradient is a SA method

Find a root of h:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$$
 where $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

SG is a root finding algorithm

- designed to solve $\nabla R(\omega) = 0$

SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020). Non-convex case: Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

$$R(\omega) = \frac{1}{n} \sum_{i=1}^n \ell(\omega, Z_i) \qquad \qquad h(\omega) = -\frac{1}{n} \sum_{i=1}^n \mathsf{D}_{10} \ell(\omega, Z_i)$$

$$H(\omega,X_{k+1}) = -\frac{1}{\mathrm{b}}\sum_{i \in X_{k+1}} \mathrm{D}_{10}\ell(\omega,Z_i) \hspace{1cm} X_{k+1} \text{ a random subset of } \{1,\ldots,n\}, \text{ cardinal b.}$$

7/31 DATA, LJK, January 2024

Stochastic Gradient is a SA method

Find a root of h:

$$\omega_{k+1}=\omega_k+\gamma_{k+1}\ H(\omega_k,X_{k+1})$$
 where $H(\omega_k,X_{k+1})\approx h(\omega_k)$

SG is a root finding algorithm

• designed to solve $\nabla R(\omega) = 0$

$$\nabla R(\omega) = 0$$

SG is a SA algorithm

$$\omega_{k+1} = \omega_k - \gamma_{k+1} \,\widehat{\nabla R(\omega_k)}$$

see e.g. survey by Bottou (2003, 2010); Lan (2020), Non-convex case; Bottou et al (2018); Ghadimi and Lan (2013)

Empirical Risk Minimization for batch data

$$R(\omega) = \frac{1}{n} \sum_{i=1}^n \ell(\omega, Z_i) \qquad \qquad h(\omega) = -\frac{1}{n} \sum_{i=1}^n \mathsf{D}_{10} \ell(\omega, Z_i)$$

$$H(\omega,X_{k+1}) = -\frac{1}{\mathrm{b}}\sum_{i \in X_{k+1}} \mathrm{D}_{10}\ell(\omega,Z_i) \hspace{1cm} X_{k+1} \text{ a random subset of } \{1,\ldots,n\}, \text{ cardinal b.}$$

SG is a SA algorithm with goal: optimization

- for convex and non-convex optimization

• Key property:
$$\langle \nabla R(\omega), h(\omega) \rangle = -\|\nabla R(\omega)\|^2 \leq 0$$

7/31 DATA, LJK, January 2024

SA beyond the gradient case

The "gradient case":

- the mean field h is a gradient: $h(\omega) = -\nabla R(\omega)$
- $\bullet \ \ \text{the oracle is unbiased:} \quad \ \mathbb{E}\left[H(\omega,X)\right] = h(\omega)$

SA beyond the gradient case: two examples.

Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:

- State $s \in \mathcal{S}$, $Card(\mathcal{S}) = n$.
- Markov process: transition matrix P, $\pi P = \pi$
- Reward $\mathsf{R}(s,s')$ P, π and R depend on the policy μ
- Value function:

$$\lambda \in (0, 1)$$

$$\forall s \in \mathcal{S}, \quad V_{\star}(s) := \sum_{t>0} \lambda^t \mathbb{E}\left[\mathsf{R}(S_t, S_{t+1}) \middle| S_0 = s\right].$$

▶ The value function evaluation is a root-finding problem

Linear Function Approximation: $V^{\omega} \in \operatorname{Span}(\phi_1, \cdots, \phi_d)$

find $V^{\omega} \Leftrightarrow \text{find } \Phi\omega \Leftrightarrow \text{find } \omega \in \mathbb{R}^d$

Policy evaluation of a Markov Reward Process

by a Temporal Difference (TD) method with linear function approximation

A Markov Reward Process:

