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I. The Expectation-Maximization algorithm in the finite sum setting
Dempster, Laird, Rubin (1977)
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The Expectation Maximization algorithm

What for ?

EM, designed for ...

I Designed for solving

argminθ∈ΘF (θ) F (θ) := − 1

N

N∑
i=1

log

∫
Z

pi(zi; θ)µ(dzi)

Θ ⊆ Rd

F has no closed form

positive integrals (pi > 0)

I Iterative algorithm: θt+1 = EM-MAP(θt)

I Limiting values: the fixed points of the EM-MAP operator.
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The Expectation Maximization algorithm

What for ?

An example ? (1/2) Statistical inference in latent variable models

Independent observations Y := (Y1, . . . , YN )

Parametric statistical model, indexed by θ ∈ Θ

Negative normalized Log-Likelihood (loss) function FY

Latent variable models

FY(θ) = − 1

N

N∑
i=1

log

∫
Z

p(Yi, zi; θ)µ(dzi)

Of the form

θ 7→ − 1

N

N∑
i=1

log

∫
Z

pi(zi; θ)µ(dzi)
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The Expectation Maximization algorithm

What for ?

An example ? (2/2) Mixture models

I The statistical task

i.i.d. observations with distribution y 7→
∑G
g=1 πg fg(y;ϑ)

Learn the parameters θ := (π1:G, ϑ).

I Latent model: for each Yi, a hidden label variable Zi ∈ {1, · · · , G}

-LogLikeYi(θ) :=

G∑
z=1

fz(Yi;ϑ)︸ ︷︷ ︸
Dist. Yi|Zi = z

Dist. Zi = z

πz

I The optimization problem:

argminθ∈Θ⊆Rd −
1

N

N∑
i=1

log

∫
πz fz(Yi;ϑ) dµ(z)

where µ is the counting measure on {1, · · · , G}.
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The Expectation Maximization algorithm

How EM works

The EM algorithm argminθF (θ) F (θ) := −N−1 ∑N
i=1 log

∫
Z pi(zi; θ)µ(dzi)

At ieration #(t+ 1), given θt
define a current knowledge of Z through the ( a posteriori) distribution

πθt(dz) :=

N∏
i=1

pi(zi; θt)∫
pi(ui; θt)µ(dui)

µ(dzi)

E-step. Compute the function

θ 7→ Q(θ, θt) := − 1

N

N∑
i=1

∫
log pi(zi; θ) πθt(dz)

M-step. Minimize this function: θt+1 = argminθ Q(θ, θt)

Rmk: EM is a Majorize-Minimization algorithm Lange (2016), and E-step ≡
compute the majorizing function.
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The Expectation Maximization algorithm

How EM works

Implementation of EM argminθF (θ) F (θ) := −N−1 ∑N
i=1 log

∫
Z pi(zi; θ)µ(dzi)

Assumed (often, in the literature) ”exponential family” (for the
complete data model)

pi(zi; θ) = hi(zi) exp (〈Si(zi), φ(θ)〉 − ψ(θ))

Q(θ, θt) = ψ(θ)−

〈
1

N

N∑
i=1

si(θt), φ(θ)

〉
where

si(θt) :=

∫
Si(zi) πθt(dz)

Assumed (here, in our works) the argmin exists and is unique

T(s) := argminθ ψ(θ)− 〈s, φ(θ)〉
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The Expectation Maximization algorithm

How EM works

Limiting points of EM: fixed points of the EM map

I in the θ-space E-M-E-M-. . .

θt+1 = T

(
1

N

N∑
i=1

si(θt)

)

In the θ-space, the fixed points solve: T
(

1
N

∑N
i=1 si(θ)

)
− θ = 0

I in the s-space M-E-M-E-. . .

st :=
1

N

N∑
i=1

si(θt) st+1 =
1

N

n∑
i=1

si (T(st))

In the s-space, the fixed points solve: 1
N

∑N
i=1 si ◦ T(s)− s = 0



Expectation Maximization algorithm for Federated Learning

From EM to EM in Federated Learning

II. From EM to ”EM in Federated Learning”
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From EM to EM in Federated Learning

EM as a root-finding algorithm

I The root-finding problem, finite sum setting

s ∈ Rq such that
1

N

N∑
i=1

si ◦ T(s)− s = 0

in the setting

sum over a large number of functions ←→ sum over the examples

each function si ◦ T is (assumed) explicit

I Incremental EMs based on Stochastic Approximation algorithms Benveniste et al.

