
Bifurcation diagrams and heteroclinic networks of octagonal

H-planforms

Grégory Faye1 and Pascal Chossat1,2

1NeuroMathComp Laboratory, INRIA, Sophia Antipolis, CNRS, ENS Paris, France
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Abstract

This paper completes the classification of bifurcation diagrams for H-planforms in the Poincaré
disc D whose fundamental domain is a regular octagon. An H-planform is a steady solution of a
PDE or integro-differential equation in D, which is invariant under the action of a lattice subgroup Γ
of U(1, 1), the group of isometries of D. In our case Γ generates a tiling of D with regular octagons.
This problem was introduced in [15] as an example of spontaneous pattern formation in a model
of image features detection by the visual cortex where the features are assumed to be represented
in the space of structure tensors. Under ”generic” assumptions the bifurcation problem reduces to
an ODE which is invariant by an irreducible representation of the group of automorphisms G of
the compact Riemann surface D/Γ. The irreducible representations of G have dimension one, two,
three and four. The bifurcation diagrams for the representations of dimension less than four have
been obtained in [15] and correspond to already well known goup actions. In the present work we
compute the bifurcation diagrams for the remaining three irreducible representations of dimension
four, henceforth completing this classification. An interesting finding is that in one of these cases,
there is generic bifurcation of a heteroclinic network connecting equilibria with two different orbit
types.

Keywords: Equivariant bifurcation analysis; neural fields; Poincaré disc; heteroclinic network.

1 Introduction

Pattern formation through Turing mechanism is a well-known phenomenon [28]. For a system of reaction-
diffusion equations defined in Rp, with p = 2 or 3 say, it occurs when a neutrally stable linear mode
is selected for a basic, homogeneous state, as a bifurcation parameter reaches a critical value. For
the analysis of this phenomenon, the assumption that the system is invariant under the Euclidean
transformations in the plane is essential. The problem is highly degenerate because any Fourier mode
whose wave vector has critical length is a neutral stable mode. However in experiments as well as in
numerical simulations it is often seen that the patterns which emerge above threshold, although they
have a wave number equal or close to the critical one, are associated with a finite (and small) number
of wave vectors which generate a spatially periodic pattern in the plane. This pattern is invariant under
the action of a discrete translation subgroup Γ of Rp. By looking at the class of states which respect
this periodicity, or, what is the same, by looking at the system projected onto the torus Rp/Γ, one
removes the degeneracy: the critical wave vectors are in finite number, hence the critical eigenvalue has
finite multiplicity and standard methods of equivariant bifurcation theory (see [12, 22]) can be applied
to compute bifurcated solutions within this class of Γ-periodicity. Such solutions are called ”planforms”.

In a recent paper [15], a similar problem arose, but instead of being posed in the Euclidean plane, it
was posed on the hyperbolic plane or, more conveniently, on the Poincaré disc. This problem originates
from modeling the cortical perception of visual features, which we quickly describe now.
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Neuronal representations of the external world are often based on the selectivity of the responses
of individual neurons to external features. It has been well documented that neurons in the primary
visual cortex respond preferentially to visual stimuli that have specific features such as orientation,
spatial frequency, etc. Subgroups of inhibitory and excitatory neurons tuned to a particular feature of
an external stimulus form what is called a Hubel and Wiesel hypercolumn of the visual area V1 in the
cortex, roughly 1 mm2 of cortical surface. Modeling the processing of image orientations has led Wilson
and Cowan [41, 42] to derive a nonlinear integro-differential description of the evolution of the average
action potential V in the hypercolumns. In an attempt to extend this model to other features (edge
and corner detection, contrast...), it was proposed by [14] to assume that hypercolumns are sensitive to
a nonlinear representation of the image first order derivatives called the structure tensor [6, 32]. Hence
the average action potential is now a function of the structure tensors and time. Structure tensors are
essentially 2 × 2 symmetric, definite positive matrices. They therefore live in a solide open cone in R3,
which is a Riemannian manifold foliated by hyperbolic planes. By a suitable change of coordinates,
the hyperbolic plane can be further identified with the Poincaré disc D = {z ∈ C | |z| < 1}. There is
therefore an isomorphism between the space of structure tensors and the product space R+

∗ × D, the
distance on which being given by

d(δ, z; δ′, z′) =

√
log2(

δ

δ′
) + arctanh

|z − z′|
|1− z̄z′|

2

(1)

where the second term under the radical is the usual ”hyperbolic” distance in D.
The Wilson-Cowan equation on the space of structure tensors has the form

∂tV (δ, z, t) = −V (δ, z, t) +
∫

R+
∗ ×D

W (δ, z, δ′, z′)S(µV (δ′, z′, t))dm(δ′, z′) + Iext(δ, z, t) (2)

The nonlinearity S is a smooth sigmoidal function (S(x) → ±1 as x → ±∞) with S(0) = 0. Note
that V = 0 is always solution (trivial state) when Iext = 0. The parameter µ describes the stiffness
of the sigmoid. Iext is an external input coming from different brain areas such as the thalamus and
W (δ, z, δ′, z′) expresses interactions between populations of neurons of types (δ, z) and (δ′, z′) in the
hypercolumn. It is natural to assume that the connectivity function W does in fact only depend upon
the distance between (δ, z) and (δ′, z′) : W (δ, z, δ, z′) = w(d(W (δ, z; δ, z′)). Under this hypothesis, W is
invariant by any isometric transformation in the space of structure tensors. If in addition Iext = 0 (no
input), equation (2) itself is invariant by any isometric transformation.

We shall from now on assume W of the above invariant form and Iext = 0, and we look at possible
bifurcations from trivial state as the stifness parameter µ is varied. We shall moreover forget about the
part R+

∗ with coordinate δ, because as was shown in [15], this part does not play a significant role in the
subsequent analysis and it can be simply eliminated. From now on equation (2) is therefore posed on
the 2D hyperbolic surface D.

Spectral analysis in D requires the tools introduced by Helgason to perform Fourier analysis with
respect to the coordinates in the Poincaré disc, namely the expansion of the solutions of the linearized
system in elementary eigenfunctions of the Laplace-Beltrami operator [27]. These elementary eigenfunc-
tions eρ,b(z) depend on the ”wave number” ρ ∈ R and point b on the boundary of the unit disc, and
correspond to eigenvalues 1/4 + ρ2. Note that the eigenvalues are independant of the angle b. The
function eρ,b corresponds to a wavy pattern in D which is invariant along horocycles1 with base point b
and wavy along the geodesics with direction b. These functions are the hyperbolic counterparts of the
elementary wavy eigenfunctions of the Laplacian in R2. As shown in [14], a critical value µc exists, but
the same kind of rotational degeneracy occurs in this bifurcation problem as in Euclidean space: if ρc is
the critical wave number, any eρc,b is a neutrally stable eigenfunction, independently of the value of b.
Moreover the spectrum is continuous. In order to apply equivariant bifurcation theory, we therefore need
to look at a class of solutions which are periodic in D, that is, solutions which are invariant under the
action of a discrete subgroup Γ of U(1, 1) whose fundamental domain is a polygon. Such a subgroup is
called a cocompact Fuchsian group and we can restrict further to look for such groups which contain no
elliptic elements nor reflections2. Tilings of the Poincaré disc have very different properties from tilings

1A horocycle with base point b is a circle in D, tangent at b to ∂D.
2These subgroups of SU(1, 1) contain only hyperbolic elements and are the exact counterparts of discrete translation

subgroups of Rp. They are called ”torsion-free” cocompact Fuchsian groups, see [29].
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of the Euclidean plane. In particular tilings exist with polygons having an arbitrary number of sides,
while in R2 only rectangular, square and hexagonal periodic tilings exist. Now the problem comes back
to looking for bifurcated solutions of the equation defined on the quotient space D/Γ, which is a compact
Riemann surface and therefore on which the spectrum of the linearized operator is discrete and consists
of eigenvalues with finite multiplicity.

This approach was presented in [15] and an example was studied, namely the case where the group
Γ corresponds to a tiling of D with regular octagons. In this case Γ is generated by four hyperbolic
transformations which are rotated from each other by angles kπ/4 (k = 1, 2, 3), and D/Γ is a double
torus (genus 2 surface). Moreover the group of automorphisms G of D/Γ is known and has 96 elements.
Restricting to the class of Γ-periodic functions, our bifurcation problem is now reduced to an equation
which is invariant under the action of G. By standard center manifold reduction, this equation can be
projected onto the critical eigenspace of the linearized operator. In our case the critical eigenvalue is 0
(”steady state” bifurcation) and its eigenspace is an absolutely irreducible representation space of the
group G.

In the same paper we have listed and described the 13 irreducible representations of G which we name
χ1, · · · , χ13: representations χ1, · · · , χ4 have dimension one, χ5, χ6 have dimension two, χ7, · · · , χ10 have
dimension three and χ11, · · · , χ13 have dimension four. Each of these cases leads to a different bifurcation
diagram. We have listed all maximal isotropy subgroups and shown that their fixed point subspaces are
one dimensional, hence we have found all branches of equilibria with maximal isotropy types by applying
the Equivariant Branching Lemma [22]. Moreover we have shown that the bifurcation problems for
the 2D cases is equivalent to problems with triangular symmetry, and in the 3D cases, to problems
with octahedral symmetry. It follows that the bifurcation diagrams in these cases are known and show
generically no other bounded dynamics than the trivial ones associated with the equilibria with maximal
isotropy. There is no such identification in the 4D case. The aim of this paper is to fill this gap, by
studying the bifurcation diagrams and local dynamics in the 4D irreducible representation spaces of G.
This will require a precise knowledge of these representations and of the Taylor expansion of vector fields
which are equivariant by these representations (up to a sufficient order).

The structure of the paper is as follows:

• In section 2 we introduce the octagonal lattice and its symmetries, we recall the structure of the
group G of automorphisms of D/Γ and its irreducible representations. We also recall the main
result of [15] about the bifurcation of H-planforms in this case.

• In section 3, we study the case of the 4-dimensional irreducible representations χ12, χ13 and show
that the system is locally “gradient-like”, implying that the only ω-limit sets are equilibria. The
main results of this section are stated in theorems 2 and 3.

• In section 4, we focus on the analysis of the 4-dimensional irreducible representations χ11. The
computation of quintic equivariant vector fields is necessary to get a complete bifurcation diagram in
the fixed point planes. We show that for some open range of the coefficients of quintic order terms,
bifurcation with submaximal isotropy does occur. The main results are presented in theorems 4
and 5.

• In section 5, we both show the existence of a heteroclinic network and adress the question of its
asymptotic stability. We illustrate this section with some numerical simulations.

2 Basic facts and results

In this section we recall some basic facts about the Poincaré disc and its isometries and we summarize
results of [15] which will be useful in subsequent analysis.

2.1 The regular octagonal lattice and its symmetries

We recall that the direct (orientation preserving) isometries of the Poincaré disc D form the group
SU(1, 1) of 2× 2 Hermitian matrices with determinant equal to 1. Given

γ =
(
α β
β̄ ᾱ

)
such that |α|2 − |β|2 = 1,
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Figure 1: Tesselation of the hyperbolic octagon O with congruent triangles.

the corresponding isometry in D is defined by:

γ · z =
αz + β

β̄z + ᾱ
, z ∈ D (3)

Orientation reversing isometries of D are obtained by composing any transformation (3) with the reflexion
κ : z → z̄. The full symmetry group of the Poincaré disc is therefore:

U(1, 1) = SU(1, 1) ∪ κ · SU(1, 1)

Transformations in SU(1, 1) can be of three types: elliptic (those belong to the conjugacy class of usual
rotations centered at the origin of the disc), parabolic (those have a unique fixed point which lies on the
boundary of D) and hyperbolic (two fixed points on ∂D).

The octagonal lattice group Γ is generated by the following four hyperbolic transformations (boosts),
see [5]:

g0 =

(
1 +
√

2
√

2 + 2
√

2√
2 + 2

√
2 1 +

√
2

)
(4)

and gj = rjπ/4g0r−jπ/4, j = 1, 2, 3, where rϕ indicates the rotation of angle ϕ around the origin in D.
The fundamental domain of the lattice is a regular octagon O as shown in figure 1. The opposite sides of
the octagon are identified by periodicity, so that the corresponding quotient surface D/Γ is isomorphic
to a ”double doughnut” (genus two surface) [5]. The fundamental octagon O can be further decomposed
into 96 congruent triangles (see Figure 1) with angles π/2, π/3 and π/8. By applying reflections through
the sides of one triangle (like the purple one in figure 1) and iterating the process, applying if necessary
a translation in Γ to get the resulting triangle back to O, one fills out the octagon. The set of all these
transformations (mod Γ) is isomorphic to the group of automorphisms of D/Γ, we call it G. Let us call
P , Q, R the vertices of the red triangle in Figure 1 which have angles π/8, π/2 and π/3 respectively.

Definition 1. We set :
(i) κ, κ′ and κ′′ the reflections through the sides PQ, PR and QR respectively (mod Γ);
(ii) ρ the rotation by π/4 centered at P , σ the rotation by π centered at Q and ε the rotation by 2π/3
centered at R (mod Γ).

Note that ρ = κ′κ, σ = κ′′κ and ε = κ′′κ′. Moreover ρσε = Id. Any two of these ”rotations” generate
the subgroup G0 of orientation-preserving automorphisms of G. It can be seen that G = G0 ∪ κ · G0, and

4



moreover G0 can be identified with GL(2, 3), the group of invertible 2 × 2 matrices with entires in the
field Z3.

Tables 1 and 2 list the conjugacy classes of elements in G0 and G \ G0 respectively. In table 2 we

class number 1 2 3 4 5 6 7
representative Id ρ ρ2 −Id σ ε −ε

order 1 8 4 2 2 3 6
# elements 1 12 6 1 12 8 8

Table 1: Conjugacy classes of G, orientation preserving transformations

class number 8 9 10 11 12 13
representative κ κ′ σ̂κ ρσ̂κ εκ −εκ

order 2 2 8 4 12 12
# elements 6 12 12 2 8 8

Table 2: Conjugacy classes of G, orientation reversing transformations

simplify expressions by using the notation σ̂ = εσε−1. We also define σ̃ = ρ2σρ−2. Note that σ̂ is the
rotation by π centered at the point Ŝ (mod Γ) and σ̃ is the rotation by π centered at S̃ (mod Γ) in figure
1.