- State $s \in \mathcal{S}$, $Card(\mathcal{S}) = n$.
- Markov process: transition matrix P, $\pi P = \pi$
- Reward R(s, s')P, π and R depend on the policy μ
- Value function:

$$\lambda \in (0, 1)$$

$$\forall s \in \mathcal{S}, \quad V_{\star}(s) := \sum_{t \geq 0} \lambda^t \mathbb{E} \left[\mathsf{R}(S_t, S_{t+1}) \middle| S_0 = s \right].$$



▶ The value function evaluation is a root-finding problem

Bellman equation: $BV_{+} - V_{+} = 0$

$$\mathrm{B}V(s) := \mathbb{E}\left[\mathrm{R}(S_0,S_1) + \lambda V(S_1) | S_0 = s\right]$$

Linear Function Approximation: $V^{\omega} \in \operatorname{Span}(\phi_1, \dots, \phi_d)$

find
$$V^{\omega} \Leftrightarrow \text{find } \Phi\omega \Leftrightarrow \text{find } \omega \in \mathbb{R}^d$$

► TD(0) with linear function approximation is SA

Sutton (1987): Tsitsiklis and Van Rov (1997)

TD(0) is a SA with mean field
$$h(\omega) := \Phi' \operatorname{diag}(\pi) \ (\mathsf{B}\Phi\omega - \Phi\omega)$$

$$\text{Oracle:} \qquad H(\omega, (S_k, S_{k+1}, R(S_k, S_{k+1}))) := \left(\mathsf{R}(S_k, S_{k+1}) + \lambda [\Phi \omega]_{S_{k+1}} - [\Phi \omega]_{S_k} \right) \left(\Phi_{S_k,:} \right)'$$

9/31 DATA, LJK, January 2024

Stochastic Expectation-Maximization

In the curved exponential family

Dempster et al (1977)

$$\operatorname{argmin}_{\theta} - \log \int_{\mathcal{X}} p(x; \theta) \nu(dx) \qquad p(x; \theta) > 0$$

- ► EM is a root-finding algorithm
 - EM is a Majorize-Minimization algorithm
 - The majorizing function defined by $\int_{\mathcal{X}} S(x)\pi(x;\theta_k)\nu(\mathrm{d}x)$
 - Fixed points of EM:

Delyon et al (1999)

$$\theta_{\star} := \mathsf{T}(s_{\star}) \quad \text{with} \quad s_{\star} \text{ s.t. } \bar{\mathsf{S}}\left(\mathsf{T}\left(s_{\star}\right)\right) - s_{\star} = 0$$

In the curved exponential family

Dempster et al (1977)

$$\operatorname{argmin}_{\theta} - \log \int_{\mathcal{X}} p(x; \theta) \nu(dx) \qquad p(x; \theta) > 0$$

- ► EM is a root-finding algorithm
 - EM is a Majorize-Minimization algorithm
 - The majorizing function defined by $\int_{\mathcal{X}} S(x)\pi(x;\theta_k)\nu(dx)$
 - Fixed points of EM:

$$\theta_{\star} := \mathsf{T}(s_{\star}) \quad \text{with} \quad s_{\star} \text{ s.t. } \bar{\mathsf{S}}\left(\mathsf{T}\left(s_{\star}\right)\right) - s_{\star} = 0$$

▶ When S intractable, the most popular/efficient Stochastic EM is SA

$$\bar{\mathsf{S}}(\cdot) := \int_{\mathcal{X}} S(x) \pi(x; \cdot) \, \nu(\mathrm{d} x) \qquad \text{or (and)} \qquad \bar{\mathsf{S}}(\cdot) := \frac{1}{n} \, \sum_{i=1}^n \bar{\mathsf{S}}_i(\cdot),$$

Stochastic EM is a SA with mean field $h(\omega) := \bar{S}(T(\omega)) - \omega$

[U,B] Oracle for SAEM: $H(\omega,X_{k+1}) := m^{-1} \sum_{\ell=1}^m S(X_{k+1,\ell}) - \omega \qquad X_{k+1,\cdot} \sim \text{ MCMC } \pi(\cdot;\mathsf{T}(\omega))$

[U] Oracle for mini-batch EM: $H(\omega,X_{k+1}) := \mathsf{b}^{-1} \sum_{i \in X_{k+1}} \bar{\mathsf{S}}_i(\mathsf{T}(\omega)) - \omega$

SA: why does it work?

