Stochastic Optimization beyond Gradient for Machine Learning

Gersende Fort

CNRS - Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS) Toulouse, France

AI, Science and Society - February 2025

Outline of the talk

- Mathematics for Stochastic Optimization
 - from Optimization to Stochastic Optimization
 - Objective function in ML
 - Sources of randomness
- Focus: Stochastic Approximation

Stochastic Optimization

 $\operatorname{argmin}_{\omega \in \mathbb{R}^d} L(\omega)$

when \boldsymbol{L} has no closed form expression but can be written as an expectation

 $\operatorname{argmin}_{\omega \in \mathbb{R}^d} \mathbb{E}\left[\ell(\omega; Z)\right]$

Objective function: convex or not, smooth or not

Method: produce iterates $\omega_1, \omega_2, \cdots$ by using random sources.

Stochastic Optimization in Machine Learning

learn a system i.e. find $\omega \in \mathbb{R}^d$, from examples $X_1, \cdots, X_t, X_{t+1}, \cdots$

Batch learning. the ML model is trained using a batch of examples X_1, \dots, X_n .

Ex.
$$\operatorname{argmin}_{\omega} \frac{1}{n} \sum_{i=1}^{n} \ell_i(\omega; X_i)$$

Online learning. the ML model is adjusted sequentially from fresh data in order to optimize a long time observation-based criterion.

Ex. $\operatorname{argmin}_{\omega} \mathbb{E}\left[\ell(\omega; X)\right]$

from $X_1, \dots, X_t, X_{t+1}, \dots$ s.t. $\mathbb{E}\left[\ell(\omega; X)\right] = \lim_t \frac{1}{t} \sum_{i=1}^t \ell(\omega; X_i)$ a.s.

 $\omega_{t+1} = \mathsf{M}\left(\omega_t, Z_{t+1}, t\right)$

Internal randomness. $Z_{t+1} = X_{t+1}$ is given by the system to be learnt

- reinforcement learning
- online learning

External randomness. Z_{t+1} is a numerical tool for learning the system

- subsampling (data in large batch learning, directions for vector valued parameters $\omega,\,\cdots)$
- random quantization
- intractable integrals/sum in the definition of M

Safe ? A stochastic error

- a bias, w.r.t. some "ideal" iterative scheme $\tilde{\omega}_{t+1} = \mathsf{M}^{\star}(\tilde{\omega}_t, t)$
- a variance, which may cause unstability and slow down the convergence

The Mathematics of Stochastic Optimization

- Propose new SO algorithms
- Onderstand the role of design parameters
- (limiting) Behavior of the iterative scheme
- Comparison of algorithms

Case: Stochastic Approximation algorithms

- What is Stochastic Approximation
- An optimization method in Machine Learning
- Finite time analysis
- Best strategies, Variance reduction

Stochastic Approximation

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a vector field $h : \mathbb{R}^d \to \mathbb{R}^d$, solve

$$\omega \in \mathbb{R}^d$$
 s.t. $h(\omega) = 0$

Available: for all ω , stochastic oracles of $h(\omega)$.

The Stochastic Approximation method:

Choose: a sequence of positive step sizes $\{\gamma_t\}_t$ and an initial value $\omega_0 \in \mathbb{R}^d$. Repeat:

```
\omega_{t+1} = \omega_t + \gamma_{t+1} \ H(\omega_t, Z_{t+1})
```

where $H(\omega_t, Z_{t+1})$ is a stochastic oracle of $h(\omega_t)$.

Rmk: here, the field h is defined on \mathbb{R}^d ; and for all $\omega \in \mathbb{R}^d$.

Example: $h(\omega)$ is an expectation; $H(\omega, Z_{t+1})$ is a Monte Carlo approximation.

Stochastic Approximation in Machine Learning (1/3)

• Stochastic Gradient algorithm $h(\omega) = -\nabla R(\omega)$ $\omega_{t+1} = \omega_t + \gamma_{t+1} H(\omega_t, Z_{t+1}) \qquad \mathbb{E} \left[H(\omega_t, Z_{t+1}) | \text{past}_t \right] = h(\omega_t)$

• Compression with Stochastic Gradient, when frugal algorithms are mandatory Compression operator $x \mapsto C(x, U)$, random or deterministic;

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \mathcal{C} \left(H(\omega_k, Z_{k+1}), U_{k+1} \right)$$

increasing interest in distributed optimization

$$\omega_{k+1} = \omega_k + \gamma_{k+1} \ H\left(\mathcal{C}(\omega_k, U_{k+1}), Z_{k+1}\right)$$

gradient at a perturbed iterate: Straight-Through Estimator

Stochastic Approximation in Machine Learning (2/3)

 $\omega_{t+1} = \omega_t + \gamma_{t+1} H(\omega_t, Z_{t+1}) \qquad H(\omega_t, Z_{t+1}) \approx h(\omega_t)$

