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Outline of the talk

Mathematics for Stochastic Optimization

from Optimization to Stochastic Optimization

Objective function in ML

Sources of randomness

Focus: Stochastic Approximation
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Stochastic Optimization

argminω∈Rd L(ω)

when L has no closed form expression but can be written as an expectation

argminω∈Rd E [ℓ(ω;Z)]

Objective function: convex or not, smooth or not

Method: produce iterates ω1, ω2, · · · by using random sources.
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Stochastic Optimization in Machine Learning

learn a system i.e. find ω ∈ Rd, from examples X1, · · · , Xt, Xt+1, · · ·

Batch learning. the ML model is trained using a batch of examples X1, · · · , Xn.

Ex. argminω
1

n

n∑
i=1

ℓi(ω;Xi)

Online learning. the ML model is adjusted sequentially from fresh data in order to

optimize a long time observation-based criterion.

Ex. argminω E [ℓ(ω;X)]

from X1, · · · , Xt, Xt+1, · · · s.t. E [ℓ(ω;X)] = limt
1
t

∑t
i=1 ℓ(ω;Xi) a.s..
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Randomness in Optimization algorithm: why, and safe ?

ωt+1 = M (ωt, Zt+1, t)

Internal randomness. Zt+1 = Xt+1 is given by the system to be learnt

reinforcement learning

online learning

External randomness. Zt+1 is a numerical tool for learning the system

subsampling (data in large batch learning, directions for vector valued parameters

ω, · · · )
random quantization

intractable integrals/sum in the definition of M

Safe ? A stochastic error

a bias, w.r.t. some ”ideal” iterative scheme ω̃t+1 = M⋆(ω̃t, t)

a variance, which may cause unstability and slow down the convergence
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The Mathematics of Stochastic Optimization

1 Propose new SO algorithms

2 Understand the role of design parameters

3 (limiting) Behavior of the iterative scheme

4 Comparison of algorithms

Case: Stochastic Approximation algorithms

What is Stochastic Approximation

An optimization method in Machine Learning

Finite time analysis

Best strategies, Variance reduction
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Stochastic Approximation

Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a vector field h : Rd → Rd, solve

ω ∈ Rd s.t. h(ω) = 0

Available: for all ω, stochastic oracles of h(ω).

The Stochastic Approximation method:

Choose: a sequence of positive step sizes {γt}t and an initial value ω0 ∈ Rd.

Repeat:

ωt+1 = ωt + γt+1 H(ωt, Zt+1)

where H(ωt, Zt+1) is a stochastic oracle of h(ωt).

Rmk: here, the field h is defined on Rd; and for all ω ∈ Rd.

Example: h(ω) is an expectation; H(ω, Zt+1) is a Monte Carlo approximation.
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Stochastic Approximation in Machine Learning (1/3)

• Stochastic Gradient algorithm h(ω) = −∇R(ω)

ωt+1 = ωt + γt+1 H(ωt, Zt+1) E [H(ωt, Zt+1)|pastt] = h(ωt)

• Compression with Stochastic Gradient, when frugal algorithms are mandatory

Compression operator x 7→ C(x, U), random or deterministic;

ωk+1 = ωk + γk+1 C ( H(ωk, Zk+1) , Uk+1)

increasing interest in distributed optimization

ωk+1 = ωk + γk+1 H (C(ωk, Uk+1), Zk+1)

gradient at a perturbed iterate: Straight-Through Estimator
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Stochastic Approximation in Machine Learning (2/3)

ωt+1 = ωt + γt+1H(ωt, Zt+1) H(ωt, Zt+1) ≈ h(ωt)

• Stochastic Majorization-Minimization algorithm

in the structured case

E [ℓ(·, Z)] ≤ Cω̃ + ψ(·) + ⟨E [S(ω̃, Z)] , ϕ(·)⟩

and unique minimizer

T(s) := argminωψ(·) + ⟨s, ϕ(·)⟩

The limiting points solve ω⋆ = T(s⋆), where E [S(T(s⋆), Z)]− s⋆ = 0

Examples:

