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A Variance Reduced Expectation Maximization algorithm for finite-sum optimization

In this talk

Motivated by the Large scale Learning setting,

@ Design a novel algorithm for the optimization problem:

find s, € R? s.t. h(sx)=0

o Adapted to the finite sum setting (large number of examples n)

when h(s) = % Z hi(s)

@ Stochastic optimization: it combines
o the Stochastic Approximation method Robbins and Monro (1951); Benveniste et al. (1990)

Spi1 = Sn +Yni1Hnia Hpi1 ~ h(Sh)

e a variance reduction technique
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The optimization problem

Optimization problem: finite sum setting, for curved exponential families
@ Solve on © C R? the minimization problem
oxgmingeo ~ 3105 [ pi(zi0dul=) +RO.  p(ai0) >0
i=1

@ Curved exponential family:
- Zlog [ Riten) ex (520, 0(60)) du(z0) + REO)
@ In computational Statistics: minimization of the (penalized) negative

log-likelihood in latent variable models:

o finite sum setting when the observations are independent.
o p; = Py, (2i;0) is the complete data likelihood of the pair #i: (Y3, Z;)

o Curved exponential family: e.g. mixture of curved exponential distributions.
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EM in the finite-sum framework

Intractable EM pempster, Laird, Rubin (1977)

Objective function:

-

1og/zpi<zi;o)du<zi) FRO),  pi(24:0) = hy(z;) exp ((s4(25). 6(0)))

i=1

e EM algorithm: Repeat for t =0, ...

Estep  5(6;) — %Z Si(6)) e 5:(0) 2 / zl)%du(zi)

M—step 6t+1 =T (§(0t))

where

T(s) & argming .o (R(8) — (s,6(6)))

E-step
— sum over n expectations — Large computational cost of each EM
iteration, when n is large

— in some cases, the expectations S;'s are intractable

We consider the case when the M-step (computation of T) is explicit
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EM in the finite-sum framework

EM in the expectation space
e EM: an algorithm in the expectation space

Oir1 =Tos(6,) = TOEOTO§. ..50 T o5(6g)
St+1 =350T St ZSzOT(St
e EM designed to find the roots of
h;(s)

=E[hs(s)]
—E[hi(s)+V] E[V]=0

where I ~U({1,...,n}) and V is a control variate i.e. r.v. correlated with h;
and centered.
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EM in the finite-sum framework

A Lyapunov function

@ EM designed to solve on © C R?
arguingco F(O).  F(0) ™ RO) ~ Y log [ piCzs0)du(:)
i=1 z

o For exact EM: F'is a Lyapunov function
F(011) < F(6:)

@ EM in the expectation space:

W= FoT

it holds (under regularity conditions)
def 1 o~
1% = —B(s)h h = = ioT(s)—
VW (s) (s)h(s) (s) = ;:1 (SioT(s)—s)

— An algorithm designed to find the roots of h is among the stochastic
preconditioned gradient algorithms, with preconditioning matrix B~'(s).
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L Variance reduction within Stochastic Approximation scheme

Variance reduced incremental algorithms (in the EM context n; =5, o 1¢o) - +)

solve on R9: h(s) = 0 with h(s) = n—1 Yisq hi(s) = E[hp(s)]

N N 1 N
St41 = St + Y41 b Z hi(St) + Vit
i€Brys

where B;41 is a mini-batch of examples of size b << n.

@ Online-EM (Neal and Hinton, 1998; Cappé and Moulines, 2009). NO variance reduction
(Vig1 =0).

@ sEM-vr: Stochastic EM with Variance Reduction chen et al, 2018

@ FIEM: Fast Incremental EM Karimi et al, 2019; Fort et al, 2021

@ SPIDER-EM Fort, Moulines, Wai - NeurlPs 2020: Stochastic Path Integrated
Differential EstimatoR EM

Vigr = Z % Z h¢(§e—1) - % Z hi(§£—1)

=0 ieBy i€Byy1

Nguyen et al. (2017), Fang et al. (2018), Wang et al. (2019)
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SPIDER-EM (Stochastic Path Integrated Differential EstimatoR Expectation Maximization)

