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The problem: credibility intervals for the reproduction number of the Covid19

I. Reproduction number of the Covid19
The model
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The problem: credibility intervals for the reproduction number of the Covid19

Credibility intervals for the Reproduction number R, why ?

• Monitoring the Covid19 pandemic constitutes a critical societal stake: Covid19
pandemic caused/is causing unprecedented health, social, and economic crises.
• Need to assess the intensity of the / a pandemic, prerequisite for efficient sanitary
policies.

• The reproduction number measures
- the strength of the pandemic by quantifying rate of growth of daily new infections
- the number of second infections caused by one primary infection.

• Estimation of the daily Rt
- by a value of the index
- by credibility intervals: valuable information for the decision makers, notably in
periods of rapid evolution or of changes in trends.
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The problem: credibility intervals for the reproduction number of the Covid19

The data: daily new infections
• Real data, from Johns-Hopkins University repository
• Examples for UK, France, Serbia and Australia
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The problem: credibility intervals for the reproduction number of the Covid19

The data: daily new infections - zoom on the last 35 days
• Examples for UK, France, Serbia and Australia
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The problem: credibility intervals for the reproduction number of the Covid19

Bayesian model

The statistical model (1/4)

From Cori et al Cori et al (2013)

• The data Z1, · · · , ZT : non negative integers

• Parameter: (R1, · · · ,RT ) ∈ (R+)T

• Conditionally to the past

Zt

∣∣∣Z1:(t−1) ∼ P
(

Rt ΦZ
t

)
where ΦZ

t :=

τφ∑
u=1

φuZt−u

• τφ = 26 days
• φu := PDFGamma(u)

shape = 1/0.28, scale = 1.87

mean 6.68 days
std 3.53 days
mode 4.8 days
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The problem: credibility intervals for the reproduction number of the Covid19

Bayesian model

The statistical model (2/4)

From Abry et al Abry et al (2020)

• A priori distribution on the Rt’s
- regularization needed as many parameters as observations

- piecewise linear time evolutions of t 7→ Rt

• L1 penalization of the discrete time second derivative of t 7→ Rt

ln prior: = −λR ‖D2 R1:T ‖1 up to an additive constant

where

D2 :=
1
√

6


1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
· · ·
0 · · · 0 1 −2 1

 ∈ R(T−2)×T R1:T :=


R1

R2

· · ·
RT



• λR := 3.5
√
6

4
std(Z1, · · · , ZT )
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The problem: credibility intervals for the reproduction number of the Covid19

Bayesian model

The statistical model (3/4)

From Pascal et al Pascal et al (2021)

• The model from Cori et al + the regularized Rt’s

• Model the errors on the counts via O1, · · · ,OT in RT
- corrupted data, with pseudo-seasonalities, under-evaluations / over-evaluations (→
negative counts)
- a priori distribution and modification of the likelihood

Zt

∣∣∣Z1:(t−1) ∼ P
(

Rt ΦZ
t + Ot

)
where ΦZ

t :=

τφ∑
u=1

φuZt−u

ln prior: = −λR ‖D2 R1:T ‖1−λO ‖O1:T ‖1 up to an additive constant

• A constraint set

D :=
⋂
t

{R1:T ,O1:T s.t. positive intensity if Zt > 0 and non negative intensity if Zt ≥ 0}

• λO := 0.05
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The problem: credibility intervals for the reproduction number of the Covid19

Bayesian model

The statistical model (4/4): hereafter

• A posteriori distribution of

θ := (R1:T ,O1:T ) ∈ (R+)T × RT

given Z1, · · · , ZT

• with log-density

θ 7→
{
−f(θ)− g(A θ) on D
−∞ otherwise

A :=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]
∈ R(2T−2)×(2T )

where

f(θ) :=
T∑
t=1

{(RtΦ
Z
t + Ot)− Zt ln(RtΦ

Z
t + Ot)} g(θ) := λR ‖θ‖1
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Estimation of the Rt ’s

II. Estimation of the Rt’s via MCMC
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Estimation of the Rt ’s

Bayesian estimation

• Quantiles and other statistics Maximum a Posteriori, mean a posteriori, etc

- for each component Rt and Ot
- based on the marginal distributions of the distribution of θ := (R1:T ,O1:T )

• Joint distribution of the form

− ln posterior: θ 7→
{
f(θ) + g(A θ) on D
+∞ otherwise

A :=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]

f(θ) :=
T∑
t=1

{(RtΦ
Z
t + Ot)− Zt ln(RtΦ

Z
t + Ot)} g(θ) := λR ‖θ‖1
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Estimation of the Rt ’s

