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Abstract

We introduce a spatially extended transport kinetic FitzHugh-Nagumo model with forced
local interactions and prove that its hydrodynamic limit converges towards the classical
nonlocal reaction-diffusion FitzHugh-Nagumo system. Our approach is based on a relative
entropy method, where the macroscopic quantities of the kinetic model are compared with
the solution to the nonlocal reaction-diffusion system. This approach allows to make the
rigorous link between kinetic and reaction-diffusion models.

1 Introduction

Generally, neuron models focus on the regulation of the electrical potential of the membrane of a
nerve cell depending on the input it receives. This regulation is the result of ionic exchanges be-
tween the neuron and its environment through its cellular membranes. A very precise modeling
of these ion exchanges led to the well-known Hodgkin-Huxley model [25]. In this paper, we shall
rather focus on a simplified version, called the FitzHugh-Nagumo (FHN) model [22, 35], which
keeps its most valuable aspects, but remains relatively simple mathematically. More precisely,
the FHN model accounts for the variations of the membrane potential v of a neuron coupled to
an auxiliary variable w called the adaptation variable. It is usually written as follows

dv

dt
= N(v) − w + Iext,

dw

dt
= τ (v + a − bw),

(1.1)

where Iext stands for the input current the neuron receives, N(v) is a bistable nonlinearity which
models the cell excitability, and τ ≥ 0, a ∈ R and b ≥ 0 are some given constants. Without loss
of generality [2, 20, 34, 35], we assume that N(v) is given by the following cubic nonlinearity1

N(v) := v − v3, v ∈ R. (1.2)

∗Corresponding author: gregory.faye@math.univ-toulouse.fr
1All our results remain true for N(v) = v(α− β|v|2) with any α, β > 0.
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Another mathematical reason for looking at system (1.1) is that it is a prototypical model
of excitable kinetics. Interest in such systems stems from the fact that although the kinetics
are very simple spatial coupling can produce complex dynamics, where well-known examples
are the propagation of excitatory pulses, spiral waves in two-dimensions, and spatio-temporal
chaos. Here, we introduce spatial coupling through the input current Iext which models how
the membrane potentials of the other neurons influence the membrane potential of one given
neuron. More specifically, following [2, 34], we consider a network of n neurons interacting
through their synapses, which we suppose to be of electrical type, such that the evolution of
the pair voltage-adaptation (vi, wi)1≤i≤n satisfies the system of equations

(Micro)



dxi
dt

= 0,

dvi
dt

= N(vi) − wi −
1

n

n∑
j=1

Φε(xi − xj)(vi − vj),

dwi
dt

= τ(vi + a − bwi),

(1.3)

for t > 0, where we choose to associate to each neuron i ∈ {1, ..., n} its position in the network
xi ∈ Rd with d ∈ {1, 2, 3}, that is fixed, as in [33]. The connectivity kernel Φε : Rd → R models
the effect of the distance between two neurons on their electro-chemical interactions, and here
ε > 0 is a scaling parameter as explained later. System (1.3) is a natural spatial extension of
the FHN models introduced and studied in [2, 34].

The main purpose of this article is to establish a macroscopic description of the neural net-
work (1.3) in the limit n→ +∞, choosing an appropriate scaling for the connectivity function
Φε. Our strategy is to introduce an intermediate modeling scale, namely a mesoscopic descrip-
tion of system (1.3). We thus associate to system (1.3) the following spatially-extended kinetic
equation

(Kinetic)ε ∂tf
ε + ∂v (f εN(v)− f εw − f εKΦε [f

ε]) + ∂w (A(v, w)f ε) = 0, (1.4)

for (t,x, v, w) ∈ (0,∞)×Rd+2, where the operator KΦε [f
ε] and the convective term A are given

by 
KΦε [f

ε](t,x, v) :=

∫
Rd+2

Φε(x− x′)(v − v′) f ε(t,x′, v′, w′) dw′dv′dx′,

A(v, w) := τ(v + a − bw).

Such an equation models the evolution of the density function f ε(t,x, v, w) of finding neurons
with a potential membrane v ∈ R and an adaptation variable w ∈ R at time t ≥ 0 and position
x ∈ Rd within the cortex. The term Kε[f ε] describes nonlocal interactions through the whole
field, whereas the other terms account for the local reactions due to the excitability of nerve
cells.

Using classical arguments [10, 23] and under some mild assumptions on Φε, it can actually
be proved that the kinetic equation (1.4) is the mean-field limit of (1.3) as n goes to infinity
[17]. In fact, the mean-field limit of the FHN system (1.3) with stochastic fluctuations towards
a kinetic PDE similar to (1.4) has already been studied for conductance-based connectivity
without spatial dependance [2, 4], for homogeneous interactions [34] and for spatially organized
neural network with compactly supported communication weight [33]. Various other types of
kinetic models have been derived during the past decades depending on the hypotheses assumed
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for the dynamics of the emission of an action potential. They include for example integrate-
and-fire neural networks [8, 9, 12] and time-elapsed neuronal models [13–15, 36].

Coming back to our problem of establishing a macroscopic description of the neural network
(1.3), we introduce the following macroscopic quantities for f ε a solution of (1.4):

ρε(t,x) :=

∫
R2

f ε(t,x, v, w) dvdw,

ρε(t,x)V ε(t,x) = jε(t,x) :=

∫
R2

vf ε(t,x, v, w) dvdw,

ρε(t,x)W ε(t,x) = qε(t,x) :=

∫
R2

wf ε(t,x, v, w) dvdw,

(1.5)

where ρε stands for the averaged neuron density, V ε is the average membrane potential, and
W ε is the average adaptation variable. Formally, it is not difficult to check that the equation
satisfied by jε is not closed because of the presence of the reaction term ∂v (f ε(N(v)) in (1.4),
which introduces higher moments of f ε in v. To circumvent this difficulty and obtain a closed
macroscopic system, we consider a specific form for the connectivity function Φε. We will
assume that it can be decomposed by the superposition of strong local interactions modeled by
1
εδ0, where δ0 is the Dirac distribution centered at 0 and weak lateral interactions described by
a non-negative connectivity kernel Ψ. As a consequence, for all ε > 0, we work with

Φε(x) = Ψ(x) +
1

ε
δ0(x), ∀x ∈ Rd. (1.6)

Note that such an assumption of strong local interactions and weak lateral interactions is often
used when modeling visual cortex [7]. We can then rewrite the kinetic equation (1.4) as

∂tf
ε + ∂v (f εN(v)− f εw − f εKΨ[f ε])− 1

ε
∂v (f ε(ρεv − jε)) + ∂w (A(v, w)f ε) = 0 (1.7)

for (t,x, v, w) ∈ (0,∞)×Rd+2, and the macroscopic quantities (ρε, ρεV ε, ρεW ε) formally verify
the system of equations:

(Macro)ε


∂tρ

ε = 0,

∂t (ρεV ε) − ρεLρε(V ε) = ρε [N(V ε) − W ε] + E(f ε),

∂t (ρεW ε) = ρεA(V ε,W ε),

(1.8)

for (t,x) ∈ (0,∞)× Rd, where the spatial nonlocal operator Lρ is defined through

Lρ(V ) := −(Ψ ∗ ρ)V + Ψ ∗ [ρV ], (1.9)

whereas ∗ stands for the convolution product in Rd only with respect to space. Furthermore,
we have set

E(f ε)(t,x) :=

∫
R2

f ε(t,x, v, w) [N(v) − N(V ε(t,x))] dvdw. (1.10)

It is worth noticing that v is a collisional invariant for the operator ∂v (f ε(ρεv − jε)) such that
the macroscopic system (1.8) does not naturally present terms of order O(1/ε).

Let us formally determine the hydrodynamic limit of the equation (1.7) as ε → 0. If we
multiply (1.7) by ε and if we take ε → 0, the local interaction term ρε(v − V ε)f ε vanishes.
Consequently, f ε should converge in some weak sense to the mono-kinetic distribution in v

f ε(t,x, v, w) ⇀
ε→0

F (t,x, w)⊗ δ0(v − V (t,x)), (1.11)
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where the limit (F, V ) has to be determined. First we set

ρ(t,x) :=

∫
R
F (t,x, w)dw, ρ(t,x)W (t,x) :=

∫
R
F (t,x, w)w dw,

hence the macroscopic equation satisfied by V is formally obtained by observing that E(f ε)→ 0
as ε→ 0 in the second equation of (1.8), hence we get

∂t (ρ V ) − ρLρ(V ) = ρ [N(V ) − W ] .

Then substituting (1.11) in the kinetic equation (1.7) and integrating with respect to v ∈ R, it
yields that F is solution to

∂tF + ∂w (A(V,w)F ) = 0.

