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Abstract

We prove the existence of fast traveling pulse solutions in excitable media with non-local coupling.

Existence results had been known, until now, in the case of local, diffusive coupling and in the case of a

discrete medium, with finite-range, non-local coupling. Our approach replaces methods from geometric

singular perturbation theory, that had been crucial in previous existence proofs, by a PDE oriented

approach, relying on exponential weights, Fredholm theory, and commutator estimates.
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1 Introduction

Excitable media play a central role in our understanding of complex systems. Chemical reactions [2, 19],

calcium waves [35], and neural field models [6, 7] are among the examples that motivate our present

study. A prototypical model of excitable kinetics are the FitzHugh-Nagumo kinetics, derived first as a

simplification of the Hodgkin-Huxley model for the propagation of electric signals through nerve fibers

[20],

du

dt
= f(u)− v, (1.1a)

dv

dt
= ε(u− γv), (1.1b)

where, for instance, f(u) = u(1 − u)(u − a). For 0 < a < 1/2 and γ > 0, not too large, all trajectories

in this system converge to the trivial equilibrium u = v = 0. The system is however excitable in the

sense that finite-size perturbations of u, past the excitability threshold a, away from the stable equilibrium

u = v = 0, can induce a long transient, where f(u) ∼ v, u > 1/2. During these transients, which last for
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times O(1/ε), u is said to be in the excited state; eventually, u returns to values f(u) ∼ v, u < 1/2, the

quiescent state.

Interest in these systems stems from the fact that, although kinetics are very simple and ubiquitous in

nature, with convergence of all trajectories to a simple stable equilibrium, spatial coupling can induce quite

complex dynamics. The simplest example is the propagation of a stable excitation pulse, more complicated

examples include two-dimensional spiral waves and spatio-temporal chaos. Intuitively, a local excitation

can trigger excitations of neighbors before decaying back to the quiescent state in a spatially coupled

system. After initial transients, one then observes a spatially propagating region where u belongs to the

excited state.

Rigorous approaches to the existence of such excitation pulses have been based on singular perturbation

methods. Consider, for example,

∂tu(x, t) = ∂xxu(x, t) + f(u(x, t))− v(x, t), (1.2a)

∂tv(x, t) = ε(u(x, t)− γv(x, t)). (1.2b)

with x ∈ R. One looks for solutions of the form

(u,v)(x, t) = (u,v)(x− ct), (1.3)

and finds first-order ordinary differential equation for u,ux,v, in which one looks for a homoclinic solution

to the origin. The small parameter ε introduces a singularly perturbed structure into the problem which

allows one to find such a homoclinic orbit by tracking stable and unstable manifolds along fast intersections

and slow, normally hyberbolic manifolds [9, 18, 24]. This approach has been successfully applied in many

other contexts with slow-fast like structures, with higher- or even infinite-dimensional slow-fast ODEs; see

for instance [22, 23, 36].

Our interest is in media with infinite-range coupling. We will focus on linear coupling through convolutions,

although we believe that the existence result extends to a variety of other problems. To fix ideas, we consider

∂tu(x, t) = −u(x, t) +

∫
R
K(x− y)u(y, t)dy + f(u(x, t))− v(x, t), (1.4a)

∂tv(x, t) = ε(u(x, t)− γv(x, t)). (1.4b)

Our assumptions on the non-local coupling term −u+K∗u in (1.4a) roughly require exponential localization

and exponential stability of the excited and quiescent branch; see below for details. Our assumptions on

f and γ encode excitability. In addition, we only require the existence of non-degenerate back and front

solutions for the u-equation with frozen v ≡ const. Existence of such scalar front solutions has been

shown in many circumstances, for instance when K is positive. Non-degeneracy requires that the zero-

eigenvalue of front and back, induced by translation, is algebraically simple. Again, such degeneracy is a

consequence of monotonicity properties in many particular cases. Our main result states the existence of

a traveling-wave solution (1.3) for equations (1.4).

Traveling pulse solutions are stationary profiles (u(ξ),v(ξ)) of (1.4) in a comoving frame ξ = x − ct that
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are localized so that (u(ξ),v(ξ))→ 0 as ξ → ±∞. They satisfy the equations

−c d
dξ

u(ξ) = −u(ξ) +K ∗ u (ξ) + f(u(ξ))− v(ξ), (1.5a)

−c d
dξ

v(ξ) = ε(u(ξ)− γv(ξ)), (1.5b)

for some positive wave speed c > 0. Due to the convolution term K∗u, the derivative of the state variables

u,v at a point ξ in (1.5) depends on both advanced and retarded terms. Such systems are usually referred

to as functional differential equations of mixed type. Considered as evolution equations in the time-like

variable ξ, such equations present two major challenges:

(i) the initial-value problem is ill-posed due to the presence of both advanced and retarded terms;

(ii) even for functional differential equations with only retarded terms, the infinite time horizon caused

by the infinite range of the convolution kernel introduces technical difficulties.

The first difficulty has been overcome in various contexts, using exponential dichotomies as a major techni-

cal tool, instead of more geometric methods such as graph transforms; [17, 30, 31]. In particular, existence

and stability of both fronts and pulses have been established for such forward-backward systems with

finite-range coupling; see for instance [21, 22, 28, 29]. The second difficulty has not been addressed in

the context of mixed-type equations. While for one-sided, retarded, say, coupling, several approaches are

known that guarantee local well-posedness on suitable function spaces [16, 37], it is not clear how the

constructions in [17, 30, 31] would extend.

Our approach avoids such complications, relying on more direct functional analytic tools instead of dy-

namical systems methods. We will give a precise statement of our result in the next section and conclude

this introduction with a comparison of our results with results elsewhere in the literature.

Our result was primarily motivated by neural field equations. In fact, the existence problem for pulses in

nonlocal excitable media was first addressed in the context of neural field equations with linear adaptation

[6, 7, 32]. Neural field equations are nonlocal integro-differential equations of the form

∂tu(x, t) = −u(x, t) +

∫
R
K(x− y)S(u(y, t))dy − v(x, t), (1.6a)

∂tv(x, t) = ε(u(x, t)− γv(x, t)), (1.6b)

where u(x, t) represents the local activity of a population of neurons at position x ∈ R in the cortex, and

the neural field v(x, t) represents a form of negative feedback mechanism. The nonlinearity S is the firing

rate function and is often assumed to be of sigmoidal shape. Note that the main difference between systems

(1.4) and (1.6) is whether the nonlinearity acts inside or outside the convolution, a difference that does

not affect the techniques we employ here. We note that in this context, kernels K are usually assumed to

be positive, symmetric, and localized [5, 12, 32], matching the constraints that we will impose below.

We conclude this introduction by mentioning two results on existence of pulses in nonlocal excitable media

in the literature. Pinto & Ermentrout [32] use a formal singular singular limit to construct a leading

order traveling pulse solution. They noticed that in a suitable spatial scaling, the convolutions converge

to point evaluations, which allow one to construct a leading-order approximation of the profile in excited
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and recovery phases. The authors do not attempt to estimate or control errors of this leading-order

approximation. Our paper can be viewed as doing just that, introducing a number of technical tools on

the way. On the other hand, Faye [13] exploited a special form of the kernel K, which allows one to reduce

the nonlocal problem to an equivalent local differential system. One can then rely again on geometric

singular perturbation theory. The approach is, however, intrinsically limited to special, “exponential type”

kernels that can be interpreted has Green’s functions to linear differential equations.

Outline. The remainder of this paper is organized as follows. We give a precise statement of our assump-

tions and state our main Theorem 1 in Section 2. We also give a short sketch of proof, in particular relating

techniques used here to the geometric methods used elsewhere. In Section 3, we construct quiescent and

excited pieces of the excitation pulse. We use those together with fast front and back solutions from the

scalar problem in a leading-order Ansatz in Section 4. Section 5 then puts all pieces together and concludes

the proof of our main Theorem 1.

2 Existence of excitation pulses — main result

We formulate our main hypotheses, Section 2.1, state our main result, Section 2.2, discuss extensions and

limitations, Section 2.3, and give an outline of the proof, Section 2.4.

2.1 Notation and hypotheses

We are interested in the existence of solutions (u(ξ),v(ξ)) of the system

−c d
dξ

u(ξ) = −u(ξ) +K ∗ u (ξ) + f(u(ξ))− v(ξ), (2.1a)

−c d
dξ

v(ξ) = ε(u(ξ)− γv(ξ)), (2.1b)

which are spatially localized,

lim
ξ→±∞

(u(ξ),v(ξ)) = (0, 0).

Here, c > 0 is the wave speed that needs to be determined as part of the problem and 0 < ε� 1 is a small

but fixed parameter.

Our first assumption concerns the nonlinearity, which we assume to be of excitable type.

Hypothesis (H1) The nonlinearity f is a C∞-smooth function with f(0) = f(1) = 0, f ′(0) < 0 and

f ′(1) < 0. Moreover, we assume that γ > 0 is small enough so that f(γv) 6= v. Lastly, we assume that

f(u) − v is of bistable type for v ∈ (vmin, vmax), fixed, that is, it possesses precisely three nondegenerate

zeroes.

The assumptions on f are illustrated in Figure 2.1. We denote the left and right zeroes of f(u) − v by

uq = ϕq(v) and ue = ϕe(v) and denote by Iq and Ie the ranges of ϕq and ϕe.
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Figure 2.1: Illustration of the assumptions on the nonlinearity f , left. To the right, the singular pulse,

consisting of the quiescent part Uq on the left branch of the slow manifold, the back Ub connecting to the

excited branch, the excitatory part Ue, and the front solution Uf . The five parameters (vq, vb, vbe, vef , c)

encode take-off and touch-down points, and ensure invertibility of the linearization at the singular solution.

Our second assumption concerns the convolution kernel K. For any η ∈ R, we define the space of expo-

nentially weighted functions on the real line equipped with its usual norm

L1
η :=

{
u : R→ R |

∫
R
eη|ξ||u(ξ)|dξ <∞

}
.

We also write δ(ξ) for the dirac distribution with
∫
δ = 1.

Hypothesis (H2) We suppose that the kernel K can be written as a sum Kcont +Kdisc with the following

properties:

• There exists η0 > 0 such that Kcont ∈ L1
η0;

• Kdisc =
∑

j∈Z ajδ(ξ − ξj), and
∑

j |aj |eη0|ξj | <∞;

• the Fourier transform K̂(i`) of K satisfies K̂(0) = 1 and K̂(i`)− 1 < 0 for ` 6= 0.

The first two assumptions, on regularity and on localization, mimic the assumptions in [14], where Fred-

holm properties of nonlocal operators were established. The assumption K̂(0) =
∫
K = 1 is merely a

normalization condition and can be achieved by scaling and redefining f . The last assumption can be

slightly relaxed to

K̂(i`)− 1− f ′(u) < 0, for all ` 6= 0, u ∈ [ϕq(v∗), 0] ∪ [ϕe(v∗), 1],

where v∗ is defined in Hypothesis (H3), below. Our assumptions do cover typical exponential or Gaussian

kernels, as well as infinite-range pointwise interactions. A few comments on the last assumption are in

order. Exponential localization guarantees that

K̂(z) =

∫
R
K(x)e−zxdx
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is analytic in a strip |<(z)| < η∗. Values of the characteristic function

∆j,v,c(z) = zc− 1 + K̂(z) + f ′ (u) ,

determine the spectrum of the linearization at a constant state u. Our assumption then guarantees that

constant states with f ′(u) < 0 do not possess zero spectrum, also in spaces with exponential weights

|η| < η∗ sufficiently small.

The last assumption refers to the u-system with v ≡ const. Consider therefore

− c∗
d

dξ
u(ξ) = −u(ξ) +K ∗ u (ξ) + f(u(ξ))− v0, (2.2)

and the corresponding linearized operator

L(u∗)u(ξ) = c∗
d

dξ
u(ξ)− u(ξ) +K ∗ u (ξ) + f ′(u∗(ξ))u(ξ). (2.3)

Hypothesis (H3) We assume that there exists non-degenerate front and back solutions with equal speed.

More precisely, there exists c∗, v∗ > 0 such that (2.2) possesses a front solution uf and a back solution

ub with equal speed c = c∗, and v-values v = 0 and 0 < v = v∗ < vmax, respectively, that satisfy the limits

lim
ξ→−∞

uf (ξ) = 1, lim
ξ→+∞

uf (ξ) = 0,

lim
ξ→−∞

ub(ξ) = ϕq(v∗), lim
ξ→+∞

ub(ξ) = ϕe(v∗).

Moreover, the operators L(uf ) and L(ub) each possess an algebraically simple eigenvalue λ = 0.

We remark that both linearized operators are automatically Fredholm of index zero [14], so that the

algebraic multiplicity of the eigenvalue λ = 0 is finite. Since the derivatives of front and back profile

contribute to the kernel, multiplicity is at least one.

While hypotheses (H1) and (H2) are direct assumptions on nonlinearity and kernel, (H3) is an indirect

assumption on both. For positive and even kernels, existence and stability can be established using com-

parison principles and monotonicity arguments; see for instance [3, 5, 10] for the specific case where

f(u) = u(1 − u)(u − a), with 0 < a < 1
2 . We also mention the early work of Ermentrout & McLeod [12]

who proved the existence of traveling front solutions for the neural field system (1.6) with no adaptation.

In a slightly different direction, De Masi et al. proved existence and stability results for traveling fronts

in nonlocal equations arising in Ising systems with Glauber dynamics and Kac potentials [11]. In all these

cases, fronts are in fact monotone, a property that is however not needed in our construction.

On the other hand, the set of hypotheses (H1)-(H3) form open conditions on nonlinearity and kernel: non-

degenerate fronts can readily be seen to persist under small perturbations, using for instance a variation

of the methods presented in our proof.

2.2 Main result – summary

We can now state our main result.
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Theorem 1. Consider the nonlocal FitzHugh-Nagumo equation (1.4) and suppose that Hypotheses (H1)-

(H3) are satisfied; then for every sufficiently small ε > 0, there exist functions uε,vε ∈ C1(R,R) and a

wave speed c(ε) > 0 that depends smoothly on ε > 0 with c(0) = c∗, such that

(u(x, t),v(x, t)) = (uε(x− c(ε)t),vε(x− c(ε)t)) (2.4)

is a traveling wave solution of (1.4) that satisfies the limits

lim
ξ→±∞

(uε(ξ),vε(ξ)) = (0, 0). (2.5)

Together with the discussion after Hypothesis (H3), we can state the following somewhat more explicit

result.

Corollary 2.1. The nonlocal FitzHugh-Nagumo equation, f(u) = u(1−u)(u−a), 0 < a < 1
2 , γ sufficiently

small, K,K′ ∈ L1
η0, K even, positive, with

∫
K = 1, possesses a traveling pulse solution.

Our approach is self-contained, roughly replacing subtle results on exponential dichotomies [17, 30, 31] with

crude Fredholm theory. Given the basic simplicity, we believe that our approach should cover a variety of

different solution types and different media. For instance, one can readily see how to prove the existence of

periodic wave trains in excitable or oscillatory regimes, or front solutions in bistable regimes. In analogy

to the case of discrete media [21], we expect different phenomena when c∗ = 0, that is, for a ∼ 1/2 in

the cubic case, or for the slow pulse [4, 27]. Since the convolution operator does not regularize, compactly

supported and discontinuous solutions can occur.

2.3 Generalizations and limitations

We comment on several aspects of our main result, pointing out generalizations, limitations, and possible

future work.

Uniqueness. The construction of the pulse ultimately relies on a contraction principle, which guarantees

uniqueness (up to translation) in a small neighborhood. A description of this neighborhood is rather

technical and uniqueness would presumably hold in a larger class, so that we refrain from adding a precise

statement. Generally, dynamical systems approaches give stronger uniqueness results since the set of

solutions is described pointwise in space, rather than in a function space.

The pulse is certainly not unique in the set of bounded or even localized solutions. For instance, our

methods should also give existence of periodic pulse trains or a slow pulse with speed c = O(ε), which are

well understood in the local, PDE setting [25, 27].