Bayesian estimation via MCMC

• Quantiles and other statistics Maximum a Posteriori, mean a posteriori, etc

- for each component Rt and Ot
- based on the marginal distributions of the distribution of θ := (R1:T ,O1:T )

• Joint distribution of the form

− ln posterior: θ 7→
{
f(θ) + g(A θ) on D
+∞ otherwise

A :=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]

Markov Chain Monte Carlo samplers
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Estimation of the Rt ’s

Bayesian estimation via MCMC

• Quantiles and other statistics Maximum a Posteriori, mean a posteriori, etc

- for each component Rt and Ot
- based on the marginal distributions of the distribution of θ := (R1:T ,O1:T )

• Joint distribution of the form

− ln posterior: θ 7→
{
f(θ) + g(A θ) on D
+∞ otherwise

A :=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]

f is C1, convex

g := λR‖ · ‖1 is lower semi-continuous, proper, convex

has a unique proximity operator, which is explicit

the proximity operator of g(A·) is not explicit

A is a (2T − 2)× 2T matrix

full row rank

g(Aθ) =
∑3
i=1 gi(Aiθ) and gi(Ai·) has an explicit proximity operator.
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Estimation of the Rt ’s

The Maximum a Posteriori (MAP)

The Maximum a Posteriori estimator of the (Rt,Ot)’s (1/2)

• Does it exist ? Unique ? Pascal et al (2022), Fort et al (2022)

If ΦZ
t > 0 and ΦZ

t′ for t < t′ ≤ T , and Zt′′ > 0 then a MAP exists.

It two MAP, then: same Poisson intensity and same sign OtO′t ≥ 0; (D2Rt) (D2R′t) ≥ 0.

• Computation: a Chambolle-Pock iterative algorithm proposed by Pascal et al
(2022) see also Abry et al (2020)

• MAP for France, Serbia and Australia over the last 100 days:
(left y-axis) the data Zt, (dots) Ôt by MAP and (line) Zt − Ôt
(right y-axis) R̂t by MAP.
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Estimation of the Rt ’s

The Maximum a Posteriori (MAP)

The Maximum a Posteriori estimator of the (Rt,Ot)’s (2/2)
• Role of T for the MAP estimate of the last Rt’s:

[top,bottom left] The MAP estimate is computed from T = 100, T = 150 and
T = 200 observations.

[bottom right] The three estimates for the last 35 days are displayed
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Estimation of the Rt ’s

Which MCMC sampler ?

Which MCMC sampler ?

− lnπ(R1:T ,O1:T ) =
T∑
t=1

{(RtΦ
Z
t + Ot)− Zt ln(RtΦ

Z
t + Ot)}+ λR ‖Aθ‖1 on D

A:=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]

• Hastings-Metropolis family

a Markov kernel for the update of θ := (R1:T ,O1:T )

with a proposal mechanism using first order information on lnπ

• Gibbs family

update in turn R1:T given O1:T , and then O1:T given R1:T

the conditional distributions are not explicit → Metropolis-within-Gibbs methods

In both cases, faced with the design of Hastings-Metropolis sampler when the target
distribution is of the form

− ln target(τ) = f(τ) + g(Cτ) τ ∈ D

with C full row rank f is C1 proxγ g exists and is unique
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Estimation of the Rt ’s

Which MCMC sampler ?

Which sampling space ?

π(τ) ∝ exp(−f(τ)− g(Cτ)) 1D(τ) where C ∝ I or C is a full row rank (d− 2)× d matrix

• First strategy: Sample in the original space
- Obtain a Markov chain {τn, n ≥ 0} with target π.

• Second strategy: Move to an image space and go back

τ̃ := C̄ τ C̄ :=

 · · ·
· · ·
C

 invertible matrix,

Image of π by C̄:

π̃(τ̃) ∝ exp(−f(C̄−1τ̃)− g(τ̃3:d)) 1D(C̄−1τ̃)

- Sample a Markov chain {τ̃n, n ≥ 0} with target distribution π̃

- Go back: τn := C̄−1 τ̃n is a Markov chain with target distribution π.
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Proximal-Langevin based proposal distributions

III. Proximal-Langevin based proposal distributions

− ln target(τ) = f(τ) + g(Cτ) τ ∈ D ⊆ Rd

with

f is C1

proxγg exists, is unique and is explicit

C is an invertible d× d matrix
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Proximal-Langevin based proposal distributions