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Stochastic Approximation: the intuition

$$\text{SA:} \qquad \omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}) \qquad \text{ with an oracle } \ H(\omega_k, X_{k+1}) \approx h(\omega_k)$$

ODE with vector field h

• A function $t \in [0, +\infty) \mapsto \overline{w}_t \in \mathbb{R}^d$ s.t.

$$\overline{w}_0 = \omega_0, \qquad \frac{d\overline{w}_t}{dt} = h(\overline{w}_t).$$

- A fixed point ω^* is a root of h.
- Under assumptions (Lyapunov), $\lim_t \operatorname{dist}(\overline{w}_t, \mathcal{L}) = 0$.
- $\bullet \ \{h=0\} \subseteq \mathcal{L}.$

d=2. For five initial values ω_0 ,

the solution $t\mapsto \overline{w}_t$.

A Lyapunov function for h

• $t\mapsto V(\overline{w}_t)$ decreasing i.e. $\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle \leq 0$

Stochastic Approximation: the intuition

$$\text{SA:} \qquad \omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}) \qquad \text{ with an oracle } \ H(\omega_k, X_{k+1}) \approx h(\omega_k)$$

ODE with vector field h

• A function $t \in [0, +\infty) \mapsto \overline{w}_t \in \mathbb{R}^d$ s.t.

$$\overline{w}_0 = \omega_0, \qquad \frac{d\overline{w}_t}{dt} = h(\overline{w}_t).$$

- A fixed point ω^* is a root of h.
- Under assumptions (Lyapunov), $\lim_t \operatorname{dist}(\overline{w}_t, \mathcal{L}) = 0$.
- $\{h=0\}\subset\mathcal{L}$.

d=2. For five initial values ω_0 ,

the solution $t\mapsto \overline{w}_t$.

A Lyapunov function for h

• $t \mapsto V(\overline{w}_t)$ decreasing i.e. $\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle < 0$

$$\langle \nabla V(\overline{w}_t), h(\overline{w}_t) \rangle \le 0$$

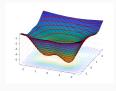
SA is an approximation ($\times 2$): Euler and oracle

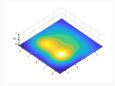
$$u_{k+1} = u_k + \gamma_{k+1} \ h(u_k)$$
 $\omega_{k+1} = \omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1})$

12/31 DATA, LJK, January 2024

Stochastic Approximation: stability and convergence via a Lyapunov function

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$





Lyapunov for the theory of SA

• Assume there exists a Lyapunov fct: smooth, inf-compact and

$$\langle \nabla V(\omega), h(\omega) \rangle \leq 0$$

A Robbins-Siegmund type inequality

Robbins and Siegmund (1971)

$$\mathbb{E}\left[V(\omega_{k+1})|\operatorname{past}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), h(\omega_{k}) \right\rangle + \gamma_{k+1} \rho_{k}$$

 ρ_k depends on the conditional bias and conditional L^2 -moment of the oracle.

• For the (a.s.) boundedness of the random path, and its convergence.

Stochastic Approximation: the step sizes and the oracles

Algorithm:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

with an oracle $H(\omega_k, X_{k+1}) \approx h(\omega_k)$

- \bullet $\gamma_k > 0$
- $\bullet \ \textstyle\sum_k \gamma_k = +\infty$
- The oracles can be unbiased or biased