There are 13 conjugacy classes and therefore 13 complex irreducible representations of G, the char-
acters of which will be denoted χj , j = 1, ..., 13. The character table, as computed by the group algebra
software GAP is shown in table 3 (GAP, http://www.gap-system.org/). The character of the identity
is equal to the dimension of the corresponding representation. It follows from table 3 that there are 4
irreducible representations of dimension 1, 2 of dimension 2, 4 of dimension 3 and 3 of dimension 4. In
the following we shall denote the irreducible representations by their character: χj is the representation
with this character. The following lemma is proved in [15].

Lemma 1. All the irreduclible representations of G are real absolutely irreducible. In other words, any
matrix which commutes with such a representation is a real scalar multiple of the identity matrix.

Class # 1 2 3 4 5 6 7 8 9 10 11 12 13
Representative Id ρ ρ2 −Id σ ε −ε κ κ′ σ̂κ ρσ̂κ εκ −εκ

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 -1 1 1 -1 1 1 1 -1 -1 1 1 1
χ3 1 -1 1 1 -1 1 1 -1 1 1 -1 -1 -1
χ4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
χ5 2 0 2 2 0 -1 -1 -2 0 0 -2 1 1
χ6 2 0 2 2 0 -1 -1 2 0 0 2 -1 -1
χ7 3 1 -1 3 -1 0 0 -1 -1 1 3 0 0
χ8 3 1 -1 3 -1 0 0 1 1 -1 -3 0 0
χ9 3 -1 -1 3 1 0 0 1 -1 1 -3 0 0
χ10 3 -1 -1 3 1 0 0 -1 1 -1 3 0 0
χ11 4 0 0 -4 0 -2 2 0 0 0 0 0 0
χ12 4 0 0 -4 0 1 -1 0 0 0 0

√
3 −

√
3

χ13 4 0 0 -4 0 1 -1 0 0 0 0 −
√

3
√

3

Table 3: Irreducible characters of G
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2.2 Steady-state bifurcations with G symmetry: earlier results

We shall assume throughout the paper that a center manifold reduction has been performed for a steady-
state bifurcation problem with G symmetry like it can arise with Eq. (2) restricted to Γ-periodic patterns
in D and where Iext = 0 (no external input). This means that a linear stability analysis of the trivial
solution has led to finding a critical parameter value µc at which, in the class of Γ-periodic functions, 0
is an eigenvalue of the linear part. The existence of such critical points is discussed in [15] and [14]. It
is a generic fact that the corresponding eigenspace X be an irreducible representation space of G, and
any irreducible representation can be involved, depending on the form of the function w defined in the
introduction in (2). Then the center manifold reduction brings down the initial problem to an ODE
posed in X which is invariant under the action of the irreducible representation of G in X, see [25] for a
complete and rigorous exposition of the method, and [12] for an exposition in the context of equivariant
bifurcations.

Here it may be useful to recall some basic facts about bifurcations with symmetry. We write the
bifurcation equation in X

dx

dt
= α(λ) x+ f(x, λ) (5)

where λ = µ−µc and α is a real Ck function (k ≥ 1) with α(0) = 0, f : X×R→ X has order ‖x‖o(‖x‖)
and commutes with the action of G in X: if we denote by (g, x) 7→ g · x the action (representation) of
the group in X, then f(g · x, λ) = g · f(x, λ) for all triples (g, x, λ). Moreover the property α′(0) 6= 0 is
generic and we shall assume it throughout the paper. We can even assume α′(0) > 0 so that the trivial
solution looses stability when λ > 0. This implies that after a suitable change of variable we can make
the following hypothesis.

Hypothesis : α(λ) = λ in (5).

The problem is now to find the non trivial solutions (x(λ), λ) of (5) such that x(0) = 0 and to analyze
the nearby dynamics. Let H be an isotropy subgroup of G: H = {g ∈ G | g · x = x} for some point
x ∈ X. We define the fixed point subspace of H, or subspace of H symmetry, as

XH = {x ∈ X | H · x = x}.

Then for all h ∈ H we have that h · f(x, λ) = f(h · x, λ) = f(x, λ). Hence XH is invariant under the
flow generated by (5): if x(0) ∈ XH , then x(t) ∈ XH for all t. We shall later use the notation Fix(H)
instead of XH for convenience.
It follows that by restricting ourselves to the search of solutions with a given isotropy H, we just need
to solve (5) in the fixed point subspace XH . The case when dimXH = 1 is of particular interest. In
this case looking for solutions with isotropy H reduces to solving a scalar bifurcation equation. Under
the above assumptions, this equation always has a branch of non trivial, bifurcated equilibria. By group
invariance of the problem any solution generates new solutions by letting G act on it. There is a one
to one correspondance between the number of elements in this G-orbit of solutions and the number of
elements in the quotient G/H (number of subgroups conjugate to H in G). We call the conjugacy class
of an isotropy subgroup H the isotropy type of H.
Moreover, writing N(H) the normalizer of H in G, if N(H)/H is trivial then generically this branch
is transcritical: x(λ) = O(|λ|), while if N(H)/H ' Z2, the branch is generically a pitchfork: x(λ) =
±O(

√
|λ|).

The above results when dimXH = 1 are known as the Equivariant Branching Lemma, see [22], [12].
We may therefore say that if the hypotheses of the Equivariant Branching Lemma are satisfied for a
subgroup H, then the isotropy type of H is symmetry-breaking.

Note that, when restricted to the invariant axis XH as above, the exchange of stability principle holds
for these solutions. Indeed let the axis of symmetry be parametrized by a real coordinate u, the equation
on this axis at leading order has the form u̇ = λu + Cuk where C is a real coefficient and k ≥ 2. The
bifurcated branch is parametrized (at leading order) by λ = −Cuk−1, so that the radial eigenvalue is
(k− 1)Cuk−1 = −(k− 1)λ (at leading order). It therefore changes sign with λ. This eigenvalue is called
radial. The other eigenvalues for the Jacobian matrix J of (5) evaluated at the solutions are transverse
(the eigenvectors point orthogonally to the axis of symmetry). The bifurcated equilibria are stable in X
if the eigenvalues of J have all a negative real part. The exchange of stability principle does not hold in
general when considering stability in the full space X.
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Equilibria with isotropy not satisfying the condition dimXH = 1 or other types of bounded solutions
may also exist, however their analysis requires a knowledge of the equivariant structure of the vector
field f or at least of its Taylor expansion up to an order large enough to fully determine the bifurcation
diagram. We shall see in the next sections that solving the bifurcation equation (5) when dimX = 4
requires computing the equivariant terms in the expansion of f(·, λ) up to order 3 in certain cases, up
to order 5 or even 7 in another case.

We now come back to our specific problem with G symmetry. We can see from the character table
3 that there are 13 possible cases for the irreducible representations. The dimension of X for each
representation χj (j = 1, . . . , 13) is given by the corresponding character evaluated at the identity. We
see that dim(X) = 1 for χ1, . . . , χ4, dim(X) = 2 for χ5, χ6, dim(X) = 3 for χ7, . . . , χ10 and dim(X) = 4
for χ11, χ12 and χ13. In order to give an exhaustive description of the bifurcation diagrams with G
symmetry we have to consider all these 13 cases.

For the representations χ1 to χ10 in Table 3, it has been established in [15] that the bifurcation
diagrams are identical to those of classical bifurcation problems with symmetry in R, R2 or R3. Let us
summarize these cases in the following theorem. The word ”natural” for a group representation means
that the action is that of the group itself as a matrix group.

Theorem 1. For generic steady-state bifurcation diagrams with G symmetry the following holds.

(i) χ1: transcritical bifurcation (trivial symmetry, exchange of stability holds);

(ii) χ2, χ3, χ4: pitchfork bifurcation (Z2 symmetry, exchange of stability holds);

(iii) χ5: same as bifurcation with natural hexagonal D6 symmetry in the plane;

(iv) χ6: same as bifurcation with natural triangular D3 symmetry in the plane;

(v) χ7: same as bifurcation with natural octahedral O symmetry in R3;

(vi) χ10: same as bifurcation with the (unique) non natural octahedral symmetry in R3;

(vii) χ8: same as bifurcation with natural full octahedral O n Z2 symmetry in R3;

(viii) χ9: same as bifurcation with the (unique) non natural full octahedral symmetry in R3.

Moreover in all cases, bifurcated solutions satisfy the Equivariant Branching Lemma and their isotropies
are listed in Theorem 5 of [15].

Theorem 5 of [15] gives also the isotropy types of representations χ11, χ12 and χ13 which have one
dimensional fixed-point subspace. Hence by application of the Equivariant Branching Lemma, we know
that branches of solutions with these isotropies exist (in a generic sense). However bifurcation diagrams
cannot be deduced from already known bifurcation problems. Our aim in the remainder of this paper is
to fill this gap. In the next proposition we list these isotropy subgroups which give bifurcated solutions
by the Equivariant Branching Lemma. We introduce the following subgroups which will be relevant in
the remainder of the paper. We use the notation σ̃ = ρ2σρ−2 (see Table 1).

Definition 2.

C̃2κ = 〈σ, κ〉 = {Id, σ, κ, κ′′}
C̃ ′2κ = 〈σ̃, κ〉 = {Id, σ̃, κ,−ρ2κ′′ρ−2}
C̃3κ′ = 〈ε, κ′〉 = {Id, ε, ε2, κ′, εκ′ε2, ε2κ′ε}
D̃3 = 〈σ̃, ε〉 = {Id, ε, ε2, σ̃, εσ̃ε2, ε2σ̃ε}

Proposition 1. For the 4D representations of G, the isotropy subgroups with one dimensional fixed point
subspace are the following:

• χ11: C̃2κ, C̃ ′2κ;

• χ12: D̃3, C̃3κ′ , C̃2κ, C̃ ′2κ;

• χ13: D̃3, C̃3κ′ , C̃2κ, C̃ ′2κ.

These isotropy types are therefore symmetry-breaking.
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2.3 Octagonal H-planforms

In the last section of [15], we tackled the problem of computing octagonal H-planforms and we described
numerical and geometrical methods to achieve this study. We recall that these planforms are eigenfunc-
tions of the Laplace-Beltrami operator in D which satisfy certain isotropy conditions: (i) being invariant
under a lattice group Γ and (ii) being invariant under the action of an isotropy subgroup of the symmetry
group of the fundamental domain D/Γ (mod Γ).

Lemma 2. The Laplace-Beltrami operator in D in z1, z2 coordinates is

∆D =
(1− z2

1 − z2
2)2

4

[
∂2

∂z2
1

+
∂2

∂z2
2

]
for z = z1 + iz2 ∈ D

The computations of the four planforms associated to the one-dimensional irreductible representations
have been performed using the finite element method (see [16] for a review) on “desymmetrized” domains
of the hyperbolic octagon with a mixture of Dirichlet and Neumann boundary conditions as it is used in
[5, 4, 40]. The principles of desymmetrization in the context of dihedral symmetry can be found in the
book of Fässler and Stiefel [18]. For the two and three dimensional representations, we implemented the
finite element method with periodic boundary conditions in the octagon and identified a posteriori the
corresponding planforms. In this section, we complete this study for the four-dimensional case and we
illustrate it with a selection of images of octagonal H-planforms.

(a) eC3κ′ (b) eC2κ

(c) C
′
2κ (d) Action of the boost g3 on the desymmetrized domain

corresponding to isotropy groups eC2κ and C
′
2κ, see text.

Figure 2: Desymmetrized domain in red and associated boundary conditions corresponding to isotropy
groups C̃3κ′ , C̃2κ and C

′
2κ. Letters N and D mean respectively Neumann and Dirichlet boundary

conditions.
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We first explain how to recover the desymmetrized domain and the associated boundary conditions
for isotropy group C̃3κ′ in figure 2(a). The group C̃3κ′ has six elements among them: ε the rotation by
2π/3 centered at R, κ′ and κ′′ the reflections through the side PR and QR respetively, where P,Q and R
are the vertices of the purple triangle in figure 1. Each reflections imply Neumann boundary conditions
on their respective edges. The Dirichlet boundary conditions prevent an additional 3-fold rotation. The
last Neumann boundary condition is obtained by translating the desymmetrized domain with the four
boosts (4).

In order to better illustrate the intrinsic differences of planforms with isotropy types C̃2κ and C̃ ′2κ,
we decide to work with C

′
2κ = {Id,−σ,−κ, κ′′}, a conjugate of C̃ ′2κ. Indeed, isotropy groups C̃2κ and

C
′
2κ share the same desymmetrized domain but have different boundary conditions depending on their

symmetries, see figure 2(b) and 2(c). As we apply finite element method to compute the eigenvalues and
eigenvectors of the Laplace-Beltrami operator, it is more convenient to work with connected domain.
This is why the desymmetrized domain of isotropy groups C̃2κ and C

′
2κ has the particularity to have a

part outside the octagon, however by the action of the boost g3 one can translate this part inside the
octagon, see figure 2(d). Indeed, domain delimited by edges V 4 − V 5 − V 6 − V 7 is translated into the
domain delimited by edges B4−B5−B6−B7 by the boost g3. For isotropy group C̃2κ, the reflections
κ and κ′′ impose Neumann boundary condition on edges V 1, B5 and V 8, V 6 respectively and the action
of g−1

3 implies Neumann boundary condition on edge V 5 = g−1
3 (B5). We have to impose Dirichlet

boundary condition on edge V 2 to prevent the action of −κ, which does not belong C̃2κ, and this further
implies Dirichlet condition on B4 and thus on V 4. Finally, reflection κ combined with boost g2 ( g2

translates edge V 3 to the opposite side of the octagon) gives Neumann boundary condition on edge V 3.
Same method applies to isotropy group C

′
2κ and we find the boundary conditions presented in figure

2(c). For isotropy group D̃3, we do not find any simple desymmetrized domain as in the other cases and
we use the finite element method on the full octagon with periodic boundary conditions: opposite sides
of the octagon are identified by periodicity. To identify planforms with isotropy group D̃3, we first select
eigenvectors with eigenfunctions of multiplicity 4 and then check the symmetries.

We show in figure 3 four H-planforms with isotropy groups C̃2κ, C
′
2κ, C̃3κ′ and D̃3 with eigenvalue

λ = 5.3537 and in figure 4 two H-planforms with isotropy groups C̃2κ, C
′
2κ. Planform with isotropy

group D̃3 is the only one which does not possess any reflection, it is then easy to distinguish it from
other planforms, see figure 3(d). We notice that patterns of planforms with isotropy C̃2κ, figure 3(a),
and C̃3κ′ , figure 3(c), seem to be similar, up to a rotation, despite the two cooresponding groups are
different. On the contrary, it is easy to distinguish patterns of groups C̃2κ, figures 3(a) and 4(a), and
C
′
2κ, figures 3(b) and 4(b).