Stability. One suspects that the pulses constructed here are spectrally and nonlinearly stable, similar to

pulses in the PDE setting. Using similar methods as in the existence proof, one can show that the linearized

problem does not possess eigenvalues in <(λ) ≥ −δ for some δ > 0 in a suitably weighted exponential space

— except for possibly two eigenvalues in a neighborhood of the origin stemming from separate translations

of front and back of the pulse. Since one of those two eigenvalues is pinned at λ = 0 by translation

symmetry, the key step for proving stability then involves the expansion of the second eigenvalue; see [23].

It is not clear to us if the error estimates in our construction will suffice to obtain such an expansion.
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Generalizations. Our approach was used, in a simpler context, in [14] to establish existence of shocks

in non-local conservation laws and to track eigenvalues in the continuous spectrum via a Gap lemma

construction for an Evans function. Both applications basically rely on the construction of strong stable

manifolds for nonlocal problems, a problem much simpler than the construction of slow manifolds and

exchange lemmas required for the FitzHugh-Nagumo pulse; see the outline of our proof, below. On the

other hand, we believe that one can mimic most ODE constructions, including higher-dimensional center-

manifolds and normal forms using our approach. In a different direction, it would nevertheless be interesting

to construct a dynamical-systems approach via exponential dichotomies to these infinite-delay forward-

backward problems.

Limitations — localization and regularity. Existence of front and back does not require exponential

localization of the kernel K, while our construction does. Also, one expects existence results for front and

back with somewhat singular kernels K. In both cases, adapting our results might be challenging. The

construction of the pulse essentially relies on a weak interaction between front and back. In the ODE

construction, this is reflected in hyperbolicity of the slow manifold. Algebraic localized kernels introduce a

second, competing mode of interaction, possibly destroying or destabilizing the pulse. On the other hand,

singularity in the kernel may compete with the advection term c∂x in the v-component: results in [1] give

some evidence how such singularities may alter asymptotics.

2.4 Sketch of the proof

Our proof of Theorem 1 can be roughly divided into four main parts that can be outlined as follows.

Step 1: Slow manifolds. In a first step, we shall construct invariant slow manifolds for nonlocal dif-

ferential equations of the form (2.1) for 0 < ε � 1 and c > 0. Proving the persistence of invariant slow

manifolds in the context of singularly perturbed ODEs was originally shown using graph transform [15].

Later, an alternative proof based on variation of constant formulas and exponential dichotomies for dif-

ferential equations with slowly varying coefficients was given [34]. This latter approach was extended to

ill-posed, forward-backward equations in [21, 33]. Our approach completely renounces the concept of a

phase space while picking up the main ingredients from the dynamical systems proofs: we modify non-

linearities outside a fixed neighborhood, construct an approximate trial solution, linearize at this “almost

solution”, and find a linear convolution type operator with slowly varying coefficients. We invert this op-

erator by constructing suitable local approximate inverses and conclude the proof by setting up a Newton

iteration scheme. We will see that the solution on the slow manifold satisfies a scalar ordinary differential

equation, with leading order given by an expression equivalent to the one formally derived in [32].

Step 2: The singular solution. We construct a singular solution using front and back solutions from

Hypothesis (H3), together with pieces of slow manifolds from Step 1. We glue those solutions using

appropriately positioned partitions of unity. Using partitions of unity instead of the matching procedure

in cross-sections to the flow, common in dynamical systems approaches, is a second key difference of our

approach. It allows us to avoid the notion of a phase space. Schematically, the solution is formed by gluing

together a quiescent part Uq on the left branch of the slow manifold to a back solution Ub, then to an
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excitatory part Ue on the right branch of the slow manifold, then to a front solution Uf as shown in Figure

2.1. On each solution piece, we allow for a correction W. See also Figure 4.1 for a detailed picture.

Step 3: Linearizing and counting parameters. In order to allow for weak interaction between the

different corrections to solutions, we use function spaces with appropriately centered exponential weights.

The weights, at the same time, encode the facts that solution pieces lie in either strong stable or unstable

manifolds, or, in a more subtle way, the Exchange Lemma that tracks inclination of manifolds transverse

to stable foliation forward with a flow [8, 24, 26]. Our setup can be viewed as a version of [8], without

phase space, in the simplest setting of a one-dimensional slow manifold.

Linearizing at the different solution pieces, we find Fredholm operators with negative index. Roughly

speaking, uniform exponential localization of perturbations does not allow corrections in the slow direc-

tion. In addition, the linearizations at back and front contribute one-dimensional cokernels, each. In the

dynamical systems proofs, matching in cross-sections is accomplished by exploiting

• free variables in stable and unstable manifolds;

• auxiliary parameters, in our case c;

• variations of touchdown and takeoff points on the slow manifolds.

We mimic precisely this idea, pairing the negative index Fredholm operators with suitable additional

parameters, so that parameter derivatives span cokernels. A more detailed description is encoded in

Figure 2.1. We associate to the quiescent part Uq the takeoff parameter vq ≈ v∗, which encodes the base

point of the stable foliation that contains the back. We associate to the excitatory part Ue touchdown and

takeoff parameters vbe ≈ v∗ and vef ≈ 0 that will compensate for the mismatched between the back and

front parts. Finally we assign to the back Ub the separate touchdown parameter vb ≈ v∗ and to the front

Uf the wave speed c ≈ c∗. These two parameters effectively compensate for cokernels of front and back

linearizations.

Step 4: Errors and fixed point argument. Our last step will be to use a fixed point argument to

solve an equation of the form

Fε(W, (vq, vb, vbe, vef , c)) = 0,

that is obtained by substituting our Ansatz directly into the system (2.1). More precisely, we will show

that

(i) ‖Fε(0, (v∗, v∗, v∗, 0, c∗))‖ → 0 as ε→ 0 in a suitable norm;

(ii) D(W,λ)Fε(0, (v∗, v∗, v∗, 0, c∗)) is invertible with bounded inverse uniformly in 0 < ε� 1;

(iii) Fε possesses a unique zero on suitable Banach spaces using a Newton iteration argument.

Here, (ii) follows from Step 3 and (iii) is a simple fixed point iteration. Errors (i) are controlled due to the

careful choice of Ansatz and a sequence of commutator estimates between convolution kernels and linear

or nonlinear operators.
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3 Persistence of slow manifolds

In this section, we proof existence of solutions near the quiescent and the excited branch of f(u) = v,

Mq := {(ϕq(v), v)} , Me := {(ϕe(v), v)} .

We follow the ideas used in the construction of slow manifolds in dynamical systems and use a cut-

off function to modify the slow flow outside a neighborhood that is relevant for our construction. We

emphasize however that, due to the infinite-range coupling, the concept of solution defined locally in time

is not applicable. In other words, the fact that we are modifying the equation outside of a neighborood

will create error terms for all ξ.

We use a simple modification of (1.5), multiplying the right-hand side of the v-equation by a cut-off function

Θ(v) as shown in Figure 3.1. The modified equation now reads

−c d
dξ

u(ξ) = −u(ξ) +K ∗ u(ξ) + f(u(ξ))− v(ξ), (3.1a)

−c d
dξ

v(ξ) = ε(u(ξ)− γv(ξ))Θ(v(ξ)). (3.1b)

Formally, this introduces two equilibria on the slow manifold, with the effect that the solution on the slow

manifold is expected to be a simple heteroclinic orbit. In order to exhibit the slow flow, we rescale space

by introducing ζ = εξ so that (3.1) becomes

−εc d
dζ

u(ζ) = −u(ζ) +Kε ∗ u(ζ) + f(u(ζ))− v(ζ), (3.2a)

−c d
dζ

v(ζ) = (u(ζ)− γv(ζ))Θ(v(ζ)), (3.2b)

where we have defined the rescaled kernel as Kε(ζ) := ε−1K(ε−1ζ). At ε = 0, the slow system is given by

0 = f(u(ζ))− v(ζ), (3.3a)

−c d
dζ

v(ζ) = (u(ζ)− γv(ζ))Θ(v(ζ)), (3.3b)

since formally, Kε → δ, the Dirac distribution. Now, for each c > 0, there exists a heteroclinic solution

(ϕq(vh,q),vh,q) to (3.3) on the quiescent slow manifoldMq, connecting the rest state (0, 0) to (ϕq(v+), v+)

for which the profile vh,q ∈ C∞(R,R) satisfies

− c d
dζ

v = (ϕq(v)− γv)Θ(v), (ϕq(v),v) ∈Mq (3.4)

with limits

lim
ζ→−∞

vh,q(ζ) = 0 and lim
ζ→+∞

vh,q(ζ) = v+. (3.5)

We normalize the solution so that vh,q(0) = v∗. Furthermore, for each c > 0, there also exists a heteroclinic

solution (ϕe(vh,e),vh,e) ∈Me connecting the rest state (ϕe(v+), v+) to (ϕe(v−), v−) on the excitatory slow

manifold Me for which the profile vh,e ∈ C∞(R,R) satisfies

− c d
dζ

v = (ϕe(v)− γv)Θ(v), (ϕe(v),v) ∈Me (3.6)
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Figure 3.1: The definition of the cut-off function Θ(v).

with limits

lim
ζ→−∞

vh,e(ζ) = v+ and lim
ζ→+∞

vh,e(ζ) = v−. (3.7)

We normalize this solution so that vh,e(0) = 0.

Our goal in this section is to show that these two heteroclinic solutions persist for 0 < ε � 1 using a

fixed point argument for nonlocal differential evolution equations with slowly varying coefficients. We give

formal statements of the main result; a schematic picture of these heteroclinics relative to the singular

pulse is shown in Figure 3.2.

Proposition 3.1 (Quiescent slow manifold). For every sufficiently small ε > 0 and any c > 0, there exist

functions uq,vq ∈ C∞(R,R) such that

(uq(εξ),vq(εξ)) (3.8)

is a heteroclinic solution of (3.1) that satisfies the limits

lim
ζ→−∞

(uq(ζ),vq(ζ)) = (0, 0) and lim
ζ→+∞

(uq(ζ),vq(ζ)) = (ϕq(v+), v+). (3.9)

Up to translation, this solution is locally unique and depends smoothly on ε and c.

Proposition 3.2 (Excitatory slow manifold). For every sufficiently small ε > 0 and any c > 0, there exist

functions ue,ve ∈ C∞(R,R) such that

(ue(εξ),ve(εξ)) (3.10)

is a heteroclinic solution of (3.1) that satisfies the limits

lim
ζ→−∞

(ue(ζ),ve(ζ)) = (ϕe(u+), u+) and lim
ζ→+∞

(ue(ζ),ve(ζ)) = (ϕe(v−), v−). (3.11)

Up to translation, this solution is locally unique and depends smoothly on ε and c.

The proofs of these two propositions will occupy the rest of this section. We remark that this construction

of slow manifolds in nonlocal equations is somewhat general but comes with some caveats. First, the

construction is simple here, since the slow manifold is one-dimensional and hence consists of a single

trajectory, only. As a consequence, smoothness of slow manifolds is trivial, here. Second, the solutions

are not solutions for the original system, without the modifier Θ, since the equation has infinite-range

11



Figure 3.2: Heteroclinics from Proposition 3.1 (left,purple) and from Proposition 3.2 (right,orange). The

upper limit v+ is induced by the cut-off Θ which is superimposed on the v-axis.

interaction in time. In other words, the modified piece of the trajectory influences the solution even where

the solution takes values in the unmodified range. We will however exploit later that the error terms

stemming from this modification are exponentially small due to the exponential localization of the kernel.

We also note that monotonicity of vq (and similarly ve) implies that vq solves a simple first-order differential

equation, the “reduced equation” on the slow manifold. Again, this equation depends, even locally, on the

modifier Θ. From our construction, below, one can easily see that the leading-order vector field in ε is just

the one given in (3.6).

3.1 Set-up of the problem

The strategy for the proof of Propositions 3.1 and 3.2 is as follows. First, we introduce the map

F ε : (u,v) 7−→
(
cε
d

dζ
u− u +Kε ∗ u + f(u)− v, c

d

dζ
v + (u− γv)Θ(v)

)
. (3.12)

We can immediately confirm that any solution (u,v) of F ε(u,v) = 0 is, by definition of the map F ε, a

solution of system (3.2). From the above analysis, a natural extension to ε = 0 is

F0 : (u,v) 7−→
(
f(u)− v, c

d

dζ
v + (u− γv)Θ(v)

)
. (3.13)

For sufficiently small ε > 0, (ϕe(vh,e),vh,e) should thus be an approximate solution to F ε(u,v) = 0,

when vh,e is obtained from solving the second component of F ε with u = ϕe(vh,e), (3.6). The following

proposition quantifies the corresponding error.

Proposition 3.3. As ε→ 0, the following estimate holds

‖F ε (ϕj(vh,j),vh,j)‖L2×L2 = O(ε), (3.14)

for j = q, e.

12



Suppose for a moment that we are able to prove the following result.

Proposition 3.4. Let DF ε(ϕj(vh,j),vh,j) be the linearization of F ε at the heteroclinic solution (u,v) =

(ϕj(vh,j),vh,j), j = q, e, and denote by X the Banach space X :=
{
u ∈ H1 | u(0) = 0

}
. Then, there exists

ε0 and C > 0 so that for all 0 < ε < ε0 we have

(i) DF ε(ϕj(vh,j),vh,j) : H1 ×X → L2 × L2 is invertible;

(ii)
∥∥DF ε(ϕj(vh,j),vh,j)−1∥∥ ≤ C, uniformly in ε;

for j = q, e.

We can then set-up a Newton-type iteration scheme

(un+1,vn+1) = Sε(un,vn) := (un,vn)− (DF ε(ϕj(vh,j),vh,j))−1F ε (ϕ(vh,j) + un,vh,j + vn) , (3.15)

for j = q, e, with starting point (u0,v0) = (0,0). With the previous observations, we find that the map

Sε : H1 ×X −→ H1 ×X possesses the following properties:

• there exists C0 > 0, such that ‖Sε(0, 0)‖H1×X ≤ C0ε as ε→ 0;

• Sε is a C∞-map;

• DSε(0,0) = 0;

• there exist δ > 0 and C1 > 0 such that for all (u,v) ∈ Bδ, the ball of radius δ centered at (0,0) in

H1 ×X , ‖DSε(u,v)‖ ≤ C1δ.

Now, suppose inductively that (uk,vk) ∈ Bδ for all 1 ≤ k ≤ n, then

‖(un+1,vn+1)− (un,vn)‖H1×X ≤ C1δ ‖(un,vn)− (un−1,vn−1)‖H1×X ,

so that

‖(un+1,vn+1)‖H1×X ≤
C0

1− C1δ
ε.

For small enough ε, we then have
C0

1− C1δ
ε < δ and (un+1,vn+1) ∈ Bδ, so that the map Sε is a contraction.

Banach’s fixed point theorem then gives a fixed point (uε,vε) = Sε(uε,vε).

As a conclusion, for every sufficiently small ε > 0 and for each c > 0, we have constructed functions uj
and vj that can be written as

uj = ϕ(vh,j) + uεj

vj = vh,j + vεj ,

such that (uj(εξ),vj(εξ)) is a heteroclinic solution of (3.1) with j = q, e.

It now remains to prove Propositions 3.3 and 3.4. In order to simplify our notation, we will write

(uh,vh) = (ϕ(vh,j),vh,j),

not distinguishing between the cases j = q and j = e since proofs in both cases are completely equivalent.
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3.2 Proof of Proposition 3.3

A direct computation shows that

F ε(uh,vh)(ζ) =

(
εc
d

dζ
uh(ζ)− uh(ζ) +Kε ∗ uh(ζ), 0

)
,

for all ζ ∈ R. In the following, we use A . B whenever A < CB, with C independent of ε. The key

ingredient to the proof is a comparison of the rescaled convolution with a dirac delta.

Proposition 3.5. For any w ∈ H1, ‖ −w +Kε ∗w‖L2 . ε‖w‖H1.

