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Outline of the talk

o Mathematics for Stochastic Optimization

o from Optimization to Stochastic Optimization
o Objective function in ML
o Sources of randomness

o Focus: Stochastic Approximation
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argmin, cpa L(w)

when L has no closed form expression but can be written as an expectation

argmincpa E [£(w; Z)]

Objective function: convex or not, smooth or not

Method: produce iterates w1, w2, -+ by using random sources.
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‘ learn a system i.e. find w € R?, from examples X1, -, X4, X1, ‘

Batch learning. the ML model is trained using a batch of examples Xy, --- , X),.

1 n
Ex. argmin,, — E £i(w; X;3)
¢
i=1

Online learning. the ML model is adjusted sequentially from fresh data in order to
optimize a long time observation-based criterion.

Ex. argmin,, E [¢(w; X)]

from X1, -+, X¢, Xep1,- st B[0(w; X)] = limg 2 370 0(w; X5) as.
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‘ wit1 = M (wt, Zit1,t)

Internal randomness. Zy41 = X411 is given by the system to be learnt

o reinforcement learning

o online learning
External randomness. Zi41 is a numerical tool for learning the system

o subsampling (data in large batch learning, directions for vector valued parameters
w, )

o random quantization

o intractable integrals/sum in the definition of M

Safe ? A stochastic error

o a bias, w.r.t. some "ideal” iterative scheme &;41 = M* (&4, t)

@ a variance, which may cause unstability and slow down the convergence
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@ Propose new SO algorithms
@ Understand the role of design parameters
@ (limiting) Behavior of the iterative scheme

@ Comparison of algorithms

Case: Stochastic Approximation algorithms

o What is Stochastic Approximation
o An optimization method in Machine Learning
o Finite time analysis

o Best strategies, Variance reduction
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Robbins and Monro (1951) Wolfowitz (1952), Kiefer and Wolfowitz (1952), Blum (1954), Dvoretzky (1956)

Problem:

Given a vector field h : R4 — Rd, solve
weR?d sit. h(w)=0

Available: for all w, stochastic oracles of h(w).

The Stochastic Approximation method:

Choose: a sequence of positive step sizes {7¢}+ and an initial value wg € R,
Repeat:
w1 = wt +ye+1 H(we, Ziy1)

where H(wt, Zi41) is a stochastic oracle of h(wy).

Rmk: here, the field h, is defined on R%; and for all w € R®.

Example: h(w) is an expectation; H(w, Z¢ 1) is a Monte Carlo approximation.
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e Stochastic Gradient algorithm h(w) = —=VR(w)

wi41 = wt +ve41 H(we, Zey1) E [H(wt, Zt+1)|pasty] = h(wt)

e Compression with Stochastic Gradient, when frugal algorithms are mandatory

Compression operator x +— C(z,U), random or deterministic;
Wiyl = W +Yoy1 C( H(Wr, Zit1) , Ury1)
increasing interest in distributed optimization
Wiyl = Wi +Yet1 H (Cwr, Ukt1), Ziy1)

gradient at a perturbed iterate: Straight-Through Estimator
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wip1 = wt + Vi1 H(wts Zpgq) H(wt, Zyy1) = h(wy)

e Stochastic Majorization-Minimization algorithm

in the structured case
E[l(-, Z2)] < Cq + () + (E[S(@, Z)], 6())

and unique minimizer

T(s) := argmin, 9 (-) + (s, ¢() Y s I s

The limiting points solve w* =T(s*), where E[S(T(s*),Z)] —s* =0

Examples:

- Proximal gradient algorithm

- Mirror descent algorithm

- When £ is an intractable integral of a positive function (— EM algorithm)
- Training some Mixture of Experts models

- Dictionary Learning

- Variational inference
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wip1 = wt + Vi1 H(wts Zpgq) H(wt, Zyy1) = h(wy)
e Fixed point algorithms with a Lyapunov function
When the map M in intractable and the goal is to solve w = M(w), run a SA algorithm

h(w) = M(w) — w.

It may work if there exists a Lyapunov function V

(VV(w), h(w)) < 0.

Example: Reinforcement learning: value function V of a policy with linear function
approximation V() = ®w , by the TD(0) algorithm.

H(w, (¢, Sg41, R(Se, Sg41)) = (R(Se, Spq1) + A (2(Sgq1, )5 @) — (B(Sg, ), 0)) (S¢, )|
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Theorem 1, Dieuleveut-F.-Moulines-Wai (2023)

Assume also that v € (0, Ymax), m >o24e; >0

2(p —b1)
Ly m

Ymax

Then, there exist non-negative constants s.t. for any 7" > 1
. T -
9 E[V(wo)] — minV L i1 ”r'f
——7 — — tLvno
D1 Yelte D1 Vel
ET, Tt
+evvTo FHE—

=1 Velte

T
> = EW (@)l <
i=1 D=1 Yeke

ue =2(p —by) —vgLyny >0

W (wi—1) quantifies how far the iterate w;—1 is, from the limiting set £ O {h = 0}.
This term: the impact of the initial value wp.

This term: due to the bias and variance of the oracle.

This term: exists when the oracle is biased and the bias does not vanish when W = 0.