In figures 3 and 4, we have plotted for convenience, the corresponding H-planforms in the octagon
only. Nevertheless, H-planforms are periodic in the Poincaré disk and in figure 5, we plot the H-planform
with C̃3κ′ isotropy type of figure 3(c). As the octagonal lattice group Γ is generated by the four boosts
of equation (4), then once an H-planform is computed, we report it periodically in the whole Poincaré
disk by the action of these boosts and obtain figure 5.

2.4 Bifurcation with submaximal isotropy

The condition dimXH = 1, required by the Equivariant Branching Lemma, implies that H is maximal
(there no isotropy subgroup betweenH and G). However it is well-known that solutions with non maximal
isotropy can occur in generic bifurcation problems. It follows that the Equivariant Branching Lemma
does not account for all the bifurcating equilibria and that the study of bifurcation with submaximal
isotropy is an important issue. Here we adopt the approach of [13], see also [12]

We briefly recall some basic results on bifurcation with submaximal isotropy. The key for such an
analysis is the determination of the number of copies in Fix(Σ) of subspaces Fix(∆) for the isotropy
subgroups ∆ containing Σ. Let [Σ] be the conjugacy classe of Σ and write [Σ] < [∆] if only if [Σ] 6= [∆]
and γ−1Σγ ⊂ ∆ for some γ ∈ G. We call isotropy type the conjugacy class of an isotropy subgroup. Let
[∆1], . . . , [∆r] be the isotropy types which satisfy the former condition. Let aj the number of solution
branches with isotropy ∆j (aj may be equal to 0). Then the total number of nontrivial solution branches
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(a) eC2κ (b) C
′
2κ

(c) eC3κ′ (d) eD3

Figure 3: The four H-planforms associated to the eigenvalue λ = 5.3537.

(a) eC2κ (b) C
′
2κ

Figure 4: Two H-planforms corresponding to isotropy group C̃2κ right and C
′
2κ left for eigenvalue λ =

42.3695.
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Figure 5: Extension of the C̃3κ′ H-planform on the Poincaré disk of figure 3(c).

in Fix(Σ) with higher isotropy is

NΣ =
r∑
j=1

ajn(Σ,∆j)

where n(Σ,∆j) is the number of conjugate copies of Fix(∆) inside Fix(Σ).
We denote by fΣ the restriction to Fix(Σ) of f given by in Eq. (5). Then, if fΣ has N0 zeroes in a

neighborhood of the origin, there are precisely N0 −NΣ − 1 branches of equilibria with isotropy Σ.
If we set N(Σ) = {g ∈ G | g−1Σg = Σ} (normalizer of Σ in G) and N(Σ,∆) = {g ∈ G | Σ ⊂ g∆g−1},

the quotient set
N(Σ,∆)
N(∆)

is well-defined even though N(Σ,∆) is not a group in general [13]. Moreover

we have that

n(Σ,∆) =
∣∣∣∣N(Σ,∆)
N(∆)

∣∣∣∣
This formula allow us to compute the numbers n(Σ,∆), hence to determine the number of solutions with
isotropy ∆ in Fix(Σ).

Now note that the maximal isotropy subgroups for the representations χ11, χ12 and χ13 which are
listed in Definition 2, have only cyclic subgroups generated by elements σ, ε, κ or κ′ (or conjugates).
The following lemmas give the informations when ∆ is maximal.

Lemma 3. The normalizers of the isotropy subgroups of proposition 1 are listed in table 4.

∆ N(∆) |N(∆)|
D̃3 〈D̃3,−Id〉 12
C̃3κ′ 〈C̃3κ′ ,−Id〉 12
C̃2k 〈C̃2k,−Id〉 8
C̃ ′2κ 〈C̃ ′2κ,−Id〉 8

Table 4: Isotropy subgroups of G and their normalizer. The last column provides the cardinal of the
normalizer.

Proof. Let us consider, for example, Σ = C̃2k = 〈σ, κ〉. The only conjugate of κ in C̃2k is κ itself, and the
same holds for σ and σκ = κ′. Therefore N(C̃2k) = N(〈κ〉) ∩ N(〈σ〉) ∩ N(〈σκ〉). Now for any element
h ∈ G, we have that |N(〈h〉)| = 96

|[h]| . Tables 1 and 2 show that |[κ]| = 6 while |[σ]| = |[κ′]| = 12. It
follows that |N(〈κ〉)| = 16 while |N(〈σ〉)| = |N(〈κ′〉)| = 8. Hence |N(Σ)| ≤ 8. But Σ ⊂ N(Σ) and
|Σ| = 4, moreover −Id commutes with any element in G and therefore belongs to N(Σ). It follows that
the group 〈Σ,−Id〉 = N(Σ). The same rationale applies to the other isotropy subgroups.
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Lemma 4. The values of n(Σ,∆) for the maximal isotropy subgroups ∆ (see Definition 2) are given in
table 5.

[Σ] [∆] n(Σ,∆)
〈σ〉 C̃2k 1
〈σ〉 C̃ ′2k 1
〈σ〉 D̃3 2
〈ε〉 D̃3 2
〈ε〉 C̃3κ′ 2
〈κ〉 C̃2k 2
〈κ〉 C̃ ′2κ 2
〈κ′〉 C̃2κ 1
〈κ′〉 C̃ ′2κ 1
〈κ′〉 C̃3κ′ 2

Table 5: Values of n(Σ,∆).

Proof. • Case Σ = 〈κ〉: we have N(Σ, C̃2k) = N(Σ, C̃ ′2k) = N(Σ) as κ is not conjugate to σ nor
to σκ. Moreover, |N(Σ)| = 16 (see proof of Lemma 3) and |N(C̃2k)| = |N(C̃ ′2k)| = 8, hence
n(Σ, C̃2k) = n(Σ, C̃ ′2k) = 2.

• Case Σ = 〈σ〉: we have N(Σ, Ĉ2k) = N(Σ, C̃ ′2k) = N(Σ) with |N(Σ)| = 8 (see proof of Lemma
3), hence n(Σ, Ĉ2k) = n(Σ, C̃ ′2k) = 1. By definition N(Σ, D̃3) = {g ∈ G | gΣg−1 ⊂ D̃3} = {g ∈
G | gσ̃g−1 ∈ D̃3}. There are three conjugates of σ̃ in D̃3. Therefore |N(Σ, D̃3)| = 3|N(〈σ〉)|. As
shown in the proof of Lemma 3), |N(〈σ〉)| = 8, hence N(Σ, D̃3) = 24 and n(Σ, D̃3) = 2.

• The proof for the other cases uses the same arguments as above.

3 Bifurcation diagrams in the case of the representation χ12

The character table 3 shows that the two 4D representations χ12 and χ13 are almost identical, the only
difference coming from the fact that the characters of the group elements εκ and −εκ have opposite
signs. It follows that the general bifurcation analysis in the case of χ13 is identical to the case of χ12 and
does not introduce any novelty. In the following we shall therefore only describe the χ12 case.

3.1 Equivariant structure of the equations on the center manifold

We need to know the form of the asymptotic expansion of the G equivariant map f(·, λ) in Equation
(5). The dimension of the space of equivariant polynomials can be computed using Molien series (see
[12]). This computation is shown in appendix B and the results are presented in table 15. The Molien
series tells us that there are two independant equivariant homogeneous polynomial maps of order 3. The
computation of these terms will prove to be sufficient to fully determine the bifurcation diagram under
generic conditions.

We first need to choose a system of coordinates in R4. In the remaining part of this paper we shall
use the same notation for an element in G and for its representation when there is no ambiguity. The
following lemma is proved in Appendix C.1.

Lemma 5. For the representation χ12 the diagonalization of the 8-fold symmetry matrix ρ has the form

ρ =


exp( iπ

4 ) 0 0 0
0 exp(− iπ

4 ) 0 0
0 0 exp( 3iπ

4 ) 0
0 0 0 exp(− 3iπ

4 )
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We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

The following theorem gives the form of the bifurcation equations on the center manifold .

Theorem 2. For the representation χ12, Equation (5) expressed in the coordinates (z1, z̄1, z2, z̄2) admits
the following expansion

ż1 =
[
λ+ a(|z1|2 + |z2|2)

]
z1 + b

[√
3
(
3z2

1 + z̄2
2

)
z̄1 − i

(
z2

2 + 3z̄2
1

)
z2

]
+ h.o.t. (6)

ż2 =
[
λ+ a(|z1|2 + |z2|2)

]
z2 + b

[√
3
(
3z2

2 + z̄2
1

)
z̄2 + i

(
z2

1 + 3z̄2
2

)
z1

]
+ h.o.t. (7)

where (a, b) ∈ R2. Moreover the cubic part is the gradient of the G invariant real polynomial function

a

2

[(
|z1|2 + |z2|2

)2]
+ b ·

[√
3

2
(
3
(
z2

1 z̄
2
1 + z2

2 z̄
2
2

)
+ z2

1z
2
2 + z̄2

1 z̄
2
2

)
+ i
(
z3

1 z̄2 + z̄3
2z1 − z3

2 z̄1 − z2z̄
3
1

)]

Proof. We postpone to appendix C.1 the computation of the two cubic equivariant maps. The check of
the gradient form is straightforward.

3.2 Isotropy types and fixed points subspaces

Lemma 6. The lattice of isotropy types for the representation χ12 is shown in Figure 6. The numbers
in parentheses indicate the dimension of corresponding fixed-point subspaces.

Figure 6: The lattice of isotropy types for the representation χ12.

Proof. We apply the trace formula: if H is a subgroup and χ is the character of the representation, then

dim(XH) =
1
|H|

∑
h∈H

χ(h) (8)

By applying (8) for χ12 (see Table 3), one finds that the only cyclic subgroups of G (subgroups generated
by one element) with a fixed-point subspace of positive dimension are those listed in the diagram of Figure
6, and this dimension is equal to 2. The result follows. Note that the isotropy types with one-dimensional
fixed-point subspace have been determined in [15], see Proposition 1.

The next lemma gives expressions for the fixed-point subspaces of two-element groups in the (z1, z̄1, z2, z̄2)
coordinates, which will be usefull for the bifurcation analysis of (5) in the planes of symmetry. There
are four types of these planes but we express the fixed-point planes for the conjugates σ̃ of σ and κ′′ of
κ′ for later convenience.

Lemma 7. Fixed-point subspaces associated with the isotropy groups in the diagram 6 have the following
equations.
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- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (1−
√

2)(
√

2z1 − i
√

3z̄1)};

- Fix(σ̃) = ρ2Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (1−
√

2)(
√

2z1 + i
√

3z̄1)};

- Fix(ε) = {(z1, z̄1, z2, z̄2) | z2 = (1 + i)z1 +
√

3z̄1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) |
√

2z1 = (−1 + i)z̄1)} and
√

2z2 = −(1 + i)z̄2)}.

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = (
√

3−
√

2)(−
√

2z1 + iz̄1)}.

Proof. Given in Appendix D.1.

The one dimensional fixed point subspaces are the intersections of planes of symmetry. This allows
to easily obtain expressions for these axes from the expressions listed in Lemma 7. For example we can
write

Fix(C̃2κ) = {(z1, z2) ∈ C2 | z1 = iz̄1 and z2 = (1−
√

2)(
√

3−
√

2)z1}.

3.3 Bifurcation analysis

Figure 7: Region P = {(a, b) ∈ R2 | 3a+ 2b
√

3 < 0 and 3a+ 10b
√

3 < 0} for the value of the parameters
(a, b) is colored in blue.

Theorem 3. Provided that (a, b) ∈ P = {(a, b) ∈ R2 | 3a + 2b
√

3 < 0 and 3a + 10b
√

3 < 0} (see figure
7), the following holds for Equations (6)-(7).

(i) No solution with submaximal isotropy bifurcates in the planes of symmetry.

(ii) The branches of equilibria with maximal isotropy (as listed in Proposition 1) are pitchfork and
supercritical.

(iii) If b > 0 (resp. b < 0), the equilibria with isotropy type C̃3κ′ (resp. D̃3) are stable in R4. Branches
with isotropy C̃2κ and C̃ ′2κ are always saddles.

Bifurcation diagrams restricted to the planes of symmetry are summerized in figure 8 in the case b < 0.

Remark 1. We have numerically checked that the domain P coincides with the existence of an attracting,
flow invariant sphere homeomorphic to S3 in R4. By a theorem due to Field [19, 12], a condition for
the existence of such a sphere is that 〈q(ξ), ξ〉 < 0 for all ξ 6= 0, where ξ = (z1, z̄1, z2, z̄2), q is the cubic
part in the equations (6), (7) and 〈 , 〉 < 0 denotes the inner product <(z1z̄

′
1 + z2z̄

′
2). Since q is an

homogeneous polynomial map, it is sufficient to check the condition for (z1, z2) ∈ S3, which does not
present any difficulty.
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Figure 8: Bifurcation diagram in the case b < 0. For b > 0 the ”non radial” arrows are reversed

Remark 2. The theorem doesn’t rule out the possibility that equilibria with trivial isotropy could bifurcate.
We conjecture this is not the case. This is supported by the fact that under the ”generic” hypotheses of
the theorem: (i) no other solution than those with maximal isotropy bifurcates in the planes of symmetry,
(ii) the stability of these solutions is determined at cubic order and one of these types is always stable,
(iii) the system is gradient at cubic order, (iv) admitting the existence of an invariant sphere (previous
remark), the conjecture doesn’t contradict Poincaré-Hopf formula [24]: one can check that the sum of
indices of equilibria with maximal isotropy is equal to 0, the Euler characteristic of S3.

Proof. We first examine bifurcation in the invariant planes. We can already note that, since −Id acts
non trivially in R4 − {0} for χ12, equilibria have to occur via pitchork bifurcations.
1. Bifurcation in the planes of symmetry. In each of the planes of symmetry there are precisely
4 axes of symmetry. This immediately follows from Table 5. For example Fix(〈σ〉) contains one copy
of Fix(C̃2κ), one copy of Fix(C̃ ′2κ) and two copies of Fix(D̃3). Let us choose real coordinates (x, y) in a
plane of symmetry P and write the equations in P

ẋ = λx+ q1(x, y) + h.o.t. (9)
ẏ = λy + q2(x, y) + h.o.t. (10)

where q1 and q2 are the components of the cubic part in the Taylor expansion of f restricted to P . If
(x(λ), y(λ)) is a branch of equilibria of this system, then the equation

Q(x, y) = yq1(x, y)− xq2(x, y) = 0 (11)

admits an axis of solutions ε(x0, y0) where (x0, y0) represents the leading order in the Taylor expansion
of the solution. If Q is not degenerate the number of such axes is bounded by the degree of Q which is
equal to 4. Now, there are 4 axes of symmetry in P and each of them corresponds to an axis of solutions
of the above equation. Therefore if Q is not degenerate, there are no other invariant axes for Equation
(11). To prove that there are no submaximal branches of solutions in the planes of symmetry it remains
to check the non degeneracy of Q.
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The stability of the bifurcated equilibria in the flow invariant planes is determined by the sign of the

eigenvalues of the Jacobian matrix
(
∂xẋ ∂yẋ
∂xẏ ∂y ẏ

)
evaluated at the equilibria. One eigenvalue is radial with

leading part −2λ (since q1 and q2 are cubic), the other one is transverse (see Section 2.2). Bifurcation
of an equilibrium is supercritical iff its radial eigenvalue is negative.