Langevin based proposal distributions

Case lnπ smooth: Langevin dynamic

• Langevin proposal Roberts and Tweedie (1996); scaling in Roberts and Rosenthal (2002)

τn+ 1
2

= τn + γn+1∇ lnπ(τn) +
√

2γn+1 N (0, I)

• Tempered Langevin proposal Kent (1978), Roberts and Stramer (2002)

τn+ 1
2

= τn + γn+1 Γ ∇ lnπ(τn) +
√

2γn+1

√
Γ N (0, I)
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

Case lnπ composite: a proximal-gradient approach → PGdual

Via the ”move and go back” approach, we propose a proximal-gradient step

• From the result in convex optimization:

τ? = argmin(f(C−1·) + g) ⇐⇒ 0 ∈ C−>∇f(C−1 τ?) + ∂g(τ?)

⇐⇒ proxγg(τ? − γ C−>∇f(C−1 τ?)) = τ? ∀γ > 0.

• The proposal for sampling π̃

τ̃n+ 1
2

= proxγg(τ̃n − γ C−>∇f(C−1 τ̃n)) +
√

2γN (0, I)

• The proposal for sampling π: τn+ 1
2

:= C−1τ̃n+ 1
2

Interpretation:

Tempered Langevin + variable metric Proximal = Variable Metric Proximal-Gradient

τn+ 1
2

= proxC>C
γg(C·)(τn − γ C−1C−>∇f(τn)) +

√
2γ C−1N (0, I)
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

Case lnπ composite: a Proximal-Gradient approach → PGdec

We propose a Proximal-Gradient (PG) step, when

- block-splitting g(Cτ) =
∑I
i=1 gi(Ciτ)

- explicit proximity operator proxγ gi(Ci·)

• The proposal for sampling π:

(a) Sample uniformly i ∈ {1, · · · , I}

(b) Update via a PG step which uses the component #i of the non-smooth fct

Langevin + Proximal = Proximal-Gradient

τn+ 1
2

= proxγ gi(Ci·) (τn − γ∇f(τn)) +
√

2γ N (0, I)
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

Case lnπ composite: a Moreau envelope approach → MYULA Durmus et al (2018)

Via the ”move and go back” approach, combined with MYULA

• From non-smooth convex optimization, the Moreau envelope

gρ(τ̃) := min
Rd

(
ρg(·) +

1

2
‖ · −τ̃‖2

)
∇gρ(τ̃) =

1

ρ

(
τ̃ − proxρ g(τ̃)

)

• The proposal for sampling π̃

τ̃n+ 1
2

= τ̃n − γ C−>∇f(C−1 τ̃n)−
γ

ρ

(
τ̃n − proxρ g(τ̃n)

)
+
√

2γN (0, I)

• The proposal for sampling π: τn+ 1
2

:= C−1τ̃n+ 1
2

Interpretation:

Tempered Langevin + variable metric Moreau envelope see e.g. Hiriart-Urruty and Lemaréchal

(1996, Chapter XV)

τn+ 1
2

=

(
1−

γ

ρ

)
τn−γ C−1C−>∇f(τn))+

γ

ρ
proxC>C

ρ g(C·)(τn)+
√

2γ C−1N (0, I)
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

Case lnπ composite: a Moreau envelope → semi-FBLMC Luu et al (2021)

• Since proxγg(C·) not explicit:

- Do not use the Moreau envelope of τ 7→ g(Cτ)

- Use the Moreau envelope of g, evaluated at Cτ

∇[gρ(C·)](τ) = C>∇[gρ](Cτ) =
1

ρ
C>
(
Cτ − proxρg(Cτ)

)

• The proposal for sampling π:

τn+ 1
2

=

(
I−

γ

ρ
C>C

)
τn − γ∇f(τn) +

γ

ρ
C>proxρg(Cτ) +

√
2γ N (0, I)
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

To summarize

• − lnπ = f i.e. lnπ is smooth

Algorithm – – Drift Cov hyperparam

Langevin τ − γ∇f(τ) 2γI γ

Tempered
Langevin

τ − γΓ∇f(τ) 2γΓ γ,Γ

• − lnπ = f + g(C·) i.e. lnπ is non-smooth g(C·) =
∑I
i=1 gi(Ci·)