- $$\begin{split} & \mathbb{E}\left[H(\omega_k, X_{k+1})| \mathrm{past}_k\right] = h(\omega_k) \\ & \mathbb{E}\left[H(\omega_k, X_{k+1})| \mathrm{past}_k\right] \neq h(\omega_k) \end{split}$$
- $\lim_K \sum_{k=0}^K \gamma_k \ (H(\omega_k, X_{k+1}) h(\omega_k))$ exists (wp1)

unbiased case with bounded variance: $\sum_k \, \gamma_k^2 < \infty$

• $\lim_k \gamma_k = 0$

Non-asymptotic analysis

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Analyses

▶ Asymptotic convergence analysis, when the horizon tends to infinity

Benveniste et al (1987/2012), Benaïm (1999), Kushner and Yin (2003), Borkar (2009)

- \bullet almost-sure convergence of the sequence $\{\omega_k, k \geq 0\}$
- to (a connected component of) the set $\mathcal{L} := \{\omega : \langle \nabla V(\omega), h(\omega) \rangle = 0\}$
- CLT, · · ·

► Non-asymptotic analysis

Given a total number of iterations T

• After T calls to an oracle, what can be obtained ?

 ϵ -approximate stationary point and sample complexity

ullet How many iterations to reach an ϵ -approximate stationary point

$$\forall \epsilon > 0, \quad \mathbb{E}\left[W(\omega_{\bullet})\right] \leq \epsilon$$

The assumptions

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

Lyapunov function ${\cal V}$ and control ${\cal W}$

There exist $V: \mathbb{R}^d \to [0, +\infty)$, $W: \mathbb{R}^d \to [0, +\infty)$ and positive constants s.t.

- $\bullet \ V \ \text{and} \ W : \\ \hspace{0.5in} \forall \omega \ \left\langle \nabla V(\omega), h(\omega) \right\rangle \leq -\rho \, W(\omega)$
- $\quad \quad \quad \quad \forall \omega, \omega' \ \, \| \nabla V(\omega) \nabla V(\omega') \| \leq L_V \| \omega \omega' \|$

		$h(\omega)$	$V(\omega)$	$W(\omega)$
Gradient case		$-\nabla R(\omega)$	$R(\omega)$	$ h(\omega) ^2$
and R convex	ω_{\star} solution	$-\nabla R(\omega)$	$0.5 \ \omega - \omega_{\star}\ ^2$	$-\langle \omega - \omega_{\star}, h(\omega) \rangle$
and R strongly cvx	ω_{\star} solution	$-\nabla R(\omega)$	$0.5 \ \omega - \omega_{\star}\ ^2$	W = V or, as above
Stochastic EM		$\bar{s}(T(\omega)) - \omega$	$F(T(\omega))$	$ h(\omega) ^2$
TD(0)	$\Phi\omega_{\star}$ solution	$\Phi' D(B\Phi\omega - \Phi\omega)$	$0.5 \ \omega - \omega_{\star}\ ^2$	$(\omega - \omega_{\star})'\Phi'D\Phi(\omega - \omega_{\star})$

The assumptions

$$\omega_{k+1} = \omega_k + \gamma_{k+1} H(\omega_k, X_{k+1})$$

On the oracles and the mean field

There exist non-negative constants s.t.

• The mean field

$$\forall \omega \|h(\omega)\|^2 \le c_0 + c_1 W(\omega)$$

for all k, almost-surely,

Bias

$$\|\mathbb{E}\left[H(\omega_k, X_{k+1})\middle|\mathcal{F}_k\right] - h(\omega_k)\|^2 \le \tau_0 + \tau_1 W(\omega_k)$$

Variance

$$\mathbb{E}\left[\left\|H(\omega_k,X_{k+1}) - \mathbb{E}\left[H(\omega_k,X_{k+1})\middle|\mathcal{F}_k\right]\right\|^2\middle|\mathcal{F}_k\right] \leq \sigma_0^2 + \sigma_1^2W(\omega_k)$$

• If biased oracles i.e. $\tau_0 + \tau_1 > 0$,

$$\sqrt{c_V} \ (\sqrt{\tau_0}/2 + \sqrt{\tau_1}) < \rho, \qquad \qquad c_V := \sup_{\omega} \frac{\|\nabla V(\omega)\|^2}{W(\omega)} < \infty.$$