1. Bifurcation and stability in Fix(κ). By Lemma 7,

Fix(κ) = {(z1, z2) ∈ C2|z1 = (1 + i)x and z2 = (1 + i)y, (x, y) ∈ R2} .

By Table 5 this plane contains two axes with isotropy type C̃2κ and two axes with isotropy type
C̃2κ. We can choose as representatives Fix(C̃2κ) = {y = (1 −

√
2)(
√

3 −
√

2)x} and Fix(C̃ ′2κ) =
{y = (1 −

√
2)(
√

3 +
√

2)x}. We change coordinates so that Fix(C̃2κ) is the real axis. With the
following choice:(

x
y

)
=
[

α−1 β−1

α−1(1−
√

2)(
√

3−
√

2) β−1(1 +
√

2)(
√

3 +
√

2)

](
X
Y

)
where α =

√
16− 6

√
6− 10

√
2 + 8

√
3 and β =

√
16 + 6

√
6 + 10

√
2 + 8

√
3,

the equations (9) and (10) read

Ẋ =
(
λ+ 2a(X2 + Y 2) + 4b

[
(1 +

√
3)X2 + (

√
3− 3)Y 2

])
X

Ẏ =
(
λ+ 2a(X2 + Y 2) + 4b

[
(1 +

√
3)Y 2 + (

√
3− 3)X2

])
Y

and Q(X,Y ) = 16bXY (X − Y )(X + Y ). The axes Y = 0 and X = 0 correspond to C̃2κ isotropy
type and the axes X = ±Y correspond to C̃ ′2κ isotropy type. Therefore if b 6= 0 there are no
submaximal solutions in Fix(κ).

Stability of the solutions. The leading order of radial and transverse eigenvalues are computed
from these equations and are summarized in Table 6.

Isotropy type radial eigenvalue transverse eigenvalue
C̃2κ 4

(
a+ 2b(1 +

√
3)
)
X2 −16bX2

C̃ ′2κ 8
(
a+ 2b(

√
3− 1)

)
X2 32bX2

Table 6: Radial and transverse eigenvalues (leading order) of bifurcated branches in Fix(κ).

To summarize, under the condition that a+ 2b(1 +
√

3) < 0 and a+ 2b(
√

3− 1) < 0 (supercritical
bifurcations), the bifurcation diagram in Fix(κ) is like in Figure 8 (upper left).

2. Bifurcation and stability in Fix(ε). By Lemma 7,

Fix(ε) = {z2 = (1 + i)z1 +
√

3z̄1}.

By Table 5 there exist two axes of isotropy type C̃3κ′ and two of isotropy type D̃3.
We set z1 = x+ iy. In (x, y) coordinates, Fix(C̃3κ′) = {y = (1 +

√
2)x} and Fix(D̃3) = {(1 +

√
6 +

2
√

3)y = (2
√

2− 3)x}.
We change coordinates so that Fix(C̃3κ′) be the axis Y = 0. With the following choice for the new
coordinates: (

x
y

)
=
[

α−1 β−1(
√

3 +
√

2)
α−1(1 +

√
2) β−1(1−

√
2)(
√

3 +
√

2)

](
X
Y

)
where α =

√
4 + 2

√
2 and β =

√
4− 2

√
2, the equations in Fix(ε) have the simple form

Ẋ =
(
λ+ 2a(3−

√
6)(X2 + Y 2) + 4(

√
3−
√

2)b(5X2 − 3Y 2)
)
X

Ẏ =
(
λ+ 2a(3−

√
6)(X2 + Y 2) + 4(

√
3−
√

2)b((5Y 2 − 3X2)
)
Y .
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Then Q(X,Y ) = 32b(
√

3−
√

2)(X−Y )(X+Y )XY , so we can conclude that if b 6= 0 no submaximal
solution bifurcates in this plane.

Stability of the solutions. The leading orders of bifurcated branches and transverse eigenvalues
are summarized in Table 7.

Isotropy type radial eigenvalue transverse eigenvalue
C̃3κ′ 8(

√
3−
√

2)
(
a
√

3 + 10b
)
X2 −32b(

√
3−
√

2)X2

D̃3 4(
√

3−
√

2)
(
a
√

3 + 2b
)
X2 64b(

√
3−
√

2)X2

Table 7: Radial and transverse eigenvalues (leading order) of bifurcated equilibria in Fix(ε).

Therefore if a
√

3 + 2b < 0 and a
√

3 + 10b < 0, the stability diagram in Fix(ε) is like in Figure 8
(lower left).

3. Bifurcation and stability in Fix(σ). We consider instead Fix(σ̃). By Lemma 7,

Fix(σ̃) = {(z1, z2) ∈ C2|z2 = (1−
√

2)(
√

2z1 + i
√

3z̄1)}

By Table 5 there are four axes of symmetry in this plane: one of type C̃2κ, one of type C̃ ′2κ,
and two of type D̃3. We need to find a representative of C̃2κ which contains σ̃ = ρ2σρ−2. Since
ρ2κρ−2 = −κ (easy check), this representative is Ĉ2κ = 〈σ̃,−κ〉.
Let us write x+ iy = z1. In the (x, y) coordinates, Fix(C̃ ′2κ) = {x = y} and Fix(Ĉ2κ) = {y = −x}.
We change coordinates so that Y = 1√

2
(x − y) and X = 1√

2
(x + y). Hence Y = 0 is the equation

of Fix(C̃ ′2κ) and X = 0 is the equation of Fix(Ĉ2κ). Then

Ẋ =
[
λ+ 2aC1

(
X2 − C2Y

2
)

+ 8bC3X
2
]
X

Ẏ =
[
λ+ 2aC1

(
X2 − C2Y

2
)

+ 8bC4Y
2
]
Y

with the constants:

C1 = 8 + 3
√

6− 4
√

3− 5
√

2 > 0 C2 = −10 + 4
√

6− 5
√

3 + 6
√

2 < 0

C3 = −10− 4
√

6 + 6
√

3 + 7
√

2 > 0 C4 = 10− 4
√

6 + 6
√

3− 7
√

2 > 0

For this system we obtain

Q(X,Y ) = −8bC3(−X + C5Y )(X + C5Y )XY = 0

with C5 = (2 +
√

3)(
√

2−
√

3) < 0.
The axes X ±C5Y = 0 correspond to the two copies of Fix(D̃3). By the same argument as before,
this shows that no submaximal solution can bifurcate in Fix(σ) if b 6= 0.

Stability of the solutions. We proceed as in Fix(κ).
Radial eigenvalues have already been computed, see Tables 6 and 7. The leading order of transverse
eigenvalues are summarized in Table 8.

Isotropy type transverse eigenvalue
C̃2κ −8C4bY

2

C̃ ′2κ −8C3bX
2

D̃3 16C4bY
2

Table 8: Transverse eigenvalues of bifurcated equilibria in Fix(σ).

It follows that if a+ 2b(1 +
√

3) < 0, a+ 2b(
√

3− 1) < 0 and a
√

3 + 2b < 0, the dynamics in Fix(σ)
looks like the diagram in Figure 8 (upper right).
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4. Bifurcation and stability in Fix(κ′). We consider instead Fix(κ′′). By Lemma 7,

Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = (
√

3−
√

2)(−
√

2z1 + iz̄1)}.

By Table 5 there are four axes of symmetry in this plane: one of type C̃2κ, one of type C̃ ′2κ, and
two of type C̃3κ′ . A direct computation with Maple shows that from Definition 2 a conjugate of
C̃ ′2κ containing κ′′ is Ĉ ′2κ = gC̃ ′2κg

−1 = {Id,−κ,−σ, κ′′}, with g = ρ3σ̂κ. Setting z1 = x + iy, the
equations for Fix(C̃2κ) and Fix(Ĉ ′2κ) are respectively x = y and x = −y. We do the change of
coordinates x =

√
2/2(X + Y ), x =

√
2/2(X − Y ). The equations in these coordinates are

Ẋ =
[
λ+ 2aD1

(
−X2 −D2Y

2
)

+ 8bD3(−X2 +D4Y
2)
]
X

Ẏ =
[
λ+ 2aD1

(
−X2 −D2Y

2
)

+
4
3
bD5(−6X2 +D4)Y 2

]
Y

where D1 = −8 + 3
√

6− 4
√

3 + 5
√

2, D2 = −6 + 2
√

6 + 3
√

3− 4
√

2, D3 = −10 + 4
√

6− 6
√

3 + 7
√

2,
D4 = −27 + 10

√
6 + 15

√
3− 18

√
2 and D5 = −12 + 5

√
6− 8

√
3 + 9

√
2. Then Q(X,Y ) = 8b(−2 +√

6− 2
√

3 + 2
√

2)(X + (1 +
√

2)Y )(X − (1 +
√

2)Y )XY , so we can again conclude that if b 6= 0 no
submaximal solution bifurcates in this plane. The lines X + (1±

√
2)Y correspond to the two axes

with isotropy type C̃3κ′ .

Stability of the solutions. Radial eigenvalues have already been computed, see Tables 6 and
7. The leading order of transverse eigenvalues are summarized in Table 9. If a + 2b(1 +

√
3) < 0,

Isotropy type transverse eigenvalue
C̃2κ 8(2−

√
6 + 2

√
3− 2

√
2)bX2

C̃ ′2κ −8(2−
√

6− 2
√

3 + 2
√

2)bY 2

C̃3κ′
32bY 2

2 +
√

6− 2
√

3− 2
√

2

Table 9: Transverse eigenvalues of bifurcated equilibria in Fix(σ).

a + 2b(
√

3 − 1) < 0 and a
√

3 + 10b < 0, the stability diagram in Fix(ε) is like in Figure 8 (lower
right).

2. Stability in R4. Observe first that equilibria with isotropies C̃2κ and C̃ ′2κ are never stable. Indeed
their transverse eiganvalues in the planes Fix(σ) and Fix(κ′) have opposite signs (we assume the generic
condition b 6= 0 to be true). Now suppose that the solutions with isotropy D̃3 are supercritical, a
condition which is fulfilled if a

√
3 + 2b < 0. Their transverse eigenvalues in the invariant planes Fix(ε)

and Fix(σ) have the same sign as b. Moreover, the eigenvalue in Fix(σ) has multiplicity 2 in R4. Indeed
the order 3 group element ε, acts by rotating this plane by an angle 2π/3 around the axis Fix(D̃3). It
follows that all non radial eigenvalues in R4 have the sign of b. If the bifurcation is supercritical and
b < 0, these solutions are stable.
The same argument applies to solutions with isotropy C̃3κ′ : transverse eigenvalues in the invariant planes
Fix(ε) and Fix(κ′) have a sign opposite to the sign of b. The transverse eigenvalue in Fix(κ′) is double
in R4 by the same argument as before. It follows that if a

√
3 + 10b < 0 (supercritical branch) and b > 0,

these solutions are stable in R4.
It remains to check the domain P in the theorem. One can easily check that all bifurcated branches are
supercritical if the inequalities a

√
3+2b < 0 and a

√
3+10b < 0 are satisfied. This finishes the proof.

4 Bifurcation diagrams in the case of the representation χ11

4.1 Equivariant structure of the equations on the center manifold

As for representation χ12, we also need to know the form of the asymptotic expansion of f(·, λ) in
Equation (5). Table 15 of appendix B, given by the computation of Molien series, shows that there are
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only one equivariant homogeneous polynomial map of order 3 and four linearily independant equivariant
maps of order 5. The bifurcation diagrams are fully determined, under generic conditions, by the
computations of these terms. However, it turns out that these computations are not anymore sufficient
if one wants to study some specific dynamics of Equation (5) as depicted in section 5.

We first need to choose a system of coordinates in R4. The following lemma is proved in Appendix
C.2.

Lemma 8. For the representation χ11 the diagonalization of the 8-fold symmetry matrix ρ has the form

ρ =


exp( iπ

4 ) 0 0 0
0 exp(− iπ

4 ) 0 0
0 0 exp( 3iπ

4 ) 0
0 0 0 exp(− 3iπ

4 )


We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

Remark 3. The diagonal matrix is the same as in Lemma 5, however the corresponding bases differ for
the two representations χ12, χ11. Indeed, from Propositions 2 and 3 of Appendix A, one can check that
the presentation given by biquaternions of ρ for representation χ12 and χ11 are different.

The bifurcation equations of the center manifold is given by the following theorem.

Theorem 4. For the representation χ11, Equation (5) expressed in the coordinates (z1, z̄1, z2, z̄2) admits
the following expansion

ż1 = λz1 +Az1

(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2
+ b

(
z4

1 z̄2 + 4z3
2 |z1|2 − z3

2 |z2|2
)

+ c
(
3z̄2

1z2|z2|2 − z2
1 z̄

3
2 − 2z̄2

1 |z1|2z2

)
+ d

(
−5z̄4

1 z̄2 + z̄5
2

)
+ h.o.t (12)

ż2 = λz2 +Az2

(
|z1|2 + |z2|2

)
+ az2

(
|z1|2 + |z2|2

)2
+ b

(
−z̄1z

4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

)
+ c

(
−3z1z̄

2
2 |z1|2 + z̄3

1z
2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄5

1

)
+ h.o.t (13)

where (A, a, b, c, d) ∈ R5.

Proof. There is one G-equivariant cubic map, hence necessarily equals to E3(z) = z‖z‖2 with z =
(z1, z̄1, z2, z̄2). We postpone to Appendix C.2 the computation of the four quintic equivariant maps.

4.2 Isotropy types and fixed points subspaces

Lemma 9. The lattice of isotropy types for the representation χ11 is shown in Figure 9. The numbers
in parentheses indicate the dimension of corresponding fixed-point subspaces.

Figure 9: The lattice of isotropy types for the representation χ11.
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Proof. The only cyclic subgroups of G with a fixed-point subspace of positive dimension are given in
the diagram of Figure 9 and determined by applying (8) for χ11 (see Table 3). The isotropy types with
one-dimensional fixed-point subspace have been determined in [15], see Proposition 1.