- Proximal gradient algorithm

- Mirror descent algorithm

- When ℓ is an intractable integral of a positive function (→ EM algorithm)

- Training some Mixture of Experts models

- Dictionary Learning

- Variational inference
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Stochastic Approximation in Machine Learning (3/3)

ωt+1 = ωt + γt+1H(ωt, Zt+1) H(ωt, Zt+1) ≈ h(ωt)

• Fixed point algorithms with a Lyapunov function

When the map M in intractable and the goal is to solve ω = M(ω), run a SA algorithm

h(ω) = M(ω)− ω.

It may work if there exists a Lyapunov function V

⟨∇V (ω), h(ω)⟩ ≤ 0.

Example: Reinforcement learning: value function V of a policy with linear function
approximation V(·) = Φω , by the TD(0) algorithm.

H(ω, (St, St+1, R(St, St+1))) =
(
R(St, St+1) + λ

〈
Φ(St+1, :), ω

〉
− ⟨Φ(St, :), ω⟩

)
Φ(St, :)

⊤
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A finite time analysis of SA algorithms

Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that γk ∈ (0, γmax), η1 ≥ σ2
1 + c1 > 0

γmax :=
2(ρ− b1)

LV η1

Then, there exist non-negative constants s.t. for any T ≥ 1

T∑
t=1

γtµt∑T
ℓ=1 γℓµℓ

E [W (ωt−1)] ≤ 2
E [V (ω0)]−minV∑T

ℓ=1 γℓµℓ
+ LV η0

∑T
t=1 γ

2
t∑T

ℓ=1 γℓµℓ

+ cV
√
τ0

∑T
t=1 γt∑T

ℓ=1 γℓµℓ

µℓ = 2(ρ − b1) − γℓLV η1 > 0

W (ωt−1) quantifies how far the iterate ωt−1 is, from the limiting set L ⊇ {h = 0}.
This term: the impact of the initial value ω0.

This term: due to the bias and variance of the oracle.

This term: exists when the oracle is biased and the bias does not vanish when W = 0.
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Design parameters, Variance Reduction

Is there an optimal strategy for selecting the γt’s and the output of the algorithm ?

When unbiased oracles, the strategy ”constant step size” and ”return an iterate
chosen at random in {ω0, · · · , ωT−1}” is optimal

E
[
W (ωRT

)
]
≤

2
√

2LV η0
√

E [V (ω0)]

(ρ − b1)
√
T

∨
8E [V (ω0)]

γmax(ρ − b1)T

Complexity analysis: ϵ-approximate stationary point

It holds E
[
W (ωRT

)
]
≤ ϵ for any T ≥ Tϵ

Tϵ := 8 E[V (ω0)]
η0LV

ρ2

(
1

ϵ2
∨

η1

2η0ϵ

)

Variance reduction when h is a finite sum

The oracle is not unique

Variance reduction scheme for SA: adapted from

SVRG, SAGA, SPIDER (SARAH)

SPIDER is the most efficient 10
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Works in collaboration

A. Dieuleveut F. Forbes E. Moulines H. D. Nguyen H.-T. Wai

IPP, France INRIA, France IPP, France La Trobe Univ., Australia Hong-Kong Univ.

- Sequential Sample Average Majorization-Minimization. Submitted

- Federated Majorize-Minimization for large scale learning. Submitted

- Stochastic Approximation beyond Gradient for Signal Processing and Machine Learning. IEEE Trans Signal

Processing, 2023.

- Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization.

Statistics and Computing, 2023.

- An online Minorization-Maximization algorithm. IFCS 2022 proceedings.

- Federated Expectation Maximization with heterogeneity mitigation and variance reduction. NeurIPS, 2021.