Set Γ := C−1C−>

Algorithm original
space

move and
go back

Drift Cov hyperparam

PGdec proxγ gi(Ci·)
(τ − γ∇f(τ)) 2γI γ

PGdual proxΓ−1

γ g(C·) (τ − γΓ∇f(τ)) 2γΓ γ

semi-FBLMC τ − γ∇f(τ)

− γ
ρ

C>
(

Cτ − proxρ g(Cτ)
) 2γI γ, ρ

MYULA
τ − γΓ∇f(τ)

− γ
ρ

(
τ − proxΓ−1

ρ g(C·)(τ)

) 2γΓ γ, ρ
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

To summarize

• − lnπ = f i.e. lnπ is smooth

Algorithm – – Drift Cov hyperparam

Langevin τ − γ∇f(τ) 2γI γ

Tempered
Langevin

τ − γΓ∇f(τ) 2γΓ γ,Γ

• − lnπ = f + g(C·) i.e. lnπ is non-smooth g(C·) =
∑I
i=1 gi(Ci·)

Set Γ := C−1C−>

Algorithm original
space

move and
go back

Drift Cov hyperparam
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γ g(C·) (τ − γΓ∇f(τ)) 2γΓ γ

semi-FBLMC τ − γ∇f(τ)
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C>
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) 2γI γ, ρ

MYULA
τ − γΓ∇f(τ)

− γ
ρ

(
τ − proxΓ−1

ρ g(C·)(τ)

) 2γΓ γ, ρ
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Proximal-Langevin based proposal distributions

Proximal-Langevin based proposal

To summarize
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Proximal-Langevin based proposal distributions

With or without an accept-reject step ?

Propose and then: with or without an accept-reject step ?

• Without an AR step → Langevin MC Parisi (1981); ULA Roberts and Tweedie (1996); MYULA Durmus

et al (2018)

τn+1 = τn+ 1
2

• With an AR step → MALA Roberts and Tweedie (1996); Bou-Rabee and Hairer (2012); Eberle (2014); Dwivedi et al

(2019); MYMALA Durmus et al (2018)

τn+1 = τn+ 1
2

or τn+1 = τn

• In our case: with an AR step

the support of π is D. This ”constraint” is managed by the AR step.

Better mixing time in TV, as a function of d and the tolerance ε for MALA vs ULA

Dwivedi et al (2019)
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Proximal-Langevin based proposal distributions

Toy example

Comparison on a toy example (1/2)

• Logistic regression:

Y ∈ RT collects the T {0, 1}-valued response variables.

X is the T × d covariate matrix.

θ ∈ Rd: unknown regression vector.

a priori distribution: piecewise constant

• A posteriori distribution, on Rd

− lnπ(θ) := −Y> Xθ +
T∑
t=1

ln (1 + exp((Xθ)t)) + λ‖D1θ‖1 up to an additive constant

• T = 2 000; d = 20;
X: independent Rademacher and norm of the rows equal to one;
θ?: piecewise constant
Y: independent Bernoulli with success probability (1 + exp(−(Xθ?)t))−1
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Proximal-Langevin based proposal distributions

Toy example

Comparison on a toy example (2/2)

RW semi-FBLMC PGdec

RW "move/go back" MYULA PGdual

Show

- the benefit of first
order informations on
lnπ, mainly for small and
medium λ

- PGdec < semi-FBLMC in
the stationary phase

- PGdec: partial informa-
tions OK, when λ small

- PGdual and MYULA:
robust to λ; and almost
equivalent

- PGdual and MYULA: the
best when λ medium to
large.

[top] Evolution n 7→ lnπ(θn)−max lnπ
lnπ(θ1)−max lnπ

along the first 2 500 samples.

[bottom] the ACF function, computed from 17 500 samples.
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Proximal-Langevin based proposal distributions

Convergence analysis

Convergence analysis of PGdec and PGdual

Law of large numbers Proposition 13, Fort et al (2022)

Assume that π is continuous on D; f is continuously differentiable on D and g is
convex, proper.

PGdec. Assume that proxγ gi(Ci·) exists and has a closed form expression.

The sequence {τn, n ≥ 0} given by PGDec is a Markov chain, taking values on D and
with unique invariant distribution π. In addition, for all initial point τ0 ∈ D and any
measurable function h such that

∫
|h(τ)|π(τ)dτ <∞

lim
N→+∞

1

N

N∑
n=1

h(τn) =

∫
h(τ)π(τ)dτ a.s.

PGdual. Assume that proxγ g exists and has a closed form expression.
The same ergodicty result holds for the sequence {τn, n ≥ 0} given by PGdual.