Includes cases:

- Biased oracles, unbiased oracles
- Bounded variance of the oracles, unbounded variance of the oracles

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that $\gamma_k \in (0, \gamma_{\max})$,

$$\eta_1 \ge \sigma_1^2 + c_1 > 0$$

$$\gamma_{\max} := \frac{2(\rho - b_1)}{L_V \, \eta_1}$$

Then, there exist non-negative constants s.t. for any $T \geq 1$

$$\sum_{k=1}^{T} \frac{\gamma_k \mu_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{k-1})\right] \leq 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + L_V \eta_0 \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell}$$

$$\mu_\ell = 2(\rho - \mathfrak{b}_1) - \gamma_\ell L_V \eta_1 > 0$$

- η_ℓ depends on the bias and variance of the oracles; $\eta_0>0$.
- For unbiased oracles: $\tau_0 = b_1 = 0$
- Better bounds when V = W; not discussed here

ex.: SGD for strongly cvx fct; TD(0)

A Lyapunov function V with L_V -Lipschitz gradient

$$V(\omega_{k+1}) \le V(\omega_k) + \langle \nabla V(\omega_k), \omega_{k+1} - \omega_k \rangle + \frac{L_V}{2} \|\omega_{k+1} - \omega_k\|^2$$

$$V(\omega_{k+1}) \le V(\omega_k) + \left\langle \nabla V(\omega_k), \frac{\omega_{k+1} - \omega_k}{2} \right\rangle + \frac{L_V}{2} \frac{\|\omega_{k+1} - \omega_k\|^2}{\|\omega_{k+1} - \omega_k\|^2}$$

The definition of the iterative scheme

$$V(\omega_{k+1}) \leq V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), \frac{H(\omega_k, X_{k+1})}{2} \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \left\| H(\omega_k, X_{k+1}) \right\|^2$$

$$V(\omega_{k+1}) \leq V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), \frac{H(\omega_k, X_{k+1})}{2} \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \frac{\|H(\omega_k, X_{k+1})\|^2}{\|H(\omega_k, X_{k+1})\|^2}$$

The conditional expectation

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]\right\rangle + \frac{L_{V}}{2}\gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, X_{k+1})\right\|^{2} |\mathcal{F}_{k}\right]$$

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \frac{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]}{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]} \right\rangle + \frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\|H(\omega_{k}, X_{k+1})\|^{2} |\mathcal{F}_{k}\right]$$

The mean field h and the bias term

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \frac{\mathsf{h}(\omega_{k})}{\mathsf{h}(\omega_{k})} \right\rangle \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})\right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \, \mathbb{E}\left[\left\|H(\omega_{k}, X_{k+1})\right\|^{2} |\mathcal{F}_{k}\right] \end{split}$$

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_k\right] &\leq V(\omega_k) + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbf{h}(\omega_k) \rangle \\ &+ \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbb{E}\left[H(\omega_k, X_{k+1})|\mathcal{F}_k\right] - \mathbf{h}(\omega_k) \rangle \\ &+ \frac{L_V}{2} \gamma_{k+1}^2 \boxed{\mathbb{E}\left[\|H(\omega_k, X_{k+1})\|^2 |\mathcal{F}_k\right]} \end{split}$$

$$\begin{split} \operatorname{\mathsf{Cond}} \ L^2 &= \operatorname{\mathsf{Cond}} \operatorname{\mathsf{Var}} + (\operatorname{\mathsf{Cond}} \operatorname{\mathsf{Exp}})^2 \\ & \mathbb{E} \left[V(\omega_{k+1}) | \mathcal{F}_k \right] \leq V(\omega_k) + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathsf{h}(\omega_k) \rangle \\ & + \gamma_{k+1} \ \langle \nabla V(\omega_k), \mathbb{E} \left[H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] - \mathsf{h}(\omega_k) \rangle \\ & + \frac{L_V}{2} \gamma_{k+1}^2 \, \mathbb{E} \left[\left\| H(\omega_k, X_{k+1}) - \mathbb{E} \left[H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] \right\|^2 | \mathcal{F}_k \right] \\ & + \frac{L_V}{2} \gamma_{k+1}^2 \, \left\| \mathbb{E} \left[H(\omega_k, X_{k+1}) | \mathcal{F}_k \right] \right\|^2 \end{split}$$