Therefore, the limit function Z := (ρ, ρV, ρW ) is expected to verify the following nonlocal
reaction diffusion system:

∂tZ = F(Z), t > 0, x ∈ Rd, (1.12)

with F given by

F(Z) := ρ

 0
Lρ(V ) + N(V ) − W

A(V,W )

 . (1.13)

It is interesting to note that although we obtain a mono-kinetic distribution in the v variable
only, it is enough to obtain a closed macroscopic model. Indeed, the kinetic equation (1.7) is
linear in the w variable which allows to close the system when integrating in w.

Let us first make some comments on the structure of the macroscopic model (1.12)-(1.13).
For all x ∈ Rd such that ρ(t,x) = ρ0(x) > 0, the system (1.12) reduces to the usual nonlocal
reaction-diffusion system of FitzHugh-Nagumo type

∂tV − Lρ0(V ) = N(V ) − W,

∂tW = τ(V + a− bW ),
(1.14)

for x ∈ Rd and t > 0, where Lρ0(V ) can be interpreted as a nonlocal diffusion operator in x. In
the limiting case ρ0 ≡ 12, such a system has already been well studied especially regarding the
formation of propagating waves (traveling fronts and pulses) in both cases τ = 0 and 0 < τ � 1
[3, 20]. We also mention the classical works regarding the local FitzHugh-Nagumo system, that
is when Lρ0(V ) is replaced by the standard diffusion operator [11, 24, 28], and the more recent
advances for the discrete case [26, 27]. The present work is then a rigorous justification of
the nonlocal reaction-diffusion system of FitzHugh-Nagumo type (1.12) that is obtained as the
hydrodynamic limit of the kinetic equation (1.7) as ε→ 0.

The main challenge towards a rigorous proof of this hydrodynamic limit stems from the Dirac
singularity of the mono-kinetic distribution which prevents us from using a classical entropy of
the form f log(f) since it would not be well-defined. Following ideas from [21], who proved a
similar hydrodynamic limit of the kinetic Cucker-Smale model for collective motion with forced
local alignment towards the pressureless Euler equation with a nonlocal force, we shall overcome
this problem by the mean of a relative entropy argument. Let us also mention the work of [29]
in which the hydrodynamic limit of a collisionless and non-diffusive kinetic equation under
strong local alignment regime is rigorously established via a relative entropy argument. The

2In our setting, ρ0 is probability density function such that the case ρ0 ≡ 1 is excluded from our hypotheses.
Nevertheless, system (1.14) is still well defined for ρ0 ≡ 1, see Proposition 2.3.
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specific difficulty here is that, instead of having a transport term as in [21], the presence of the
reaction term ∂v(f

εN(v)) in (1.7) introduces higher order moments of f ε in v which we will
need to control. In fact, it will be enough to have a priori estimates of second and fourth order
moments of f ε in (v, w) to circumvent this difficulty.

We conclude this introduction by comparing the kinetic model (1.4) to the pioneer works of
Amari, Wilson and Cowan in the 1970s [1, 38, 39] who heuristically derived spatially extended
models describing the macroscopic activity of large assemblies of neurons. Such models are
referred to as neural field equations in the literature and account for the time evolution of the
spatial averaged membrane potential of a population of neurons. Such a class of models has
received much attention and has been very successful at reproducing a number of biological
phenomena, including in particular visual hallucinations, binocular rivalry or working memory.
We refer to the recent surveys [5, 6, 16] for more developments on neural field models and
applications in neuroscience. By derivation, neural field equations are macroscopic models and
it is still an open problem to rigorously justify such models from conductance-based neural
networks. In a slightly different direction, we mention the recent work of Chevallier et al. [15]
on mean-field limits for nonlinear spatially extended Hawkes processes with exponential memory
kernels who are able to recover at the limit a process whose law is an inhomogeneous Poisson
process having an intensity which solves a scalar neural field equation. In this article, we have
addressed this open question in the case of the FHN model.

The rest of this article is organized as follows. In Section 2, we state our main result about
the hydrodynamic limit of (1.7) towards (1.12). Then, in Section 3, we derive some a priori
estimates that will be crucial for our relative entropy argument. The proof of our main result
is contained in Section 4.

2 Preliminaries and main result

In this section, we present our main result on the hydrodynamic limit from a weak solution
(f ε)ε>0 of the kinetic equation (1.7) to a classical solution (ρ0, ρ0V, ρ0W ) of the asymptotic
system (1.12). For that, we first need to present the existence result for the weak solution of
(1.7) and the classical solution of (1.12).

First we set the hypotheses we make for the study of the kinetic FHN equation (1.7) and
the limit system (1.12). We consider a connectivity kernel Ψ in (1.6) which is non-negative,
symmetric and satisfies

Ψ ∈ L1(Rd). (2.1)

This last assumption models the fact that if two neurons are far away from each other, they
have weak mutual interactions. The other condition is a natural biological assumption and
expresses the symmetric and excitatory nature of the considered underlying neural network.

2.1 Existence of weak solution to (1.7)

We here say that f ε is a weak solution of (1.7) if for any T > 0, f ε(0, .) = f ε0 ≥ 0 in Rd+2,

f ε ∈ C 0([0, T ], L1(Rd+2)) ∩ L∞((0, T )× Rd+2),

and (1.7) holds in the sense of distribution, that is, for any ϕ ∈ C∞c ([0, T ) × Rd+2), the weak
formulation holds∫ T

0

∫
f ε
[
∂tϕ+

(
N(v)− w −KΨ[f ε]− 1

ε
(ρεv − jε)

)
∂vϕ+A(v, w)∂wϕ

]
dz dt

+

∫
f ε0ϕ(0) dz = 0 (2.2)
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where z = (x, v, w) ∈ Rd+2.

Remark 2.1. Using the mass conservation property of equation (1.7), we can easily check that
the time varying macroscopic quantities (ρε, V ε,W ε) defined in (1.5) simplify to

ρε(t,x) :=

∫
R2

f ε(t,x, v, w) dv dw =

∫
R2

f ε0 (x, v, w) dv dw = ρε0(x), (2.3)

hence we have 
ρε0(x)V ε(t,x) :=

∫
R2

v fε(t,x, v, w) dv dw,

ρε0(x)W ε(t,x) :=

∫
R2

w fε(t,x, v, w) dv dw,

for all x ∈ Rd and all t > 0 where f ε is well-defined.

First, let us prove the well-posedness of the kinetic equation (1.7).

Proposition 2.2. For any ε > 0 we choose Ψ to be non-negative, symmetric and satisfies (2.1),
we also assume that f ε0 satisfies

f ε0 ≥ 0, fε0 ∈ L1(Rd+2), f ε0 , ∇uf
ε
0 ∈ L∞(Rd+2), (2.4)

where u = (v, w) and for all x ∈ Rd,

Supp(f ε0 (x, ·, ·)) ⊆ B(0, Rε0) ⊂ R2. (2.5)

Then for any T > 0, there exists a unique f ε weak solution to (1.7) in the sense of (2.2), which
is compactly supported in u = (v, w) ∈ R2.

The proof relies on a classical fixed point argument, but for the sake of completeness, it is
postponed to the Appendix A.

2.2 Existence of classical solution to the nonlocal FitzHugh-Nagumo system

Let us now state the result of existence and uniqueness for the nonlocal reaction-diffusion
FitzHugh-Nagumo system defined as

∂tV − Lρ0(V ) = N(V ) − W,
t > 0 and x ∈ Rd,

∂tW = τ(V + a− bW ),

V (0,x) = V0(x), W (0,x) = W0(x), x ∈ Rd.

(2.6)

Before describing precisely the existence and uniqueness of solution (V,W ) to the hydro-
dynamical system (2.6), let us emphasize that this system is more convenient to analyse than
(1.12)-(1.13) verified by Z = (ρ0, ρ0 V, ρ0W ). Indeed, as we will see, both solutions coincide in
the region of interest where ρ0 > 0, but the study of (2.6) allows to construct a solution such
that for all t ∈ [0, T ]

V (t), W (t) ∈ L∞(Rd).

This property is crucial to apply the relative entropy method in the asymptotic analysis of (1.7)
when ε→ 0.
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Proposition 2.3. We choose Ψ to be non-negative, symmetric and satisfies (2.1), we also
suppose that ρ0 and the initial data (V0,W0) satisfies,

ρ0 ≥ 0, ρ0 ∈ L1 ∩ L∞(Rd), V0,W0 ∈ L∞(Rd). (2.7)

Then for any T > 0, there exists a unique classical solution (V,W ) ∈ C 1([0, T ], L∞(Rd)) to the
equation (2.6). Furthermore, Z = (ρ0, ρ0V, ρ0W ) is a solution to (1.12)-(1.13).