Proof. For all ζ ∈ R, we have

−w(ζ) +Kε ∗w(ζ) =

∫
R
K(y) (w(ζ − εy)−w(ζ)) dy = −ε

∫
R
yK(y)

∫ 1

0
w′(ζ − εys)dsdy.

Then (∫
R
yK(y)

∫ 1

0
w′(ζ − εys)dsdy

)2

≤
(∫

R
y2|K(y)|dy

)(∫
R
|K(y)|

∫ 1

0
w′(ζ − εys)2dsdy

)
.

Here, we have used the fact that K is exponentially localized so that its second moment always exists. This

readily yields

‖ −w +Kε ∗w‖L2 ≤ ε
(∫

R
y2|K(y)|dy

) 1
2

‖w‖H1 .

Next, define the affine spaces L̃2
j = Φj + L2, j = q, e, with distance given by the L2 norm, where

Φe(ζ) = ϕe(u+)χ−(ζ) + ϕe(v−)χ+(ζ) and Φq(ζ) = ϕq(v+)χ+(ζ),

where χ±(ζ) = (1± tanh(ζ))/2. In an analogous fashion, we define H̃1
j . Now the map

u 7→ εc
d

dζ
u− u +Kε ∗ u

is well defined from H̃1
j to L2. Combining the fact that uh ∈ H̃1 and the above proposition, we obtain∥∥∥∥−uh +Kε ∗ uh + εc

d

dζ
uh

∥∥∥∥
L2

. ε.

This implies that ‖F ε(uh,vh)‖L2×L2 = O(ε) and thus completes the proof of Proposition 3.3.
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3.3 Proof of Proposition 3.4

We recall that we obtained DF ε(uh,vh) by linearizing equation (3.2) around the heteroclinic solution

(uh,vh) found for ε = 0. A convenient way to represent DF ε(uh,vh) is through its matrix form

DF ε(uh,vh) =

(
Lε,ζ Lu,v
Lv,u Lv,v

)
, (3.16)

where the linear operators Lε,ζ , Lu,v, Lv,u and Lv,v are defined as follows

Lε,ζ :

{
H1 −→ L2

u 7−→ −u +Kε ∗ u + εc ddζu + f ′ (uh(ζ)) u,
(3.17a)

Lu,v :

{
H1 −→ L2

u 7−→ −u,
(3.17b)

Lv,u :

{
H1 −→ L2

u 7−→ Θ (vh(ζ)) u,
(3.17c)

Lv,v :

{
H1 −→ L2

u 7−→ c ddζu− γ (Θ (vh(ζ)) u + vh(ζ)Θ′ (vh(ζ)) u) .
(3.17d)

To prove Proposition 3.4, we will solve the linear system(
Lε,ζ Lu,v
Lv,u Lv,v

)(
u

v

)
=

(
h

g

)
, (3.18)

for all h,g ∈ L2 and u,v ∈ H1. Mimicking the dynamical systems approach of first diagonalizing the

frozen system, at ε = 0, we change variables(
Lε,ζ L̃u,v
Lv,u Lh,ζ

)(
ũ

v

)
=

(
h

g

)
, with ũ = u− 1

f ′ (uh(ζ))
v, (3.19)

and

L̃u,v :

 H1 −→ L2

u 7−→ − 1

f ′ (uh(ζ))
u +Kε ∗

(
1

f ′ (uh(ζ))
u

)
+ εc

d

dζ

(
1

f ′ (uh(ζ))
u

)
,

(3.20a)

Lh,ζ :

 H1 −→ L2

u 7−→ Lv,vu +
Θ (vh(ζ))

f ′ (uh(ζ))
u.

(3.20b)

Using Proposition 3.5 and the fact that ζ 7→ (f ′ (uh(ζ)))−1 is a bounded function for all ζ ∈ R, we directly

obtain that ‖L̃u,v‖H1→L2 = O(ε), so that it is sufficient to solve(
Lε,ζ 0

Lv,u Lh,ζ

)(
ũ

v

)
=

(
h

g

)
, (3.21)

with ε-uniform bounds. This in turn follows from obvious ε-uniform bounds on Lv,u and ε-uniform invert-

ibility of Lε,ζ : H1 → L2 and Lh,ζ : X → L2.
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3.3.1 Invertibility of Lε,ζ

First, let h ∈ L2 and consider the frozen system

Lε,ζ0u = h (3.22)

with ζ0 ∈ R fixed. The solution is obtained by convolution with the Green’s function Gε( · ; ζ0) : R → C
which we obtain as follows. We define ∆ζ0(i`) as

∆ζ0(i`) = −1 + K̂(i`) + f ′ (uh(ζ0)) + i`c, η ∈ R (3.23)

where we have set

K̂(i`) =

∫
R
K(ζ)e−i`ζdζ.

We observe that ∆ζ0(i`) = O(|`|) as ` → ±∞ and, since f ′ (uh(ζ0)) < 0, ∆ζ0(i`)−1 is well defined for

all ` ∈ R, so the function ` 7→ ∆ζ0(i`)−1 belongs to L2. We may therefore construct its inverse Fourier

transform,

G(ζ; ζ0) :=
1

2π

∫
R
eiζ`∆ζ0(i`)−1d` ∈ L2.

Lastly, the Green’s function Gε is now given through

Gε(ζ; ζ0) = ε−1G
(
ε−1ζ; ζ0

)
, ∀ζ ∈ R. (3.24)

Proposition 3.6. The operator Lε,ζ0 : H1 → L2 with ε small, ζ0 fixed, is an isomorphism, with inverse

given by convolution with Gε(ζ; ζ0) from (3.24),(
L−1ε,ζ0h

)
(ζ) = (Gε ∗ h) (ζ) =

∫
R
Gε(ζ − ζ̃; ζ0)h(ζ̃)dζ̃. (3.25)

Proof.

Interpreting Gε as a tempered distribution, we consider the distribution

F (ζ) = Lε,ζ0Gε(ζ; ζ0).

We can evaluate the Fourier transform F̂ of F and find

F̂ (`) =
(
−1 + K̂(iε`) + f ′ (uh(ζ0)) + iε`c

)
Ĝε(`; ζ0) = ∆ζ0(iε`)Ĝ(ε`; ζ0) = ∆ζ0(iε`)∆ζ0(iε`)−1 = 1.

Thus F = δ where δ denotes the Dirac delta distribution. Since ∆ζ0 is analytic in a strip, one can readily

show that G and Gε are exponentially localized, hence belong to L1.

We can now define u via convolution u = Gε ∗ h and Young’s inequality gives

‖u‖L2 ≤ ‖Gε‖L1(R)‖h‖L2 .

One readily verifies that u satisfies (3.22) in the sense of distributions and we conclude that u ∈ H1. It

then follows that Lε,ζ0 : H1 −→ L2 is onto. It remains to show that Lε,ζ0 is one-to-one. Suppose that

Lε,ζ0 · u = 0 for u ∈ H1. Then using Fourier transform on both sides we obtain(
−1 + K̂(iε`) + f ′ (uh(ζ0)) + iε`c

)
û(`) = 0

for all ` ∈ R. Then û(`) = 0 and hence u is the zero function.
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We now return to the construction of a right inverse of Lε,ζ . Let h ∈ L2 and consider the unfrozen system

Lε,ζu = −u +Kε ∗ u + εc
d

dζ
u + f ′ (uh(ζ)) = h, ∀ζ ∈ R. (3.26)

Exploiting the fact that coefficients are varying slowly, we use the solution of the frozen system (3.25) as

an Ansatz for (3.26) and show smallness of remainder terms. Therefore, define

ũ(ζ) = Nh(ζ) :=

∫
R
Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃ (3.27)

for all ζ ∈ R.

Lemma 3.7. The operator N : L2 → H1 is bounded, uniformly in ε.

Proof. From its definition (3.27), we obtain, using Holder’s inequality, that∫
R

(Nh(ζ))2 dζ =

∫
R

(∫
R
Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃

)2

dζ

≤
∫
R

(∫
R

sup
y∈R

∣∣∣Gε(ζ − ζ̃; y)
∣∣∣h(ζ̃)dζ̃

)2

dζ

≤

(∫
R

sup
y∈R
|Gε(ζ; y)| dζ

)2 ∫
R

h(ζ)2dζ.

The claim now follows from ∫
R

sup
y∈R
|Gε(ζ; y)| dζ =

∫
R

sup
y∈R
|G(ζ; y)| dζ = M.

We next substitute the Ansatz u = ũ + u1 into (3.26), with u1 ∈ H1. We find that u1 satisfies

Lε,ζu1 = (I − Lε,ζN ) h(ζ) =: Rε,ζh(ζ). (3.28)

Proposition 3.8. For all h ∈ L2, we have

‖Rε,ζh‖L2 . ε‖h‖L2 .

Proof. First, observe that the differentiability of ζ0 7→ Gε(ζ; ζ0) follows directly from its definition (3.24)

and the differentiability of ζ 7→ f ′ (uh(ζ)). We then denote ∂2Gε(·; ·) for the partial derivate with respect

to the second component. Next, since ∆ζ0(η) = O(|η|) as η → ±∞, we have ∂ζ0
(
∆ζ0(η)−1

)
= O

(
|η|−2

)
as η → ±∞, and the function η 7→ ∂ζ0

(
∆ζ0(η)−1

)
belongs to L1 so that

d

dζ

∫
R
Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃ =

∫
R
∂1Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃ +

∫
R
∂2Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃, ∀ζ ∈ R,

where ∂1Gε(·; ·) stands for the partial derivate with respect to the first component. A direct computation

shows that

Rε,ζh(ζ) =

∫
R
Kε(ζ − ζ̃)

(∫
R

[
Gε(ζ̃ − ζ̆; ζ)− Gε(ζ̃ − ζ̆; ζ̃)

]
h(ζ̆)dζ̆

)
dζ̃ − εc

∫
R
∂2Gε(ζ − ζ̃; ζ)h(ζ̃)dζ̃

= J1(ζ) + J2(ζ).
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For all (ζ, ζ̃, ζ̆) ∈ R3, we have

Gε(ζ̃ − ζ̆; ζ)− Gε(ζ̃ − ζ̆; ζ̃) = (ζ − ζ̃)

∫ 1

0
∂2Gε(ζ̃ − ζ̆; (1− s)ζ̃ + sζ)ds,

so that we can write J1 as

J1(ζ) = ε

∫
R

(ζ − ζ̃)Kε(ζ − ζ̃)

∫
R

(
h(ζ̆)

∫ 1

0
∂2Gε(ζ̃ − ζ̆; (1− s)ζ̃ + sζ)dsdζ̆

)
dζ̃

= ε

∫
R
yK(y)

∫
R

(
h(ζ̆)

∫ 1

0
∂2Gε(ζ − εy − ζ̆; ζ − (1− s)εy)dsdζ̆

)
dy

and

‖J1‖L2 ≤ ε
(∫

R
|ζ||K(ζ)|dζ

)1/2
(∫

R

∣∣∣∣∣sup
y∈R

∂2Gε(ζ; y)

∣∣∣∣∣ dζ
)
‖h‖L2 .

Furthermore, we also have

‖J2‖L2 ≤ εc

(∫
R

∣∣∣∣∣sup
y∈R

∂2Gε(ζ; y)

∣∣∣∣∣ dζ
)
‖h‖L2 .

which completes the proof.

We can construct a solution of (3.28) of the form

u1 = ũ1 + u2, ũ1 = NRε,ζh, u2 ∈ H1,

and u2 is solution of

Lε,ζu2 = (Rε,ζ − Lε,ζNRε,ζ) h = (I − Lε,ζN )Rε,ζh = R2
ε,ζh

with ‖R2
ε,ζ‖ � ε2. We inductively construct a sequence of functions

un = ũn + un+1, ũn = NRnε,ζh, un+1 ∈ H1,

where un+1 solves

Lε,ζun+1 = Rn+1
ε,ζ h, ‖Rn+1

ε,ζ ‖ � ε
n+1.

Then, for ε > 0 small enough, we obtain u, solution of (3.26), from the convergent geometric series

u = N

( ∞∑
n=0

Rnε,ζ

)
h = N (I −Rε,ζ)−1 h, ∀h ∈ L2. (3.29)

As a consequence, Lε,ζ : H1 −→ L2 is onto. Next, let u ∈ H1 be such that

Lε,ζu = 0.

Multiplying both sides by u and integrating over the real line, we find∫
R

u(ζ)Lε,ζu(ζ)dζ =

∫
R

u(ζ) (−u(ζ) +Kε ∗ u(ζ)) dζ +

∫
R
f ′ (uh(ζ)) u2(ζ)dζ.
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Using Parseval’s identity on the first term of the above equation, we obtain∫
R

u(ζ) (−u(ζ) +Kε ∗ u(ζ)) dζ = 2π

∫
R

(
−1 + K̂(iε`)

)
û(`)2d` ≤ 0.

Since f ′ (uh(ζ)) < 0 for all ζ ∈ R, we have
∫
R u(ζ)Lε,ζu(ζ)dζ < 0 unless u = 0, which proves that Lε,ζ is

one-to-one. In conclusion we have proved the following result.

Proposition 3.9. The operator Lε,ζ : H1 → L2 is an isomorphism with ε-uniformly bounded inverse

L−1ε,ζ = N (I −Rε,ζ)−1 ,

where N and Rε,ζ were defined in (3.27) and (3.28), respectively.

3.3.2 Invertibility of Lh,ζ

In this section we show that Lh,ζ is invertible from X =
{
u ∈ H1 | u(0) = 0

}
to L2. We define the operator

T : H1 → L2 as

T u =
d

dζ
u−A(ζ)u, A(ζ) = c−1

(
γ
(
Θ (vh(ζ)) + vh(ζ)Θ′ (vh(ζ))

)
− Θ (vh(ζ))

f ′ (uh(ζ))

)
,

with limiting entries A± = lim
ζ→±∞

A(ζ) given by

A− = c−1
(
γ − 1

f ′ (0)

)
> 0 and A+ = c−1γv+Θ′(v+) < 0,

for the quiescent case, and by

A− = c−1
(
γ − 1

f ′ (ϕe(v+))

)
> 0 and A+ = c−1γv−Θ′(v−) < 0,

for the excitatory case. The signs of A± imply that T is Fredholm with Fredholm index 1. The

kernel is at most one-dimensional since solutions to the ODE are unique. Therefore, restricting to

X =
{
u ∈ H1 | u(0) = 0

}
, Lh,ζ yields an invertible operator from X to L2.

3.3.3 Conclusion of the proof

Proof of Proposition 3.4. Invertibility of Lε,ζ : H1 → L2 and Lh,ζ : X → L2, smallness of Lu,v, and

boundedness of Lu,v give invertibility of DF ε(uh,vh). We now show that
∥∥DF ε(uh,vh)−1

∥∥ is bounded

uniformly in ε which will prove the second and last part of the proposition. Using Proposition 3.9, we have

that L−1ε,ζ = N (I −Rε,ζ)−1 and
∥∥∥(I −Rε,ζ)−1

∥∥∥ ≤ 1. Since N is bounded by (3.7), we find uniform bounds

on L−1ε,ζ as claimed. Differentiability with respect to parameters is a consequence of differentiability of the

function F ε. A simple bootstrap argument gives smoothness in ζ.
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3.4 Invertibility in the fast component

In this section, we prove a complementary result that will be useful for the forthcoming sections. For ε > 0

and c > 0, we will invert

Lε : H1 −→ L2, [Lεw] (ξ) = −w(ξ) +K ∗w(ξ) + c
d

dξ
w(ξ) + f ′ (uh(εξ)) w(ξ). (3.30)

Lemma 3.10. There exists 0 < ηh < η0 and ε0 > 0 such that for all |η| < ηh, 0 < ε < ε0 and c > 0, Lε is

an isomorphism from H1
η to L2

η with ε-uniform bounds on the inverse, depending continuously on c, η.