1: S1,0 = 51,-1 = Sinit Vio=0 Bio={1,---,n}
2. fort=1,---  kout do

33 fork=0,...,& —1do

4 Sample a mini batch By x4+1 of size b from {1,--- ;n}
5

Vierr = Vi + (b7 Lo, , hiSiam1) =b7 Ticg, ,, hilSinnn))

Sikt1 = Se + Yot (b_l > hi(Sex) + W,k+1)
end for

Sit1,-1 = Ste,

Vit1,0=0 Biy1,0={1,---,n}

10: §t+1,0 = §t+1,—1 + V41,0 (nfl >y hi(§t+1,—1) + V;:+1,o)

11: end for

€8 k41

© ® N 9

® Loyt outer loops, the outer #t is of length &;
e The control variate is refreshed at each outer loop #t (see Line 9)
e A full scan of the examples at each outer loop (see Line 9).
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Extensions

@ The length of the outer loop is a Geometric random variable with
expectation &;. Fort, Moulines, Wai - ICASSP 2021

@ Avoid the full scan of the examples when starting each outer loop —
reduction of the computational cost. Fort, Moulines, Wai - ICASSP 2021

@ An approximation of h; Fort, Moulines - SsP 2021

hi (Se,k) = hi(Se,x) + Me k41

for example: in EM, h;(s) =5; 0 T(s) — s and §; is an expectation w.r.t.
the a posteriori distribution of the latent variables — Monte Carlo
approximation.

@ A Proximal operator for constrained optimization Fort, Moulines - SSP 2021

_ _ 1 —
St k+1 :ProxB(gk)r’Yt,k+1g Stk +Ve,k+1 | b v ST hi(Ser) + Viktt
€8y k41

for example: find the roots of h in a compact set.



A Variance Reduced Expectation Maximization algorithm for finite-sum optimization

A novel Variance Reduced incremental EM GillesP-60
Convergence analysis, explicit functions h;'s

Assumptions

@ There exists a continuously differentiable function W : R? — R such that

def

YW (s) Y —B(s)h(s)  h(s) % %Zhi(s)

where B(s) is a ¢ X ¢ positive definite matrix.

In addition, VW is globally Lipschitz with constant Ly;,,

and there exist 0 < Umin < Umax such that the spectrum of B(s) is in
[Umin7 vmax]-

@ Forany i € {1,---,n}, the function h; is globally Lipschitz with constant
L;.
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L Convergence analysis, explicit functions h;'s

Convergence in expectation, explicit h;'s

Under the previous assumptions:

def _ g
Set L* = n~' Y | L?. Fix kout, kin, b € N.. Choose a € (0, vmin/pix (kin, b))

with
V 1n
vmax + P
Vb TaL

Run the algorithm with & = kin and vix = a/L. Then

E[llh (Srie-1) II7]

2
< (+2) ey (L] o)

where (1,&) is a uniform r.v. on {1,  kout} X {0,--- ,kin — 1} indep of

{Sir}.

def
225 (kina b) =
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L Convergence analysis, explicit functions h;'s

Complexity for e-approximate stationarity
From this explicit expression of an upper bound for

E [lIh(Sre-1)I1]

@ in the non convex setting

@ with a random stopping rule

@ as a function of kous, kin, b, 7 and the learning rate vy (= ¢, for any
t,k > 0)

To reach e-stationarity, the complexity of SPIDER-EM
With: kin = b =0(v/n), kow = O(1/(€kin))
Nbr of optimization steps: O(1/¢)

Nbr of 5, s evaluations: K =0(/ne ') — state of the art !
Algorithm Complexity KC
Online-EM e’
iEM net
sEM-vr n2/3 et
FIEM n?3 et A e d/?
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Convergence analysis, explicit functions h;’s

Sketch of proof
Inside an outer loop #t, then sum along the inner loops k = 0 to k = ki, — 1; then sum along the outer loops
t=1tot = kout-

o W is Gradient-Lipschitz, and its gradient is a linear function of h

o . o . Ly = SO
W(St, k1) — W(Se,k) < <VW(St,k)v St k1 — St,k> + T”St,kJrl =S¢kl

2 2 Ly 2
< =Ykt 1Vmin 1 He op1 I + v 041 (B vmax+7t,k+lT 15t kg1l

Yt,k+1 5 .
+ T;vmaxl\Hz,kH —h(S )7 VB > 0;choice: 87 o< vy py1
@ Biased field; full scan when refreshing — cancel the bias
E[Hy gyl Fek] = h(Se k) + Hy o — h(Sy 5—1) E [Hy gy1]Ft,0] = 0.