The next lemma gives expressions for the fixed-point subspaces of two-element groups in the (z1, z̄1, z2, z̄2)
coordinates, which will be usefull for the bifurcation analysis of (5) in the planes of symmetry. There
are three types of these planes. We also express the fixed-point plane for the conjugate κ′′ of κ′ for later
convenience.

Lemma 10. Fixed-point subspaces associated with the isotropy groups in the diagram 9 have the following
equations.

- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = i(1 +
√

2)z1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = −iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) | z1 =
√

2
2 (i− 1)z̄1 and z2 =

√
2

2 (i + 1)z̄2};

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√

2z̄1}.

Proof. Given in Appendix D.2.

The one dimensional fixed point subspaces are the intersections of planes of symmetry. This allows
to easily obtain expressions for these axes from the expressions listed in Lemma 10. For example we can
write

Fix(C̃2κ) = {(z1, z2) ∈ C2 | z1 = iz̄1 and z2 = i(1 +
√

2)z1}.

4.3 Bifurcation analysis

(a) In fixed-point plane Fix(σ), bifurcation
of submaximal solutions occur for parameters
(b, c, d) in the blue regions II and IV . We have
set x = b+ c and y = d.

(b) In fixed-point plane Fix(κ′′), bifurcation
of submaximal solutions occur for parameters
(b, c, d) in the blue regions II and IV . We have
set x = c and y = b+ d.

Figure 10: Domain of existence of submaximal solutions in blue in the fixed-point planes Fix(σ) and
Fix(κ′′).

Theorem 5. Provided that A < 0, there exists an attracting, flow invariant, sphere homeomorphic to
S3 in R4 and branches of equilibria with maximal isotropy (as listed in Proposition 1) are pitchfork and
supercritical. The bifurcation diagrams in each fixed-point planes are as follows:

(i) Fixed-point plane Fix(κ).

• No solution with submaximal isotropy bifurcates in fixed-point plane Fix(κ).

• If b < d (resp. b > d) the equilibria with isotropy C̃2κ are stable (resp. saddles) and C̃ ′2κ are
saddles (resp. stable).
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This is summerized in Figure 11 in the case b > d.

(ii) Fixed-point plane Fix(σ).

• If b+ c+ 9d > 0 (resp. b+ c+ 9d < 0) equilibria with isotropy C̃2κ are stable (resp. saddles)
and C̃ ′2κ are saddles (resp. stable), regions I and IV (resp. II and III) in Figure 10(a).

• If d(3d − b − c) < 0 or (b + c − 15d)(b + c + 9d) > 0, no solution with submaximal isotropy
bifurcates in fixed-point plane Fix(σ), regions I and III in Figure 10(a).

• If d(3d − b − c) > 0 and (b + c − 15d)(b + c + 9d) < 0, regions II and IV in Figure 10(a),
solutions with submaximal isotropy bifurcate form equilibria C̃2κ and C̃ ′2κ in fixed-point plane
Fix(σ). The corresponding bifurcation diagram is given in Figure 12.

(iii) Fixed-point plane Fix(κ′).

• If d+ b− 3c < 0 (resp. d+ b− 3c > 0) equilibria with isotropy C̃2κ are stable (resp. saddles)
and C̃ ′2κ are saddles (resp. stable), regions II and III (resp. I and IV ) in Figure 10(b).

• If (b+d)(b+d− c) < 0 or (5d−3c+ 5b)(d+ b−3c) < 0, no solution with submaximal isotropy
bifurcates in fixed-point plane Fix(κ′), regions I and III in Figure 10(b).

• If (b+ d)(b+ d− c) > 0 or (5d− 3c+ 5b)(d+ b− 3c) > 0, regions II and IV in Figure 10(b),
solutions with submaximal isotropy bifurcate form equilibria C̃2κ and C̃ ′2κ in fixed-point plane
Fix(κ′). The corresponding bifurcation diagram is given in Figure 12.

Figure 11: Bifurcation diagram in the plane Fix(κ) in the case b > d, see text. We denote ∆1 (resp. ∆2)
the conjugate of C̃2κ (resp. C̃ ′2κ) in Fix(κ).

Proof. The assumption A < 0 ensures that 〈q(ξ), ξ〉 = A‖ξ‖4 < 0 for all ξ 6= 0, where ξ = (z1, z̄1, z2, z̄2),
q is the cubic part in the equations (12), (13) and 〈 , 〉 < 0 denotes the inner product <(z1z̄

′
1 + z2z̄

′
2)

and ‖ ‖ the associated norm. This implies the existence of the invariant sphere homeomorphic to S3 in
R4. We now examine bifurcation in the invariant planes. We can already note that, since −Id acts non
trivially in R4 − {0} for χ12, equilibria have to occur via pitchork bifurcations. The study in fixed-point
planes for representation χ11 is exactly the same as the study for the irreductible representation χ12.

1. Bifurcation and stability in Fix(κ). By Lemma 10,

Fix(κ) = {(z1, z2) ∈ C2|z1 = (1 + i)x and z2 = (1− i)y, (x, y) ∈ R2} .

By Table 5 this plane contains two axes with isotropy type C̃2κ and two axes with isotropy type C̃ ′2κ.
We can choose as representative Fix(C̃2κ) = {y = −(1+

√
2)x} and Fix(C̃ ′2κ) = {y = (1+

√
2)x}.

We change coordinates so that Fix(C̃2κ) is the real axis. With the following choice:(
x
y

)
=
[

α−1 β−1

−α−1(1 +
√

2) β−1(
√

2− 1)

](
X
Y

)
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Figure 12: Generic bifurcation diagrams when parameters pass from regions I − II − III in Figure
10(a) for fixed-point plane Fix(σ) and Figure 10(b) for fixed-point plane Fix(κ′). • I → II. Pitchfork
bifurcation with submaximal isotropy occurs and two equilibria Σ±1 emerge from equilibria with isotropy
type C̃2κ and two equilibria Σ±2 emerge from equilibria with isotropy type C̃ ′2κ with exchange of stability:
C̃2κ becomes unstable and C̃ ′2κ stable, which implies that Σ±1 are stable and Σ±2 are saddles (upper right).
• II − III At the boundary between region II and III, equilibria Σ+

1 (resp. Σ−1 ) and Σ+
2 (resp. Σ−2 )

collide and form only one equilibrium denoted Σ+
c (resp. Σ−c ), which no longer exists in region III:

fold bifurcation. These two equilibria Σ±c are saddles. • III, equilibria with isotropy type C̃2κ are now
unstable whereas equilibria with isotropy type C̃ ′2κ are stable.
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where α =
√

4 + 2
√

2 and β =
√

4− 2
√

2, the equations (12) and (13) read

Ẋ = λX + 2AX(X2 + Y 2) + 4aX(X2 + Y 2)2 + 2bX(−X4 − 2X2Y 2 + 7Y 4)

+ 2cX(X4 − 6X2Y 2 + Y 4) + 2dX(3X4 − 10X2Y 2 − 5Y 4)

Ẏ = λY + 2AY (X2 + Y 2) + 4aY (X2 + Y 2)2 − 2bY (−7X4 + 2X2Y 2 + Y 4)

+ 2cY (X4 − 6X2Y 2 + Y 4)− 2dY (5X4 + 10X2Y 2 − 3Y 4)

and the polynomial map Q defined in Equation (11) is Q(X,Y ) = −16(X − Y )(X + Y )(X2 +
Y 2)XY (b− d). The axes Y = 0 and X = 0 correspond to C̃2κ isotropy type and the axes X = ±Y
correspond to C̃ ′2κ isotropy type. Therefore if b 6= d there are no submaximal solutions in Fix(κ).

Stability of the solutions. The leading order of radial and transverse eigenvalues are computed
from these equations and are summarized in Table 10.

Isotropy type radial eigenvalue transverse eigenvalue
C̃2κ 4AX2 16(b− d)X4

C̃ ′2κ 8AX2 −64(b− d)X4

Table 10: Radial and transverse eigenvalues (leading order) of bifurcated branches in Fix(κ).

To summarize, under the condition that A < 0 (supercritical bifurcations), the bifurcation diagram
in Fix(κ) is like in Figure 11.

2. Bifurcation and stability in Fix(σ). By Lemma 10,

Fix(σ) = {(z1, z2) ∈ C2 | z2 = i(1 +
√

2)z1} .

By Table 5 there are two axes of symmetry in this plane: one of type C̃2κ and one of type C̃ ′2κ.
From Definition 2, a conjugate of C̃ ′2κ containing σ is C̃ ′′2κ = ρ−2C̃ ′2κρ

2 = {Id, σ,−κ,−κ′′}.

Let us write z1 = x+ iy. In the (x, y) coordinates, Fix(C̃2κ) = {y = x}, Fix(C̃ ′′2κ) = {y = −x}. We
change coordinates such that x =

√
2/2(X + Y ), x =

√
2/2(X − Y ). Hence Y = 0 is the equation

of Fix(C̃2κ) and X = 0 is the equation of Fix(C̃ ′′2κ). Then

Ẋ = λX + 2E1AX(X2 + Y 2) + 8E2aX(X2 + Y 2)2 − 4E2bX(X2 + Y 2)(X2 − 3Y 2)

+ 4E2cX(X2 + Y 2)2 + 12E2dX(X4 − 10X2Y 2 + 5Y 4)

Ẏ = λY + 2E1AY (X2 + Y 2) + 8E2aY (X2 + Y 2)2 − 4E2bY (X2 + Y 2)(3X2 − Y 2)

− 4E2cY (X2 + Y 2)2 − 12E2dX(5X4 − 10X2Y 2 + Y 4)

where E1 = 2 +
√

2 and E2 = 3 + 2
√

2. For this system we obtain

Q(X,Y ) = 8E2XY
[
(b+ c+ 9d)X4 + 2(b+ c− 15d)X2Y 2 + (b+ c+ 9d)Y 4

]
We denote H(X,Y ) = (b+ c+ 9d)X4 + 2(b+ c− 15d)X2Y 2 + (b+ c+ 9d)Y 4.

Study of the polynomial map H(X,Y ). We consider H as a polynomial map of degree two in
X2. When b + c − 15d = 0, then H is simplified as H(X,Y ) = (b + c + 9d)(X4 + Y 4), and there
is no submaximal bifurcation in Fix(σ). In the remaining part of this paragraph, we suppose that
b+ c− 15d 6= 0. The discriminant of H is given by δ = 192d(3d− b− c)Y 4.
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• Suppose that d(3d− b− c) > 0 then X2 = ν±Y
2 with

ν± =
−(b+ c− 15d)±

√
48d(3d− b− c)

(b+ c+ 9d)

with ν+ν− = 1 and ν+ +ν− = −2 b+c−15d
b+c+9d . We deduce that if b+c−15d

b+c+9d < 0, there are four axes
X = ±√ν±Y which correspond to bifurcated submaximal solutions in Fix(σ). If b+c−15d

b+c+9d > 0
no submaximal bifurcation can bifurcate in Fix(σ).

• Suppose that d = 0 and b + c 6= 0 then H(X,Y ) = (b + c)(X2 + Y 2)2. This implies that no
submaximal bifurcation can bifurcate in Fix(σ) if d = 0 and b+ c 6= 0.

• If 3d = b + c and d 6= 0 then H(X,Y ) = 12d(X − Y )2(X + Y )2 and the axes X = ±Y
correspond to bifurcated submaximal solutions in Fix(σ).

• If we suppose that d(3d−b−c) < 0 then H has no other root than (0, 0). By the same argument
as before, this shows that no submaximal solution can bifurcate in Fix(σ) if d(3d− b− c) < 0.

Stability of the solutions. The leading order of radial and transverse eigenvalues for isotropy
type C̃2κ and C̃ ′2κ are computed from the above equations and are summarized in Table 11.

Isotropy type radial eigenvalue transverse eigenvalue
C̃2κ 4(2 +

√
2)AX2 −8(3 + 2

√
2)(b+ c+ 9d)X4

C̃ ′2κ 4(2 +
√

2)AX2 8(3 + 2
√

2)(b+ c+ 9d)X4

Table 11: Radial and transverse eigenvalues (leading order) of bifurcated branches in Fix(σ).

We know discuss the stability of the bifurcated submaximal solutions found for d(3d − b − c) > 0
and (b + c − 15d)(b + c + 9d) < 0, i.e regions II and IV of Figure 10(a). We denote Σ+

1 (resp.
Σ−1 ) the branch of solutions with axis X = √ν+Y (resp. X = −√ν+Y ) and Σ+

2 (resp. Σ−2 ) the
branch of solutions with axis X = √ν−Y (resp. X = −√ν−Y ). When parameters pass from
region I to region II in Figure 10(a), pitchfork bifurcation with submaximal isotropy occurs and
two equilibria Σ±1 emerge from equilibria with isotropy type C̃2κ and two equilibria Σ±2 emerge
from equilibria with isotropy type C̃ ′2κ with exchange of stability: C̃2κ becomes unstable and C̃ ′2κ
stable, which implies that Σ±1 are stable and Σ±2 are saddles, see Figure 12 (upper right). At the
boundary between region II and III, equilibria Σ+

1 (resp. Σ−1 ) and Σ+
2 (resp. Σ−2 ) collide and

form only one equilibrium denoted Σ+
c (resp. Σ−c ), which no longer exists in region III: saddle-

node bifurcation. These two equilibria Σ±c are saddles, see Figure 12 (lower left). In region III,
equilibria with isotropy type C̃2κ are now unstable whereas equilibria with isotropy type C̃ ′2κ are
stable, see Figure 12 (lower right). Same phenomena occur when values of the parameters pass
from region III to region I through region IV in figure 10(a). We summerize the positive section
of the bifurcation diagrams of Figure 12 in Figure 13.

3. Bifurcation and stability in Fix(κ′). We consider instead Fix(κ′′). By Lemma 10,

Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√

2z̄1} .

By Table 5 there are two axes of symmetry in this plane: one of type C̃2κ and one of type C̃ ′2κ. We
have already noticed that a conjugate of C̃ ′2κ which contains κ′′ is Ĉ ′2κ = {Id,−σ,−κ, κ′′}. Setting
z1 = x+ iy, the equations for Fix(C̃2κ) and Fix(Ĉ ′2κ) are respectively y = x and y = −x. With the
change of coordinates x =

√
2/2(X + Y ), x =

√
2/2(X − Y ) the equations become:

Ẋ = λX + 2E1AX(X2 + E2
3Y

2) + 8E2aX(X2 + E2
3Y

2)2

+ 4E2bX(−X2 + 2
√

2E3XY + E2
3Y

2)(X2 + 2
√

2E3XY − E2
3Y

2)

+ 4E2cX(X2 − 5E2
3Y

2)(X − E3Y )(X + E3Y ) + 4E2dX(3X4 + 10E2
3X

2Y 2 − 5E4
3Y

4)
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Figure 13: Positive section of the bifurcation diagrams of Figure 12 when parameters pass from regions
I − II − III. Dashed lines represent unstable branches and continuous lines represent stable branches.
�-P stands for pitchfork bifurcation and �-SN for saddle-node bifurcation, see text for notations.