Proof. Fix ξ0 ∈ R and consider again the frozen operator

Lξ0ε : H1 −→ L2,
[
Lξ0ε w

]
(ξ) = −w(ξ) +K ∗w(ξ) + c

d

dξ
w(ξ) + f ′ (uh(εξ0)) w(ξ).

Following the previous approach, we define

∆εξ0(i`) = −1 + K̂(i`) + f ′ (uh(εξ0)) + i`c, G(ξ; εξ0) =
1

2π

∫
R
ei`ξ

[
∆εξ0(i`)

]−1
d`.

Since G is exponentially localized, there exists 0 < ηh < η0 such that Lξ0ε is an isomorphism from H1
η to

L2
η for all |η| < ηh, with inverse given by convolution[(

Lξ0ε
)−1

h

]
(ξ) = (G ∗ h) (ξ) =

∫
R
G(ξ − ξ̃; εξ0)h(ξ̃)dξ̃.

We introduce the linear operators N and Rε, defined as

[Nh] (ξ) :=

∫
R
G(ξ − ξ̃; εξ)h(ξ̃)dξ̃, [Rεh] (ξ) := [(I − LεN ) h] (ξ)

for all ξ ∈ R. A direct computation shows that for all h ∈ L2
η, we have

‖Rεh‖L2
η
. ε‖h‖L2

η
.

Then, there exists ε > 0 such that for all 0 < ε < ε0, N (I −Rε)−1 is well-defined from L2
η to H1

η and

u = N (I −Rε)−1 h

is a solution of Lεu = h. It is straightforward to check that Lε is also one-to-one.

4 Construction of the traveling pulse solution

4.1 The Ansatz

In the following, we present a decomposition of the solution into the singular pulse and corrections, sepa-

rated using cut-off functions and exponentially localized weights. A schematic illustration of this procedure

is shown in Figure 4.1.
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We write Uf = (uf , 0) where uf ∈ C∞(R,R) is the front solution from Hypothesis (H3), solving

− c∗
d

dξ
u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ)), (4.1)

with

lim
ξ→−∞

uf (ξ) = 1, lim
ξ→+∞

uf (ξ) = 0, and uf (0) =
1

2
.

Similarly, we set Ub = (ub, vb1) where vb ∈ (v∗ − δb, v∗ + δb) ⊂ (vmin, vmax) is a free parameter and

ub ∈ C∞(R,R) is the solution of

− cb
d

dξ
u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ))− vb (4.2)

with limits

lim
ξ→−∞

ub(ξ) = ϕq(vb), lim
ξ→+∞

ub(ξ) = ϕe(vb) and ub(0) = (ϕe(vb)− ϕq(vb)) /2.

Again, this solution is obtained from Hypothesis (H3) for vb = v∗. Using the implicit function theorem

and simplicity of the zero eigenvalue, we can find the profile ub ∈ C∞ and the wave speed c as smooth

functions of vb ∼ v∗.

Using Proposition 3.1 and 3.2, we define Uq = (uq,vq) and Ue = (ue,ve) where the heteroclinic solutions

(uq(εξ),vq(εξ)) and (ue(εξ),ve(εξ)) solve

−c d
dξ

u(ξ) = −u(ξ) +

∫
R
K(ξ − ξ′)u(ξ′)dξ′ + f(u(ξ))− v(ξ) (4.3a)

−c d
dξ

v(ξ) = ε(u(ξ)− γv(ξ))Θ(v(ξ)), (4.3b)

with limits

lim
ζ→−∞

(uq(ζ),vq(ζ)) = (0, 0) and lim
ζ→+∞

(uq(ζ),vq(ζ)) = (ϕq(v+), v+),

lim
ζ→−∞

(ue(ζ),ve(ζ)) = (ϕe(v+), v+) and lim
ζ→+∞

(ue(ζ),ve(ζ)) = (ϕe(v−), v−).

Let δq > 0, δbe > 0 and δef > 0 be fixed such that (v∗ − δq, v∗ + δq) ⊂ (vmin, vmax), (v∗ − δbe, v∗ +

δbe) ⊂ (vmin, vmax) and (−δef , δef ) ⊂ (vmin, vmax). We introduce three parameters vq ∈ (v∗ − δq, v∗ + δq),

vbe ∈ (v∗ − δbe, v∗ + δbe) and vef ∈ (−δef , δef ). We normalize the solutions Uq and Ue by specifying their

v-value at ξ = 0 as vq(0) = vq and ve(0) = vef . Since the solutions in the slow manifold are monotone, by

the implicit function theorem, we obtain two maps ϕ̃j so that

uj(0) = ϕ̃j(vj(0), ε, c), j = q, e,

uniformly in the parameters. As a consequence, we have (uq(0),vq(0)) = (ϕ̃q(vq, ε, c), vq) and (ue(0),ve(0)) =

(ϕ̃e(vef , ε, c), vef ). We also define T (vbe, vef ) > 0 as the leading order time spent by (ue,ve) on the exci-

tatory slow manifold from (ϕ̃e(vbe, ε, c), vbe) to (ϕ̃e(vef , ε, c), vef ). Note that (vbe, vef ) 7−→ T (vbe, vef ) is a

continuously differentiable function on (v∗ − δbe, v∗ + δbe)× (−δef , δef ).
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We introduce a partition of unity through four C∞-functions χj , j ∈ {q, b, e, f}, so that:

χq(ξ) + χb(ξ) + χe(ξ) + χf (ξ) = 1, ∀ξ ∈ R, (4.4)

and

χq(ξ) =

{
0 ξ ≥ ξq + 1

1 ξ ≤ ξq − 1
, χb(ξ) =

{
0 ξ ≤ ξq − 1 and ξ ≥ ξbe + 1

1 ξq + 1 ≤ ξ ≤ ξbe − 1
,

χf (ξ) =

{
0 ξ ≤ −1

1 ξ ≥ 1
, χe(ξ) =

{
0 ξ ≤ ξbe − 1 and ξ ≥ 1

1 ξbe + 1 ≤ ξ ≤ −1
.

The constants ξq and ξbe are defined as

ξbe = −
T (vbe, vef )

ε
, ξq = ξbe + 2ηb ln(ε),

where ηb > 0 will be fixed later. We will rely on the exponentially weighted spaces H1
η , L2

η with

L2
η =

{
u : R→ R |

∥∥∥eη|ξ|u(ξ)
∥∥∥
L2
< +∞

}
, H1

η =
{
u ∈ L2

η | ∂ξu ∈ L2
η

}
,

where again η > 0 will be determined later. To find a pulse solution, we start with the following Ansatz

Ua(ξ) = (ua(ξ),va(ξ)) = Uq (ε (ξ − ξq))χq(ξ) + Ub(ξ − ξb)χb(ξ) + Ue(εξ)χe(ξ) + Uf (ξ − ξf )χf (ξ)

+ Wq (ξ − ξq) + Wb(ξ − ξb) + We(ξ) + Wf (ξ − ξf ), (4.5)

where ξb = ξbe + ηb ln(ε), ξf := −ηf ln(ε) > 0, and Wj = (wu
j ,w

v
j ), j ∈ Jw := {q, b, e, f} .

The ua and va components of Ua are thus given by

ua(ξ) = uq (ε (ξ − ξq))χq(ξ) + ub(ξ − ξb)χb(ξ) + ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ) (4.6a)

+ wu
q (ξ − ξq) + wu

b (ξ − ξb) + wu
e (ξ) + wu

f (ξ − ξf ),

va(ξ) = vq (ε (ξ − ξq))χq(ξ) + vbχb(ξ) + ve(εξ)χe(ξ) + wv
q (ξ − ξq) + wv

b (ξ − ξb) (4.6b)

+ wv
e(ξ) + wv

f (ξ − ξf ).

Remark 4.1. We retain five free parameters (c, vq, vb, vbe, vef ); (δq, δb, δbe, δef , ηb, ηf ) will be fixed later on.

4.2 Deriving equations for the corrections wj

We substitute the expressions of ua and va into (1.5) and obtain equations for the corrections wj . In the

following, we will first make these equations explicit and then split the equations into a weakly coupled

system of equations for the corrections wj .
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(a)

(b)

(c)

(d)

Figure 4.1: Schematic description of the Ansatz solution (4.5). Envelopes ωj for corrections Wj as imposed

by the weights ω−1j and uj-components of the different parts of the Ansatz (4.5). Profiles χj of the partition

of unity as defined in (4.4).

23



The first component of our traveling-wave system gives the equation

0 =
∑
j∈Jw

(
c
d

dξ
wu
j (ξ − ξj)−wu

j (ξ − ξj) +K ∗wu
j (ξ − ξj)−wv

j (ξ − ξj)
)

+

∫
R
K(ξ − ξ̃)uq(ε(ξ̃ − ξq))χq(ξ̃)dξ̃ − χq(ξ)

∫
R
K(ξ − ξ̃)uq(ε(ξ̃ − ξq))dξ̃

+

∫
R
K(ξ − ξ̃)ub(ξ̃ − ξb)χb(ξ̃)dξ̃ − χb(ξ)

∫
R
K(ξ − ξ̃)ub(ξ̃ − ξb)dξ̃

+

∫
R
K(ξ − ξ̃)ue(εξ̃)χe(ξ̃)dξ̃ − χe(ξ)

∫
R
K(ξ − ξ̃)ue(εξ̃)dξ̃

+

∫
R
K(ξ − ξ̃)uf (ξ̃ − ξf )χf (ξ̃)dξ̃ − χf (ξ)

∫
R
K(ξ − ξ̃)uf (ξ̃ − ξf )dξ̃

+ cuq (ε (ξ − ξq))χ′q(ξ) + cub(ξ − ξb)χ′b(ξ) + cue(εξ)χ
′
e(ξ) + cuf (ξ − ξf )χ′f (ξ)

+ (c− c∗)u′f (ξ − ξf )χf (ξ) + (c− cb)u′b(ξ − ξb)χb(ξ) + f (ua(ξ))

− f(uq (ε (ξ − ξq)))χq(ξ)− f(ub(ξ − ξb))χb(ξ)− f(ue(εξ))χe(ξ)− f(uf (ξ − ξf ))χf (ξ); (4.7)

and the second component yields

0 =
∑
j∈Jw

(
c
d

dξ
wu
j (ξ − ξj) + ε

(
wu
j (ξ − ξj)− γwv

j (ξ − ξj)
))

+ ε (ub(ξ − ξb)− γvb)χb(ξ)

+ εuf (ξ − ξf )χf (ξ) + cvq(ε(ξ − ξq))χ′q(ξ) + cvbχ
′
b(ξ) + cve(εξ)χ

′
e(ξ)

+ εχq(ξ) (uq(ε(ξ − ξq))− γvq(ε(ξ − ξq))) (1−Θ(vq(ε(ξ − ξq))))
+ εχe(ξ) (ue(εξ)− γve(εξ)) (1−Θ(ve(εξ))) . (4.8)

We now split this system into five systems, one for each Wj = (wu
j ,w

v
j ), j ∈ Jw. The right-hand sides

of (4.7) and (4.8) will be the sum of the right-hand sides of those equations for the Wj , below, so that

solving the equations for the Wj will automatically give us a solution to (4.7) and (4.8).

We first introduce some notation in order to facilitate the presentation of these systems. We Taylor expand

the nonlinear term f(ua(ξ)) in (4.7) at

u0(ξ) := uq (ε (ξ − ξq))χq(ξ) + ub(ξ − ξb)χb(ξ) + ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ),

and get

f (ua(ξ)) = f (u0(ξ)) + f ′ (u0(ξ))
∑
j∈Jw

wu
j (ξ − ξj) +

∑
j≤k∈Jw

Qj,k(ξ)w
u
j (ξ − ξj)wu

k(ξ − ξk),

where Qj,k := Qj,k

(
u0,w

u
q ,w

u
b ,w

u
e ,w

u
f

)
. There exist constants Cj,k, independent of ε, such that

‖Qj,k‖L∞(R) ≤ Cj,k as
∥∥(wu

q ,w
u
b ,w

u
e ,w

u
f )
∥∥→ 0.

If we define the function F as:

F(ξ) = f(u0(ξ))− f(uq (ε (ξ − ξq)))χq(ξ)− f(ub(ξ − ξb))χb(ξ)− f(ue(εξ))χe(ξ)

− f(uf (ξ − ξf ))χf (ξ), (4.9)

24



for ξ ∈ R, then a direct computation shows that we have

F(ξ) = Fq(ξ)1ξq(ξ) + Fbe(ξ)1ξbe(ξ) + Fef (ξ)1ξef (ξ), (4.10)

where

Fq(ξ) = f ((uq (ε (ξ − ξq))χq(ξ) + ub(ξ − ξb)χb(ξ))− f(uq (ε (ξ − ξq)))χq(ξ)− f(ub(ξ − ξb))χb(ξ),
(4.11a)

Fbe(ξ) = f (ub(ξ − ξb)χb(ξ) + ue(εξ)χe(ξ))− f(ub(ξ − ξb))χb(ξ)− f(ue(εξ))χe(ξ), (4.11b)

Fef (ξ) = f (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ))− f(ue(εξ))χe(ξ)− f(uf (ξ − ξf ))χf (ξ), (4.11c)

and 1ξj stands for the indicator function of the interval [ξj − 1, ξj + 1]. We also define

C(ξ) = K ∗ [u0(ξ)]− χq(ξ)K ∗ [uq(ε(ξ − ξq))]− χb(ξ)K ∗ [ub(ξ − ξb)]− χe(ξ)K ∗ [ue(εξ)]

− χf (ξ)K ∗ [uf (ξ − ξf )] , (4.12a)

for all ξ ∈ R. We denote χbq := χb +χq and χef := χe +χf so that we have χbq(ξ) +χef (ξ) = 1, ∀ξ ∈ R.
Finally, a direct computation shows that we have

C(ξ) = Cq(ξ) + Cbe(ξ) + Cef (ξ), (4.13)

where

Cq(ξ) = K ∗ [(uq(ε(ξ − ξq))− ub(ξ − ξb))χq(ξ)]− χq(ξ)K ∗ [uq(ε(ξ − ξq))− ub(ξ − ξb)] , (4.14a)

Cbe(ξ) = K ∗ [(ub(ξ − ξb)− ue(εξ))χef (ξ)]− χef (ξ)K ∗ [ub(ξ − ξb)− ue(εξ)] , (4.14b)

Cef (ξ) = K ∗ [(uf (ξ − ξf )− ue(εξ))χf (ξ)]− χf (ξ)K ∗ [uf (ξ − ξf )− ue(εξ)] . (4.14c)

We are now ready to present the explicit form of the equations for the Wj .