o L2-error of the field

a 2 2 & 2
E [HHt,k+1_h(St,k)H |-7:t,0] =E [|\Ht,k+1—]E [He kg1l Fe i) |-‘Ft,0} +E | E[He kt1|Fe,6]=h(Se, ) 171 Ft,0

Hy g —h(S¢ p—1)
® Variance: specific form of H; ;1 — difference of h;'s
1 s _ 1 . .
Hyppr —E[He i) Fer] = = O, {hi(Sen) —hi(See—1)t — = D {hi(Sex) — hi(Se—1)}
i€By k41 =1

5 5 2 2,5 5 2 2 2 2
use:|[h; (Sg, i) — hi (S, e—1)II7 < LiNISe,k — St,e—1lI" = Livg gl He kel
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Convergence analysis, Monte Carlo approx of h;'s

Assumptions (case: Monte Carlo approximation of h;’s)

In the case

™Mt k+1

Z H(ZEER)

he(Suk) = / H(2)ps(z: Sp)duz) ~

mt k+1

error

. 1 Mt k41

de i,t, k: I

= E A4S —h; (S

Nt k+1 b pa ( - ’H 1( tk))

r=1

@ (bias) there exists Cj > 0 s.t. for any t, k, with probability one
Cy

NE (1,041 | Fe] [| <
Mt k+1
O (variance) there exists C,, s.t. for any ¢,k with probability one

Cy

E |1 s+1 = E (e[ Fe] 1*1Fee] < Mot

Examples. i.i.d. case: C, = 0; i.i.d. and MCMC cases: M yp+1 = bmy k41
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[ N .
Convergence analysis, Monte Carlo approx of h; 's

Convergence in expectation (i.i.d. case)

Fort, Moulines — SSP 2021; i.i.d. case and MCMC case

Choose & = kin and ¢, = v where

def Umin
7= LW aF 2Lvmax V kin/\/B
Then
A VminE 157 = Sre-ll? < 1 (W(A = minW)
o '72 - kout(l I kin) "

+C

Umax 1 E |:kin - §:|
L kinb

where (1,€) is a uniform r.v. on {1,  kout} X {0, kin} indep of {Si.1}.

Mre4+1

From
Stk+1 — Stk = Ve, k1 He k1 7 Ye,k+1 h(St,k),

a control is then obtained on E [Hh(gfg)”?]
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[ N .
Convergence analysis, Monte Carlo approx of h; 's

Complexity for e-approximate stationarity
From this explicit expression of an upper bound for

E [lIh(Sre-1)I1’]

in the non convex setting

with a random stopping rule

as a function of kous, kin, b, n and the learning rate ~y

with a Monte Carlo approximation of the h;'s

To reach e-stationarity, the complexity of Perturbed-SPIDER-EM

With: kin = b= 0(y/n), kouw = O(1/(ekin)), mer =€ "

Nbr of optimization steps: O(1/¢)
Nbr of 5;’s evaluations: K =O(y/ne ') — same as SPIDER-EM
Nbr of Monte Carlo draws: O(v/n/ée?)
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LComplexity of SPIDER-EM

SPIDER-EM: state-of-the-art among the incremental EM algorithms

-©-SPIDER-EM
- SEM-VR
10° F| < iEM
~=FIEM
. - o(n1/2)
0% El- - on?)