(1990)

Ŝt+1 = Ŝt + γt+1 St+1 St+1 := approx

(
1

N

N∑
i=1

si ◦ T(Ŝt)− Ŝt

)
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From EM to EM in Federated Learning

The Federated Learning setting (FL)

The central server coordinates the
participation of the local
devices/clients/workers

Local training data sets, never
uploaded to the server

FL reduces privacy and security
risks

Global model maintained by the
central server: sent to the devices

Each worker computes an update
of the global model

Only this update is communicated
to the central server; aggregation
by the central server

Local data sets, heterogeneous, unbalanced
Partial participation of the clients (charged devices, plugged-in, free wi-fi connection, · · · )

Massively distributed: large nbr devices w.r.t. the size of the local data
sets

Communication cost >> Computational cost
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From EM to EM in Federated Learning

Batch EM is not adapted for Federated Learning

s ∈ Rq such that
1

N

N∑
i=1

si ◦ T(s)− s = 0

The optimization step T: run by the central server.

The expectation step can not be run by the central server:

1

N

N∑
i=1

si ◦ T(s) =
1

n

n∑
c=1

1

mc

mc∑
i=1

sci ◦ T(s)
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From EM to EM in Federated Learning

Naive idea

Naive algorithm

• Design parameters: kmax γ > 0.

• Initialization: Ŝ0

• For k = 0, . . . , kmax − 1:

• (active workers) For each worker #c do

· Sample Sk+1,c an approximation of m−1
c

∑mc
i=1 sci ◦ T(Ŝk)

· Send ∆k+1,c := Sk+1,c − Ŝk to the central server

• (central server)

· Update: Ŝk+1 = Ŝk + γ 1
n

∑n
c=1 ∆k+1,c

· Send Ŝk+1 and T(Ŝk+1) to the n workers.

• Return: Ŝk, 0 ≤ k ≤ kmax

Communication cost
Partial participation of the local agents.
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From EM to EM in Federated Learning

III. FedEM - Federated EM
and

VR-FedEM - Variance Reduced FedEM
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FedEM and VR-FedEM

Federated EM

FedEM roots of h(s) := n−1 ∑n
c=1

{
m−1
c

∑mc
i=1 sci ◦ T(s)− s

}
.

FedEM with partial participation p ∈ (0, 1)

• Design parameters: kmax, α > 0, γ > 0.

• Initialization: V0,c, Ŝ0; V0 := n−1 ∑n
c=1 V0,c

• For k = 0, . . . , kmax − 1:

• ”Sample” workers Ak+1 ”with participation probability p”

• (active local workers) For c ∈ Ak+1 do

· Sample Sk+1,c an approximation of m−1
c

∑mc
i=1 sci ◦T(Ŝk)

· Set ∆k+1,c = Sk+1,c − Ŝk−Vk,c
· Set Vk+1,c = Vk,c + αQuant(∆k+1,c)
· Send Quant(∆k+1,c) to the central server

• (inactive local workers) For c /∈ Ak+1, set Vk+1,c = Vk,c

• (central server)

· Set Ŝk+1 = Ŝk + γ
np

∑
c∈Ak+1

Quant(∆k+1,c)+γVk

· Set Vk+1 = Vk + αn−1 ∑n
c=1 Quant(∆k+1,c).

· Send Ŝk+1 and T(Ŝk+1) to the n workers.

• Return: Ŝk, 0 ≤ k ≤ kmax

• Possible
partial
participation of
the workers

• Federated
E-step

• Random
quantization w.
variance
reduction
(Mishchenko et al, 2019)

• M-step only
at the central
server
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FedEM and VR-FedEM

Federated EM

Robustness FedEM is designed to find the roots of h

Toy example: inference of a R2-valued Gaussian mixture model with 2
components

Robustness to partial participation
k 7→ E

[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo

Robustness to heterogeneity
k 7→ E

[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo
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FedEM and VR-FedEM

Federated EM

Robustness FedEM is designed to find the roots of h

Toy example: inference of a R2-valued Gaussian mixture model with 2
components

FedEM vs naive-FedEM ? Estimation of the weight vs the nbr epoch; Case

”homogeneous” and case ”strongly heterogeneous”

In naive-FedEM:
remove the variables
V·c’s – i.e. the control
variates introduced to
control the variance of
the quantization step.
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FedEM and VR-FedEM

Variance Reduced Federated EM

How to reduce the variance of the local approximations ?

I in FedEM

Sk+1,c = approx

(
m−1

m∑
i=1

sci ◦ T(Ŝk)

)
.

Consider the case ”mini batch”

Sk+1,c =
1

b

∑
i∈Bk+1,c

sci ◦ T(Ŝk)

I the SPIDER variance reduction technique

Sk+1,c =
1

b

∑
i∈Bk+1,c

sci ◦ T(Ŝk) + Sk,c − b−1
∑

i∈Bk+1,c

sci ◦ T(Ŝk−1)

≈ 1

b

∑
i∈Bk+1,c

sci ◦ T(Ŝk) + 0̂

add a control variate
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FedEM and VR-FedEM

Variance Reduced Federated EM

VR-FedEM in the case sc(τ) = m−1 ∑m
i=1 sci(τ)

Iteration index (cycles of length kin)

k + 1← (t− 1)kin + τ t ≥ 1, τ ∈ {1, · · · , kin}.