Al, Science and Society — February 2025 11/14



Is there an optimal strategy for selecting the +¢'s and the output of the algorithm ?

When unbiased oracles, the strategy "constant step size” and "return an iterate
chosen at random in {wo, -+ ,wp_1}" is optimal

< 2y/2Lyno/E[V (wo)] v 8E [V (wo)]

E|W(w
[ ( RT)] - (p = b1)VT Ymax (p — b1)T

Complexity analysis: e-approximate stationary point

It holds E [W(W'RT )] <eforany T > Te

noLy (1 1
Te := 8E[V(wo)] 5 (—) v )
P €2 2npe

Variance reduction when h is a finite sum

FE-sPioER-EM

The oracle is not unique

@ Variance reduction scheme for SA: adapted from
SVRG, SAGA, SPIDER (SARAH)

o SPIDER is the most efficient 12 0

i0°
Problem size (n)

No of examples (K zg-n)

Al, Science and Society — February 2025 12/14



A. Dieuleveut F. Forbes E. Moulines H. D. Nguyen H.-T. Wai

IPP, France INRIA, France IPP, France La Trobe Univ., Australia Hong-Kong Univ.

- Sequential Sample Average Majorization-Minimization. Submitted

- Federated Majorize-Minimization for large scale learning. Submitted

- Stochastic Approximation beyond Gradient for Signal Processing and Machine Learning. IEEE Trans Signal
Processing, 2023.

- Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization.
Statistics and Computing, 2023.

- An online Minorization-Maximization algorithm. IFCS 2022 proceedings.

- Federated Expectation Maximization with heterogeneity mitigation and variance reduction. NeurlPS, 2021.

- The Fast Incremental Expectation Maximization for finite-sum optimization: nonasymptotic convergence.
Statistics and Computing, 2021.

- The Perturbed Prox-Preconditioned SPIDER algorithm: non-asymptotic convergence bounds. /EEE Statistical
Signal Processing Workshop proceedings, 2021.

- Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum
Optimization. IEEE International Conference on Acoustics, Speech and Signal Processing proceedings, 2021.
-A Stochastic Path Integrated Differential Estimator Expectation Maximization Algorithm. NeurlPS, 2020.
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Sketch of proof

A Lyapunov function V" with Ly -Lipschitz gradient

L
V(wht1) S V(wk) +(VV(wk), i1 = wi) + —llwkn —wi]®
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Sketch of proof

L
Vi(wksn) < Viwn) + (TV(er), ek —wx )+ 50 ok — ol

The definition of the iterative scheme

. L > ) 2
V(wgs1) < V(wk) +vet+1 (VV(wr), H(wk, Zr41)) + 2V Vw1 1H (Wi, Ze41)|°
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Sketch of proof

L
V(we+1) < V(wk)+ve+1 <VV(¢%)7 H(wk, Zry1) >+7V7§+1 | H (wi, Zrs1)II?

The conditional expectation
BV (wit1)|Fr] £ V(wr) +vr41 {VV(wr), E[H(wk, Zit1)|Fr])

Ly . 2
+ T’Y}§+1 £ [HH(w"zw- Zi+1)|l U:},}
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Sketch of proof

E [V (@r+)IFe] < Vwr) + 641 (IV(wr), E[H(wr, Zer1)|Fe] )
L
+ 2L E I H wk, Zern) P17
The mean field h and the bias term
E [V(wr+1)|Fk] € V(wk) + k41 (VV(wk), h(wk))
+ Ye+1 (VV(wi), E[H(wk, Zik+1)|Fr] — h(wk))

Ly 6
+ 7"/134-1 E MH(wkn Zk+1)\|2\-7:k]
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Sketch of proof

E [V (wit1)|Fr] < V(wr) +vr11 (VV(wr), h(wk))
+ Ye+1 (VV(wi), E[H(wk, Zk+1)|Fk] — h(wk))

Lv
+ e E[IH @k Zien)IP1 7]

Cond L? = Cond Var + (Cond Exp)?
E [V(wrt1)|Fr] < V(wr) + k41 (VV(wk), h(wk))
+Yet+1 (VV(wi), E[H(wk, Zr+1)|Fk] — h(wk))

Ly o ) o . 2
+ 7"*;“ E [HHW,,_ Znt1) — E[H(wk, Zis1)|Fu] |12 f;\}
Ly \ / 5 1112
+ 5 Ve [E[H (@, Zi1)|Fe] |
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E [V(wet+1)|Fr] € Vi(we) + 41 (VV(wk), h(wk))
+ k1 (VV(wr), E[H(wk, Zr41)|Fel = h(wr) )
+ 5ok B[IH (o Zara) — E[H ok, Zesn) 0] 12174]

L
+ Ve | E[H (e, Zesa) il —h(wi)  +  h(ws)

2
l

By assumptions: the drift term, the bias and variance of the oracles, and the mean
field are controlled by W.
Apply the expectation.

There exist constants s.t. for any k£ > 0,

E[V(wit1)] < E[V(wi)] = Yot1 (p — by — Yk LV2"1 ) E [W (w)]

L
+ Yot1bo + V24 VT"“
A drift term for 7, small enough. Sum from k =0 to k = T — 1; conclude.
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