The proof of this proposition also relies on a classical fixed point argument. For the sake
of completeness, it is postponed to the Appendix B. Then as a direct consequence, for a given
initial data (F0, V0), it leads to the existence and uniqueness of solution (F, V ) to the following
system of equations

∂tF + ∂w (A(V,w)F ) = 0,

ρ0∂tV − ρ0Lρ0(V ) = ρ0 [N(V ) − W ] ,

ρ0(x) =

∫
R
F (t,x, w) dw,

V (t,x) = 0, t > 0 and x ∈ Rd \ Suppess(ρ0),

W (t,x) =


1

ρ0(x)

∫
R
F (t,x, w)w dw, if ρ0(x) > 0,

0, else.

(2.8)

More precisely we have the following result.

Corollary 2.4. Consider V0 ∈ L∞(Rd) and F0 ∈M(Rd+1) such that∫
Rd+1

w2F0(dx,dw) <∞

and for almost every x ∈ Rd,

ρ0(x) =

∫
R
F0(x, w) dw, W0(x) :=


1

ρ0(x)

∫
R
F0(x, w)w dw, if ρ0(x) > 0,

0, else,

where ρ0 ∈ L1∩L∞(Rd) and W0 ∈ L∞(Rd). We further assume that V0 = 0 on Rd \ Suppess(ρ0).
Then for any T > 0, there exists a unique couple (F, V ) solution to (2.8), where

(F, V ) ∈ L∞((0, T ),M(Rd+1))× C 1([0, T ], L∞(Rd)),

and F is a measure solution to the first equation (2.8), that is, for any ϕ ∈ C 1
c (Rd+1)

d

dt

∫
Rd+1

ϕ(x, w)F (t,dx, dw) −
∫
Rd+1

A(V (t,x), w) ∂wϕ(x, w)F (t,dx, dw) = 0 (2.9)

such that there exists a constant CT > 0,∫
Rd+1

w2F (t,dx,dw) < CT , t ∈ [0, T ].
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Proof. We first apply Proposition 2.3 with (ρ0, V0,W0), where (ρ0,W0) is computed from the
moments with respect to (1, w) of the initial distribution F0, that is, for almost every x ∈ Rd,

ρ0(x) =

∫
R
F0(x, w) dw, W0(x) :=


1

ρ0(x)

∫
R
F0(x, w)w dw, if ρ0(x) > 0,

0, else.

We then denote by (Ṽ , W̃ ) the corresponding unique classical solution to (2.6) starting from
such an initial condition. Finally, we define

V (t,x) :=

 Ṽ (t,x), if ρ0(x) > 0,

0, else.

(2.10)

As ρ0 is independent of time, we note that V ∈ C 1([0, T ], L∞(Rd)).
We now prove that for any couple solution (F , V ) of (2.8) then V is precisely given by (2.10).

Thus, let us suppose that (F , V ) is a well-defined solution of (2.8) on [0, T ] with finite second
moment. We necessarily get that ρ0W has to satisfy

∂t(ρ0W )− ρ0A(V ,W ) = 0,

together with
ρ0∂tV − ρ0Lρ0(V ) = ρ0

[
N(V ) − W

]
.

Thus, for any x ∈ Rd such that ρ0(x) > 0, the couple (V ,W ) coincides with the unique solution
to (2.6) with initial condition (ρ0, V0,W0). This is ensured from the fact that the convolution in
the nonlocal part Ψ∗ (ρ0V ) of the linear operator Lρ0(V ) is only evaluated on the regions where

ρ0 > 0. Then, this uniquely defines V (t,x) = Ṽ (t,x) on ρ0 > 0. By definition of a solution to
(2.8), whenever ρ0 = 0, we have that V (,x) = 0. As a conclusion, we have just shown that if
(F , V ) is a well-defined solution of (2.8) on [0, T ] with finite second moment then necessarily
V = V where V is uniquely defined in (2.10).

For V defined as above in (2.10), we consider the transport equation
∂tF + ∂w (A(V,w)F ) = 0,

F (0) = F0.
(2.11)

Then, for almost every x ∈ Rd and all (t, w) ∈ [0;T ]×R, we introduce the system of characteristic
curves associated to (2.11), that is,

d

ds
W(s) = A (V (s,x) , W(s)) ,

W(t) = w,

(2.12)

where V is defined in (2.10). From the regularity with respect to (t, w) ∈ [0, T ] × R of the
functions A(., .) and V (., .) and since A(., .) grows at most linearly with respect to w, we get
global existence and uniqueness of a solution to (2.12). This solution is denoted byW(s, t,x, w),
then we verify using the theory of characteristics that the unique solution to the transport
equation (2.11) is given by

F (t,x, w) = F0(x,W(0, t,x, w)) eτ b t.
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From the above expression, it easy to compute the second order moment of F with respect to
w and get that there exists CT > 0 such that∫

Rd+1

w2F (t,dx, dw) < CT , t ∈ [0, T ].

As a final consequence of the above computations, we have that

1

ρ0(x)

∫
R
F (t,x, w)w dw = W̃ (t,x), for all x ∈ Rd such that ρ0(x) > 0,

by uniqueness of the solutions of (2.6). This shows that the couple (F, V ) is the unique solution
to (2.8) where V is given in (2.10) and F is the unique measure solution of (2.11).

2.3 Main result

Now, we are ready to state our main result about the hydrodynamic limit. To this aim we
consider a non-negative initial data (f ε0 )ε>0 and suppose that there exists a constant C > 0,
such that for all ε > 0,

‖ρε0‖L∞ ≤ C (2.13)

and ∫ (
1 + |x|4 + |v|4 + |w|4

)
f ε0 (x, v, w)dwdvdx ≤ C. (2.14)

Theorem 2.5. Let T > 0, Ψ be a non-negative, symmetric kernel verifying (2.1) and (f ε0 )ε,
a sequence of initial data such that for all ε > 0, (2.4), (2.5), (2.13) and (2.14) are satisfied.
Assume that (ρ0, V0,W0) verifies (2.7), and

‖ρε0 − ρ0‖2L2 +

∫
ρε0(x)

[
|V ε

0 (x)− V0(x)|2 + |W ε
0 (x)−W0(x)|2

]
dx ≤ C ε1/(d+6). (2.15)

Then, the macroscopic quantities (ρε0, V
ε,W ε), computed from the solution f ε to (1.7), verify

that for all t ∈ [0, T ],∫
Rd

[
|V ε(t,x)− V (t,x)|2 + |W ε(t,x)−W (t,x)|2

]
ρε0(x) dx ≤ CT ε1/(d+6),

where (V,W ) is the unique solution to (1.14).
Let further assume that (ρ0, V0,W0) are such that,

ρ0(x) =

∫
R
F0(x, w) dw, W0(x) =


1

ρ0(x)

∫
R
F0(x, w)w dw, if ρ0(x) > 0,

0, else,

for F0 ∈ M(Rd+1), and V0 = 0 on Rd\Suppess(ρ0). Moreover, consider the function F ε0 such
that for all x ∈ Rd and all w ∈ R,

F ε0 (x, w) =

∫
f ε0 (x, v, w) dv.

If F ε0 ⇀ F0 weakly-? in M
(
Rd+1

)
then we have for all ϕ ∈ C 0

b (Rd+2):∫
ϕ(x, v, w) f ε(t,x, v, w) dv dw dx→

∫
ϕ(x, V (t,x), w)F (t,dx, dw) ,

strongly in L1
loc(0, T ) as ε→ 0, where (F, V ) is the unique solution to (2.8).
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Sketch of the Proof of Theorem 2.5. Our approach is based on the application of
relative entropy method [18, 19] and more recently [29] , and will be explained in section 4. The
first step of the proof is to introduce a relative entropy which allows us to compare solutions of
(1.12) with those of (1.8), and then derive an estimate which will enable us to prove that this
relative entropy tends to 0 as ε vanishes. Deriving such an estimate is the most difficult part of
the analysis. More precisely, the difficulties come from: (i) the reaction term ∂v(f

εN(v)) which
introduces moments of order 4 that we will need to control, and (ii) the fact that V ε and W ε are
not a priori bounded in L∞(Rd). We will overcome this problem using two entropy inequalities
that will be proved in Section 3.

The rest of the paper is devoted to the proof of Theorem 2.5, where we get a priori estimates
uniformly with respect to ε > 0 on the solution (f ε)ε>0 constructed in Proposition 2.2 and study
the behavior of a relative entropy [18, 19].

3 A priori estimates

In this section, we prove some a priori estimates of the moments of a solution to (1.7) which
will be crucial for the proof of Theorem 2.5. For all i ∈ N and z ∈ {x, v, w}, we denote by µzi
the moment of order i in z of f ε, defined as

µzi (t) :=

∫
Rd+2

|z|if ε(t,x, v, w) dxdvdw.

whereas µi is given by
µi(t) := µxi (t) + µvi (t) + µwi (t).

Throughout this sequel, let T > 0 and ε > 0, and suppose that f ε is a well-defined solution
to (1.7) for all t ∈ (0, T ] obtained in Proposition 2.2. For any p ∈ N∗, we first establish some a
priori estimates on µv2p and µw2p.