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \underbrace{\left\langle \nabla V(\omega_{k}), \mathsf{h}(\omega_{k}) \right\rangle} \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \underbrace{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})} \right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \underbrace{\mathbb{E}\left[\|H(\omega_{k}, X_{k+1}) - \mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right]\|^{2}|\mathcal{F}_{k}\right]} \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \| \underbrace{\mathbb{E}\left[H(\omega_{k}, X_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k})} + \underbrace{\left\|\mathsf{h}(\omega_{k})\right\|^{2}} \end{split}$$

By assumptions: the drift term, the bias and variance of the oracles, and the mean field are controlled by W.

Apply the expectation.

There exist constants s.t. for any $k \geq 0$,

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})\right] &\leq \mathbb{E}\left[V(\omega_{k})\right] - \gamma_{k+1} \boxed{ \left(\rho - \mathbf{b_1} - \gamma_k \frac{L_V \eta_1}{2}\right)} \\ &+ \gamma_{k+1} \mathbf{b_0} + \gamma_{k+1}^2 \frac{L_V \eta_0}{2} \end{split}$$

A drift term for γ_k small enough. Sum from k=0 to k=T-1; conclude.

A non-asymptotic convergence bound in expectation

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that $\gamma_k \in (0, \gamma_{\max})$,

$$\eta_1 \ge \sigma_1^2 + c_1 > 0$$

$$\gamma_{\max} := \frac{2(\rho - \mathsf{b}_1)}{L_V \, \eta_1}$$

Then, there exist non-negative constants s.t. for any $T \geq 1$

$$\sum_{k=1}^{T} \frac{\gamma_k \mu_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{k-1})\right] \leq 2 \frac{\mathbb{E}\left[V(\omega_0)\right]}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + L_V \eta_0 \frac{\sum_{k=1}^{T} \gamma_k^2}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{k=1}^{T} \gamma_k}{\sum_{\ell=1}^{T} \gamma_\ell \mu_\ell}$$

- η_ℓ depends on the bias and variance of the oracles; $\eta_0>0$.
- For unbiased oracles: $\tau_0 = b_1 = 0$
- Better bounds when V = W; not discussed here

ex.: SGD for strongly cvx fct; TD(0)

After T iterations

• Reached with a constant step size

$$\gamma_k = \gamma := \frac{\gamma_{\text{max}}}{2} \wedge \frac{\sqrt{2\mathbb{E}[V(\omega_0)]}}{\sqrt{\eta_0 L_V \sqrt{T}}}$$

$$\underbrace{\frac{1}{T}\sum_{k=0}^{T-1}\mathbb{E}\left[W(\omega_k)\right]}_{\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]} \leq \frac{2\sqrt{2L_V\eta_0}\sqrt{\mathbb{E}\left[V(\omega_0)\right]}}{(\rho-b_1)\sqrt{T}} \vee \frac{8\mathbb{E}\left[V(\omega_0)\right]}{\gamma_{\max}(\rho-b_1)T} + c_V\frac{\sqrt{\tau_0}}{\rho-b_1}$$

When $au_0=0$ i.e. unbiased oracles, or bias scaling with ${\scriptscriptstyle W}$

- Random stopping: return $\omega_{\mathcal{R}_T}$ where $\mathcal{R}_T \sim \mathcal{U}(\{0,\cdots,T-1\})$
- When W is convex: return the Polyak-Ruppert-Juditsky averaged iterate $T^{-1}\sum_{k=0}^{T-1}\omega_k$