• Stochastic Majorization-Minimization algorithm

in the structured case

 $\mathbb{E}\left[\ell(\cdot, Z)\right] \le C_{\tilde{\omega}} + \psi(\cdot) + \left\langle \mathbb{E}\left[\mathsf{S}(\tilde{\omega}, Z)\right], \phi(\cdot) \right\rangle$

and unique minimizer

 $\mathsf{T}(s) := \operatorname{argmin}_{\omega} \psi(\cdot) + \langle s, \phi(\cdot) \rangle$

The limiting points solve	$\omega^{\star} = T(s^{\star}),$	where $\mathbb{E}\left[S(T(s^{\star}),Z)\right] - s^{\star} = 0$
---------------------------	----------------------------------	--

Examples:

- Proximal gradient algorithm
- Mirror descent algorithm
- When ℓ is an intractable integral of a positive function (\rightarrow EM algorithm)
- Training some Mixture of Experts models
- Dictionary Learning
- Variational inference

Stochastic Approximation in Machine Learning (3/3)

 $\omega_{t+1} = \omega_t + \gamma_{t+1} H(\omega_t, Z_{t+1}) \qquad H(\omega_t, Z_{t+1}) \approx h(\omega_t)$

• Fixed point algorithms with a Lyapunov function

When the map M in intractable and the goal is to solve $\omega = M(\omega)$, run a SA algorithm

$$h(\omega) = \mathsf{M}(\omega) - \omega.$$

It may work if there exists a Lyapunov function V

 $\langle \nabla V(\omega), h(\omega) \rangle \le 0.$

Example: Reinforcement learning: value function ${\cal V}$ of a policy with linear function approximation ${\cal V}(\cdot)=\Phi\omega$, by the TD(0) algorithm.

$$H(\omega, (S_t, S_{t+1}, R(S_t, S_{t+1}))) = \left(R(S_t, S_{t+1}) + \lambda \left\langle \Phi(S_{t+1}, :), \omega \right\rangle - \left\langle \Phi(S_t, :), \omega \right\rangle \right) \Phi(S_t, :)^\top$$

A finite time analysis of SA algorithms

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that
$$\gamma_k \in (0, \gamma_{\max})$$
, $\eta_1 \ge \sigma_1^2 + c_1 > 0$
 $\gamma_{\max} := \frac{2(\rho - \mathbf{b}_1)}{L_V \eta_1}$
Then, there exist non-negative constants s.t. for any $T \ge 1$
 $\sum_{t=1}^T \frac{\gamma_t \mu_t}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell} \mathbb{E}\left[W(\omega_{t-1})\right] \le 2 \frac{\mathbb{E}\left[V(\omega_0)\right] - \min V}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell} + L_V \eta_0 \frac{\sum_{t=1}^T \gamma_t^2}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{t=1}^T \gamma_t}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell} + c_V \sqrt{\tau_0} \frac{\sum_{t=1}^T \gamma_t}{\sum_{\ell=1}^T \gamma_\ell \mu_\ell}$

 $W(\omega_{t-1})$ quantifies how far the iterate ω_{t-1} is, from the limiting set $\mathcal{L} \supseteq \{h = 0\}$. This term: the impact of the initial value ω_0 . This term: due to the bias and variance of the oracle.

This term: exists when the oracle is biased and the bias does not vanish when W = 0.

Is there an optimal strategy for selecting the γ_t 's and the output of the algorithm ?

When unbiased oracles, the strategy "constant step size" and "return an iterate chosen at random in $\{\omega_0,\cdots,\omega_{T-1}\}$ " is optimal

$$\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \leq \frac{2\sqrt{2L_V\eta_0}\sqrt{\mathbb{E}\left[V(\omega_0)\right]}}{(\rho-b_1)\sqrt{T}} \vee \frac{8\mathbb{E}\left[V(\omega_0)\right]}{\gamma_{\max}(\rho-b_1)T}$$

Complexity analysis: e-approximate stationary point

It holds $\mathbb{E}\left[W(\omega_{\mathcal{R}_T})\right] \leq \epsilon$ for any $T \geq T_{\epsilon}$

$$T_{\epsilon} := 8 \mathbb{E}[V(\omega_0)] \frac{\eta_0 L_V}{\rho^2} \left(\frac{1}{\epsilon^2} \vee \frac{\eta_1}{2\eta_0 \epsilon} \right)$$

Variance reduction when h is a finite sum

The oracle is not unique

- Variance reduction scheme for SA: adapted from SVRG, SAGA, SPIDER (SARAH)
- SPIDER is the most efficient

Works in collaboration

A. Dieuleveut

F Forbes

F Moulines

La Trobe Univ., Australia

Hong-Kong Univ.

IPP. France

INRIA. France

IPP. France

- Sequential Sample Average Majorization-Minimization. Submitted

- Federated Majorize-Minimization for large scale learning. Submitted

- Stochastic Approximation beyond Gradient for Signal Processing and Machine Learning. IEEE Trans Signal Processing, 2023.

- Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization. Statistics and Computing, 2023.

- An online Minorization-Maximization algorithm. IFCS 2022 proceedings.

- Federated Expectation Maximization with heterogeneity mitigation and variance reduction. NeurIPS, 2021.

- The Fast Incremental Expectation Maximization for finite-sum optimization: nonasymptotic convergence. Statistics and Computing, 2021.