Variance Reduction on Sk+1,c (case p = 1)

• Initialization: S1,0,c := m−1 ∑m
i=1 sci ◦ T(Ŝinit) and Ŝ1,0 =

Ŝ1,−1 := Ŝinit

• At time #(t− 1)kin + τ , at each local server #c
· Sample a mini-batch Bt,τ,c of size b in {1, · · · ,m}
· Approximate sc ◦ T(Ŝt,τ−1) with

St,τ,c := b−1
∑

i∈Bt,τ,c

sci ◦ T(Ŝt,τ−1)

+ St,τ−1,c − b−1
∑

i∈Bt,τ,c

sci ◦ T(Ŝt,τ−2)

• At time #tkin, refresh the control variate

· (central server) Ŝt,0 = Ŝt,−1 := Ŝt−1,kin

· (local workers) St,0,c := m−1 ∑m
i=1 sci ◦ T(Ŝt,0)

• A control variate scheme
reduces the variability of
the approximations of
sc ◦ T(Ŝ·)

• The control variate is
biased: it is refreshed
every kin iterations.

Same variance reduction as in SPIDER-EM, Fort

et al. (2020) – SPIDER = Stochastic

Path-Integrated Differential EstimatoR.
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FedEM and VR-FedEM

Variance Reduced Federated EM

VR-FedEM FedEM is designed to find the roots of h

Toy example: inference of a R2-valued Gaussian mixture model with 2
components

Estimation of the weight vs the nbr epoch k 7→ E
[
‖h(Ŝk)‖2

]
vs the nbr of epochs.

Estimated by Monte Carlo
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Convergence analysis

IV. Explicit control of convergence
Complexity analysis
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

For the existence of a Lyapunov function

On the local workers / local data sets

On the quantization step

On the participation of the workers
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

A1 Θ ⊂ Rd is open convex. Finite loss Lci.
A2 The conditional expectations sci(θ) are well defined ∀c, i

and θ ∈ Θ.
A3 The map T: s 7→ argminθ∈Θψ(θ)− 〈s, φ(θ)〉 exists and is

unique.

For the existence of a Lyapunov function

On the local workers / local data sets

On the quantization step

On the participation of the workers
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

For the existence of a Lyapunov function

A4 W := F ◦ T is C1, with globally Lipschitz gradient
(constant LẆ ). Furthermore, ∇W (s) = −B(s)h(s) for a
positive definite matrix B(s) with spectrum in [vmin, vmax]
for any s, and vmin > 0.

On the local workers / local data sets

On the quantization step

On the participation of the workers
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

For the existence of a Lyapunov function

On the local workers / local data sets

A5 There exists Lc such that for any s, s′,
‖sc· ◦ T(s)− s− sc· ◦ T(s′)− s′‖ ≤ Lc‖s− s′‖.

A7 For any k, the local approximations Sk,c are independent,

unbiased E [Sk+1,c|Fk] = sc ◦ T(Ŝk)
and heteregeneous variance:

E
[
‖Sk+1,c − sc ◦ T(Ŝk)‖2|Fk

]
≤ σ2

c .

On the quantization step

On the participation of the workers
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

For the existence of a Lyapunov function

On the local workers / local data sets

On the quantization step

A6 Unbiased quantization operator E[Quant(x)] = x.
There exists ω > 0 s.t. E[‖Quant(x)‖2] ≤ (1 + ω)‖x‖2.
e.g. random dithering; see also Aslistarh et al. (2018); Horvath et al. (2019); Mishchenko et al.

(2019)

On the participation of the workers
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Convergence analysis

Assumptions

Assumptions argmin
θ∈Θ⊆Rd F (θ) =⇒ argmins∈Rq F ◦ T(s) =⇒ s : h(s) = 0

F (θ) :=
1

n

n∑
c=1

1

mc

mc∑
i=1

Lci(θ), Lci(θ) = − log

∫
exp(−ψ(θ) + 〈Sci(z), φ(θ)〉) dµ(z)

On the model

For the existence of a Lyapunov function

On the local workers / local data sets

On the quantization step

On the participation of the workers

A8 I.i.d. Bernoulli r.v. with participation probability p.
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Convergence analysis

FedEM: explicit control

Explicit control for FedEM
Set

L2 := n−1
n∑
i=1

L2
i , σ2 := n−1

n∑
i=1

σ2
i ;

Theorem Dieuleveut, F., Moulines, Robin (2021)

Let {Ŝk, k ≥ 1} be given by FedEM, run with Vc0 := sc· ◦ T(Ŝ0) − Ŝ0,
α := (1 + ω)−1 and γk = γ ∈ (0, γmax], where

γmax :=
vmin

2LẆ
∧ p

√
n

2
√

2L(1 + ω)
√
ω + (1− p)(1 + ω)/p

.