Equations for the quiescent part:

0 = c
d

dξ
wu
q (ξ)−wu

q (ξ) +K ∗wu
q (ξ) + f ′ (uq(εξ)) wu

q (ξ)−wv
q (ξ) +

∑
j∈Jw

Lq,j(ξ + ξq)w
u
j (ξ − ξj + ξq)

+ cuq (ε (ξ))χ′q(ξ + ξq) + cub(ξ − ξb + ξq)χ
′
b(ξ + ξq)1ξb(ξ + ξq)

+ Fq(ξ + ξq)1ξq(ξ + ξq) + Cq(ξ + ξq) + Qq,q(ξ + ξq)
(
wu
q (ξ)

)2
+

∑
j 6=k∈Jw

Qj,k(ξ + ξq)w
u
j (ξ − ξj + ξq)w

u
k(ξ − ξk + ξq)χq(ξ + ξq), (4.15a)

0 = c
d

dξ
wv
q (ξ) + ε

(
wu
q (ξ)− γwv

q (ξ)
)

+ cvq(ε(ξ))χ
′
q(ξ + ξq) + cvbχ

′
b(ξ + ξq)1ξb(ξ + ξq)

+ εχq(ξ + ξq) (uq(εξ)− γvq(εξ)) (1−Θ(vq(εξ)))

+ ε

(∫
R

(wu
b (ξ)− γwv

b (ξ) + (ub(ξ)− γvb)χb(ξ + ξb)) dξ

)
ψ

(
ξ − ξb − ξq

2

)
. (4.15b)
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Equations for the back part:

0 = c
d

dξ
wu
b (ξ)−wu

b (ξ) +K ∗wu
b (ξ) + f ′ (ub(ξ)) wu

b (ξ)−wv
b (ξ)

+
∑
j∈Jw

Lb,j(ξ + ξb)w
u
j (ξ − ξj + ξb) + (c− cb)u′b(ξ)χb(ξ + ξb) + Qb,b(ξ + ξb) (wu

b (ξ))2

+
∑

j 6=k∈Jw

Qj,k(ξ + ξb)w
u
j (ξ − ξj + ξb)w

u
k(ξ − ξk + ξb)χb(ξ + ξb), (4.16a)

0 = c
d

dξ
wv
b (ξ) + ε (wu

b (ξ)− γwv
b (ξ)) + ε (ub(ξ)− γvb)χb(ξ + ξb)

− ε
(∫

R
(wu

b (ξ)− γwv
b (ξ) + (ub(ξ)− γvb)χb(ξ + ξb)) dξ

)
ψ

(
ξ +

ξb − ξq
2

)
. (4.16b)

Equations for the excitatory part:

0 = c
d

dξ
wu
e (ξ)−wu

e (ξ) +K ∗wu
e (ξ) + f ′ (ue(εξ)) wu

e (ξ)−wv
e(ξ) +

∑
j∈Jw

Le,j(ξ)w
u
j (ξ − ξj)

+ cub(ξ − ξb)χ′b(ξ)1ξbe(ξ) + cue(εξ)χ
′
e(ξ) + cuf (ξ − ξf )χ′f (ξ)

+ Fbe(ξ)1ξbe(ξ) + Fef (ξ)1ξef (ξ) + Cbe(ξ) + Cef (ξ)

+ Qe,e(ξ) (wu
e (ξ))2 +

∑
j 6=k∈Jw

Qj,k(ξ)w
u
j (ξ − ξj)wu

k(ξ − ξk)χe(ξ), (4.17a)

0 = c
d

dξ
wv
e(ξ) + ε (wu

e (ξ)− γwv
e(ξ)) + cve(εξ)χ

′
e(ξ) + εχe(ξ) (ue(εξ)− γve(εξ)) (1−Θ(ve(εξ)))

+ ε

(∫
R

(
wu
f (ξ)− γwv

f (ξ) + uf (ξ)χf (ξ + ξf )
)
dξ

)
ψ(ξ − ξf/2). (4.17b)

Equations for the front part:

0 = c
d

dξ
wu
f (ξ)−wu

f (ξ) +K ∗wu
f (ξ) + f ′ (uf (ξ)) wu

f (ξ)−wv
f (ξ)

+
∑
j∈Jw

Lf,j(ξ + ξf )wu
j (ξ − ξj + ξf ) + (c− c∗)u′f (ξ)χf (ξ + ξf ) + Qf,f (ξ + ξf )

(
wu
f (ξ)

)2
+

∑
j 6=k∈Jw

Qj,k(ξ + ξf )wu
j (ξ − ξj + ξf )wu

k(ξ − ξk + ξf )χf (ξ + ξf ), (4.18a)

0 = c
d

dξ
wv
f (ξ) + ε

(
wu
f (ξ)− γwv

f (ξ)
)

+ εuf (ξ)χf (ξ + ξf )

− ε
(∫

R

(
wu
f (ξ)− γwv

f (ξ) + uf (ξ)χf (ξ + ξf )
)
dξ

)
ψ(ξ + ξf/2). (4.18b)

The linear terms Lk,j(ξ) that appear in systems (4.15), (4.16), (4.17) and (4.18) are defined as follows. For

all j ∈ Jw, the diagonal terms are equal:

Ld(ξ) := Lj,j(ξ) = f ′(u0(ξ))− f ′(uq (ε (ξ − ξq)))χq(ξ)− f ′(ub(ξ − ξb))χb(ξ)− f ′(ue(εξ))χe(ξ)
− f ′(uf (ξ − ξf ))χf (ξ). (4.19)
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We also have for the quiescent part:

Lq,b(ξ) = χq(ξ)
(
f ′(uq(ε(ξ − ξq))− f ′(ub(ξ − ξb))

)
, (4.20a)

Lq,e(ξ) = χq(ξ)
(
f ′(uq(ε(ξ − ξq))− f ′(ue(εξ))

)
, (4.20b)

Lq,f (ξ) = χq(ξ)
(
f ′(uq(ε(ξ − ξq))− f ′(uf (ξ − ξf ))

)
, (4.20c)

for the back part:

Lb,q(ξ) = χb(ξ)
(
f ′(ub(ξ − ξb))− f ′(uq(ε(ξ − ξq)))

)
, (4.21a)

Lb,e(ξ) = χb(ξ)
(
f ′(ub(ξ − ξb))− f ′(ue(εξ))

)
, (4.21b)

Lb,f (ξ) = χb(ξ)
(
f ′(ub(ξ − ξb))− f ′(uf (ξ − ξf ))

)
, (4.21c)

for the excitatory part:

Le,q(ξ) = χe(ξ)
(
f ′(ue(εξ))− f ′(uq(ε(ξ − ξq)))

)
, (4.22a)

Le,b(ξ) = χe(ξ)
(
f ′(ue(εξ))− f ′(ub(ξ − ξb))

)
, (4.22b)

Le,f (ξ) = χe(ξ)
(
f ′(ue(εξ))− f ′(uf (ξ − ξf ))

)
, (4.22c)

and for the front part

Lf,q(ξ) = χf (ξ)
(
f ′(uf (ξ − ξf ))− f ′(uq(ε(ξ − ξq)))

)
, (4.23a)

Lf,b(ξ) = χf (ξ)
(
f ′(uf (ξ − ξf ))− f ′(ub(ξ − ξb))

)
, (4.23b)

Lf,e(ξ) = χf (ξ)
(
f ′(uf (ξ − ξf ))− f ′(ue(εξ))

)
. (4.23c)

The function ψ : R → R, that appears in equations (4.15b), (4.16b), (4.17b) and (4.18b), is chosen to be

C∞, exponentially localized around ξ = 0 with compact support, and such that∫
R
ψ(ξ)dξ = 1 and ‖ψ‖L2

η
<∞, ∀η > 0.

It effectively shifts mass between different components wj . In particular, our choice of ψ guarantees that

(4.15b) is satisfied upon integration. Anticipating some of the later analysis, we remark that the operator
d
dξ which appears in (4.15b) and (4.16b) possesses a cokernel spanned by the constant functions. In the

original systems, compensating for this cokernel requires one additional parameter. Splitting the equations

into different components artificially inflates this cokernel, and we compensate for this fact by artificially

transferring mass between the different parts of the system.

From the above definition of ψ, we directly have the estimates:∥∥∥∥ψ(· ± ξb − ξq
2

)∥∥∥∥
L2
η

. ε−
ηηb
2 ‖ψ‖L2

η
, (4.24)∥∥∥∥ψ(· ± ξf

2

)∥∥∥∥
L2
η

. ε−
ηηf
2 ‖ψ‖L2

η
, (4.25)

as ε→ 0. If we suppose that wu
j and wv

j belong to L2
η for j ∈ {q, f}, then we have that∫

R
wu
j (ξ)− γwv

j (ξ)dξ <∞, j ∈ {q, f} .
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On the other hand, we have that∣∣∣∣∫
R

(ub(ξ)− γvb)χb(ξ + ξb)dξ

∣∣∣∣ = O(| ln ε|),∣∣∣∣∫
R

uf (ξ)χf (ξ + ξf )dξ

∣∣∣∣ = O(| ln ε|),

for ε→ 0. As a consequence we obtain∥∥∥∥ε(∫
R

(wu
b (ξ)− γwv

b (ξ) + (ub(ξ)− γvb)χb(ξ + ξb)) dξ

)
ψ

(
· ± ξb − ξq

2

)∥∥∥∥
L2
η

= O
(
ε1−

ηηb
2 | ln ε|

)
, (4.26a)∥∥∥∥ε(∫

R

(
wu
f (ξ)−wv

f (ξ) + uf (ξ)χf (ξ + ξf )
)
dξ

)
ψ

(
· ±

ξf
2

)∥∥∥∥
L2
η

= O
(
ε1−

ηηf
2 | ln ε|

)
, (4.26b)

and, provided that 1 − ηηb/2 > 0 and 1 − ηηf/2, the above quantities are small as ε → 0. From now on,

we assume that η < min
(

2
ηb
, 2
ηf

)
.

The correction of the excitatory part We is commonly constructed using the Exchange Lemma in a

dynamical systems based approach [26]. Those corrections are exponentially localized close to touchdown

and takeoff points. Rather than encoding this localization at two diverging points 0 and ξbe, with a varying

family of weights, we prefer to again split We into Wbe and Wef ,

We(ξ) = Wbe(ξ − ξbe) + Wef (ξ)

with Wbe = (wu
be,w

v
be) ∈ H1

η × H1
η and Wef = (wu

ef ,w
v
ef ) ∈ H1

η × H1
η . Again, we separate the system

(4.17) into two parts, as follows.

Equations for the back/excitatory part:

0 = c
d

dξ
wu
be(ξ)−wu

be(ξ) +K ∗wu
be(ξ) + f ′ (ue(εξ + εξbe)) wu

be(ξ)−wv
be(ξ)

+
∑
j∈J̃w

Lbe,j(ξ + ξbe)w
u
j (ξ − ξj + ξbe) + cub(ξ − ξb + ξbe)χ

′
b(ξ + ξbe)1ξbe(ξ + ξbe)

+ cue(εξ + εξbe)χ
′
e(ξ + ξbe)1ξbe(ξ + ξbe) + Fbe(ξ + ξbe)1ξbe(ξ + ξbe) + Cbe(ξ + ξbe)

+ Qbe,be(ξ) (wu
be(ξ))

2 +
∑

j 6=k∈J̃w

Qj,k(ξ)w
u
j (ξ − ξj + ξbe)w

u
k(ξ − ξk + ξbe)χe(ξ + ξbe), (4.27a)

0 = c
d

dξ
wv
be(ξ) + ε (wu

be(ξ)− γwv
be(ξ)) + cvbχ

′
b(ξ + ξbe)1ξbe(ξ + ξbe)

+ cve(εξ + εξbe)χ
′
e(ξ + ξbe)1ξbe(ξ + ξbe)

+ εχe(ξ + ξbe) (ue(εξ + εξbe)− γve(εξ + εξbe)) (1−Θ(ve(εξ + εξbe)))1ξbe(ξ + ξbe). (4.27b)
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Equations for the excitatory/front part:

0 = c
d

dξ
wu
ef (ξ)−wu

ef (ξ) +K ∗wu
ef (ξ) + f ′ (ue(εξ)) wu

ef (ξ)−wv
ef (ξ) +

∑
j∈J̃w

Lef,j(ξ)w
u
j (ξ − ξj)

+ cue(εξ)χ
′
e(ξ)1ξef (ξ) + cuf (ξ − ξf )χ′f (ξ) + Fef (ξ)1ξef (ξ) + Cef (ξ)

+ Qef,ef (ξ)
(
wu
ef (ξ)

)2
+

∑
j 6=k∈J̃w

Qj,k(ξ)w
u
j (ξ − ξj)wu

k(ξ − ξk)χe(ξ), (4.28a)

0 = c
d

dξ
wv
ef (ξ) + ε

(
wu
ef (ξ)− γwv

ef (ξ)
)

+ cve(εξ)χ
′
e(ξ)1ξef (ξ)

+ εχe(ξ) (ue(εξ)− γve(εξ)) (1−Θ(ve(εξ)))1ξef (ξ)

+ ε

(∫
R

(
wu
f (ξ)− γwv

f (ξ) + uf (ξ)χf (ξ + ξf )
)
dξ

)
ψ(ξ − ξf/2). (4.28b)

4.3 Formulation of the problem

To conclude the setup, we rewrite systems (4.15), (4.16), (4.27), (4.28), and (4.18) in the more general and

compact form:

0 = Lε (W, λ− λ∗) +Rε +Nε(W, λ− λ∗) := Fε(W, λ), (4.29)

where we have set

W :=
((

wu
q ,w

v
q

)
, (wu

b ,w
v
b ) , (w

u
be,w

v
be) ,

(
wu
ef ,w

v
ef

)
,
(
wu
f ,w

v
f

))
∈ X :=

(
H1
η ×H1

η

)5
,

λ := (c, vq, vb, vbe, vef ) ∈ V,
λ∗ := (c∗, v∗, v∗, v∗, 0) .

Here, Lε represents all the linear terms, Rε collects all the error terms and Nε all the nonlinear terms. We

define the nonlinear map Fε as follows

Fε :
X × V −→ Y
(W, λ) 7−→ Fε(W, λ)

(4.30)

where X :=
(
H1
η ×H1

η

)5
, Y :=

(
L2
η × L2

η

)5
and V := (c∗ − δc, c∗ + δc) × (v∗ − δb, v∗ + δb) × (v∗ − δb, v∗ +

δb) × (v∗ − δbe, v∗ + δbe) × (−δef , δef ) is a neighborhood of λ∗ = (c∗, v∗, v∗, v∗, 0) in R5. In the following

sections, our strategy will be to show that

(i) the map Fε is well-defined from X × V to Y and is C∞;

(ii) Rε = Fε(0, λ∗) −→ 0 as ε −→ 0;

(iii) Lε = DFε(0, λ∗) can be decomposed in two parts:

Lε = Liε + Lpε , (4.31)

where Liε is invertible with bounded inverse on suitable Banach spaces and Lpε is an ε-perturbation:

Lpε −→ 0 as ε −→ 0.

Then, to conclude the proof of Theorem 1, we will use a fixed point iteration argument on the map Fε
which will give the existence of (W(ε), λ(ε)), solution of (4.29), in a neighborhood of (0, λ∗) for small

values of ε > 0.
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5 Proof of Theorem 1

5.1 Estimates for the error terms Rε

In this section, we provide estimates for the error terms Rε as stated in the following result.

Proposition 5.1. With Rε defined in equations (4.29) and (5.2), (5.3), (5.4), (5.5) below, we have

lim
ε→0
‖Rε‖Y = 0, (5.1)

where Y =
(
L2
η × L2

η

)5
.