Lemma 3.1 (Moment estimates). Consider the solution f ε to (1.7) given by Proposition 2.2
and p∗ ∈ N∗

µv2p∗(0) + µw2p∗(0) <∞.

Then there exists C > 0, only depending on p∗ and τ , such that for all p ∈ [1, p∗],

1

2p

d

dt

[
µv2p + µw2p

]
(t) + µv2p+2(t) +

1

ε
Dp(t) ≤ C

([
µv2p + µw2p

]
(t) + 1

)
, (3.1)

where Dp(t) is non-negative and defined as

Dp(t) :=

∫
Rd+2

f ε v2p−1 (v − V ε) ρε0 dxdvdw.

Proof. Consider f ε a well-defined solution to (1.7) and p ∈ N∗, we compute the time evolution
of moments in |v|2p and |w|2p, hence we have

1

2p

d

dt

[
µv2p + µw2p

]
(t) = I1 + I2 + I3 + I4 + I5,
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where 

I1 := +

∫
Rd+2

v2p−1N(v) f ε dxdvdw,

I2 := −1

ε

∫
Rd+2

f ε ρε v2p−1 (v − V ε) dxdvdw,

I3 := −
∫
Rd+2

v2p−1KΨ[f ε] f ε dxdvdw,

I4 := −
∫
Rd+2

v2p−1w fε dxdvdw,

I5 := +

∫
Rd+2

w2p−1A(v, w) f ε dxdvdw.

First of all we treat the term I1, since v2p−1N(v) = |v|2p − |v|2p+2, we get

I1 =

∫
Rd+2

(
|v|2p − |v|2p+2

)
f ε dxdvdw = µv2p(t)− µv2p+2(t).

Furthermore, we estimate the second term I2 and show that it is non-positive. Indeed, from
the definition of V ε, we observe that∫

ρε (V ε)2p−1

(∫
f ε (v − V ε) dv dw

)
dx = 0.

Therefore, since p ≥ 1, the function v 7→ v2p−1 is non-decreasing, which yields

ε I2 = −
∫
f ε
[(
v2p−1 − (V ε)2p−1

)
+ (V ε)2p−1

]
(v − V ε) ρε dvdwdx

= −
∫
f ε
(
v2p−1 − (V ε)2p−1

)
(v − V ε) ρε dvdwdx ≤ 0.

As a consequence, we obtain that ε I2 = −Dp ≤ 0.
Then, we deal with I3 and prove that it contributes to the dissipation of moments. Indeed,

by symmetry of Ψ we may reformulate I3, using the shorthand notation f ε ′ = f ε(x′, v′, w′) and
f ε = f ε(x, v, w), as

I3 = −1

2

∫∫
Ψ(x− x′) v2p−1

(
v − v′

)
f ε ′(t) f ε(t) dxdvdwdx′dv′dw′

−1

2

∫∫
Ψ(x− x′) v′2p−1

(
v′ − v

)
f ε ′(t) f ε(t) dxdvdwdx′dv′dw′

≤ 0.

Finally, we can easily compute I4, which yields

I4 ≤
∫
f ε
(

2p− 1

2p
|v|2p +

1

2p
|w|2p

)
dxdvdw

≤ 2p− 1

2p
µ2p(t),

11



whereas the last term I5 gives

I5 = τ

∫ [
w2p−1 v + aw2p−1 − b |w|2p

]
f ε dxdvdw

≤ τ

∫ [
1

2p
|v|2p +

2 p− 1

2 p
|w|2p +

2 p− 1

2 p
|w|2p +

|a|2p

2p

]
f ε dxdvdw

≤ τ
2p− 1

p
µ2p(t) +

τ |a|2p

2p
.

Therefore, gathering the previous results, we get the entropy inequality (3.1) with C > 0, only
depending on p, τ and a.

This Lemma will be helpful to pass to the limit ε → 0 in (1.7). The first consequence is
some moment estimates in u = (v, w) and also x.

Corollary 3.2. Under the assumptions of Lemma 3.1 with p∗ = 2, we choose an initial datum
f ε0 such that (2.14) is satisfied. Then, there exists a constant CT > 0, which does not depend
on ε > 0, such that for any k ∈ [0, 4],

µk(t) ≤ CT , t ∈ [0, T ],∫ T

0
µvk+2(t) dt ≤ CT .

(3.2)

Proof. First we observe that

µ0(t) = 3

∫
Rd+2

f ε(t) dvdwdx = 3 ‖ρε0‖L1 , (3.3)

which gives the result with k = 0.
Then for k = 4, we apply Lemma 3.1 with p = 2 and integrate with respect to t ∈ [0, T ] and

by the Grönwall’s lemma, it yields the estimates on the second order moment in u = (v, w),
there exists a constant CT > 0 such that for any t ∈ [0, T ]

µv4(t) + µw4 (t) ≤ CT .

Furthermore, since ρε does not depend on time, we also have for all t ∈ [0, T ],

µx4 (t) =

∫
Rd
|x|4 ρε0 dx < ∞,

hence from hypothesis (2.14) which gives us the uniform control of the moment of order 4 in x
of f ε0 , there exists a constant CT > 0, independent of ε > 0, such that for all t ∈ [0, T ],

µ4(t) ≤ CT . (3.4)

On the other hand, from the latter result and the dissipative terms obtained in Lemma 3.1,
there exists a constant CT > 0 such that∫ T

0
µv6(t) dt ≤ CT . (3.5)

Interpolating (3.3) and (3.4)-(3.5), it yields the result with 0 ≤ k ≤ 4.

12



Another consequence of Lemma 3.1 is the control of the dissipation D1(.), which is a crucial
step to characterize the limit of the sequence (f ε)ε>0 when ε→ 0.

Corollary 3.3. Under the assumptions of Lemma 3.1 with p∗ = 1, we choose an initial datum
f ε0 such that (2.14) is satisfied. Then, there exists a constant CT > 0, such that∫ T

0

∫
Rd+2

f ε(t) |v − V ε(t,x)|2 ρε0(x) dx dv dw dt ≤ CT ε. (3.6)

Proof. We first apply Corollary 3.2 to obtain a uniform estimate on the moments µ2(.),

µ2(t) ≤ CT , t ∈ [0, T ].

Then, integrating the entropy inequality (3.1) between 0 and T and using the positivity of D1(.),
we find

1

ε

∫ T

0

∫
Rd+2

f ε(t,x, v, w) |v − V ε(t,x)|2 ρε0(x)dx dv dw dt

≤ µ2(0) + 2C

∫ T

0
(1 + µ2(t)) dt ≤ CT ,

from which we easily deduce (3.6).

This last result is not enough to justify the asymptotic limit. Hopefully, it can be improved
by removing the weight ρε0 in the previous estimate.

Lemma 3.4. Consider the solution f ε to (1.7) given by Proposition 2.2, where the initial datum
f ε0 satisfies (2.14). Then, there exists a constant CT > 0, independent of ε > 0, such that∫ T

0

∫
Rd+2

f ε(t,x, v, w)|v − V ε(t,x)|2 dx dv dw dt ≤ CT ε2/(d+6). (3.7)

Proof. Let us fix ε > 0 and T > 0. First, we set

Iε =

∫ T

0

∫
f ε|v − V ε|2 dw dv dx dt

and notice that according to the definition of V ε,

Iε =

∫ T

0

∫
f ε
(
|v|2 + |V ε|2 − 2vV ε

)
dw dv dx dt

≤
∫ T

0

∫
f ε|v|2dw dv dx dt < +∞.

So it gives that f ε|v−V ε|2 ∈ L1([0, T ]×Rd+2). Our strategy to prove (3.7) is to divide Rd into
several subsets where f ε|v − V ε|2 is easier to control.

We consider any η > 0 and define the set Aε

Aε :=
{

x ∈ Rd | ρε0(x) = 0
}
,

and Bηε given by

Bηε :=
{

x ∈ Rd | ρε0(x) > η
}
,
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whereas Cηε = Rd\ (Aε ∪Bη
ε ), that is,

Cηε :=
{

x ∈ Rd | 0 < ρε0(x) ≤ η
}
.

Thus, we have Iε = Iε1 + Iε2 + Iε3 , where

Iε1 :=

∫ T

0

∫
Aε

∫
f ε|v − V ε|2dw dv dx dt,

Iε2 :=

∫ T

0

∫
Bηε

∫
f ε|v − V ε|2dw dv dx dt,

Iε3 :=

∫ T

0

∫
Cηε

∫
f ε|v − V ε|2dw dv dx dt.

On the one hand, since f ε ≥ 0, we directly have that f ε = 0 when ρε0 = 0, that is when x ∈ Aε,
thus we have

Iε1 =

∫ T

0

∫
Aε

∫
f ε|v − V ε|2dxdvdwdt = 0. (3.8)

On the other hand, for x ∈ Bηε , we know that ρε0(x) > η, therefore it yields that

Iε2 ≤
∫ T

0

∫
Bηε

∫
f ε |v − V ε|2 ρ

ε
0

η
dx dv dw dt

≤ 1

η

∫ T

0

∫
f ε |v − V ε|2 ρε0 dx dv dw dt.