No of examples

102 10° 10*
Problem size (n)

Flgu Fe: Nbr of processed examples required to reach convergence, as a function of the problem size n
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Estimation of the parameters

Estimation of the parameters (1/2)

Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples

Figure: Evolution of the L = 12 iterates oy = (ak,1,. .., 0, 1) as a function of the
number of epochs, for EM, iEM and Online EM on the top from left to right; FIEM,
sEM-vr and SPIDER-EM on the bottom from left to right.
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Estimation of the parameters

Estimation of the parameters (2/2)

Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples

50 100 150 50 100 150 50 100 150

Figure: Evolution of the p = 20 eigenvalues of the iterates ¥ as a function of the
number of epochs, for EM, iEM and Online EM on the top from left to right; FIEM,
sEM-vr and SPIDER-EM on the bottom from left to right.
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Objective function

Evolution of the objective function
Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples

815 ‘
=
w 32
= "
325+ ]
[0}
=}
T -33% ——EM 1
q>> ——iEM
>-335 -%-Online EM |
*g % FIEM
T 34 —B-sEM-vr ]
@) -6~ SPIDER-EM
-34.5 : : : :
5 10 15 20 25

Epoch

Figure: Evolution of the objective function —W(gk) vs the number of epochs.
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Numerical illustrations

L Choice of the design parameters

GillesP-60

Deterministic or geometric length of the outer loops? Full scan when

refreshing 7 (1/2)

Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples

0 online-EM
— half-ctt
- - full-ctt
----quad-ctt

-10 [|—=—half-geom
10

- full-geom

- quad-geom

12
10 0 50

Figure: Quantile of order 0.5 of ||h(§t,gt)|\2 vs the number of epochs (left) and vs the

100 150

number of §;'s evaluations (right)

— half-ctt

= = full-ctt
=-=-quad-ctt
—— half-geom
-« full-geom
—+=-quad-geom

2

4

Length of each outer loop: either constant (ctt) &, = kin, or a geometric r.v. (geom) with

expectation kin

When refreshing the control variate: use the full data set (full), or the half data set (half) or a
quadratically increasing nbr of examples (quad).
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Deterministic or geometric length of the inner loops? Full scan when
refreshing 7 (2/2)
Case: inference in a mixture of Gaussian distributions (from the MNIST data set). Gaussian mixture models in

R20; G = 12 components with the same cov matrix; n = 6 104 examples

-31.8
-31.8
-31.9
32 -31.85
-32.1
-32.2
-31.9 [/
-32.3 - - full-ctt - - -full-ctt
—-=-quad-ctt -----quad-ctt
324 ~e-full-geom e full-geom
-+-quad-geom --+--quad-geom|
-32.5 -31.95
0 1 15 2 2 4 6 8 10 12 14
x10° x10°

Figure: Evolution of the normalized log-likelihood vs the number of 5;’s evaluations
until 2e6 (left) and after (right).
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L~ Choice of the design parameters

Monte Carlo approximations: benefit of variance reduction
Case: Ridge-penalized inference in a logistic regression model (from the MNIST data set). An individual regression

vector Z; € R'150 assumed i.id. NVs1(6,0.11). n = 24989, 2 classes.

def | & S
Avkr1 S [Serr1 = Serll®/ Akt

qr Onlin

—b—3P-SPIDER 100

\
L T R P PRV S

®0-8 -0-p g-8 O-= O0-g -0 8

Figure: [left] Monte Carlo estimation of E [At’k+1] vs the number of epochs.
Comparison of (Perturbed-Proximal-Preconditioned) 3P-SPIDER-EM and
Online-EM when b = n (case full) and b = 104/n (case sqr). Monte Carlo
approximations with my ; = 2v/n. [right] Quantiles 0.75 of A, 1, vs the number of
epochs, for Online-EM and 3P-SPIDER-EM. For 3P-SPIDER-EM my g = 2¢/n fort <9

and my i, = 10/n for t > 10.
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Numerical illustrations

Choice of the design parameters
:

Monte Carlo approximations: number of points in the Monte Carlo sum
Case: Ridge-penalized inference in a logistic regression model (from the MNIST data set). An individual predictor

vector Z; € R'150 assumed i.id. Ny(6,0.11). n = 24989, 2 classes.

[
v

104 bagamn gy

50 100 150 200 250 300

Figure: Monte Carlo estimation of E [At7k+1] vs the number of epochs.
(Perturbed-Proximal-Preconditioned) SPIDER-EM applied with v;; = 0.1 and
my = 2¢/n in Case 1; and with ~; , = 0.1 and my j, = 2y/n for t < 10 and
my i = 104/n for t > 11 on Case 2 and Case 3. Case 2 and Case 3 differ in the
choice of ;0
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