We first make the various error terms that enter Rε explicit: we find, setting (W, λ) = (0, λ∗), in systems

(4.15), (4.16), (4.27), (4.28), and (4.18), for the quiescent part:

Ru,qε (ξ) = c∗uq (ε (ξ))χ′q(ξ + ξq) + c∗ub(ξ − ξb + ξq)χ
′
b(ξ + ξq)1ξb(ξ + ξq) + Fq(ξ + ξq)1ξq(ξ + ξq)

+ Cq(ξ + ξq), (5.2a)

Rv,qε (ξ) = c∗vq(ε(ξ))χ
′
q(ξ + ξq) + c∗v∗χ

′
b(ξ + ξq)1ξb(ξ + ξq)

+ εχq(ξ + ξq) (uq(εξ)− γvq(εξ)) (1−Θ(vq(εξ)))

+ ε

(∫
R

(ub(ξ)− γv∗)χb(ξ + ξb)dξ

)
ψ

(
ξ − ξb − ξq

2

)
; (5.2b)

for the back part:

Ru,bε (ξ) = 0, (5.3a)

Rv,bε (ξ) = ε (ub(ξ)− γv∗)χb(ξ + ξb)− ε
(∫

R
(ub(ξ)− γv∗)χb(ξ + ξb)dξ

)
ψ

(
ξ +

ξb − ξq
2

)
; (5.3b)

for the excitatory parts:

Ru,beε (ξ) = c∗ub(ξ − ξb + ξbe)χ
′
b(ξ + ξbe)1ξbe(ξ + ξbe) + c∗ue(εξ + εξbe)χ

′
e(ξ + ξbe)1ξbe(ξ + ξbe)

+ Fbe(ξ + ξbe)1ξbe(ξ + ξbe) + Cbe(ξ + ξbe), (5.4a)

Rv,beε (ξ) = c∗vbχ
′
b(ξ + ξbe)1ξbe(ξ + ξbe) + c∗ve(εξ + εξbe)χ

′
e(ξ + ξbe)1ξbe(ξ + ξbe),

+ εχe(ξ + ξbe) (ue(εξ + εξbe)− γve(εξ + εξbe)) (1−Θ(ve(εξ + εξbe)))1ξbe(ξ + ξbe) (5.4b)

Ru,efε (ξ) = c∗ue(εξ)χ
′
e(ξ)1ξef (ξ) + c∗uf (ξ − ξf )χ′f (ξ) + Fef (ξ)1ξef (ξ) + Cef (ξ), (5.4c)

Rv,efε (ξ) = c∗ve(εξ)χ
′
e(ξ)1ξef (ξ) + εχe(ξ) (ue(εξ)− γve(εξ)) (1−Θ(ve(εξ)))1ef (ξ)

+ ε

(∫
R

uf (ξ)χf (ξ + ξf )dξ

)
ψ

(
ξ −

ξf
2

)
; (5.4d)

and for the front part:

Ru,fε (ξ) = 0, (5.5a)

Rv,fε (ξ) = εuf (ξ)χf (ξ + ξf )− ε
(∫

R
uf (ξ)χf (ξ + ξf )dξ

)
ψ

(
ξ +

ξf
2

)
. (5.5b)
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We see that in the definition of Rε, through equations (5.2), (5.3), (5.4), and (5.5), terms of the same

”nature” appear several times. Indeed, we can find terms that only involve derivatives of the partition

functions, χ′j for j ∈ Jw. We can also find commutator terms of two types. The first type, denoted Fq, Fbe,

and Fef , represents the commutators between nonlinearity f and partition of unity defined in equations

(4.9), (4.10), and (4.11). The second type, denoted Cq, Cbe, and Cef , involves the commutators between

convolution and partition of unity as defined in equations (4.12), (4.13), and (4.14). There are also error

terms that stem from the fact that, in our Ansatz, the back Ub and the front Uf are only solutions at

ε = 0, and from the fact that Uq and Ue are solutions of the modified equation (4.3), only. Finally, there

are terms that involve the function ψ and we have already seen in equations (4.26a) and (4.26b) that∥∥∥∥ε(∫
R

(ub(ξ)− γvb)χb(ξ + ξb)dξ

)
ψ

(
· ± ξb − ξq

2

)∥∥∥∥
L2
η

= O
(
ε1−

ηηb
2 | ln ε|

)
,∥∥∥∥ε(∫

R
uf (ξ)χf (ξ + ξf )dξ

)
ψ

(
· ±

ξf
2

)∥∥∥∥
L2
η

= O
(
ε1−

ηηf
2 | ln ε|

)
,

as ε→ 0.

We have divided the proof of Proposition 5.1 into three Propositions 5.2, 5.3, and 5.4, where we respectively

provide estimates for the χ′j-terms, the commutator terms and the error terms.

Proposition 5.2 (Estimates for χ′j-terms). The following estimates hold as ε→ 0:

•
∥∥c∗uq (ε ·)χ′q(·+ ξq) + c∗ub(· − ξb + ξq)χ

′
b(·+ ξq)1ξb(·+ ξq)

∥∥
L2
η

= O(εmin(1,η∗ηb));

•
∥∥c∗vq(ε ·)χ′q(·+ ξq) + c∗v∗χ

′
b(·+ ξq)1ξb(·+ ξq)

∥∥
L2
η

= O(ε);

• ‖c∗ub(· − ξb + ξbe)χ
′
b(·+ ξbe)1ξbe(·+ ξbe) + c∗ue(ε ·+εξbe)χ′e(·+ ξbe)1ξbe(·+ ξbe)‖L2

η
= O(εmin(1,η∗ηb));

• ‖c∗vbχ′b(·+ ξbe)1ξbe(·+ ξbe) + c∗ve(ε ·+εξbe)χ′e(·+ ξbe)1ξbe(·+ ξbe)‖L2
η

= O(ε);

•
∥∥∥c∗ue(ε ·)χ′e1ξef + c∗uf (· − ξf )χ′f

∥∥∥
L2
η

= O(εmin(1,η∗ηf ));

•
∥∥c∗ve(ε ·)χ′e1ξef∥∥L2

η
= O(ε).

Proof. We only prove the last two estimates as the others can easily be deduced following similar types

of argument. As for all |ξ| ≥ 1, χ′e(ξ)1ξef (x) = χ′f (ξ) = 0, we have that χ′e1ξef ∈ L2
η and χ′f ∈ L2

η for any

η > 0. For all |ξ| ≤ 1, the following asymptotic estimates hold

uf (ξ − ξf )− 1 = O (εη∗ηf ) ,

ue(εξ)− 1 = O(ε),

ve(εξ) = O(ε),

uniformly in ξ as ε→ 0. Noticing that

χ′e(ξ)1ξef (ξ) = −χ′f (ξ), ∀ξ ∈ R,
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we then obtain ∥∥c∗ue(ε ·)χ′e1ξef + c∗uf (· − ξf )χ′f
∥∥
L2
η
. ε

∥∥χ′e1ξef∥∥L2
η

+ εη∗ηf
∥∥χ′f∥∥L2

η
,

and ∥∥c∗ve(ε ·)χ′e1ξef∥∥L2
η
. ε

∥∥χ′e1ξef∥∥L2
η
.

This gives the desired estimates.

Proposition 5.3 (Estimates for commutator terms). The following estimates hold as ε→ 0:

•
∥∥Fq(·+ ξq)1ξq(·+ ξq)

∥∥
L2
η

= O(ε2min(1,η∗ηb));

• ‖Fbe(·+ ξbe)1ξbe(·+ ξbe)‖L2
η

= O(ε2min(1,η∗ηb));

•
∥∥Fef1ξef

∥∥
L2
η

= O(ε2min(1,η∗ηf ));

• ‖Cq(·+ ξq)‖L2
η

= O(εmin(1,η∗ηb,η0ηb));

• ‖Cbe(·+ ξbe)‖L2
η

= O(εmin(1,η∗ηb,η0ηb));

• ‖Cef‖L2
η

= O(εmin(1,η∗ηf ,η0ηf )).

Proof. We prove the third and last estimates, the others being easily deduced from them. First, we recall

the definition of Fef :

Fef (ξ) = f (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ))− f(ue(εξ))χe(ξ)− f(uf (ξ − ξf ))χf (ξ),

for all ξ ∈ R. For all |ξ| ≤ 1, we write uef (ξ) = (ue(εξ)− 1)χe(ξ) + (uf (ξ − ξf )− 1)χf (ξ) and we have

f (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ)) = f (1 + (ue(εξ)− 1)χe(ξ) + (uf (ξ − ξf )− 1)χf (ξ))

= f ′(1)uef (ξ) + (uef (ξ))2
∫ 1

0
f ′′(1 + τuef (ξ))(1− τ)dτ,

f(ue(εξ)) = f ′(1)(ue(εξ)− 1) + (ue(εξ)− 1)2
∫ 1

0
f ′′(1 + τ(ue(εξ)− 1))(1− τ)dτ,

f(uf (ξ − ξf )) = f ′(1)(uf (ξ − ξf )− 1)

+ (uf (ξ − ξf )− 1)2
∫ 1

0
f ′′(1 + τ(uf (ξ − ξf )− 1))(1− τ)dτ,

as ε→ 0. We see that we only get corrections at quadratic order and thus∥∥Fef1ξef
∥∥
L2
η
.
(
ε2 + ε2η∗ηf

) ∥∥1ξef∥∥L2
η
.

For the last estimate, we note that, by assumption, there exists η0 > 0 such that ‖K‖L1
η0
< ∞. For all

(ξ, ζ) ∈ R2, the following estimates holds

G(ξ, ζ) := e−η0|ξ−ζ| |ue(εζ)− uf (ζ − ξf )| |χf (ζ)− χf (ξ)| . e−η0|ξ|εmin(1,η∗ηf ,η0ηf ).

This can be seen by evaluating G in different regions of the plane:
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• for ξ ≥ 1 and ζ ≥ 1 we have G(ξ, ζ) = 0;

• for ξ ≤ −1 and ζ ≤ −1 we have G(ξ, ζ) = 0;

• for ξ ≥ 1 and ζ ≤ 1 we have

G(ξ, ζ) ≤ e−η0ξ sup
ζ≤1

(
eη0ζ |ue(εζ)− uf (ζ − ξf )|

)
. e−η0ξ (ε+ εη∗ηf ) ;

• for ξ ≤ −1 and ζ ≥ −1 we have

G(ξ, ζ) ≤ eη0ξ sup
ζ≥−1

(
e−η0ζ |ue(εζ)− uf (ζ − ξf )|

)
. eη0ξεmin(1,η∗ηf ,η0ηf );

• for |ξ| ≤ 1 and |ζ| ≤ 1, we have

G(ξ, ζ) . e−η0|ξ| (ε+ εη∗ηf ) ;

• for |ξ| ≤ 1 and ζ ≤ −1, we have

G(ξ, ζ) . e−η0|ξ| (ε+ εη∗ηf ) ;

• for |ξ| ≤ 1 and ζ ≥ 1, we have

G(ξ, ζ) . e−η0|ξ|εmin(1,η∗ηf ,η0ηf ).

Finally, if η < η0, we obtain

‖Cef‖L2
η
. εmin(1,η∗ηf ,η0ηf ) ‖K‖L1

η0
(R) .

Proposition 5.4 (Estimates for the Ansatz error terms). The following estimates hold as ε→ 0:

• ‖εχq(·+ ξq) (uq(ε ·)− γvq(ε ·)) (1−Θ(vq(ε ·)))‖L2
η

= O(ε);

• ‖ε (ub − γv∗)χb(·+ ξb)‖L2
η

= O
(
ε1−ηηb

)
;

• ‖εχe(·+ ξbe) (ue(ε ·+εξbe)− γve(ε ·+εξbe)) (1−Θ(ve(ε ·+εξbe)))1ξbe(·+ ξbe)‖L2
η

= O(ε);

• ‖εχe (ue(ε ·)− γve(ε ·)) (1−Θ(ve(ε ·)))1ef‖L2
η

= O(ε);

• ‖εufχf (·+ ξf )‖L2
η

= O
(
ε1−ηηf

)
.

Proof. Once again, we only prove the last two estimates. First, we see that χe (1−Θ(ve(ε ·)))1ef has a

compact support in [−1, 1] so that χe (1−Θ(ve(ε ·)))1ef ∈ L2
η for all η > 0. And we directly obtain

‖εχe (ue(ε ·)− γve(ε ·)) (1−Θ(ve(ε ·)))1ef‖L2
η
. ε ‖χe (1−Θ(ve(ε ·)))1ef‖L2

η
.
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Second, we use the definition of the L2
η norm of ufχf (·+ ξf ) and the property of χf to obtain∫

R
e2η|ξ| (uf (ξ)χf (ξ + ξf ))2 dξ =

∫
R
e2η|ξ−ξf | (uf (ξ − ξf )χf (ξ))2 dξ

=

∫ 1

−1
e2η|ξ−ξf | (uf (ξ − ξf )χf (ξ))2 dξ +

∫ ∞
1

e2η|ξ−ξf | (uf (ξ − ξf ))2 dξ

=

∫ 1

−1
e2η|ξ−ξf | (uf (ξ − ξf )χf (ξ))2 dξ +

∫ ∞
1+ξf

e2η|ξ| (uf (ξ))2 dξ

= I1(ε) + I2(ε).

A straightforward computation gives

I1(ε) = O(ε−2ηηf ) and I2(ε) = O(ε2(η∗−η)ηf ) as ε→ 0,

which completes the proof as µ < µ∗ by definition.

Proof of Proposition 5.1. We can now combine the estimates of Propositions 5.2, 5.3 and 5.4 to obtain

the limit (5.1) which concludes the proof.

5.2 Study of the linear part Liε

In this section, we shall prove that the linear operator Liε is invertible with bounded inverse on a suitable

Banach space. We define the linear operator Liε as follows

Liε : X × R5 −→ Y,

where Liε can be written in matrix form as

Liε =
(
AiW(ε)|Aiλ(ε)

)
(5.6)

AiW(ε) =



L(uq) −1 0 0 0 0 0 0 0 0

0 c∗
d
dξ 0 0 0 0 0 0 0 0

0 0 L(ub) −1 0 0 0 0 0 0

0 0 0 c∗
d
dξ 0 0 0 0 0 0

0 0 0 0 L(τξbe · ue) −1 0 0 0 0

0 0 0 0 0 c∗
d
dξ 0 0 0 0

0 0 0 0 0 0 L(ue) −1 0 0

0 0 0 0 0 0 0 c∗
d
dξ 0 0

0 0 0 0 0 0 0 0 L(uf ) −1

0 0 0 0 0 0 0 0 0 c∗
d
dξ



,

34



where we have defined

L(uq) :

{
H1
η −→ L2

η

w 7−→ −w +K ∗w + c∗
d
dξw + f ′ (uq(εξ)) w,

(5.7a)

L(ub) :

{
H1
η −→ L2

η

w 7−→ −w +K ∗w + c∗
d
dξw + f ′ (ub(ξ)) w,

(5.7b)

L(ue) :

{
H1
η −→ L2

η

w 7−→ −w +K ∗w + c∗
d
dξw + f ′ (ue(εξ)) w,

(5.7c)

L(uf ) :

{
H1
η −→ L2

η

w 7−→ −w +K ∗w + c∗
d
dξw + f ′ (uf (ξ)) w,

(5.7d)

Finally, the matrix operator Aiλ(ε) has the following form

Aiλ(ε) =
(
Ai,1
λ (ε) Ai,2

λ (ε) Ai,3
λ (ε) Ai,4

λ (ε) Ai,5
λ (ε)

)
(5.8)

where the columns Ai,j
λ (ε) are defined as

Ai,1
λ (ε) =



0

0

u′bχb(·+ ξb)

0

0

0

0

0

u′fχf (·+ ξf )

0



, Ai,2
λ (ε) =



c∗∂vq (uq(ε·))χ′q(·+ ξq)

c∗∂vq (vq(ε·))χ′q(·+ ξq)

0

0

0

0

0

0

0

0



,

Ai,3
λ (ε) =



c∗∂vb
(
τξq · [ub(· − ξb))χ′b1ξb ]

)
c∗τξb ·

[
χ′b1ξq

]
−c′bu′bχb(·+ ξb

0

c∗∂vb (τξbe · [ub(· − ξb))χ′b1ξbe ])
c∗τξbe · [χ′b1ξbe ]

0

0

0

0



, Ai,4
λ (ε) =



0

0

0

0

c∗∂vbe (τξbe · [ue(ε·))χ′e1ξbe ])
c∗∂vbe (τξbe · [ve(ε·))χ′e1ξbe ])

c∗∂vbe(ue(ε·))χ′e1ξbe
c∗∂vbe(ve(ε·))χ′e1ξbe

0

0



,
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and

Ai,5
λ (ε) =



0

0

0

0

c∗∂vef
(
τξbe ·

[
ue(ε·))χ′e1ξef

])
c∗∂vef

(
τξbe ·

[
ve(ε·))χ′e1ξef

])
c∗∂vef (ue(ε·))χ′e1ξef
c∗∂vef (ve(ε·))χ′e1ξef

0

0



,

where c′b = ∂vbcb. In order to clearly see that the operator Liε is invertible, we will rewrite it in a different

basis so that the new operator expressed in that basis has a triangular form, and each entry on the diagonal

is invertible. More precisely, by permuting the columns and the rows, we have that

Liε ∼


Lif 02,3 02,3 02,6

Lib,f Lib 02,3 02,6

02,3 Liq,b Liq 02,6

04,3 Lie,b 04,3 Lie

 , (5.9)

where the diagonal operators appearing in the above matrix (5.9) are

Lif =

(
L(uf ) −1 u′fχf (·+ ξf )

0 c∗
d
dξ 0

)
, ←→ Wf =

(
wu
f ,w

v
f , c
)
, (5.10a)

Lib =

(
L(ub) −1 −c′bu′bχb(·+ ξb)

0 c∗
d
dξ 0

)
, ←→ Wb = (wu

b ,w
v
b , vb) , (5.10b)

Liq =

(
L(uq) −1 c∗∂vq (uq(ε·))χ′q(·+ ξq)

0 c∗
d
dξ c∗∂vq (vq(ε·))χ′q(·+ ξq)

)
, ←→ Wq =

(
wu
q ,w

v
q , vq

)
, (5.10c)

Lie =


L(τξbeue) −1 0 0 c∗∂vbe (τξbe · [ue(ε·))χ′e1ξbe ]) c∗∂vef

(
τξbe ·

[
ue(ε·))χ′e1ξef

])
0 c∗

d
dξ 0 0 c∗∂vbe (τξbe · [ve(ε·))χ′e1ξbe ]) c∗∂vef

(
τξbe ·

[
ve(ε·))χ′e1ξef

])
0 0 L(ue) −1 c∗∂vbe(ue(ε·))χ′e1ξbe c∗∂vef (ue(ε·))χ′e1ξef
0 0 0 c∗

d
dξ c∗∂vbe(ve(ε·))χ′e1ξbe c∗∂vef (ve(ε·))χ′e1ξef

 ,

(5.10d)

where the last matrix operator is expressed in the coordinates We =
(
wu
be,w

v
be,w

u
ef ,w

v
ef , vbe, vef

)
. The

remaining three off-diagonal operators are thus

Lib,f =

(
0 0 u′bχb(·+ ξb)

0 0 0

)
, Liq,b =

(
0 0 c∗∂vb

(
τξq · [ub(· − ξb))χ′b1ξb ]

)
0 0 c∗τξb ·

[
χ′b1ξq

] )
,

and

Lie,b =

(
0 0 c∗∂vb (τξbe · [ub(· − ξb))χ′b1ξbe ])
0 0 c∗τξbe · [χ′b1ξbe ]

)
.