Hence, by application of Corollary 3.3, we get the following estimate:

Iε2 = O
(
ε

η

)
. (3.9)

It remains to control the last term Iε3 . To this aim we bound it by the sum of three terms :
for any R > 0, we have

Iε3 ≤
∫ T

0

∫
Cηε

∫
f ε|v|2dv dx dw dt =: Iε3,1 + Iε3,2 + Iε3,3,

where 

Iε3,1 :=

∫ T

0

∫
Cηε

∫
{|v|>R}

f ε|v|2dv dx dw dt,

Iε3,2 :=

∫ T

0

∫
Cηε∩Bc(0,R)

∫
{|v|≤R}

f ε|v|2dv dx dw dt,

Iε3,3 :=

∫ T

0

∫
Cηε∩B(0,R)

∫
{|v|≤R}

f ε|v|2dv dx dw dt.

For k > 2, the estimates on moments in velocity gives that

Iε3,1 ≤
1

Rk−2

∫ T

0

∫
f ε|v|k dv dx dw dt =

1

Rk−2

∫ T

0
µvk(t) dt, (3.10)
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where the last term is uniformly bounded according to Corollary 3.2 for k ∈ [0, 6].
Furthermore, we estimate Iε3,2 using a similar argument as for Iε3,1 but now using moments

in space, that is, for p ∈ [2, 4],

Iε3,2 ≤
∫ T

0

∫
|x|p

Rp
f ε(t)R2 dw dv dx dt ≤ 1

Rp−2

∫ T

0
µxp (t) dt, (3.11)

where µxp (.) is uniformly bounded according to Corollary 3.2 for p ∈ [0, 4]. Finally, the last term
Iε3,3 can be computed as

Iε3,3 ≤ R2

∫ T

0

∫
Cηε∩B(0,R)

ρε0 dx dt ≤ C̃ T Rd+2 η, (3.12)

where C̃ is the positive constant such that |B(0, R)| = C̃Rd. By summing (3.10), (3.11) and
(3.12), we can conclude that there exists a constant C = C(T ) independent on R, η and ε such
that

Iε3 ≤ C

(
Rd+2 η +

1

Rp−2
+

1

Rk−2

)
.

For simplicity we choose p = k = 4 and optimize the value of R, which leads to

Iε3 ≤ CT η
2/(d+4). (3.13)

Finally by summing (3.8), (3.9) and (3.13), we get that there exists a positive constant
CT > 0 independent on η and ε, such that,

Iε ≤ CT

(
η2/(d+4) +

ε

η

)
.

Hence, we can choose η = ε(d+4)/(d+6) and∫ T

0

∫
f ε|v − V ε|2 dx dv dw dt ≤ CT ε

2/(d+6).

4 Relative entropy estimate and proof of Theorem 2.5

Following ideas from [21, 29], our proof of Theorem 2.5 relies on a relative entropy argument to
estimate the distance between a solution of (1.8) and a solution of (1.12) on [0, T ] for some finite
T > 0 as ε → 0, with well-prepared initial conditions. Throughout this section, by a solution
(ρ0, ρ0V, ρ0W ) of (1.12), we refer to the solution constructed in Proposition 2.3. We start this
section with the definition of the relative entropy that we will be using. Then, we present an
equality satisfied by the relative entropy, which will be useful to estimate it. This estimate will
finally be the key argument to conclude the proof.

4.1 Definition of relative entropy

We want to use a relative entropy argument which enables us to compare solutions of (1.12)
with the solutions of (1.7) seen on its hydrodynamic form (1.8). We first introduce the notion
of entropy.
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Definition 4.1 (Entropy). For all functions V and W : Rd −→ R, and for any non-negative
function ρ : Rd → R, we define for Z = (ρ, ρV, ρW ), the entropy η(Z) by

η(Z) := ρ
|V |2 + |W |2

2
. (4.1)

Note that if we define P = ρV and Q = ρW , then we have

η(Z) =
P 2 + Q2

2 ρ
.

As a consequence, the differential of η with respect to its variables Z is given by

Dη(Z) =

Dρη
DP η
DQη

 =

−
|V |2 + |W |2

2
V
W

 . (4.2)

Using the definition of entropy (4.1), we can now introduce the notion of relative entropy or
Bregman divergence.

Definition 4.2 (Relative Entropy). For all functions V1, W1, V2 and W2 : Rd → R and for all
non-negative functions ρ1 and ρ2 : Rd → R, we define for Zi = (ρi, ρiVi, ρiWi), with i = 1, 2,
the relative entropy

η(Z1|Z2) := η(Z1) − η(Z2) − Dη(Z2) · (Z1 −Z2)

which gives us after computation

η(Z1|Z2) = ρ1
|V2 − V1|2 + |W2 −W1|2

2
. (4.3)

This relative entropy will be useful to ”compare” the weak solution (ρε0, ρ
ε
0V

ε, ρε0W
ε) to (1.8)

with the classical solution (ρ0, ρ0V, ρ0W ) to (1.12). Let us finally remark that in the simplified
case where we assume ρ0 = ρε0, then η reduces to the Euclidean norm ‖·‖2.

4.2 Relative entropy equality

In this subsection, we prove an equality satisfied by the relative entropy defined by (4.3) between
an arbitrary smooth function and a solution of the hydrodynamic equations (1.12). The purpose
of this result is to split the relative entropy dissipation into one part due to the macroscopic
solution (1.12) and another part which estimates the difference between the two solutions.

Lemma 4.3. Under the assumption that Ψ is non-negative, symmetric and satisfies (2.1), we
consider (V,W ) the solution to the hydrodynamic equation (2.6) given by Proposition 2.3. Then,

for any Z̃ = (ρ̃, ρ̃ Ṽ , ρ̃ W̃ ) such that ρ̃ is non-negative, ρ̃ ∈ L1 ∩ L∞(Rd), whereas Ṽ and W̃
are both differentiable in time and such that for any t ∈ [0, T ],

ρ̃
(
|Ṽ (t)|4 + |W̃ (t)|4

)
∈ L1(Rd),

the following equality holds:

d

dt

∫
η(Z̃|Z) dx =

d

dt

∫
η(Z̃)dx (4.4)

−
∫
Dη(Z)

[
∂tZ̃ − F(Z̃)

]
dx + R(Z̃|Z) + S(Z̃),
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with R = Rl +Rnl and S = Sl + Snl, where Rl and Sl contain local terms

Rl(Z̃|Z) :=

∫
ρ̃
(
V − Ṽ

) (
N(V )−W − N(Ṽ ) + W̃

)
dx

+

∫
ρ̃
(
W − W̃

) (
A(V,W )−A(Ṽ , W̃ )

)
dx,

Sl(Z̃) := −
∫
ρ̃
[
Ṽ N(Ṽ ) − Ṽ W̃ + W̃ A(Ṽ , W̃ )

]
dx.

(4.5)

whereas Rnl(Z̃|Z) and Snl(Z̃) gather nonlocal terms
Rnl(Z̃|Z) :=

∫
ρ̃
[
(V − Ṽ )

(
Lρ0(V )− Lρ̃(Ṽ )

)]
dx,

Snl(Z̃) := −1

2

∫∫
Ψ(x− y) ρ̃(x) ρ̃(y)

∣∣∣Ṽ (t,x) − Ṽ (t,y)
∣∣∣2 dx dy

(4.6)

Proof. First of all, it is worth noticing that for all t ∈ [0;T ], since V (t) and W (t) ∈ L∞(Rd)
and since ρ0 ∈ L1(Rd), then for all i ∈ N, ρ0

(
|V (t)|i + |W (t)|i

)
∈ L1(Rd). From the definition

(4.2) of η(Z̃|Z), we have

d

dt

∫
η(Z̃|Z) dx =

∫ [
∂tη(Z̃)− ∂tη(Z)− ∂tDη(Z) ·

(
Z̃ − Z

)
−Dη(Z) · ∂t

(
Z̃ − Z

)]
dx

= I1 + I2,

with 
I1 :=

∫
∂tη(Z̃) − Dη(Z) ·

[
∂tZ̃ − F(Z̃)

]
dx,

I2 := −
∫ [

∂tDη(Z) ·
(
Z̃ − Z

)
+ Dη(Z) · F(Z̃)

]
dx,

where F is defined in (1.12)-(1.13).
On the one hand, the term I1 corresponds to the variation of entropy which simply gives

I1 =
d

dt

∫
η(Z̃) dx −

∫
Dη(Z) ·

[
∂tZ̃ − F(Z̃)

]
dx. (4.7)

On the other hand, we decompose I2 as I2 = I21 + I22 with
I21 :=

∫
∂tDη(Z) ·

(
Z̃ − Z

)
dx,

I22 := −
∫
Dη(Z) · F(Z̃)dx.
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Using the definition of Dη(Z) in (4.2) and since Z is solution to (1.12), we have

I21 := −
∫
∂t

−
|V |2 + |W |2

2
V
W

 ·
 ρ̃ − ρ0

ρ̃ Ṽ − ρ0 V

ρ̃ W̃ − ρ0W

 dx

=

∫
(ρ̃ − ρ0) [V (Lρ0(V ) + N(V ) − W ) + W A(V,W )] dx

−
∫ (

ρ̃ Ṽ − ρ0V
)

(Lρ0(V ) +N(V )−W ) dx

−
∫ (

ρ̃ W̃ − ρ0W
)
A(V,W ) dx,

hence it yields

I21 =

∫
ρ̃
[(
V − Ṽ

)
[Lρ0(V ) + N(V ) − W ] + A(V,W )

(
W − W̃

)]
dx.