- The Perturbed Prox-Preconditioned SPIDER algorithm: non-asymptotic convergence bounds. IEEE Statistical Signal Processing Workshop proceedings, 2021.

- Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization. IEEE International Conference on Acoustics, Speech and Signal Processing proceedings, 2021. -A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm. NeurIPS, 2020.

Sketch of proof

A Lyapunov function V with L_V -Lipschitz gradient

$$V(\omega_{k+1}) \le V(\omega_k) + \langle \nabla V(\omega_k), \omega_{k+1} - \omega_k \rangle + \frac{L_V}{2} \|\omega_{k+1} - \omega_k\|^2$$

Sketch of proof

$$V(\omega_{k+1}) \le V(\omega_k) + \left\langle \nabla V(\omega_k), \frac{\omega_{k+1} - \omega_k}{\omega_{k+1} - \omega_k} \right\rangle + \frac{L_V}{2} \left\| \frac{\omega_{k+1} - \omega_k}{\omega_{k+1} - \omega_k} \right\|^2$$

The definition of the iterative scheme

$$V(\omega_{k+1}) \le V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), H(\omega_k, Z_{k+1}) \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \left\| H(\omega_k, Z_{k+1}) \right\|^2$$

$$V(\omega_{k+1}) \leq V(\omega_k) + \gamma_{k+1} \left\langle \nabla V(\omega_k), H(\omega_k, Z_{k+1}) \right\rangle + \frac{L_V}{2} \gamma_{k+1}^2 \left\| H(\omega_k, Z_{k+1}) \right\|^2$$

The conditional expectation

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right] \rangle \\ + \frac{L_{V}}{2}\gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, Z_{k+1})\right\|^{2}|\mathcal{F}_{k}\right]$$

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \underbrace{\mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right]}_{+ \frac{L_{V}}{2}\gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, Z_{k+1})\right\|^{2} |\mathcal{F}_{k}\right]}\right]$$

The mean field h and the bias term

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathsf{h}(\omega_{k}) \right\rangle \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k}) \right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, Z_{k+1})\right\|^{2} |\mathcal{F}_{k}\right] \end{split}$$

$$\mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] \leq V(\omega_{k}) + \gamma_{k+1} \langle \nabla V(\omega_{k}), \mathsf{h}(\omega_{k}) \rangle \\ + \gamma_{k+1} \langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right] - \mathsf{h}(\omega_{k}) \rangle \\ + \frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, Z_{k+1})\right\|^{2} |\mathcal{F}_{k}\right]$$

Cond
$$L^2 = \text{Cond Var} + (\text{Cond Exp})^2$$

$$\mathbb{E}[V(\omega_{k+1})|\mathcal{F}_k] \leq V(\omega_k) + \gamma_{k+1} \langle \nabla V(\omega_k), h(\omega_k) \rangle$$

$$+ \gamma_{k+1} \langle \nabla V(\omega_k), \mathbb{E}[H(\omega_k, Z_{k+1})|\mathcal{F}_k] - h(\omega_k) \rangle$$

$$+ \frac{L_V}{2} \gamma_{k+1}^2 \mathbb{E}[|H(\omega_k, Z_{k+1}) - \mathbb{E}[H(\omega_k, Z_{k+1})|\mathcal{F}_k] ||^2 |\mathcal{F}_k]$$

$$+ \frac{L_V}{2} \gamma_{k+1}^2 ||\mathbb{E}[H(\omega_k, Z_{k+1})|\mathcal{F}_k] ||^2$$

$$\begin{split} \mathbb{E}\left[V(\omega_{k+1})|\mathcal{F}_{k}\right] &\leq V(\omega_{k}) + \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbf{h}(\omega_{k}) \right\rangle \\ &+ \gamma_{k+1} \left\langle \nabla V(\omega_{k}), \mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right] - \mathbf{h}(\omega_{k})\right\rangle \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \mathbb{E}\left[\left\|H(\omega_{k}, Z_{k+1}) - \mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right]\right\|^{2} |\mathcal{F}_{k}\right] \\ &+ \frac{L_{V}}{2} \gamma_{k+1}^{2} \left\|\mathbb{E}\left[H(\omega_{k}, Z_{k+1})|\mathcal{F}_{k}\right] - \mathbf{h}(\omega_{k})\right\|^{2} \end{split}$$

By assumptions: the drift term, the bias and variance of the oracles, and the mean field are controlled by $W. \label{eq:weight}$

Apply the expectation.

There exist constants s.t. for any $k \ge 0$,

$$\mathbb{E}\left[V(\omega_{k+1})\right] \leq \mathbb{E}\left[V(\omega_{k})\right] - \gamma_{k+1} \left[\left(\rho - \mathbf{b}_{1} - \gamma_{k} \frac{L_{V} \eta_{1}}{2}\right) + \gamma_{k+1} \mathbf{b}_{0} + \gamma_{k+1}^{2} \frac{L_{V} \eta_{0}}{2} \right] \mathbb{E}\left[W(\omega_{k})\right]$$

A drift term for γ_k small enough. Sum from k = 0 to k = T - 1; conclude.