Denote by K the uniform random variable on {0, · · · , kmax − 1}. Then,

vmin

(
1− γ LẆ

vmin

)
E
[
‖h(ŜK)‖2

]
≤

(
W (Ŝ0)−minW

)
γkmax

+ γLẆ
1 + 5 (ω + (1− p)(1 + ω)/p)

n
σ2.
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Convergence analysis

FedEM: explicit control

Complexity analysis (when p = 1)
Given an accuracy level ε, how to choose the design parameters in order to
minimize the number of optimization ?

Results valid when heterogeneous data sets

The number of optimization is kmax chosen in order to reach the accuracy level ε:

Kopt(ε) = O

(
1

ε2
(1 + ω)σ2

n

)
∨O

(
1

ε γmax

)
1st term is leader iff ε << γmax(1 + ω)σ2/n (high noise regime)

Compression effect: γ is impacted by compression iff n << ω3.
On Kopt:

Complexity regime: (1+ω)σ2

nε2
1

γmaxε

γmax regime: E.g. case when
High noise σ2,

small ε
Low σ2

larger ε
vmin
2L
Ẇ

large ratio n/ω3 ×ω ×1
√
n

2
√

2L(1+ω)
√
ω

low ratio n/ω3 ×ω ×ω3/2/
√
n
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Convergence analysis

VR-FedEM: explicit control

Explicit control for VR-FedEM
Set (mc = m)

L2 := n−1m−1
n∑
c=1

m∑
i=1

L2
ci

Theorem Dieuleveut, F., Moulines, Robin (2021)

Let {Ŝt,k, t ≥ 1, 1 ≤ k ≤ kin} be given by VR-FedEM run with α :=

1/(1 + ω), V1,0,c := sc ◦ T(Ŝ1,0)− Ŝ1,0, b := d kin
(1+ω)2

e and

γt,k = γ :=
vmin

LẆ

(
1 + 4

√
2
vmax

LẆ

L√
n

(1 + ω)
(
ω +

1 + 10ω

8

)1/2
)−1

.

Let (τ,K) be the uniform random variable on {1, · · · , kout}×{1, · · · , kin},
independent of {Ŝt,k, t ≥ 1, k ∈ {1, · · · , kin}}. Then, it holds

E
[
‖Hτ,K‖2

]
≤

2
(
E
[
W (Ŝ1,0)

]
−minW

)
vminγkinkout

E
[
‖h(Ŝτ,K−1)‖2

]
≤ 2
(

1 + γ2L
2(1 + ω)2

n

)
E
[
‖Hτ,K‖2

]
.
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Convergence analysis

VR-FedEM: explicit control

Complexity analysis

First result on Federated EM including variance reduction techniques,
being robust to distribution heterogeneity.

The recommended batch size b decreases as 1/(1 + ω)2.

The number of optimization is koutkin chosen in order to reach the accuracy level ε:

Kopt(ε) =

(
1

ε γ

)
Compression effect on Kopt

Complexity: 1/(γε)

γ regime: e.g. case when
vmin/LẆ large ratio n/ω3 ×1

vmin
√
n/(vmaxLω

3/2) low ratio n/ω3 ×ω3/2/
√
n
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Conclusion

Contributions

The Expectation Maximization (EM) algorithm with complete data model in
the curved exponential family is a root-finding algorithm Delyon et al. (1999).

Emphasis on EM in Federated Learning.

A new algorithm: FedEM supporting communication compression, partial
participation and data heterogeneity.

A variance reduced version VR-FedEM, progressively alleviating the variance
brought by the random oracles on which updates of the local workers are
based.

Convergence guarantees of FedEM and VR-FedEM.

Pioneering work in the litterature ”EM in Federated Learning”. contemporaneous

works with different goals: Marfoq et al. (2021), Louizos et al. (2021)

As a root finding algorithm, VR-FedEM state of the art (compared to
VR-DIANA Horvath et al. (2019)).



Expectation Maximization algorithm for Federated Learning

Bibliography

V. Bibliography



Expectation Maximization algorithm for Federated Learning

Bibliography

Bibliography

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli
The convergence of sparsified gradient methods.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31, pages 5973–5983. Curran Associates, Inc., 2018.

A. Benveniste, M. Métivier, and P. Priouret.
Adaptive Algorithms and Stochastic Approximations.
Springer Verlag, 1990.

A. Dempster, N. Laird, and D. Rubin.
Maximum Likelihood from Incomplete Data via the EM Algorithm.
J. Roy. Stat. Soc. B Met., 39(1):1–38, 1977.

G. Fort, E. Moulines, and H.-T. Wai.
A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 16972–16982. Curran Associates, Inc., 2020.
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