• Upper bound depending on T: $\propto 1/\sqrt{T}$

ϵ-approximate stationary point, for unbiased oracles

 $\text{For all }\epsilon>0\text{, let }\mathcal{T}(\epsilon)\subset\mathbb{N}\text{ s.t. for all }T\in\mathcal{T}(\epsilon),\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]\leq\epsilon.$

For unbiased oracles,

$$\mathcal{T}(\epsilon) = [T_{\epsilon}, +\infty)$$
 with

$$T_{\epsilon} := 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2} \left(\frac{1}{\epsilon^2} \vee \frac{\eta_1}{2\eta_0 \epsilon} \right)$$

• Low precision regime: $\epsilon > 2\eta_0/\eta_1$,

$$T_{\epsilon} = 4 \mathbb{E}[V(\omega_0)] \frac{\eta_1 L_V}{\rho_2^2 \epsilon}, \qquad \gamma = \frac{\gamma_{\text{max}}}{2}$$

• High precision regime: $\epsilon \in (0, 2\eta_0/\eta_1]$,

$$T_{\epsilon} = 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2 \epsilon^2}, \qquad \gamma = \frac{\rho \epsilon}{2\eta_0 L_V}$$

ϵ -approximate stationary point, when biased oracles: on an example

EM
$$h(\omega) = \frac{1}{n} \sum_{i=1}^{n} \overline{S}_i(T(\omega)) - \omega$$
 where

$$\bar{\mathsf{S}}_i(\tau) := \int_{\mathcal{X}} S_i(x) \pi(x; \tau) \mathsf{d}x$$

The SA-EM oracle

- Monte Carlo sum with m points,
- case Self-normalized Importance Sampling: biased oracles, with bias β_0/m and variance β_1/m .

Complexity

 $\text{For all }\epsilon>0\text{, let }\mathcal{T}(\epsilon)\subset\mathbb{N}^2\text{ s.t. for all }(T,m)\in\mathcal{T}(\epsilon)\text{,}\qquad \mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right]\leq\epsilon.$

$$T \geq \frac{16\mathbb{E}[V(\omega_0)](1+{\sigma_1}^2/m)}{v_{\min}^2\kappa\epsilon} \vee \frac{32\mathbb{E}[V(\omega_0)]\bar{\sigma}_0^2L_V}{mv_{\min}^2\kappa^2\epsilon^2} \hspace{1cm} m \geq \frac{4c_b}{(1-\kappa)v_{\min}\epsilon}$$

For high precision regime,

$$T_{\epsilon} = \frac{C_1}{\epsilon}, \qquad m_{\epsilon} = \frac{C_2}{\epsilon}, \qquad \text{cost}_{\text{comp}} = T_{\epsilon} \left(n m_{\epsilon} \operatorname{cost}_{\text{MC}} + \operatorname{cost}_{\text{opt}} \right)$$

Other rates for low precision regime.

Variance Reduction within SA

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Control variates for variance reduction

• Choose U correlated with the natural oracle $H(\omega, X)$ s.t.

$$Var(H(\omega, X) + U) < Var(H(\omega, X))$$

Bias

$$\mathbb{E}\left[H(\omega,X)+U\right]=\mathbb{E}\left[H(\omega,X)\right]\quad\text{where}\quad\mathbb{E}[U]=0.$$

 Control variates classical in Monte Carlo; introduced in Stochastic Gradient; extended to SA

Survey on Variance Reduction in ML: Gower et al (2020)

Gradient case: Johnson and Zhang (2013), Defazio et al (2014), Nguyen et al (2017), Fang et al (2018), Wang et al (2018), Shang et al (2020)

Riemannian non-convex optimization: Han and Gao (2022)

Mirror Descent: Luo et al (2022)

Stochastic EM: Chen et al (2018), Karimi et al (2019), Fort et al. (2020, 2021), Fort and Moulines (2021,2023)