We would like to show that each of the operators appearing on the diagonal is bounded invertible on a

suitable Banach space. We treat each case separately in the following sections.
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5.2.1 Invertibility of Lif and Lib

In this section, we will show that both Lif and Lib are bounded invertible. We therefore introduce the

following spaces:

Xf :=
(
H1
η ∩

{
u : R→ R | 〈u,u′f 〉 = 0

})
×H1

η × R, (5.11a)

Xb :=
(
H1
η ∩

{
u : R→ R | 〈u,u′b〉 = 0

})
×H1

η × R, (5.11b)

Y0 := L2
η ×Z, (5.11c)

Z := L2
η ∩ {u : R→ R | 〈u,1〉 = 0} . (5.11d)

Finally we define the operator Lif from Xf to Y0, with the entries of Lif being given in equation (5.10a)

and Lib from Xb to Y0, with the entries of Lib being given in equation (5.10b).

Lemma 5.5 (Invertibility of the front and the back linearization). The following assumptions hold true:

(i) The operator Lif : Xf −→ Y0 is invertible with bounded inverse, uniformly in ε > 0.

(ii) The operator Lib : Xb −→ Y0 is invertible with bounded inverse, uniformly in ε > 0.

Proof.

(i) We first remark that the operator L(uf ) is a Fredholm operator from H1
η to L2

η whenever η < η0,

and its Fredholm index is 0 [14]. Its kernel is spanned by u′f and its cokernel is spanned by e∗f ∈ H1
η ,

a solution of the adjoint equation

L∗(uf ) e∗f = 0,

where the adjoint operator is defined as

L∗(uf ) :

{
H1
η −→ L2

η

w 7−→ −w +K ∗w +−c∗ ddξw + f ′ (uf (ξ)) w.

Second, we note that the operator
d

dξ
is Fredholm from H1

η to L2
η, for all η > 0, and its Fredholm

index is −1 with cokernel spanned by 1 (the constants). Because of our specific choice of the target

space Y0, we see that the Fredholm operator
d

dξ
is defined from H1

η to Z and thus is Fredholm index

0 on Z. Finally, we notice that∫
R

u′f (ξ)χf (ξ + ξf )e∗f (ξ)dξ →
∫
R

u′f (ξ)e∗f (ξ)dξ 6= 0,

for ε→ 0. Convergence is due to the fact that ξf →∞ as ε→ 0. The latter integral is nonzero since

the zero eigenvalue is algebraically simple by (H3). In summary,

• L(uf ) is Fredholm from H1
η ∩

{
u : R→ R | 〈u,u′f 〉 = 0

}
(orthogonal to the kernel u′f ) to L2

η,

with index 0;

• d

dξ
is Fredholm from H1

η to Z, with index 0;
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•
∫
R u′f (ξ)χf (ξ + ξf )e∗f (ξ)dξ 6= 0.

Thus Lif : Xf −→ Y0 is invertible. The fact that its inverse is bounded uniformly in ε > 0 is

straightforward from the explicit form of Lif in (5.10a).

(ii) The exact same argument applies to the back and we have that:

• L(ub) is Fredholm from H1
η ∩{u : R→ R | 〈u,u′b〉 = 0} (orthogonal to the kernel u′b) to L2

η, with

index 0;

• d

dξ
is Fredholm from H1

η to Z, with index 0;

• −c′b
∫
R u′b(ξ)χb(ξ + ξb)e

∗
b(ξ)dξ 6= 0, where e∗b spans the kernel of the adjoint operator L∗(ub).

Note that c′b 6= 0 based on our Hypothesis on the back and front solution.

We conclude that Lib : Xb −→ Y0 is invertible. The fact that its inverse is bounded uniformly in ε > 0

again is immediate from the explicit form of Lib in (5.10b).

5.2.2 Invertibility of Liq and Lie

This section is devoted to establish the following result.

Lemma 5.6 (Invertibility of the quiescent and excitatory parts). The linear operator associated to the

quiescent (respectively excitatory) part Liq (respectively Lie) is invertible from H1
η × H1

η × R (respectively(
H1
η ×H1

η

)2 × R2) to L2
η × L2

η (respectively
(
L2
η × L2

η

)2
), with bounded inverse, uniformly in ε > 0.

Proof. The proof of the lemma relies on Lemma 3.10 of Section 3.4, which ensures the existence of

0 < ηh < η0 such that for all 0 < η < ηh the operators L(uq) and L(ue) are both isomorphisms from H1
η

to L2
η and the norms ‖L(uq)

−1‖ and ‖L(ue)
−1‖ can be bounded independently of η and ε. Note that the

shifted operator L(τξbe · ue) also satisfies the same properties.

• Quiescent: To conclude the proof for the quiescent part, one needs to show that

c∗

∫
R
∂vq (vq(εξ))χ

′
q(ξ + ξq)dξ 6= 0,

as ε→ 0. Indeed, χ′q(·+ ξq) vanishes for all |ξ| ≥ 1, so that the above integral simplifies to∫
R
∂vq (vq(εξ))χ

′
q(ξ + ξq)dξ =

∫ 1

−1
∂vq (vq(εξ))χ

′
q(ξ + ξq)dξ.

For all |ξ| ≤ 1, vq(εξ) = vb +O(ε) as ε→ 0, so that ∂vq (vq(εξ)) ∼ 1 as ε→ 0 and then

c∗

∫
R
∂vq (vq(εξ))χ

′
q(ξ + ξq)dξ ∼ −c∗ 6= 0.

This result combined with the fact the differential operator d
dξ from H1

η to L2
η is Fredholm, with

index −1 and cokernel spanned by the constant 1, ensures that Liq is invertible from H1
η ×H1

η × R
to L2

η × L2
η, with bounded inverse, uniformly in ε > 0.
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• Excitatory: To conclude the proof for the excitatory part, we need to check that the following integrals

do not vanish for small ε:

c∗

∫
R
∂vbe(ve(εξ + εξbe))χ

′
e(ξ + ξbe)1ξbe(ξ + ξbe)dξ 6= 0,

c∗

∫
R
∂vef (ve(εξ))χ

′
e(ξ)1ξef (ξ)dξ 6= 0.

Once again, we use the definition of χ′e(·+ ξbe)1ξbe(·+ ξbe) and χ′e1ξef combined with the fact that,

for all |ξ| ≤ 1, ve(εξ + εξbe) = vbe +O(ε) and ve(εξ) = vef +O(ε) as ε→ 0. We then obtain

c∗

∫
R
∂vbe(ve(εξ + εξbe))χ

′
e(ξ + ξbe)1ξbe(ξ + ξbe)dξ ∼ c∗

∫
R
χ′e(ξ)1ξbe(ξ)dξ 6= 0,

c∗

∫
R
∂vef (ve(εξ))χ

′
e(ξ)1ξef (ξ)dξ ∼ c∗

∫
R
χ′e(ξ)1ξef (ξ)dξ 6= 0.

This result combined with the fact the differential operator d
dξ from H1

η to L2
η is Fredholm, with index

−1 and cokernel spanned by the constant 1, ensures that Lie is invertible from
(
H1
η ×H1

η

)2 × R2 to

L2
η × L2

η, with bounded inverse, uniformly in ε > 0.

5.3 Estimates for the cross-linear terms Lpε

In this section, we provide some estimates for the cross-linear terms Lpε as ε → 0. We define the linear

operator Lpε as follows

Lpε : X × R4 −→ Y,

or, more explicitly, in matrix form as

Lpε =
(
T ◦ ApW(ε) ◦ T −1 | Apλ(ε)

)
, (5.12)

where the shift operator T is defined as

TW =
((
τξq ·wu

q ,w
v
q

)
, (τξb ·w

u
b ,w

v
b ) , (τξbe ·w

u
be,w

v
be) ,

(
τξef ·w

u
ef ,w

v
ef

)
,
(
τξf ·w

u
f ,w

v
f

))
,

and, for all ξ ∈ R,

τξj ·w
u
j (ξ) = wu

j (ξ + ξj).

The operators ApW(ε) and Apλ(ε) are defined in equations (5.13) and (5.18), respectively, and are studied

separately in the following two sections.
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5.3.1 Estimates for ApW(ε)

The matrix of linear operators ApW(ε) : X → Y defined in (5.12) is given by

ApW(ε) =



Ld 0 Lq,b 0 Lq,be 0 Lq,ef 0 Lq,f 0

ε −εγ Luq,b Lvq,b 0 0 0 0 0 0

Lb,q 0 Ld 0 Lb,be 0 Lb,ef 0 Lb,f 0

0 0 ε −εγ 0 0 0 0 0 0

Lbe,q 0 Lbe,b 0 Ld 0 Lbe,ef 0 Lbe,f 0

0 0 0 0 ε −εγ 0 0 0 0

Lef,q 0 Lef,b 0 Lef,be 0 Ld 0 Lef,f 0

0 0 0 0 0 0 ε −εγ Luef,f Lvef,f
Lf,q 0 Lf,b 0 Lf,be 0 Lf,ef 0 Ld 0

0 0 0 0 0 0 0 0 Luf Lvf



. (5.13)

The operator Ld is defined for all w ∈ L2
η as

Ld ·w(ξ) = Ld(ξ)w(ξ), ∀ξ ∈ R,

where Ld is defined in equation (4.19). The different multiplication operators Lj,k with j, k ∈ J̃w are also

implicitly defined using equations (4.20), (4.21), (4.22) and (4.23) through

Lj,k ·w(ξ) = Lj,k(ξ)w(ξ), ∀ξ ∈ R, ∀w ∈ L2
η.

The remaining operators are defined as follows

Luq,b ·w(ξ) = ε

(∫
R

w(ξ)dξ

)
ψ

(
ξ − ξb − ξq

2

)
, (5.14a)

Lvq,b ·w(ξ) = −εγ
(∫

R
w(ξ)dξ

)
ψ

(
ξ − ξb − ξq

2

)
, (5.14b)

Lub ·w(ξ) = εw(ξ)− ε
(∫

R
w(ξ)dξ

)
ψ

(
ξ +

ξb − ξq
2

)
, (5.14c)

Lvb ·w(ξ) = −εγw(ξ) + εγ

(∫
R

w(ξ)dξ

)
ψ

(
ξ +

ξb − ξq
2

)
, (5.14d)

Luef,f ·w(ξ) = ε

(∫
R

w(ξ)dξ

)
ψ

(
ξ −

ξf
2

)
, (5.14e)

Lvef,f ·w(ξ) = −εγ
(∫

R
w(ξ)dξ

)
ψ

(
ξ −

ξf
2

)
, (5.14f)

Luf ·w(ξ) = εw(ξ)− ε
(∫

R
w(ξ)dξ

)
ψ

(
ξ +

ξf
2

)
, (5.14g)

Lvf ·w(ξ) = −εγw(ξ)εγ

(∫
R

w(ξ)dξ

)
ψ

(
ξ +

ξf
2

)
. (5.14h)

We can immediately confirm that the following estimates hold for the above terms:

•
∥∥∥Lu,vq,b ·w∥∥∥

L2
η

. ε1−
ηηb
2 ‖w‖L2

η
and

∥∥Lu,vb ·w∥∥L2
η
. ε1−

ηηb
2 ‖w‖L2

η
;
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•
∥∥∥Lu,vef,f ·w∥∥∥

L2
η

. ε1−
ηηf
2 ‖w‖L2

η
and

∥∥∥Lu,vf ·w∥∥∥
L2
η

. ε1−
ηηf
2 ‖w‖L2

η
.

For the last two types of estimates we have used the estimates (4.24) and (4.25). Our goal for this subsection

is to prove the following result.

Proposition 5.7. The cross-linear terms represented by ApW(ε) are small in the operator norm,

lim
ε→0

∥∥ApW(ε)
∥∥ = 0. (5.15)

In order to prepare the proof of Proposition 5.7, we first notice that Ld can be decomposed as follows

Ld(ξ) = Dq(ξ)1ξq(ξ) + Dbe(ξ)1ξbe(ξ) + Def (ξ)1ξef (ξ), ∀ξ ∈ R, (5.16)

where

Dq(ξ) = f ′ ((uq (ε (ξ − ξq))χq(ξ) + ub(ξ − ξb)χb(ξ))− f ′(uq (ε (ξ − ξq)))χq(ξ)− f ′(ub(ξ − ξb))χb(ξ),
(5.17a)

Dbe(ξ) = f ′ (ub(ξ − ξb)χb(ξ) + ue(εξ)χe(ξ))− f ′(ub(ξ − ξb))χb(ξ)− f ′(ue(εξ))χe(ξ), (5.17b)

Def (ξ) = f ′ (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ))− f ′(ue(εξ))χe(ξ)− f ′(uf (ξ − ξf ))χf (ξ). (5.17c)

Lemma 5.8. For all j ∈ J̃w and for all w ∈ L2
η, we have

‖Ld(·+ ξj)w‖L2
η
≤ C(ε) ‖w‖L2

η
, C(ε) −→ 0,

as ε→ 0.

Proof. Using the same arguments as in Proposition 5.3, we directly have that∥∥Dq1ξq
∥∥
L∞

= O(ε2min(1,η∗ηb)),

‖Dbe1ξbe‖L∞ = O(ε2min(1,η∗ηb)),∥∥Def1ξef
∥∥
L∞

= O(ε2min(1,η∗ηf )).

Then, for all j ∈ J̃w

C(ε) = ‖Ld(·+ ξj)‖L∞ = O(ε2min(1,η∗ηb)) +O(ε2min(1,η∗ηf )) −→ 0 as ε→ 0.

We are now ready to give the proof of Proposition 5.7.