- The Fast Incremental Expectation Maximization for finite-sum optimization: nonasymptotic convergence.

Statistics and Computing, 2021.

- The Perturbed Prox-Preconditioned SPIDER algorithm: non-asymptotic convergence bounds. IEEE Statistical

Signal Processing Workshop proceedings, 2021.

- Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum

Optimization. IEEE International Conference on Acoustics, Speech and Signal Processing proceedings, 2021.

-A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm. NeurIPS, 2020.
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Sketch of proof

A Lyapunov function V with LV -Lipschitz gradient

V (ωk+1) ≤ V (ωk) + ⟨∇V (ωk), ωk+1 − ωk⟩ +
LV

2
∥ωk+1 − ωk∥2

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
E [W (ωk)]

+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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Sketch of proof

V (ωk+1) ≤ V (ωk) +
〈
∇V (ωk), ωk+1 − ωk

〉
+

LV

2
∥ωk+1 − ωk∥2

The definition of the iterative scheme

V (ωk+1) ≤ V (ωk) + γk+1 ⟨∇V (ωk), H(ωk, Zk+1)⟩ +
LV

2
γ
2
k+1 ∥H(ωk, Zk+1)∥2

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
E [W (ωk)]

+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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Sketch of proof

V (ωk+1) ≤ V (ωk)+γk+1

〈
∇V (ωk), H(ωk, Zk+1)

〉
+

LV

2
γ
2
k+1 ∥H(ωk, Zk+1)∥2

The conditional expectation

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1 ⟨∇V (ωk),E [H(ωk, Zk+1)|Fk]⟩

+
LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1)∥2|Fk

]

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
E [W (ωk)]

+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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Sketch of proof

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1

〈
∇V (ωk), E [H(ωk, Zk+1)|Fk]

〉
+

LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1)∥2|Fk

]

The mean field h and the bias term

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1 ⟨∇V (ωk), h(ωk)⟩

+ γk+1 ⟨∇V (ωk),E [H(ωk, Zk+1)|Fk] − h(ωk)⟩

+
LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1)∥2|Fk

]

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
E [W (ωk)]

+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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Sketch of proof

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1 ⟨∇V (ωk), h(ωk)⟩

+ γk+1 ⟨∇V (ωk),E [H(ωk, Zk+1)|Fk] − h(ωk)⟩

+
LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1)∥2|Fk

]

Cond L2 = Cond Var + (Cond Exp)2

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1 ⟨∇V (ωk), h(ωk)⟩

+ γk+1 ⟨∇V (ωk),E [H(ωk, Zk+1)|Fk] − h(ωk)⟩

+
LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1) − E [H(ωk, Zk+1)|Fk] ∥2|Fk

]
+

LV

2
γ
2
k+1 ∥E [H(ωk, Zk+1)|Fk] ∥2

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
E [W (ωk)]

+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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Sketch of proof

E [V (ωk+1)|Fk] ≤ V (ωk) + γk+1 ⟨∇V (ωk), h(ωk)⟩

+ γk+1

〈
∇V (ωk), E [H(ωk, Zk+1)|Fk] − h(ωk)

〉
+

LV

2
γ
2
k+1 E

[
∥H(ωk, Zk+1) − E [H(ωk, Zk+1)|Fk] ∥2|Fk

]
+

LV

2
γ
2
k+1 ∥ E [H(ωk, Zk+1)|Fk] − h(ωk) + h(ωk) ∥2

By assumptions: the drift term, the bias and variance of the oracles, and the mean

field are controlled by W .

Apply the expectation.

There exist constants s.t. for any k ≥ 0,

E [V (ωk+1)] ≤ E [V (ωk)] − γk+1

(
ρ − b1 − γk

LV η1

2

)
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+ γk+1b0 + γ
2
k+1

LV η0

2

A drift term for γk small enough. Sum from k = 0 to k = T − 1; conclude.
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