Furthermore, from the definition of F(Z̃) in (1.12)-(1.13) and Dη(Z) in (4.2), we obtain

I22 = −
∫
ρ̃
(
V
[
Lρ̃(Ṽ ) + N(Ṽ ) − W̃

]
+ W A(Ṽ , W̃ )

)
dx.

Then, gathering the latter two equalities and after reordering, we have

I2 =

∫
ρ̃
[
(V − Ṽ )

(
Lρ0(V )− Lρ̃(Ṽ )

)
− Ṽ Lρ̃(Ṽ )

]
dx

+

∫
ρ̃
[(
V − Ṽ

) (
N(V ) − N(Ṽ ) − W + W̃

)
− Ṽ N(Ṽ ) + Ṽ W̃

]
dx

+

∫
ρ̃
[(
W − W̃

) (
A(V,W ) − A(Ṽ , W̃ )

)
− W̃ A(Ṽ , W̃ )

]
dx,

which can be also written as

I2 = Iψ + Rl(Z̃|Z) + Sl(Z̃), (4.8)

where Rl and Sl are given in (4.5) whereas the first term Iψ is given by

Iψ :=

∫
ρ̃
[
(V − Ṽ )

(
Lρ0(V )− Lρ̃(Ṽ )

)
− Ṽ Lρ̃(Ṽ )

]
dx.

Thus, we set 
Rnl =

∫
ρ̃
[
(V − Ṽ )

(
Lρ0(V )− Lρ̃(Ṽ )

)]
dx,

Snl = −
∫
ρ̃ Ṽ Lρ̃(Ṽ )dx

and a direct computation gives

Snl = −1

2

∫∫
Ψ(x− y) ρ̃(x) ρ̃(y)

∣∣∣Ṽ (t,x)− Ṽ (t,y)
∣∣∣2 dx dy.

We conclude the proof by gathering the last equality together with (4.7) and (4.8).
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4.3 Relative entropy estimate

Now that we have established the relative entropy equality (4.4), we apply it with ρ̃ = ρε0,

Ṽ = V ε and W̃ = W ε to estimate the relative entropy between the weak solution (V ε,W ε) and
the classical solution (V,W ). More precisely, we prove the following result.

Proposition 4.4. Under the assumptions of Theorem 2.5, there exists CT > 0 such that we
have for all t ∈ (0, T ]:∫

Rd
ρε0(x)

(
|V ε(t,x)− V (t,x)|2 + |W ε(t,x)−W (t,x)|2

)
dx ≤ CT ε

1/(d+6), (4.9)

where (V,W ) is the solution to (2.6) and (ρε0, ρ
ε
0V

ε, ρε0W
ε) are the macroscopic quantities com-

puted from f ε the solution to (1.7) on [0, T ].

Proof. Consider f ε a solution to (1.7) on [0, T ] given in Proposition 2.2. From Corollary 3.2,
we get that for any t ∈ [0, T ], the moment µ4(t) is uniformly bounded with respect to ε > 0.
Therefore applying the Hölder inequality, we obtain that for all x ∈ Rd such that ρε0(x) > 0 and
for all t ∈ [0;T ],

ρε0(x)|V ε(t,x)|4 =
1

|ρε0(x)|3

(∫
vfε(t,x, v, w)dv dw

)4

,

≤
∫
|v|4 f ε(t,x, v, w) dv dw. (4.10)

Note that the last inequality remains true when ρε0(x) = 0 and the same argument applies when
we replace V ε by W ε.

Consequently, since ρε ∈ L1(Rd), we get for any 0 ≤ p ≤ 4 and t ∈ [0, T ],

ρε0 (|V ε(t)|p + |W ε(t)|p) ∈ L1(Rd).

Thus, we can compute the time evolution of the entropy η(Zε) where Zε = (ρε0, ρ
ε
0V

ε, ρε0W
ε)

corresponds to the moments of f ε with respect to (1, v, w), that is Zε is solution to (1.8). It
yields that

d

dt

∫
η(Zε(t)) dx + S(Zε(t)) =

∫
V ε(t) E(f ε(t)) dx, (4.11)

where S(Zε) is given by (4.5)-(4.6) when Z̃ = Zε and the error term E(f ε) is defined in (1.10).
Then we consider (V,W ) the solution to (2.6) given in Proposition 2.3, hence we have for

Z = (ρ0, ρ0 V, ρ0W ),∫
Dη(Z(t)) [∂tZε(t)−F(Zε(t))] dx =

∫
V (t) E(f ε(t))dx. (4.12)

Therefore, applying Lemma 4.3 with Z̃ = (ρε0, ρ
ε
0 V

ε, ρε0W
ε) and using (4.11) and (4.12), we

simply get the following equality

d

dt

∫
η(Zε(t)|Z(t)) dx =

∫
(V ε − V ) E(f ε)(t,x)dx + R(Zε|Z), (4.13)
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where R = Rl +Rnl is given in (4.5)-(4.6). On the one hand, we estimate the term Rl by

|Rl(Zε|Z)| ≤
∣∣∣∣∫ ρε0 (V − V ε) (N(V )−N(V ε) − (W −W ε)) dx

∣∣∣∣
+

∣∣∣∣∫ ρε0 (W −W ε) (A(V,W ) − A(V ε,W ε)) dx

∣∣∣∣
≤

∫ (
|V − V ε|2 +

1

2
(|V − V ε|2 + |W −W ε|2)

)
ρε0 dx

+
τ

2

∫ (
|V − V ε|2 + |W −W ε|2

)
ρε0 dx

≤ 3 + τ

2

∫
η(Zε|Z)dx.

On the other hand, we estimate the second term Rnl(Zε|Z) as

|Rnl(Zε|Z)| ≤
∫∫

Ψ(x− y) ρε0(x) |ρ0(y)− ρε0(y)| |V (t,y) − V (t,x)| |V (t,x)− V ε(t,x)| dx dy

≤ ‖V ‖L∞ ‖Ψ‖L1

(
‖ρε0‖L∞‖ρ0 − ρε0‖2L2 +

∫
η(Zε|Z)dx

)
.

Gathering these last inequalities, using the uniform control of ‖ρε0‖L∞ given by hypothesis (2.13),
we have shown that there exists a constant CT > 0, which does not depend on ε > 0 such that
for all t ∈ [0, T ],∫ t

0
|R(Zε(s)|Z(s))|ds ≤ CT

[
‖ρ0 − ρε0‖2L2 +

∫ t

0

∫
η(Zε(s)|Z(s)) dx ds

]
. (4.14)

It remains to estimate the error term∣∣∣∣∫ (V ε(t)− V (t)) E(f ε)(t)dx

∣∣∣∣ ≤ 3

2

∫
|V ε(t)− V (t)| |V ε(t)− v|

[
(V ε(t))2 + v2

]
f ε(t)dvdwdx

≤ α(t)

(∫
|V ε(t)− v|2 f ε(t) dv dw dx

)1/2

,

where α(t) is given by

α(t) :=
3

2

(∫ [
(V ε(t))2 + v2

]2
[V ε(t)− V (t)]2 f ε(t) dv dw dx

)1/2

.

Using that V is uniformly bounded in L∞ according to Proposition 2.3 and since

ρε0 |V ε(t,x)|6 ≤
∫
|v|6f ε(t,x, v, w)dvdw

we deduce from Corollary 3.2 that there exists a constant CT > 0, which does not depend on
ε, such that ∫ T

0
α2(s) ds ≤ CT .

It yields from Lemma 3.7 and the Cauchy-Schwarz inequality that∫ T

0

∣∣∣∣∫ (V ε(t)− V (t)) E(f ε)(t)dx

∣∣∣∣dt ≤ CT ε1/(d+6). (4.15)
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Finally integrating (4.13) on the time interval [0, t] we get from the previous estimates (4.14)
and (4.15) and using the Grönwall’s lemma that∫

η(Zε(t)|Z(t)) dx ≤ CT

[∫
η(Zε(0)|Z(0)) dx + ‖ρ0 − ρε0‖2L2 + ε1/(d+6)

]
From the assumption (2.15), we get that for all t ∈ [0, T ],∫

η(Zε(t)|Z(t)) dx ≤ CT ε
1/(d+6),

which concludes the proof.