The SPIDER control variate when h is a finite sum

Adapted from the gradient case: Stochastic Path-Integrated Differential EstimatoR

Nguyen et al (2017), Fang et al (2018), Wang et al (2019)

In the finite sum setting: $h(\omega) = \frac{1}{n} \sum_{i=1}^n h_i(\omega) \qquad \text{and } n \text{ large}$

ullet At iteration #(k+1), a natural oracle for $h(\omega_k)$ is

$$H(\omega_k,X_{k+1}):=\frac{1}{\mathsf{b}}\sum_{i\in X_{k+1}}h_i(\omega_k) \qquad X_{k+1} \text{ mini-batch from } \{1,\dots,n\}, \text{ of size b}$$

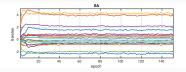
The SPIDER oracle is

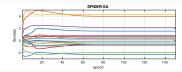
$$H_{k+1}^{\mathrm{sp}} := \frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_k) + \underbrace{H_k^{\mathrm{sp}}}_{\text{for } h(\omega_{k-1})} - \underbrace{\frac{1}{\mathsf{b}} \sum_{i \in X_{k+1}} h_i(\omega_{k-1})}_{\text{oracle} \atop \text{for } h(\omega_{k-1})}$$

• Implementation: refresh the control variate every $K_{\rm in}$ iterations

Efficiency ... via plots (here)

Application: Stochastic EM with ctt step size, mixture of twelve Gaussian in \mathbb{R}^{20} ; unknown weights, means and covariances.

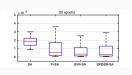


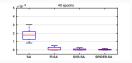


Estimation of 20 parameters, one path of SA

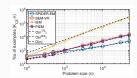
Estimation of 20 parameters, one path of SPIDER-SA

Squared norm of the mean field h, after 20 and 40 epochs; for SA and three variance reduction methods





Application: Stochastic EM with ctt step size, mixture of two Gaussian in R, unknown means.



For a fixed accuracy level, for different values of the problem size n, display the number of examples processed to reach the accuracy level (mean nbr over 50 indep runs).

Conclusion

Stochastic Approximation

Examples of SA: Stochastic Gradient and beyond

SA: why does it work?

Non-asymptotic analysis

Variance Reduction within SA

Conclusion

Conclusion

- SA methods with non-gradient mean field and/or biased oracles in ML and compurational statistics.
- A non-asymptotic analysis for general Stochastic Approximation schemes, and variance reduction via control variates.
- Oracles, from Markovian examples
- Roots of h=0, on a $\Omega\subset\mathbb{R}^d$
- Federated SA: compression, control variateS, partial participation, heterogeneity, local iterations, . . .

Compressed Stochastic Gradient

Compression: when frugal algorithms are mandatory

Compression operator \mathcal{C} :

- $\bullet \ \ \text{a mapping} \ x \mapsto \mathcal{C}(x,U)$
- s.t. for any $x \in \mathbb{R}^d$, the cost for storing/transmitting $\mathcal{C}(x,U)$ is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

Compressed Stochastic Gradient

Compression: when frugal algorithms are mandatory

Compression operator C:

- ullet a mapping $x\mapsto \mathcal{C}(x,U)$
- s.t. for any $x \in \mathbb{R}^d$, the cost for storing/transmitting $\mathcal{C}(x,U)$ is lower than the cost for storing/transmitting x.
- examples: projection, quantization
- random or deterministic

Compression within a Stochastic Gradient step:

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ \mathcal{C} \left(H(\omega_k, X_{k+1}), U_{k+1} \right)$$

increasing interest in distributed optimization

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H\left(\mathcal{C}(\omega_k, U_{k+1}), X_{k+1}\right)$$

gradient at a perturbed iterate: Straight-Through Estimator

$$\omega_{k+1} = \mathcal{C} \left(\omega_k + \gamma_{k+1} \ H(\omega_k, X_{k+1}), U_{k+1} \right)$$

low-precision SG