Ẏ = λY + 2E1AY (X2 + E2
3Y

2) + 8E2aY (X2 + E2
3Y

2)2

− 4E2bY (−X2 + 2
√

2E3XY + E2
3Y

2)(X2 + 2
√

2E3XY − E2
3Y

2)

− 4E2cY (5X2 − E2
3Y

2)(X − E3Y )(X + E3Y ) + 4E2dY (5X4 − 10E2
3X

2Y 2 − 3E4
3Y

4)

where E3 = 1−
√

2. Then

Q(X,Y ) = −8E2XY
[
(b+ d− 3c)X4 − 2E2

3(5d+ 5b− 3c)X2Y 2 + E4
3(b+ d− 3c)Y 4

]
We denote K(X,Y ) = (b+ d− 3c)X4 − 2E2

3(5d+ 5b− 3c)X2Y 2 + E4
3(b+ d− 3c)Y 4.

Study of the polynomial map K(X,Y ). We consider K as a polynomial of degre two in X2.
If 5d + 5b − 3c = 0, then K(X,Y ) = (b + d − 3c)(X4 + E4

3Y
4), and no submaximal bifurcation

can occur in fixed-point plane Fix(κ′′). In the remaining part of this discussion, we suppose that
5d+ 5b− 3c 6= 0. The discriminant of K(X,Y ) is given by δ = 96E4

3(b+ d)(b+ d− c).

• Suppose (b+ d)(b+ d− c) > 0 then X2 = ν±Y
2 with

ν± = E2
3

5d− 3c+ 5b± 2
√

6(b+ d)(b+ d− c)
(d+ b− 3c)

Y 2

where ν+ν− = C2 and ν++ν− = 2E2
3

5d−3c+5b
d+b−3c . This implies that if (5d−3c+5b)(d+b−3c) > 0

there are four axes X = ±√ν±Y which correspond to bifurcated submaximal solutions in
Fix(κ′′). And if (5d− 3c+ 5b)(d+ b− 3c) < 0, no submaximal solution can bifurcate in this
plane.
• If b+d = c and c 6= 0, then K(X,Y ) = −2c(X2 +E2

3Y
2)4. There is no bifurcated submaximal

solution in Fix(κ′′).
• Suppose that d+b = 0 and c 6= 0, then K(X,Y ) = −3c(X2−E2

3Y
2)2 and the axes X = ±E3Y

correspond to bifurcated submaximal solutions in Fix(κ′′).
• Finally, if (b+ d)(b+ d− c) < 0, then K has no other root than (0, 0). By the same argument

as before, this shows that no submaximal solution can bifurcate in fixed-point plane Fix(κ′′).

Stability of the solutions. The leading order of radial and transverse eigenvalues for isotropy
type C̃2κ and C̃ ′2κ are computed from the above equations and are summarized in Table 12.

The bifurcation analysis of submaximal solutions is the same as in fixed-point plane Fix(σ) and
presents no difficulty.
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Isotropy type radial eigenvalue transverse eigenvalue
C̃2κ 4(2 +

√
2)AX2 8(3 + 2

√
2)(d+ b− 3c)X4

C̃ ′2κ 4(2−
√

2)AX2 −8(3− 2
√

2)(d+ b− 3c)X4

Table 12: Radial and transverse eigenvalues (leading order) of bifurcated branches in Fix(κ′′).

Remark 4. From Tables 10, 11 and 12, we deduce that there always exists a range of parameters such
that equilibria with isotropy type C̃2κ and C̃ ′2κ are unstable. We also point out that, to leading order, the
sign of transverse eigenvalues for isotropy type C̃2κ is the opposite of the sign of transverse eigenvalues
for isotropy type C̃ ′2κ.

We can choose coordinates to express fixed-point lines Fix(C̃2κ) and Fix(C̃ ′2κ) in R4 as Fix(C̃2κ) =
{(x, x,−(1 +

√
2)x, (1 +

√
2)x) | x ∈ R} and Fix(C̃ ′2κ) = {(x,−x, (1 +

√
2)x, (1 +

√
2)x) | x ∈ R}. We

summerize in Table 13, to leading order, radial and transverse eigenvalues (denoted tk, k = 1 . . . 3) of
bifurcated branches C̃2κ and C̃ ′2κ in R4.

Isotropy type C̃2κ C̃ ′2κ
Radial eigenvalue 8(2 +

√
2)Ax2 8(2 + 2

√
2)Ax2

t1 128(3 + 2
√

2)(b− d)x4 −128(3 + 2
√

2)(b− d)x4

t2 −32(3 + 2
√

2)(b+ c+ 9d)x4 32(3 + 2
√

2)(b+ c+ 9d)x4

t3 32(3 + 2
√

2)(b+ d− 3c)x4 −32(3 + 2
√

2)(b+ d− 3c)x4

Table 13: Radial and transverse eigenvalues (leading order) of bifurcated branches in R4.

5 Bifurcation of a heteroclinic network in the χ11 case

5.1 Existence

We suppose now that the cubic term coefficient A < 0, and by a suitable chage of time scale we can take
A = −1. This implies, as shown in Theorem 5, that a flow-invariant S3 sphere bifurcates for Equations
(12) and (13). The system reads:

ż1 = λz1 − z1

(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2 + b
(
z4

1 z̄2 + 4z3
2 |z1|2 − z3

2 |z2|2
)

+c
(
3z̄2

1z2|z2|2 − z2
1 z̄

3
2 − 2z̄2

1 |z1|2z2

)
+ d

(
−5z̄4

1 z̄2 + z̄5
2

)
+ h.o.t.

ż2 = λz2 − z2

(
|z1|2 + |z2|2

)
+ az2

(
|z1|2 + |z2|2

)2 + b
(
−z̄1z

4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

)
+c
(
−3z1z̄

2
2 |z1|2 + z̄3

1z
2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄5

1

)
+ h.o.t.

(14)

In the sequel we also suppose that coefficients (b, c, d) satisfy the following conditions:

• C1: b− d > 0

• C2: d(3d− b− c) < 0 and b+ c+ 9d > 0

• C3: (b+ d)(b+ d− c) < 0 and b+ d− 3c < 0

Under these conditions all bifurcated equilibria have maximal isotropy and moreover, according to Re-
mark 4, none of them is stable. More precisely, condition C1 implies that saddle-sink heteroclinic orbits
connect in the plane Fix(κ) equilbria of isotropy type C̃2κ to equilibria with isotropy type C̃ ′2κ (figure
11). Condition C2 implies that saddle-sink heteroclinic orbits connect in the plane Fix(σ) equilibria
with isotropy type C̃ ′2κ to equilibria with isotropy type C̃2κ (case I in figure 12). In the same fashion,
saddle-sink heteroclinic orbits connect in the plane Fix(κ′′) equilibria with isotropy type C̃2κ to eqiulibria
with isotropy type C̃ ′2κ when condition C3 is satisfied.
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These heteroclinic orbits are robust against G-equivariant perturbations. Their G-orbit realizes a
heteroclinic network between the G-orbits of equilibria of types C̃2κ and C̃ ′2κ.

Notice that under the above hypotheses the equilibria of type C̃2κ have a one dimensional unstable
manifold, while equilibria of type C̃ ′2κ have a two dimensional unstable manifold which contains the
heteroclinic orbits lying in the planes of type Fix(σ) and Fix(κ′′).

The existence of a heteroclinic network can lead to interesting non trivial dynamics characterized by
long periods of quasi-static state (trajectory approaches an equilibrium of the cycle) followed by a fast
excursion far from equilibrium and relaxation to another quasi-static state, the process being repeated
in an aperiodic way [12, 2, 23]. This point will be considered in Section 5.3, but we first simplify the
problem by proceeding to a suitable orbit space reduction.

5.2 Quotient network

The heteroclinic network introduced above has 48 nodes (equilibria) and 144 edges (heteroclinic orbits).
Indeed the isotropy subgroups C̃2κ and C̃ ′2κ have order 4, hence the orbits of equilibria with these
isotropies have |G|/4 = 24 elements each. To each node of type C̃2κ are associated 2 ”outgoing” edges
and 4 ”incoming” edges. There are 48 nodes but each edge has two ends, hence the result. We can
simplify this structure by projecting the system onto the quotient space (orbit space) S3/G where S3 is
the flow-invariant sphere. This procedure would project the network onto a simpler one in which there
are only two nodes. Moreover the trajectories of the equivariant vector field in S3 project on trajectories
for a smooth vector field defined on the orbit space [12]. However this orbit space is not a manifold (it
would be if the action of G were free) and its geometric, stratified structure is too difficult to compute to
make this method useful in our case. We can however proceed as [1] by identifying a subgroup G0 of G
with a free action on S3 and large enough to allow for a substantial reduction of the number of equilibria
on the 3-dimenisonal manifold S3/G0. This is the aim of the next lemma.

Lemma 11. The group G0 generated by the elements ρ2 and ε has 24 elements. It acts fixed-point free
on S3 and the two G-orbits of equilibria on S3 reduce to a pair of equilibria in the manifold S3/G0 for
the projected dynamics.

Proof. In Table 4 of [15], G0 is identified with the 24 element group SL(2, 3), the group of 2× 2 matrices
over the field Z3. Since none of its elements appears in the isotropy subgroups of G for the representation
χ11, its elements only fix the origin. For the same reason G0 acts fixed point free on the 24 elements
orbits of equilibria and by taking the quotient by this action these orbits reduce to single equilibria.

It follows that the heteroclinic network “drops down” to a quotient heteroclinic network between the
two equilibria which we denote by A (C̃2κ type) and B (C̃ ′2κ type) in S3/G0. There are two connections
from A to B and four connections from B to A, as it can be seen in Figure 14. This projected heteroclinic
network can be seen as the union of eight heteroclinic cycles which however belong to two symmetry
classes only: the cycles 1 → 5, 2 → 5, 1 → 6, 2 → 6 are exchanged by reflection symmetries (projected
on S3/G0), same thing for the cycles 3 → 5, 4 → 5, 3 → 6, 4 → 6. We call ν-cycle (resp. µ-cycle) the
cycle 1 → 5 (resp. 4 → 5). We denote νA, νB (resp. µA, µB) the eigenvalues at A and B along the
connection 1− 2 (resp. 3− 4).

5.3 Asymptotic stability

The asymptotic stability of heteroclinic cycles has been studied by several authors [33, 34, 3, 35] and
sufficient conditions on the ratio of eigenvalues ”along” the cycle have been provided to ensure this
property generically. Roughly speaking, the attractiviness property of a heteroclinic cycle is determined
by the relative strength of the contracting and expanding eigenvalues along the cycle, computed at the
equilibria in the cycle. If at an equilibrium in the cycle the unstable manifold has dimension > 1 and
does not realize a saddle-sink connection to other equilibria in some fixed-point subspace, the heteroclinic
cycle can not be asymptotically stable in the usual sense, that is asymptotically attracting for initial
conditions in an open tubular neighborhood of the cycle. As shown by Krupa and Melbourne in [34],
it can still have a weaker attractiviness property which they called essential stability: under certain
conditions on the eigenvalues the heteroclinic cycle is attracting for initial conditions belonging to the
complement of a cuspidal region in a tubular neighborhood of the cycle.
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Figure 14: Representation of the quotient heteroclinic network between equilibria A (C̃2κ type) and B

(C̃ ′2κ type) in S3/G0. Heteroclinic connections denoted 1, 2, which link B to A, result of the quotient
in S3/G0 of the heteroclinic connections which connect C̃ ′′2κ to C̃2κ in Fix(σ). Heteroclinic connections
denoted 3, 4, which link B to A, result of the quotient in S3/G0 of the heteroclinic connections which
connect Ĉ2κ to C̃ ′2κ in Fix(κ′′). Heteroclinic connections denoted 5, 6, which link A to B, result of the
quotient in S3/G0 of the heteroclinic connections which connect C̃2κ to C̃ ′2κ in Fix(κ).

A heteroclinic network is a union of cycles. As observed by Kirk and Silber [31] those cycles can
not be simultaneously essentially stable but conditions can be derived to determine which one is. In
this section we derive sufficient conditions for the essential stability of the two cycles in our heteroclinic
network projected on the orbit space S3/G0.

First we simplify notation by denoting (λA,−νA,−µA) the eigenvalues at equilibriumA and (−λB , νB , µB)
the eigenvalues at equilibrium B. We consider:

λe > 0, νe > 0, µe > 0 e = A,B

We cannot apply directly theorems of [33] but we will proceed in the same fashion as in [31]. In the
following, we suppose without loss of generality that:

νB > µB (15)

We define:

ρµ =
µAλB
λAµB

, σµ =
µA
λA

[
νB
µB
− νA
µA

]
, ρν =

νAλB
λAνB

, σν =
νA
λA

[
µB
νB
− µA
νA

]
Theorem 6. (i) Suppose that ρµ > 1 and ρν > 1.

1. If σν < 0 and σµ > 0, almost all orbits passing through a tubular neighborhood of the µ-cycle escape
this neighborhood in finite time, exceptions being those orbits that lie in the stable manifolds of A
or B. The ν-cycle is essentially asymptotically stable: it attracts almost all trajectories starting in
a small enough tubular neighborhood of it, the only possible exceptions being those orbits that pass
through a cuspoidal region abutting the heteroclinic connection from A to B.

2. If σν > 0 and σµ < 0, almost all orbits passing through a tubular neighborhood of the ν-cycle escape
this neighborhood in finite time, exceptions being those orbits that lie in the stable manifolds of A
or B. The µ-cycle is essentially asymptotically stable: it attracts almost all trajectories starting in
a small enough tubular neighborhood of it, the only possible exceptions being those orbits that pass
through a cuspoidal region abutting the heteroclinic connection from A to B.

(ii) Suppose that 0 < ρµ < 1 (resp. 0 < ρν < 1). Then the µ-cycle (resp. ν-cycle) repels almost all orbits
and the attractivity properties of the ν-cycle (esp. µ-cycle) are determined by σν (resp. σµ) as above.
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Figure 15: First return map in S3.