Proof of Proposition 5.7. We will only give the proof for the last two components of Lpε , the other

components being treated in the exact same way. For all (W, λ) ∈ X × R4, the first two components of

Lpε (W, λ) are given by

[Lpε (W, λ)]uf (ξ) = Ld(ξ + ξf )wu
f (ξ) + Lf,q(ξ + ξf )wu

q (ξ − ξq + ξf ) + Lf,b(ξ + ξf )wu
b (ξ − ξb + ξf )

+ Lf,be(ξ + ξf )wu
be(ξ − ξbe + ξf ) + Lf,ef (ξ + ξf )wu

ef (ξ + ξf ),

[Lpε (W, λ)]vf (ξ) = ε

(∫
R

(
wu
f (ξ)− γwv

f (ξ)
)
dξ

)
ψ

(
ξ −

ξf
2

)
.
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Using our previous estimates, we directly have∥∥∥[Lpε (W, λ)]vf

∥∥∥
L2
η

. ε1−
ηηf
2 ‖W‖X .

We next treat each term of the first component separately. The first term Ld(ξ + ξf )wu
f (ξ) has been

considered in Lemma 5.8 and we have∥∥Ld(·+ ξf )wu
f

∥∥
L2
η
. ε2min(1,η∗ηb,η∗,ηf )

∥∥wu
f

∥∥
L2
η
.

We now show that

(i)
∥∥∥Lf,j (·+ ξf ) wu

j (· − ξj + ξf )
∥∥∥
L2
η

. e−η
T (vbe,vef )

ε

∥∥∥wu
j

∥∥∥
L2
η

, for all j ∈ {q, b, be};

(ii)
∥∥∥Lf,ef (·+ ξf ) wu

ef (·+ ξf )
∥∥∥
L2
η

.
(
εηf min((η∗−η),η) + ε1−ηηf | ln ε|

) ∥∥∥wu
ef

∥∥∥
L2
η

.

Estimate (i): As wu
j ∈ L2

η, we have that ξ 7→ eη|ξ−ξj+ξf |wu
j (ξ − ξj + ξf ) belongs to L2 with∥∥wu

j

∥∥
L2
η

=
∥∥∥eη|·−ξj+ξf |wu

j (· − ξj + ξf )
∥∥∥
L2
.

Then we have for all j ∈ {q, b, be},∥∥Lf,j (·+ ξf ) wu
j (· − ξj + ξf )

∥∥
L2
η

=
∥∥∥eη|·|Lf,j (·+ ξf ) e−η|·−ξj+ξf |eη|·−ξj+ξf |wu

j (· − ξj + ξf )
∥∥∥
L2

≤
∥∥∥eη|·|Lf,j (·+ ξf ) e−η|·−ξj+ξf |

∥∥∥
L∞(R)

∥∥wu
j

∥∥
L2
η
.

Using the definition of Lf,j (·+ ξf ) and the property of χf , we find that∥∥∥eη|·|Lf,j (·+ ξf ) e−η|·−ξj+ξf |
∥∥∥
L∞
≤ C sup

ξ+ξf≥−1
eη(|ξ|−|ξ−ξj+ξf |).

As ε→ 0, the sup is obtained when ξ ∼ −ξf and we have for all j ∈ {q, b, be}∥∥∥eη|·|Lf,j (·+ ξf ) e−η|·−ξj+ξf |
∥∥∥
L∞
≤ C0e

−η
T (vbe,vef )

ε .

Estimate (ii): For the second estimate, we recall that

Lf,ef (ξ + ξf ) = χf (ξ + ξf )
(
f ′(uf (ξ))− f ′(ue(εξ + εξf ))

)
for all ξ ∈ R. Thus, we need to evaluate

sup
ξ∈R

∣∣∣eη(|ξ|−|ξ+ξf |)χf (ξ + ξf )
(
f ′(uf (ξ))− f ′(ue(εξ + εξf ))

)∣∣∣ ,
when ε→ 0. It is not difficult to see that this sup is realized for values of ξ in [−ξf , 0]. We set ξ = ξ1ηf ln ε

for ξ1 ∈ [0, 1] and look for

sup
ξ1∈[0,1]

∣∣∣ε(1−2ξ1)ηηf (f ′ (uf (ξ1ηf ln ε))− f ′ (ue((ξ1 − 1)ηf ε ln ε))
)∣∣∣ .
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We have the asymptotic estimates as ε→ 0 for all ξ ∈ [0, 1)

uf (ξ1ηf ln ε)− 1 = O
(
εξ1ηfη∗

)
ue((ξ1 − 1)ηf ε ln ε)− 1 = O(ε ln ε).

Then,

sup
ξ1∈[0,1]

∣∣∣ε(1−2ξ1)ηηf (εξ1ηfη∗ + ε ln ε
)∣∣∣ ≤ εηf min((η∗−η),η) + ε1−ηηf | ln ε|.

Regrouping all our estimates, we have shown that∥∥∥[Lpε (W, λ)]uf

∥∥∥
L2
η

. C(ε) ‖W‖X ,

with C(ε)→ 0 as ε→ 0. This concludes the proof.

5.3.2 Estimates for Apλ(ε)

The matrix of linear operators Apλ(ε) : R4 → Y defined in (5.12) is given by

Apλ(ε) =
(
Ap,1
λ (ε) Ap,2

λ (ε) Ap,3
λ (ε) Ap,4

λ (ε) Ap,5
λ (ε)

)
(5.18)

where the columns Ap,j
λ (ε) are defined as

Ap,1
λ (ε) =



uq(ε·)χ′q(·+ ξq) + ub(· − ξb + ξq)χ
′
b(·+ ξq)1ξb(ξ + ξq)

vq(ε·)χ′q(·+ ξq) + v∗χ
′
b(·+ ξq)1ξb(ξ + ξq)

0

0

ub(· − ξb + ξbe)χ
′
b(·+ ξbe)1ξbe(·+ ξbe) + ue(ε ·+εξbe)χ′e(·+ ξbe)1ξbe(·+ ξbe)

v∗χ
′
b(·+ ξbe)1ξbe(·+ ξbe) + ve(ε ·+εξbe)χ′e(·+ ξbe)1ξbe(·+ ξbe)

ue(ε·)χ′e1ξef + uf (· − ξf )χ′f
ve(ε·)χ′e1ξef

0

0



,

Ap,2
λ (ε) =



∂vq
(
τξq ·

[
Fq1ξq + Cq

])
ε∂vq (χq(·+ ξq) (uq(ε·)− γvq(ε·)) (1−Θ(vq(ε·))))

0

0

0

0

0

0

0

0



,
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Ap,3
λ (ε) =



∂vb
(
τξq ·

[
Fq1ξq + Cq

])
ε∂vb

(∫
R(ub(ξ)− γvb)χb(ξ + ξb)dξ

)
ψ
(
ξ − ξb−ξq

2

)
0

ε(∂vbub − γ)χb(·+ ξb)− ε∂vb
(∫

R(ub(ξ)− γvb)χb(ξ + ξb)dξ
)
ψ
(
ξ − ξb−ξq

2

)
∂vb (τξbe · [Fbe1ξbe + Cbe])

0

0

0

0

0



,

Ap,4
λ (ε) =



0

0

0

0

∂vbe (τξbe · [Fbe1ξbe + Cbe])

ε∂vbe (τξbe · [χe (ue(ε·)− γve(ε·)) (1−Θ(ve(ε·)))1ξbe ])
∂vbe

(
Fef1ξef + Cef

)
ε∂vbe

(
χe (ue(ε·)− γve(ε·)) (1−Θ(ve(ε·)))1ξef

)
0

0



,

and

Ap,5
λ (ε) =



0

0

0

0

∂vef (τξbe · [Fbe1ξbe + Cbe])

ε∂vef (τξbe · [χe (ue(ε·)− γve(ε·)) (1−Θ(ve(ε·)))1ξbe ])
∂vef

(
Fef1ξef + Cef

)
ε∂vef

(
χe (ue(ε·)− γve(ε·)) (1−Θ(ve(ε·)))1ξef

)
0

0



.

Proposition 5.9. The following limit holds true in operator norm

lim
ε→0

∥∥Apλ(ε)
∥∥ = 0. (5.19)

Proof. The proof follows closely the computations developed in Propositions 5.2, 5.3 and 5.4.

• The fact that

lim
ε→0

∥∥∥Ap,1
λ (ε)

∥∥∥ = 0,

is a direct consequence of Proposition 5.2.
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• For the commutators terms, let us show that

lim
ε→0

∥∥∂vef (Fef1ef )
∥∥
L2
η

= 0.

The proofs for the other Fj1j ’s and Cj ’s are analogous. From the definition of Fef , we see that for

all |ξ| ≤ 1,

∂vef (Fef (ξ)) = ∂vef (ue(εξ))
[
f ′ (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ))− f ′(ue(εξ)χe(ξ))

]
.

We can Taylor expand f ′ at 1 and obtain:

f ′ (ue(εξ)χe(ξ) + uf (ξ − ξf )χf (ξ)) = f ′(1) + f ′′(1) [(ue(εξ)− 1)χe(ξ) + (uf (ξ − ξf )− 1)χf (ξ)]

+ Rε(ξ),

where

Rε(ξ) = (uef (ξ))2
∫ 1

0
f ′′ (1 + τuef (ξ)) (1− τ)dτ,

uef (ξ) = (ue(εξ)− 1)χe(ξ) + (uf (ξ − ξf )− 1)χf (ξ).

Similarly, we have

f ′ (ue(εξ)) = f ′(1) + f ′′(1) (ue(εξ)− 1) + (ue(εξ)− 1)2
∫ 1

0
f ′′ (1 + τ (ue(εξ)− 1)) (1− τ)dτ.

Finally using the asymptotic expansions for ue and uf , we obtain the following estimate∥∥∂vef (Fef1ξef )
∥∥
L2
η
.
(
εη∗ηf + ε2 + ε2η∗ηf

) ∥∥1ξef∥∥L2
η
,

which gives the result.

• A direct computation shows that∥∥∥∥ε∂vb (∫
R

(ub(ξ)− γvb)χb(ξ + ξb)dξ

)
ψ

(
· − ξb − ξq

2

)∥∥∥∥
L2
η

∼ Cε1−
η∗ηb

2 | ln ε|,

as ε→ 0, where the constant C > 0 is given by

C = ηb

∣∣∣∣ 1

f ′(ϕq(v∗))
+

1

f ′(ϕe(v∗))
− 2γ

∣∣∣∣ .
• All the remaining terms can be analyzed using Proposition 5.4.
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5.4 Conclusion of the proof of Theorem 1

In this section, we gather all the information collected so far and prove Theorem 1. We recall that we want

to prove the existence of (W(ε), λ(ε)), for 0 < ε < ε0, solution of the equation

Fε(W, λ) = 0,

where Fε is defined in equation (4.29) as the collection of systems (4.15), (4.16), (4.27), (4.28) and (4.18),

with

W :=
((

wu
q ,w

v
q

)
, (wu

b ,w
v
b ) , (w

u
be,w

v
be) ,

(
wu
ef ,w

v
ef

)
,
(
wu
f ,w

v
f

))
,

λ := (c, vq, vb, vbe, vef ) .

Based on the analysis of the previous sections, we define two new Banach spaces X∗ and Y∗ through

X∗ :=
(
H1
η ×H1

η

)
×
(
Xb ×H1

η

)
×
(
H1
η ×H1

η

)
×
(
H1
η ×H1

η

)
×
(
Xf ×H1

η

)
,

Y∗ :=
(
L2
η × L2

η

)
×
(
L2
η ×Z

)
×
(
L2
η × L2

η

)
×
(
L2
η × L2

η

)
×
(
L2
η ×Z

)
,

where Xb, Xf and Z have been defined in (5.11). Note that the map Fε is well-defined from X∗ × V into

Y∗ where V = (c∗ − δc, c∗ + δc)× (v∗ − δb, v∗ + δb)× (v∗ − δb, v∗ + δb)× (v∗ − δbe, v∗ + δbe)× (−δef , δef ) is a

neighborhood of λ∗ = (c∗, v∗, v∗, v∗, 0) in R5. Note that the zero-mass conditions encoded in the space Z
is satisfied due to our particular choice of mass distribution via ψ in (4.16b) and (4.18b). Using the fact

that Fε is C∞ in its two arguments, we directly see that

Fε(W, λ) = Rε + Lε(W, λ− λ∗) +Nε(W, λ− λ∗),

where

Rε = Fε(0, λ∗),
Lε(W, λ− λ∗) = DWFε(0, λ∗)W +DλFε(0, λ∗)(λ− λ∗),
Nε(W, λ− λ∗) = Fε(W, λ)−Fε(0, λ∗)−DWFε(0, λ∗)W −DWFε(0, λ∗)(λ− λ∗).

The error term Rε has been defined in equations (4.29) and (5.2), (5.3), (5.4), (5.5) and satisfies the limit

lim
ε→0
‖Rε‖Y∗ = 0,

as proved in Proposition 5.1. The linear part Lε can be decomposed into two parts: an invertible part with

bounded inverse on X∗ and a perturbation part that converges to zero as ε → 0 in operator norm. More

precisely, we have that

Lε = Liε + Lpε ,

where Liε is defined in equation (5.6) and Lpε in equation (5.12). Lemma 5.5 and 5.6 combined show that

Liε : X∗ × R5 → Y∗ is invertible with inverse bounded independent of ε > 0. That is, there exists M > 0,

independent of ε > 0, so that ∥∥∥(Liε)−1∥∥∥ ≤M.

Using Proposition 5.7 and 5.9, we have the following limit for the perturbation Lpε

lim
ε→0
‖Lpε‖ = 0.
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Then a perturbation argument ensures that, for ε small, Lε : X∗ × R5 → Y∗ is invertible with inverse

bounded independent of ε > 0. Finally, the nonlinear term Nε is quadratic in W and λ − λ∗, so that we

have

‖Nε(W, λ− λ∗)‖Y∗ = O(‖W‖2X∗ + ‖λ− λ∗‖2R5), as (W, λ)→ (0, λ∗).

Note that the quadratic terms in W appear explicitly in systems (4.15), (4.16), (4.27), (4.28) and (4.18)

while the nonlinear terms in λ− λ∗ are only defined implicitly through equation (4.29).

We are now ready to use a fixed point iteration argument on the map Fε which will give us the existence

of (W(ε), λ(ε)) solution of equation (4.29) in a neighborhood of (0, λ∗) for small values of ε > 0. As for

the proof of Proposition 3.1 and 3.2, we introduce a map Sε : X∗ × U → Y∗ defined as

Sε(W, ρ) = (W, ρ)− L−1ε (Fε(W, ρ+ λ∗)) ,

where U ⊂ R5 is a neighborhood of (0, 0, 0, 0, 0). Based on the conclusions stated above, the map Sε
satisfies the following properties:

• ‖Sε(0,0)‖Y∗ → 0 as ε→ 0;

• Sε is a C∞-map;

• D(W,ρ)Sε(0,0) = 0;

• there exist δ > 0 and C1 > 0 such that for all (W, ρ) ∈ Bδ, the ball of radius δ centered at (0,0) in

X∗ × U , we have ∥∥D(W,ρ)Sε(W, ρ)
∥∥ ≤ C1δ.

We can now define an iteration scheme as follows

(Wn+1, ρn+1) = Sε(Wn, ρn) = (Wn, ρn)− L−1ε (Fε(Wn, ρn + λ∗)) , n ≥ 0,

with initial point (W0, ρ0) = (0,0). Suppose, by induction, that (Wk, ρk) ∈ Bδ for all 1 ≤ k ≤ n, then

‖(Wn+1, ρn+1)− (Wn, ρn)‖ ≤ C1δ ‖(Wn, ρn)− (Wn−1, ρn−1)‖ ,

so that

‖(Wn+1, ρn+1)‖ ≤
C0

1− C1δ
ε.

For small enough ε, we have
C0

1− C1δ
ε < δ and (Wn+1, ρn+1) ∈ Bδ so that we have a contraction. We

can then apply the Banach’s fixed point theorem to find a solution (W(ε), ρ(ε)) = lim
n→∞

(Wn, ρn) such that

(W(ε), ρ(ε)) = Sε(W(ε), ρ(ε)). As a conclusion, for every sufficiently small ε > 0, we have proved the

existence of a traveling pulse solution to (1.5).
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