Proof: under the stated assumptions, the chain is irreducible, aperiodic and π is its unique invariant distribution. In addition, the chain is

positive Harris-recurrent.
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Proximal-Langevin based proposal distributions

Other methods in the literature

Case log-π composite: other MCMC samplers in the literature

• Perturbed Langevin MC: bases on Gaussian smoothing of g (Chatterji et al (2020))

gµ(·) := E [g(·+ µN (0, I))]

When g is Hölder-continuous.

• AXDA (Vono et al (2019))

From the result

min
τ

(f(τ) + g(Cτ))⇐⇒ min
τ=τ ′

(
f(τ) + g(Cτ ′)

)
Data Augmentation scheme + Metropolis-within-Gibbs

− lnπda(τ, τ ′) ∝ f(τ) + g(Cτ ′) + φ(τ, τ ′)
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Covid19 reproduction number

IV. Credibility intervals for the Covid19 reproduction number
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Covid19 reproduction number

Design parameters

− lnπ(θ) = f(θ) + λR‖Aθ‖1 A :=

[
D2 0(T−2)×T

0T×T
λO
λR

IT

]
∈ R(2T−2)×(2T )

• Augmentation of D2 into a T × T invertible matrix: we compare two strategies
”invert” and ”ortho”

• Step size γn+1 adapted during the first iterations (burn-in) and then fixed.

• Estimation of the quantiles: empirical quantiles, from the output of the Markov
chain after a burn-in period.

• For the Moreau envelope: ρ = γ.
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Covid19 reproduction number

From D2 to D̄2 (1/2)

RW RW Invert RW Ortho

PGdual Invert PGdual Ortho.

Show

- Among the RW’s, more
efficient when the Gaus-
sian noise is not i.i.d.

- D̄
(o)
2 more efficient for

RW’s and PGdual

- PGdual more efficient
than the RW’s

During the burn in period [left] and after [right],
(top) evolution of the distance from θn to the MAP along iterations

(bottom) evolution of the distance from lnπ(θn) to max lnπ along iterations
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Covid19 reproduction number

From D2 to D̄2 (2/2)

RW RW Invert RW Ortho

PGdual Invert PGdual Ortho.

Show

- same conclusions as be-
fore
it promotes PGdual

"ortho"

(left) Mean absolute value of the ACF vs the first 105 lags

(right) The Gelman-Rubin statistic vs iterations.
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Covid19 reproduction number

PGdual and MYMALA (1/2)

RW “ortho” when the Gaussian noise is no iid
MYMALA ”ortho”
PGdual ”ortho”

Show

- the benefit of first-order
methods

- equivalent results for
PGdual and MYMALA

(top) n 7→ (log π(θn)−max log π)/(log π(θ1)−max log π)

(bottom) ACF
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Covid19 reproduction number

PGdual and MYMALA (2/2)

Show

- Same conclu-
sions as before:

equivalent results
for PGdual and
MYMALA.
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Covid19 reproduction number

Gibbs or Hastings-Metropolis ?
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HM "Invert" HM "Ortho"

Gibbs "Invert" Gibbs "Ortho"

Show

- the benefit of ”ortho”
w.r.t. ”invert”

- Gibbs ”ortho” among
the best, whatever the
criterion and the algo-
rithm

- PGdual looks the best.

(rows 1 & 2) evolution of the distance from θn to the MAP along iterations
(row 3) ACF

(row 4) Gelman Rubin statistics
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Covid19 reproduction number

Credibility intervals for different countries and different time periods

For each country,
(top) observed counts Z1, · · · , ZT ; and 95% credibility interval for the Zt − Ôt’s
(bottom) 95% credibility interval for R1, · · · ,RT
With PGdual ”ortho”
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Covid19 reproduction number

Credibility Intervals for different countries

With Gibbs + PGdual ”ortho”
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Covid19 reproduction number

Credibility Intervals for different countries

With Gibbs + PGdual ”ortho”
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Conclusions

V. Conclusions and future works



Credibility intervals for Covid19 reproduction number from Nonsmooth Langevin-type Monte Carlo sampling

Conclusions

In Fort et al. (2022), extension of PGdec and PGdual to blockwise structure of
the non-smooth component:

g(Cθ) =
J∑
j=1

Ij∑
i=1

gij(Cijθ
(j)) θ = blocks(θ(1), · · · , θ(J))

How to choose λR and λO ?

What about sequential analysis → SMC

Noisy data → noisy data and missing data.
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