Proof. We first linearize the flow in neighborhoods of A and B by a continous change of variables [26, 11].
We can further choose local coordinates such that the local stable and unstable manifold of A and B are
either the horizontal axis or the vertical plane. Using Euclidean coordinates (v, w) in the vertical plane
and u for the horizontal axis, we have for A:

Wu
loc(A) = {(u, 0, 0) | u ∈ R} W s

loc(A) = {(0, v, w) | (v, w) ∈ R2}

and for B:
W s
loc(B) = {(u, 0, 0) | u ∈ R} Wu

loc(B) = {(0, v, w) | (v, w) ∈ R2}

The linearized vector field about A is
u̇ = λAu
v̇ = −νAv
ẇ = −µAw

and about B:
u̇ = −λBu
v̇ = νBv
ẇ = µBw

We now define rectangular cross sections in neighborhoods of e, e = A,B(see figure 15):

Re = {(u, v, w) | u = 1, −ve ≤ v ≤ ve, −we ≤ w ≤ we}
Rµe = {(u, v, w) | w = 1, −ue ≤ u ≤ ue, −ve ≤ v ≤ ve}
Rνe = {(u, v, w) | v = 1, −ue ≤ u ≤ ue, −we ≤ w ≤ we}

We can then build two first return maps Ψµ : RµA → R
µ
A and Ψν : RνA → RνA as follows:

Ψµ = Ψµ
BA ◦ ΦµB ◦ΨAB ◦ ΦµA and Ψν = Ψν

BA ◦ ΦνB ◦ΨAB ◦ ΦνA where

ΦµA : RµA → RA ΦµB : RB → RµB ΦνA : RνA → RA ΦνB : RB → RνB

ΨAB : RA → RB Ψµ
BA : RµB → R

µ
A Ψν

BA : RνB → RνA
The local maps ΦµA and ΦνA are obtained by integrating the equations for the flow linearized about

A:
ΦµA(u, v, 1) = (1, vu

νA
λA , u

µA
λA ) with u 6= 0

ΦνA(u, 1, w) = (1, u
νA
λA , wu

µA
λA ) with u 6= 0
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Same thing for the maps ΦµB and ΦνB :

ΦµB(1, v, w) = (w
λB
µB , vw

− νBµB , 1) with w
νB
µB > v ≥ 0

ΦνB(1, v, w) = (v
λB
νB , 1, wv−

µB
νB ) with v > w

νB
µB ≥ 0

where CµB = {(v, w) ∈ RB | w
νB
µB > v ≥ 0} and CνB = {(v, w) ∈ RB | v > w

νB
µB ≥ 0} are complementary

domains in RB of the maps ΦµB and ΦνB . Note that the point at which a trajectory intersects RB
determines whether the trajectory leaves the vacinity of B in the direction of A through RµB or RνB .
Condition (15) implies that CµB is a cuspoidal region of RµB .

By exploiting the equivariance of the vector field, we obtain for the “global” maps ΨAB , Ψµ
BA : and

Ψν
BA:

ΨAB(1, v, w) = (1, αABv, βABw) + h.o.t

Ψµ
BA(u, v, 1) = (αµBAu, β

µ
BAv, 1) + h.o.t

Ψν
BA(u, 1, w) = (ανBAu, 1, β

ν
BAw) + h.o.t

where the α’s and β’s are real coefficients.

• Study of the µ-cycle. We consider trajectories that pass through RµA and then travelonce through
a tubular neighborhood of the µ-cycle before returning to RµA. The behaviour of these trajectories
is modelled by the return map Ψµ and we find to leading order:

Ψµ(u, v, 1) = (c1uρµ , c2vu−σµ , 1) with 0 ≤ v < c3u
σµ

The domain of the return map is then defined as DµA = {(u, v) ∈ RµA | 0 ≤ v < c3u
σµ}. A sufficient

condition for DµA to be mapped into itself is σµ < 0. This follows from the observation that the
image under Ψµ of the bounding surface defined by the equation v = c3u

σµ is the boundary defined
by U = c4, where c4 > 0 is some constant. Finally, if ρµ > 1 and σµ < 0 then Ψµ is a contraction
on DµA.

• Study of the ν-cycle. We consider trajectories that pass through RνA and then travelonce through
a tubular neighborhood of the ν-cycle before returning to RνA. The behaviour of these trajectories
is modelled by the return map Ψν and we find to leading order:

Ψν(u, 1, w) = (c4uρν , 1, c5wu−σν , 1) with 0 ≤ w < c6u
σν

The study is analogous to that for the µ-cycle. If ρν > 1 and σν < 0 then the ν-cycle attracts all
trajectories that cross RνA sufficiently close to the origin.

The main difference between the results obtained for the µ-cycle and the ν-cycle comes from the
condition (15). If ρν > 1 and σν < 0 the ν-cycle attracts almost all trajectories that lie near the
heteroclinic connection from A to B, while, if ρµ > 1 and σµ < 0 the µ-cycle attracts just trajectories in
a cuspoidal region emananting from the heteroclinic connection.

It is not possible that both σµ and σν be simultaneously positive:

σµ = − νB
µB

σν

Note that if σµ > 0 when ρν , ρµ > 1, then almost all trajectories near the µ-cycle eventually leave it
in the direction of the ν-cycle. However, since σν < 0 in this case, the trajectories that switch to the
ν-cycle can not at a later time switch back to the µ-cycle.
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5.4 Computation of the stability conditions

In principle the stability conditions stated in Theorem 6 are easy to compute. In our case however there
is a difficulty which comes from the fact that for the system (14), which is truncated at order 5, the
expanding and contracting eigenvalues along a given connection have exactly the same magnitude (see
Table 13). It is interesting to observe that this follows from a property of reversibility of the vector field
on the invariant sphere, as the next lemma shows (proof of the lemma is straightforward).

Lemma 12. Let s be the transformation in R4 defined by s(z1, z̄1, z2, z̄2) = (z2, z̄2, z1, z̄1). Let us rewrite
X = (z1, z̄1, z2, z̄2) and Equation (14) in the form

Ẋ = (λ− ‖X‖2 + b‖X‖4)X + Ec,d(X) with Ec,d(X) = cE5,3(X) + dE5,4(X) (16)

Then Ec,d(sX) = −sEc,d(X) for all X. Moreover, Fix(C̃ ′2κ) = sFix(C̃2κ).

Remark 5. We recall that E5,3 (resp. E5,4) is the quintic equivariant map in factor of c (resp. d) in
Equations (12) and (13) of Theorem 4, see Appendix C.2 for the computations.

Now let’s let X = rU , U ∈ S3. The system (14) decouples in a radial part and tangential part:

ṙ = (λ− r2 + br4)r + r5〈Ec,d(U), U〉 (17)

U̇ = r4[Ec,d(U)− 〈Ec,d(U), U〉U ] = r4H(U) (18)

By lemma 12 the tangential part is a reversible vector field. Let X0 = r0U0 be an equilibrium on
Fix(C̃2κ) and X ′0 = sX0 = r0sU0. Then X ′0 is also an equilibrium, moreover DH(sU0) = −sDH(U0)s,
which implies that the transverse eigenvalues at X ′0 are exactly opposite to the tranverse eigenvalues at
X0. This property is conserved by projection of the system on the orbit space S3/G0.

It is therefore necessary to consider the 7th order expansion of the system in order to remove this
degeneracy. There are 12 equivariant terms of order 7 (see Appendix B). We have checked that some of
these terms are not reversible, for example the following vector field which we note E7:

ż1 = z̄7
1 + 7z̄3

1 z̄
4
2

ż2 = z̄7
2 + 7z̄3

2 z̄
4
1

Numerical simulations have been carried out with Matlab by introducing the term E7 in the system:

Ẋ = (λ− ‖X‖2 + b‖X‖4)X + Ec,d(X) + eE7(X) (19)

We give in Table 14, to leading order, the transverse eigenvalues of bifurcated branches in R4 depend-
ing upon the parameter e of equation 19. These transverse eigenvalues allow us to compute the stability
conditions of Theorem 6. For the numerical simulations, the coefficient values are λ = 0.1, a = 0, b = 0.6,
c = 1.2 d = 0.55. We set e = −1 and we obtain:

λA = 0.0011 νA = 0.0745 µA = 0.0266

λB = 0.0023 νB = 0.0585 µB = 0.0215

which implies that:

ρµ = 2.6336 > 1 σµ = −1.8221 < 0 ρν = 2.7060 > 1 σν = 0.6686 > 0

Then we are in the second case of Theorem 6. Figure 16 shows one hour runs with an initial condition
close to an equilibrium with isotropy C̃2κ. For the value e = −1 the solution converges to a heteroclinic
cycle of type µ-cycle, while for e = 3 none of the heteroclinic cycles are stable.

6 Conclusion

In this paper we have completed the bifurcation analysis of periodic patterns, introduced in [15], for neural
field equations describing the state of a system defined on the Poincaré disk D when these equations are
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Isotropy type C̃2κ C̃ ′2κ
t1(e) 128(3 + 2

√
2)(b− d+ (2 +

√
2)ex2)x4 −128(3 + 2

√
2)(b− d− (2 +

√
2)ex2)x4

t2(e) −32(3 + 2
√

2)(b+ c+ 9d+ 24(2 +
√

2)ex2)x4 32(3 + 2
√

2)(b+ c+ 9d− 24(2 +
√

2)ex2)x4

t3(e) 32(3 + 2
√

2)(b+ d− 3c− 10(2 +
√

2)ex2)x4 −32(3 + 2
√

2)(b+ d− 3c+ 10(2 +
√

2)ex2)x4

Table 14: Transverse eigenvalues (leading order) of bifurcated branches in R4 depending upon the pa-
rameter e of Equation 19.

(a) e = −1. (b) e = 3.

Figure 16: Projection on the plane (x1, y1) of a trajectory of (19) with initial condition near an equilib-
rium of type C̃2κ. Coefficient values in both cases are λ = 0.1, a = 0, b = 0.6, c = 1.2 d = 0.55.

further assumed invariant under the action of the lattice group Γ of U(1, 1) whose fundamental domain is
the regular octagon. We have computed the bifurcation diagrams for the three irreducible representations
of dimension four, henceforth completing the classification started in [15] (bifurcation diagrams for the
representations of dimension less than four have been obtained in [15] and correspond to already well
known goup actions). For two of the four-dimensional irreducible representations, we have proved that,
generically, there always exist stable equilibria with a given isotropy type. For the third representation
we have presented bifurcation diagrams in fixed-point planes and also shown that: (i) bifurcation of
submaximal solutions can be generic, (ii) bifurcation of a heteroclinic network connecting the equilibria
with maximal isotropy type can also occur generically. In the last section, we have presented a stability
analysis of this heteroclinic network.

The existence of the heteroclinic network raises many interesting questions from the neuroscience
point of view. Metastability in neuronal network has been observed in the brains of anaesthetized
animals where the cortex seems to show intrinsic pattern of activity that evolve over time by switching
among a specific set of states [30, 39, 21]. It has also been shown that metastable states play a key role
in the execution of cognitive functions. Indeed, experimental and modeling studies suggest that most
of these functions are the result of transient activity of large-scale brain networks in the presence of
noise [37, 38]. In our case, the heteroclinic behavior of our system could be interpreted as an ongoing
spontaneous activity in one hypercolumn of texture in the absence of sensory stimulus ( Iext = 0 in
Equation (2)) which wanders among multiple states: each state encodes a single or several stimulus
features. Our predictions should be tested experimentally. Another exciting question comes from the
direct spatialization of our model. The primary visual cortex can be partitioned into fundamental
domains or hypercolumns of a lattice describing the distribution of singularities or pinwheels in the
orientation preference map. Bressloff and Cowan have introduced several models which take account
of this functional architecture of the cortex. Their approach has led to an elegant interpretation for
the occurence geometric hallucinations [10]. In our case, it would be interesting to see what kind of
spatio-temporal patterns the heteroclinic behavior seen at the level of one hypercolumn could lead to in
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the spatialized model. This will be the subject of future work.
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APPENDIX

A Presentation with biquaternions

It is natural to identify the finite group G to a group of 4× 4 real matrices as dim(χ12) = 4. Lauterbach
and Matthews [36] have successfuly introduced biquaternions to study equivariant dynamical systems
with SO(4) symmetry. Here we also use biquaterions to give a geometric way to describe the group G.
We denote by Q the set of unit quaternions. The set of pairs of such quaternions forms a group, called
the spinor group and denoted by Spin4. We get a map [17]:

Spin4 → SO(4) : (l, r) 7→ [l, r] = {x 7→ l̄xr}

where a vector x ∈ R4 is identified with a quaternion x ∈ H via

x =


x1

x2

x3

x4

⇔ x = ex1 + ix2 + jx3 + kx4

The two following propositions hold.

Proposition 2. For the irreductible representations χ12, χ13, the group G admits the following presen-
tation with biquaternions:

G = 〈[j, e] ,

[√
2

2
(j + k), j

]
, [e, i] , [i, e] ,

[
1
2

(−e+ i+ j + k),
1
2

(
√

3e+ i)
]
〉

It is also possible to identify the generators of G in matrix form:

κ =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 , ρ =
√

2
2


0 0 −1 −1
0 0 1 −1
−1 −1 0 0
1 −1 0 0

 , σ =
√

2
4


1

√
3 −1

√
3√

3 −1 −
√

3 −1
−1 −

√
3 −1

√
3√

3 −1
√

3 1


(20)

Proof. The computer algebra program GAP gives the presentation of G as G = 〈m1,m2,m3,m4,m5〉
with:

m1 = [j, e] ,m2 =

[√
2

2
(j + k), j

]
,m3 = [e, i] ,m4 = [i, e] ,m5 =

[
1
2

(−e+ i+ j + k),
1
2

(
√

3e+ i)
]

We express each endomorphisms (ml)l=1...5 of G in the canonical basis B = (e, i, j, k) and form the
corresponding matrices Ml =MatB,B(ml) for l = 1 . . . 5. A direct calculus shows that trace(M5) = −

√
3

and M5 is of order 12, such that we can write with our notations that (up to a conjugate) M5 = −εκ.
Matrices M1,M3,M4 are of order 4 and M2 of order 2. We set κ = −M1M3, such that ε = M5M1M3. We
recognize that M2 = κ′ = ρκ then ρ = −M2M1M3 and we verify that ρ is of order 8. A straightforward
calculus shows that ρ2 = −M4 and we finally note σ = ρ−1ε−1. The expression of the matrices of
generators of G are given in Eq. (20).