4.4 Conclusion – Proof of Theorem 2.5

In this section, we complete the proof of Theorem 2.5 using the entropy estimates previously
established to show the convergence of f ε in the limit ε→ 0.

First, we set

F ε(t,x, w) :=

∫
f ε(t,x, v, w) dv,

with an initial datum F ε0 given by

F ε0 =

∫
R
f ε0 dv.

Noticing that since f ε is compactly supported in v for any ε > 0, we can choose a test function
in (2.2) independent of v ∈ R, hence the distribution F ε satisfies the following equation, (1.7)∫ T

0

∫
Rd+1

F ε ∂tϕ + τ

[∫
R
vfεdv + (a− bw)F ε

]
∂wϕdxdwdt

+

∫
Rd+1

F ε0 ϕ(0) dxdw = 0, ∀ϕ ∈ C∞c ([0, T )× Rd+1),

or after reordering∫ T

0

∫
Rd+1

F ε [∂tϕ + A(V (t,x), w) ∂wϕ] dxdwdt +

∫
Rd+1

F ε0 ϕ(0) dxdw

= τ

∫ T

0

∫
Rd+2

(V (t,x)− v) f ε ∂wϕdvdxdwdt, ∀ϕ ∈ C 1
c ([0, T )× Rd+1),

where V is solution to (1.12).
On the one hand, using that up to a subsequence F ε converges weakly-? inM((0, T )×Rd+1)

to a limit F ∈M((0, T )×Rd+1), we can pass to the limit on the left hand side by linearity. On
the other hand, from Lemma 3.4 and Proposition 4.4, we get when ε→ 0,∫ T

0

∫
f ε|v − V (t,x)|2dxdvdwds ≤

∫ T

0

∫
f ε
(
|v − V ε(t,x)|2 + |V ε(t,x)− V (t,x)|2

)
dzds

≤ CT ε
1/(d+6),

hence it yields that since ρε does not depend on time,∣∣∣∣∫ (V (t,x)− v) f ε ∂wϕdvdxdwdt

∣∣∣∣ ≤ CT ‖∂wϕ‖L∞ ‖ρε0‖1/2L1 ε
1/(2d+12).
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Thus, passing to the limit ε→ 0, it proves that F is a measure solution (2.8). Furthermore, by
uniqueness of the solution to (2.8), we get the convergence for the sequence (F ε)ε>0.

Finally let us show that for any ϕ ∈ C 0
b (Rd+2),∫

ϕ(x, v, w) f ε(t,x, v, w) dv dw dx→
∫
ϕ(x, V (t,x), w)F (t,dx,dw) ,

strongly in L1
loc(0, T ) as ε→ 0. Consider 0 < t < t′ ≤ T . We start with showing the convergence

for any ϕ ∈ C 1
c (Rd+2), and then we will conclude using a density argument. Consider ϕ ∈

C 1
c (Rd+2), we have:

I :=

∫ t′

t

∣∣∣∣∫ ϕ(x, v, w) f ε(s,x, v, w) dv dw dx −
∫
ϕ(x, V (s,x), w)F (s, dx, dw)

∣∣∣∣ ds

≤ I1 + I2,

where 
I1 :=

∫ t′

t

∣∣∣∣∫ (ϕ(x, v, w) − ϕ(x, V (s,x), w)) f ε(s,x, v, w) dv dw dx

∣∣∣∣ ds,

I2 :=

∫ t′

t

∣∣∣∣∫ ϕ(x, V (s,x), w) (F ε(s, dx,dw) − F (s, dx, dw))

∣∣∣∣ ds.

We estimate the first term I1 using the regularity of ϕ and the Cauchy-Schwarz inequality:

I1 ≤ ‖∂vϕ‖L∞
∫ T

0

∫
|v − V (s,x)| f ε(s,x, v, w) dv dw dx ds

≤ ‖∂vϕ‖L∞
(∫ T

0

∫
f ε(s,x, v, w) dv dw dx ds

)1/2

×
(∫ T

0

∫
f ε(s,x, v, w) |v − V (s,x)|2 dv dw dx ds

)1/2

≤ ‖∂vϕ‖L∞ (T ‖f ε0‖L1 CT )1/2 ε1/(2d+12),

whereas the second term I2 also converges to zero when ε goes to zero since F ε converges
weakly-? in M((0, T ) × Rd+1) to F . Using a density argument, this shows the convergence of
f ε in L1

loc((0, T ),M(Rd+2)), so this concludes the proof of Theorem 2.5.

A Proof of Proposition 2.2

This appendix is devoted to the proof of the existence and uniqueness of a solution f ε to (1.7).
Let T > 0 and ε > 0 be fixed. The main difficulty is that we cannot use a compactness argument
based on an average lemma as in [30] for example, since there is no transport term of the form
v∇xf ε in (1.7). Thus, our strategy is to linearize the equation (1.7) in order to construct a
Cauchy sequence which converges towards a solution to (1.7). First of all, we need to prove
some extra a priori estimates on f ε. In the rest of this section, since ε is fixed, for the sake of
clarity, we will note f instead of f ε, but all the following estimates are not uniform in ε.
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A.1 A priori estimates

We recall that for any solution f of (1.7) and for all t ∈ [0, T ], ‖f(t)‖L1 = ‖f(0)‖L1 . This
subsection is devoted to the proof of some a priori estimates.

First of all, we set the system of characteristic equations associated to (1.7) for all (x, v, w) ∈
Rd+2 and all t ∈ [0, T ]:

dΣv(s)

ds
= N(Σv(s)) − Σw(s) − [Φε ∗ ρ0](x)Σv(s) + [Φε ∗ jf (s)](x),

dΣw(s)

ds
= A(Σv(s),Σw(s)),

Σv(t) = v, Σw(t) = w,

(A.1)

where f is a solution of (1.7) and jf is defined with:

jf :=

∫
f v dv dw.

We define the flow of (A.1) for all z = (x, v, w) ∈ Rd+2 for all s, t in [0, T ]:

Σ(s, t, z) = (Σv(s, t, z) , Σw(s, t, z)) , Σ(t, t, z) = (v , w) .

We start with proving the well-posedness of the flow of the characteristic equation (A.1) and
an estimate of the support of a solution to (1.7).

Lemma 1.1 (Well-posedness of the characteristic system and estimate of the support). Con-
sider an initial data f0 satisfying (2.4) and (2.5), and suppose that there exists f a smooth
non-negative solution to (1.7) such that for all t ∈ [0;T ], ‖f(t)‖L1 = ‖f(0)‖L1. Then, the char-
acteristic system (A.1) is well-posed. Furthermore, there exists a positive constant RT,ε such
that:

sup
t∈[0,T ]

x∈Rd

Supp(f(t,x, ·, ·)) ⊂ B(0, RT,ε), (A.2)

and there exist two positive constants C1 and C2 such that:

RT,ε ≤ C2e
C1(1+ 1

ε
)T . (A.3)

Proof. The Cauchy-Lipschitz Theorem yields the local existence and uniqueness of the flow of
the characteristic equation (A.1). Define for all s ∈ [0, T ]:

Rε(s) := sup
{
‖Σ(s′, 0, z)‖ | s′ ∈ [0; s], z ∈ Rd ×B(0, Rε0)

}
.

Our purpose is to estimate Rε using the following energy estimate. Let s ∈ [0;T ], z = (x, v, w) ∈
Rd ×B(0, Rε0). We have:
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‖Σ(s, 0, z)‖2 = ‖(v, w)‖2 + 2

∫ s

0
Σ(s′, 0, z) ∂sΣ(s′, 0, z) ds′

= ‖(v, w)‖2 + 2

∫ s

0
[ΣvN(Σv)− Σv Σw

− [Φε ∗ ρ0](x) |Σv|2 + [Φε ∗ jf (s′)](x) Σv + Σw A(Σv,Σw)
]

ds′

≤ |Rε0|2 + 2

∫ s

0

[
|Σv|2 +

1

2
(|Σv|2 + |Σw|2)

+Rε(s) [φε ∗ ρ0](x) Σv +
τ

2
(|Σv|2 + |Σw|2) +

τ

2
(a2 + |Σw|2)

]
ds′

≤ |Rε0|2 + T τ a2 +

∫ s

0

(
3 + 2 τ + 2 ‖ρ0‖L∞ ‖Ψ‖L1 +

2

ε
‖ρ0‖L∞

)
|Rε(s′)|2 ds′.

Thus, passing to the supremum in x ∈ Rd and in (v, w) ∈ B(0, Rε0), we get that for all s ∈ [0, T ]:

|Rε(s)|2 ≤ |Rε0|2 + T τ a2 +

∫ s

0

(
3 + 2 τ + 2 ‖ρ0‖L∞ ‖Ψ‖L1 +

2

ε
‖ρ0‖L∞

)
|Rε(s′)|2 ds′.