Proposition 3. For the irreductible representation χ11, the group G admits the following presentation
with biquaternions:

G = 〈
[

1
2

(−e+ i+ j + k), e
]
, [e, j] , [e,−e] , [i, e] ,

[√
2

2
(j + k), i

]
〉

It is also possible to identify the generators of G in matrix form:

κ =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , ρ =
√

2
2


0 1 1 0
−1 0 0 −1
1 0 0 −1
0 −1 1 0

 , σ =
√

2
2


0 0 −1 1
0 0 1 1
−1 1 0 0
1 1 0 0

 (21)

Proof. The proof is exactely the same as the previous one.
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B Molien series

In [12] we find theorems which allow to compute the vector space dimensions of the space of equivariant
and invariant polynomial maps for a group action of a given degree. We recall that the set of G-equivariant
polynomial maps forms a module M over the ring RG of G-invariant polynomial maps. We denote by
rd = dim

−→
P d(G) the dimension of the polynomial equivariants of degree d.

Theorem 7 (Equivariant Molien’s theorem). Consider the formal power series

ΦρM(z) =
∞∑
d=0

rdz
d

It has a representation

ΦρM(z) =
∫
G

Tr(g)
det(1− zρ(g))

dg

In our case, G is a finite group, and we can directly apply this theorem together with table 3 to find:

• for χ12:

Φχ12
M (z) =

1
96

[
4

(1− z)4
− 4

(1 + z)4
+

8
1− z − z3 + z4

− 8
1 + z + z3 + z4

+
8
√

3
1− z

√
3 + 2z2 − z3

√
3 + z4

− 8
√

3
1 + z

√
3 + 2z2 + z3

√
3 + z4

]

and Φχ12
M (z) = z + 2z3 + 5z5 + 10z7 +O(z7).

• for χ11:

Φχ11
M (z) =

1
96

[
4

(1− z)4
− 4

(1 + z)4
− 16

(1 + z + z2)2
+

16
(1− z + z2)2

]
and Φχ11

M (z) = z + z3 + 4z5 + 12z7 +O(z7).

An analog of the Equivariant Molien’s theorem holds for invariant polynomial mapsa dn we denote
cd = dimRd the dimension of invariants polynomials of degree d.

Theorem 8 (Invariant Molien’s theorem). Consider the formal power series

P ρRG (z) =
∞∑
d=0

cdz
d

It has a representation

P ρRG (z) =
∫
G

1
det(1− zρ(g))

dg

Applying this theorem together with tables 1 and 2 yields

• for χ12:
Pχ12
RG (z) = z2 + 2z4 + 3z6 +O(z6)

• for χ11:
Pχ11
RG (z) = z2 + z4 + 3z6 +O(z6)

These results are summerized in the following table:
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Character e3 i4 e5 i6 e7
χ11 1 1 4 3 12
χ12 2 2 5 3 10
χ13 2 2 5 3 10

Table 15: The information on the number of invariant/equivariant polynomial maps for the irreductible
representations χ11, χ12 and χ13. Here e stands for equivariant, i for invariant and the number behind
these letters for the degree of the polynomial map. The number in the table gives the dimension of the
space of equivariant/invariant polynomial maps in the given degrees.

C Computation of low-order equivariants

C.1 Computational part of the proof of theorem 2

Proposition 4. For the irreductible representation χ12, the two cubic equivariant maps are:

E1(z) = z
(
|z1|2 + |z2|2

)
and E2(z) =


√

3
(
3z2

1 + z̄2
2

)
z̄1 − i

(
z2

2 + 3z̄2
1

)
z2√

3
(
3z̄2

1 + z2
2

)
z1 + i

(
z̄2

2 + 3z2
1

)
z̄2√

3
(
3z2

2 + z̄2
1

)
z̄2 + i

(
z2

1 + 3z̄2
2

)
z1√

3
(
3z̄2

2 + z2
1

)
z2 − i

(
z̄2

1 + 3z2
2

)
z̄1

 (22)

Proof. Let E denote a homogeneous equivariant mapping. We want to deduce the restrictions placed on
the form of E by the symmetry group G. We first choose appropriate coordinates. Thanks to proposition
2 of appendix A we have a presentation of G with 4 × 4 real matrices with generators ρ, σ, κ given by
equation Eq 20. The eigenvalues of ρ are exp(± iπ

4 ), exp(± 3iπ
4 ) (where i2 = −1). And we have the

following decomposition:

ρP = P−1ρP =


exp( iπ

4 ) 0 0 0
0 exp(− iπ

4 ) 0 0
0 0 exp(3iπ

4 ) 0
0 0 0 exp(− 3iπ

4 )

 with P =


i −i i −i
−1 −1 1 1
−i i i −i
1 1 1 1


Then we can express in this basis the other generators:

σP = P−1σP =
√

2
4


1 i

√
3 1 −i

√
3

−i
√

3 1 i
√

3 1
1 −i

√
3 −1 −i

√
3

i
√

3 1 i
√

3 −1

 and κP = P−1κP =


0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0


We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigenvectors of ρ i.e the

columns of P . Write E in components as (f1, f̄1, f2, f̄2)T. We begin by describing the action of ρP on
the equivariant map E.

For all z, the action is given by ρP · z = (e
iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2) and the equivariance yields{

e
iπ
4 f1(z1, z̄1, z2, z̄2) = f1(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

e
i3π
4 f2(z1, z̄1, z2, z̄2) = f2(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

(23)

We are looking for cubic equivariants of the form αzk11 z̄l11 z
k2
2 z̄l22 satisfying the relation k1 +k2 +l1 +l2 = 3.

So with the first equation of (23) we simply get

αe
iπ
4 zk11 z̄l11 z

k2
2 z̄l22 = αei

π
4 [(k1−l1)+3(k2−l2)]zk11 z̄l11 z

k2
2 z̄l22

In order that this is equivariant under the action of ρP we have to impose:

(k1 − l1 − 1) + 3(k2 − l2) = 8n with n ∈ Z
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which gives 5 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
2
1 z̄1 + a2z1z2z̄2 + a3z

3
2 + a4z̄

2
1z2 + a5z̄1z̄

2
2

with (ai)i=1...5 ∈ C5. In the same fashion the second equation of (23) gives 5 elements in f2.

f2(z1, z̄1, z2, z̄2) = b1z
2
2 z̄2 + b2z1z̄1z2 + b3z

3
1 + b4z1z̄

2
2 + b5z̄

2
1 z̄2

with (bi)i=1...5 ∈ C5.
The action of κP on z is given by κP · z = (iz̄1,−iz1, iz̄2,−iz2). It is straightforward to see that this

action imposes that a1, a2, a5, b1, b2, b5 are real and that a3, a4, b3, b4 are imaginary numbers. Then we
can rewrite f1 and f2 as:

f1(z1, z̄1, z2, z̄2) = α1z
2
1 z̄1 + α2z1z2z̄2 + iα3z

3
2 + iα4z̄

2
1z2 + α5z̄1z̄

2
2

f2(z1, z̄1, z2, z̄2) = β1z
2
2 z̄2 + β2z1z̄1z2 + iβ3z

3
1 + iβ4z1z̄

2
2 + β5z̄

2
1 z̄2

with (αi, βi)i=1...5 ∈ (R× R)5.
Action of σP :

The action of σP on z is given by

σP · z =


√

2
4

(
z1 + z2 + i

√
3(z̄1 − z̄2)

)
√

2
4

(
z̄1 + z̄2 − i

√
3(z1 − z2)

)
√

2
4

(
z1 − z2 − i

√
3(z̄1 + z̄2)

)
√

2
4

(
z̄1 − z̄2 + i

√
3(z1 + z2)

)


T

and we find:

f1(z1, z̄1, z2, z̄2) = az1(|z1|2 + |z2|2) + b
(

3
√

3z1|z1|2 − iz3
2 − 3iz̄2

1z2 +
√

3z̄1z̄
2
2

)
f2(z1, z̄1, z2, z̄2) = az2(|z1|2 + |z2|2) + b

(
3
√

3z2|z2|2 + iz3
1 + 3iz1z̄

2
2 +
√

3z̄2
1 z̄2

)
with (a, b) ∈ R2.

C.2 Computational part of the proof of theorem 4

Proposition 5. For the irreductible representation χ11, the four quintic equivariant maps are:

E5,1(z) = z‖z‖4, E5,2 =


z4

1 z̄2 + 4z3
2 |z1|2 − z3

2 |z2|2
z̄4

1z2 + 4z̄3
2 |z1|2 − z̄3

2 |z2|2
−z̄1z

4
2 − 4z3

1 |z2|2 + z3
1 |z1|2

−z1z̄
4
2 − 4z̄3

1 |z2|2 + z̄3
1 |z1|2



E5,3 =


3z̄2

1z2|z2|2 − z2
1 z̄

3
2 − 2z̄2

1 |z1|2z2

3z2
1 z̄2|z2|2 − z̄2

1z
3
2 − 2z2

1 |z1|2z̄2

−3z1z̄
2
2 |z1|2 + z̄3

1z
2
2 + 2z1z̄

2
2 |z2|2

−3z̄1z
2
2 |z1|2 + z3

1 z̄
2
2 + 2z̄1z

2
2 |z2|2

 , E5,4 =


−5z̄4

1 z̄2 + z̄5
2

−5z4
1z2 + z5

2

5z̄1z̄
4
2 − z̄5

1

5z1z
4
2 − z5

1


Proof. Let E denote a homageneous cubic equivariant mapping. Thanks to proposition 3 of appendix
A the generators of G are given in matrix form in equation (21). The eigenvalues of ρ are still
exp(± iπ

4 ), exp(± 3iπ
4 ). And we have the following decomposition:

ρP = P−1ρP =


exp( iπ

4 ) 0 0 0
0 exp(− iπ

4 ) 0 0
0 0 exp(3iπ

4 ) 0
0 0 0 exp(− 3iπ

4 )

 with P =


i −i −i i
−1 −1 1 1
i −i i −i
1 1 1 1
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Then we can express in this basis the other generators:

σP = P−1σP =
√

2
2


−1 0 −i 0
0 −1 0 i
i 0 1 0
0 −i 0 1

 and κP = P−1κP =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0


We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigenvectors of ρ i.e the

columns of P . Write E in components as (f1, f̄1, f2, f̄2)T. The action of ρP on a quintic equivariant map
of the form αzk11 z̄l11 z

k2
2 z̄l22 with the relation k1 +k2 + l1 + l2 = 5 implies that (k1− l1−1)+3(k2− l2) = 8n

with n ∈ Z, which gives 14 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
3
1 z̄

2
1 + a2z1z

2
2 z̄

2
2 + a3z

2
1 z̄1z2z̄2 + a4z

4
1 z̄2 + a5z̄

2
1z

2
2 z̄2 + a6z1z̄1z

3
2 + a7z

3
1z

2
2

+a8z
4
2 z̄2 + a9z

2
1 z̄

3
2 + a10z1z̄

2
1 z̄

2
2 + a11z̄1z2z̄

3
2 + a12z̄

4
1 z̄2 + a13z̄

5
2 + a14z1z̄

3
1z2

And we also obtain 14 elements in f2 with the same method:

f2(z1, z̄1, z2, z̄2) = b1z
2
1 z̄

2
1z2 + b2z1z̄1z

2
2 z̄2 + b3z

3
2 z̄

2
2 + b4z

4
1 z̄1 + b5z

3
1z2z̄2 + b6z̄

3
1z

2
2 + b7z

2
1z

3
2

+b8z̄1z
4
2 + b9z1z2z̄

3
2 + b10z

2
1 z̄1z̄

2
2 + b11z1z̄

3
1 z̄2 + b12z̄

2
1z2z̄

2
2 + b13z̄

5
1 + b14z̄1z̄

4
2

where (aj)j=1...14 ∈ C14 and (bj)j=1...14 ∈ C14.
The action of κP implies that the coefficients (aj , bj)j=1...14 are real. The action of σP is σP · z =√

2
2 (−z1 − iz2,−z̄1 + iz̄2, iz1 + z2,−iz̄1 + z̄2) and we obtain:

f1(z1, z̄1, z2, z̄2) = a(z1|z1|4 + z1|z2|4 + 2z1|z1|2|z2|2) + b(z4
1 z̄2 + 4z3

2 |z1|2 − z3
2 |z2|2)

+c(3z̄2
1z2|z2|2 − z2

1 z̄
3
2 − 2z̄2

1 |z1|2z2) + d(−5z̄4
1 z̄2 + z̄5

2)

f2(z1, z̄1, z2, z̄2) = a(z2|z2|4 + z2|z1|4 + 2z2|z1|2|z2|2) + b(−z̄1z
4
2 − 4z3

1 |z2|2 + z3
1 |z1|2)

+c(−3z1z̄
2
2 |z1|2 + z̄3

1z
2
2 + 2z1z̄

2
2 |z2|2) + d(5z̄1z̄

4
2 − z̄5

1)

with (a, b, c, d) ∈ R4. Thus, we find 4 equivariant maps which is in agreement with computation of the
Molien serie of appendix B.

D Fixed-point subspaces

D.1 Proof of Lemma 7

To complete the proof of Lemma 7 we give the matrix of σ, σ̃, ε, κ, κ′ and κ′′ in the basis associated to
coordinates (z1, z̄1, z2, z̄2).

σ =
√

2
4


1 i

√
3 1 −i

√
3

−i
√

3 1 i
√

3 1
1 −i

√
3 −1 −i

√
3

i
√

3 1 i
√

3 −1

 , σ̃ =
√

2
4


1 −i

√
3 −1 −i

√
3

i
√

3 1 i
√

3 −1
−1 −i

√
3 −1 i

√
3

i
√

3 −1 −i
√

3 −1



ε =
1
4


1− i

√
3(i− 1) −1− i

√
3(1 + i)

−
√

3(1 + i) 1 + i
√

3(1− i) i− 1
1− i

√
3(1− i) 1 + i

√
3(1 + i)√

3(1 + i) 1 + i
√

3(1− i) 1− i

 , κ =


0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0



κ′ =
√

2
2


0 i− 1 0 0

−1− i 0 0 0
0 0 0 −1− i
0 0 −1 + i 0

 , κ′′ =
√

2
4


√

3 i −
√

3 i
−i

√
3 −i −

√
3

−
√

3 i −
√

3 −i
−i −

√
3 i −

√
3
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D.2 Proof of Lemma 10

To complete the proof of Lemma 10 we give the matrix of σ, κ, κ′ and κ′′ in the basis associated to
coordinates (z1, z̄1, z2, z̄2).

σ =
√

2
2


−1 0 −i 0
0 −1 0 i
i 0 1 0
0 −i 0 1

 , κ =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0



κ′ =
√

2
2


0 i− 1 0 0

−1− i 0 0 0
0 0 0 1 + i
0 0 1− i 0

 , κ′′ =
√

2
2


0 −i 0 −1
i 0 −1 0
0 −1 0 −i
−1 0 i 0
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