Using the Grönwall’s inequality, we get that there exist two positive constants C1 and C2 which
depend only on T , Rε0, ‖Ψ‖L1 , ρ0, τ and a such that for all s ∈ [0, T ]:

|Rε(s)|2 ≤ C2 e
C1 (1+ 1

ε
)T .

Therefore, the function Σ(·, 0, ·) is well-posed in C 1([0, T ]2 × B(0, Rε0) , L∞(Rdx)). Similarly,
for all t ∈ [0, T ], we show that Σ(·, t, ·) is well-posed in C 1([0, T ]2 × B(0, Rε(t)) , L

∞(Rdx)).
Furthermore, we can conclude that

sup
t∈[0,T ]

x∈Rd

Supp(f(t,x, ·, ·)) ⊂ B(0, Rε(T )).

Now, using this estimate on the propagation of the support in u = (v, w) of any solution f
to (1.7), we can estimate f and ∇uf in L∞.

Lemma 1.2 (Estimates in L∞). Consider an initial data f0 satisfying (2.4) and (2.5), and
suppose that there exists f a smooth non-negative solution to (1.7) such that for all t ∈ [0, T ],
‖f(t)‖L1 = ‖f0‖L1. Then, there exists a positive constant CT,ε such that for all t ∈ [0, T ],

‖f(t)‖L∞ ≤ CT,ε , and ‖∇uf(t)‖L∞ ≤ CT,ε.

Proof. We write (1.7) in a non-conservative form:

∂tf + A · ∇uf = −div u (A) f, (A.4)

where A is the advection field of (1.7) given for all t ∈ [0, T ] and all z = (x, v, w) ∈ Rd+2 by:

A(t, z) :=

N(v) − w − [Φε ∗ ρ0](x) v + [Φε ∗ jf (t)](x)

A(v, w)

 .
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Thus, for all t ∈ [0, T ] and all z = (x, v, w) ∈ Rd+2, we note u = (v, w) and we have:

−div u (A(t, z)) = −N ′(v) + [Φε ∗ ρ0](x) + τ b

= 3 v2 − 1 + [Φε ∗ ρ0](x) + τ b.

Then, we get that for all t ∈ [0, T ] and z = (x, v, w) ∈ Rd+2:

f(t, z) = f0(x,Σ(0, t, z)) −
∫ t

0
(div u (A) f) (t,x,Σ(s, t, z)) ds.

Consequently, we have for all t ∈ [0, T ]:

‖f(t)‖L∞ ≤ ‖f0‖L∞ +

∫ t

0
‖ div u (A(s, ·)) f(s)‖L∞ ds.

Moreover, according to Lemma 1.1, there exists a positive constant RT,ε satisfying (A.2), and
therefore, for all s, t ∈ [0, T ] and z = (x,u) ∈ Rd ×B(0, RT,ε),

|div u (A(s, z)) | ≤ 3 |RT,ε|2 + 1 + ‖Φε‖L1 ‖ρ0‖L∞ + τ b.

Therefore, the Grönwall’s inequality gives us that there exists a positive constant C1 such that
for all t ∈ [0, T ]:

‖f(t)‖L∞ ≤ ‖f0‖L∞eC1 t .

Then, by differentiating (A.4) with respect to v and w, we have:
∂t (∂vf) + A · ∇u (∂vf) = Sv(t, z) ∂vf − τ ∂wf −N ′′(v) f,

∂t (∂wf) + A · ∇u (∂wf) = Sw(t, z) ∂wf + ∂vf,

where Sv and Sw are given for all t ∈ [0, T ] and all z = (x, v, w) ∈ Rd+2 by:
Sv(t, z) := −2N ′(v) + 2 [Φε ∗ ρ0] (x) + τ b,

Sw(t, z) := −N ′(v) + [Φε ∗ ρ0] (x) + 2 τ b.

Therefore, using the estimate of the support of f (A.2), the Grönwall’s inequality gives us that
there exist two positive constants C2 and C3 such that for all t ∈ [0, T ]:

‖∇uf(t)‖L∞ ≤ C3 e
C2 t.

A.2 Proof of existence and uniqueness

We proceed with a linearization of the equation (1.7) in order to construct a Cauchy sequence
{f εn}n∈N of non-negative functions in the Banach space C 0([0, T ]×R2

u , L
∞(Rdx)), such that for

all n ∈ N, the Lemmas 1.1 and 1.2 give that there exist two positive constants RT,ε and CT,ε
independent on n such that for all n ∈ N:

sup
t∈[0,T ]

x∈Rd

Supp(f εn(t,x, ·, ·)) ⊂ B(0, RT,ε),

‖f εn(t)‖L∞ ≤ CT,ε and ‖∇uf
ε
n(t)‖L∞ ≤ CT,ε.
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As C 0([0, T ]×R2
u , L

∞(Rdx)) is a Banach space, the Cauchy sequence {f εn}n∈N strongly converges
in C 0([0, T ]× R2

u , L
∞(Rdx)) towards a function f ε, which is non-negative and

f ε ∈ C 0([0, T ]× R2
u , L

∞(Rdx)).

Hence, passing to the limit n → +∞ in the linearized equation, f ε is a weak solution to (1.7)
in the sense of (2.2) which satisfies the support estimate (A.2). Consequently, we deduce

f ε ∈ C 0
(

[0, T ] , L1(Rd+2)
)
,

hence we can apply Lemma 1.1 with f ε, which yields that the characteristics Σ ∈ C 1([0, T ]2 ×
R2
u , L

∞(Rdx)) are well-defined. As previously, we note A the advection field of (1.7). Therefore,
for all t ∈ [0, T ], u = (v, w) ∈ R2 and x ∈ Rd,

f ε(t,x,u) = f ε0 (x,Σ(0, t,x,u)) exp

(
−
∫ t

0
div uA(s,x,Σ(s, t,x,u))ds

)
.

Finally, using the regularity of div uA, Σ and f ε0 which satisfies (2.4), we get that

f ε, ∇uf
ε ∈ L∞((0, T )× Rd+2).

B Proof of Proposition 2.3

This appendix is devoted to the proof of Proposition 2.3. We apply a fixed point argument to
get the existence and uniqueness of a classical solution (V,W ) of (2.6). We first set

E := C 0([0, T ], L∞(Rd))

and for a fixed M > 0 we define

KT :=
{

(V,W ) ∈ E 2 ; ‖V (t)− V0‖L∞(Rd) + ‖W (t)−W0‖L∞(Rd) ≤M, ∀t ∈ [0, T ]
}
,

equipped with the norm for U = (V,W ) ∈ KT ,

|||U ||| := sup
t∈[0,T ]

(
‖V (t)‖L∞(Rd) + ‖W (t)‖L∞(Rd)

)
.

Consider the application Γ such that for all U = (V,W ) ∈ KT , for all t ∈ [0, T ] and almost
every x ∈ Rd,

Γ[U ](t,x) := U0(x) +

∫ t

0

 Lρ0(V )(s,x)ds+N(V (s,x))−W (s,x)

A(V,W )(s,x)

ds.

On the one hand, since Ψ ∈ L1(Rd) and N ∈ C 1(R), we prove that Γ is well-defined

|||Γ[U ]− U0||| ≤ C T

for some constant C > 0 independent of time. As a consequence, we can choose T small enough
so that Γ[U ] ∈ KT . On the other hand, Γ is contractive : for U1 U2 ∈ KT and (t,x) be in
[0, T ]× Rd, we have

|Γ[U1] − Γ[U2]| (t,x) ≤ C t ‖U1 − U2‖,
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where C > 0 does not depend of time t > 0, hence for T small enough, Γ is a contraction
from KT to KT , which is a complete for the distance associated to the norm |||.||| previously
defined. Therefore, using the Banach fixed point theorem, there exists a unique U ∈ KT such
that Γ[U ] = U , that is, U = (V,W ) is solution to (2.6) for the initial condition U0 = (V0,W0).
Moreover since V and W ∈ C 0([0, T ], L∞(Rd)) and using the Duhamel’s formula, it yields that

V , W ∈ C 1([0, T ], L∞(Rd)).

Finally, an energy estimate gives that

1

2

d

dt

(
|V (t,x)|2 + |W (t,x)|2

)
≤

(
3 + τ

2
+ ‖Ψ‖L1 ‖ρ0‖L∞

)
‖V (t)‖2L∞(Rd)

+
1 + 2 τ

2
‖W (t)‖2L∞(Rd) +

τ a2

2
.

Using Grönwall’s lemma, we can conclude that there exists a constant C > 0, only depending
on a, τ and Ψ, such that

|||(V,W )||| ≤ (|||(V0,W0)|||+ C) eC T .

It allows to prove that this unique solution is global in time.
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