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Abstract

We establish center manifold theorems that allow one to study the bifurcation of small solutions from

a trivial state in systems of functional equations posed on the real line. The class of equations includes

most importantly nonlinear equations with nonlocal coupling through convolution operators as they arise

in the description of spatially extended dynamics in neuroscience. These systems possess a natural spatial

translation symmetry but local existence or uniqueness theorems for a spatial evolution associated with

this spatial shift or even a well motivated choice of phase space for the induced dynamics do not seem

to be available, due to the infinite range forward- and backward-coupling through nonlocal convolution

operators. We perform a reduction relying entirely on functional analytic methods. Despite the nonlocal

nature of the problem, we do recover a local differential equation describing the dynamics on the set

of small bounded solutions, exploiting that the translation invariance of the original problem induces

a flow action on the center manifold. We apply our reduction procedure to problems in mathematical

neuroscience, illustrating in particular the new type of algebra necessary for the computation of Taylor

jets of reduced vector fields.
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1 Introduction

Center-manifold reductions have become a central tool to the analysis of dynamical systems. The very

first results on center manifolds go back to the pioneering works of Pliss [21] and Kelley [16] in the finite-

dimensional setting. In the simplest context, one studies differential equations in the vicinity of a non-

hyperbolic equilibrium,

du

dt
= f(u) ∈ Rn, f(0) = 0, spec(f ′(0)) ∩ iR 6= ∅.

The basic reduction establishes that the set of small bounded solutions u(t), t ∈ R, sup |u(t)| < δ � 1, is

pointwise contained in a manifold, that is, u(t) ∈ W c for all t. This manifold is a subset of phase space,

W c ⊂ Rn, contains the origin, 0 ∈W c, and is tangent to Ec, the generalized eigenspace associated with purely

imaginary eigenvalues of f ′(0). As a consequence, the flow on W c can be projected onto Ec, to yield a reduced

vector field. The reduction to this lower-dimensional ODE then allows one to describe solutions qualitatively,

even explicitly in some cases. Of course, the method applies to higher-order differential equation, which one
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simply writes as first-order equation in a canonical fashion. Extensions to infinite-dimensional dynamical

systems were pursued soon after; see for instance [12].

Starting with the work of Kirchgässner [17], such reductions have been extended to systems with u ∈ X , a

Banach space, where the initial value problem is not well-posed: For most initial conditions u0, there does

not exist a local solution u(t), 0 ≤ t < δ, say. Local solutions do exist however for all initial conditions on a

finite-dimensional center-manifold, and much of the theory is quite analogous to the finite-dimensional case;

see [25]. In these theories, one can typically split the phase space in infinite-dimensional linear spaces where

solutions to the linearized equation either decay or grow, and a finite-dimensional center subspace. Such

splittings are known as Wiener-Hopf factorizations and can be difficult to achieve in the case of forward-

backward delay equations, where nevertheless center-manifold reductions are available [13].

Our point of view here is slightly more abstract, shedding the concept of a phase space in favor of a focus on

small bounded trajectories. We perform a purely functional analytic reduction, based on Fredholm theory

[7] in the space of bounded trajectories (rather than the phase space). We parameterize the set of bounded

solutions by the set of (weakly) bounded solutions to the linear equation, which is a finite-dimensional vector

space, amenable to a variety of parameterizations. Only after this reduction, we derive a differential equation

on this finite-dimensional vector space, whose solutions, when lifted to the set of bounded solutions to the

nonlinear problem describe all small bounded solutions.

To be more precise, we focus on nonlocal equations of the form

u+K ∗ u+ F(u) = 0, (1.1)

for u : R→ Rn, n ≥ 1. Here, K ∗ u stands for matrix convolution on R,

(K ∗ u(x))i =

n∑
j=1

∫
R
Ki,j(x− y)uj(y)dy, 1 ≤ i ≤ n,

and F(u) encodes nonlinear terms, possibly also involving nonlocal interactions.

A prototypical example arises when studying stationary or traveling-wave solutions to neural field equations,

which are used in mathematical neuroscience to model cortical activity. A typical model is

du

dt
= −u+W ∗ S(u), (1.2)

where u(t, x) ∈ R represents a locally averaged membrane potential, the nonlinearity S denotes a firing rate

function and the kernel W encodes the connectivity, i.e. how neurons located at position x interact with

neurons located at position y across the cortex. Stationary solutions of (1.2) are thought to be associated

to short term memory and to encode our ability to remember given tasks over a period of milliseconds,

providing motivation for extensive studies of such solutions over the past two decades; see for instance [6]

for a more thorough presentation of the problem and related references.

Beyond techniques based on comparison principles, which apply to some extent when, say, W > 0, a widely

used method to study the stationary problem

0 = −u+W ∗ S(u), (1.3)

focuses on kernels W with rational Fourier transform,

Ŵ(i`) =

∫
R
W(x)e−i`xdx =

Q(`2)

P(`2)
,

for some polynomials P and Q with deg Q < deg P; see [20]. There appears to be little motivation for such

special kernels other than the obvious technical advantage that the nonlocal equation can be written as a

local differential equation,

0 = −Q(−∂xx)u+ P(−∂xx)S(u), (1.4)
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where now dynamical systems techniques, in particular center manifold reduction, are applicable. On the

other hand, W > 0 restricts to the very specific case of excitatory connections, and scalar (or, say, coopera-

tive) dynamics.

While our results are motivated to some extent by the desire to eliminate the unnecessary restriction to

rational Fourier transforms, we believe that there is more generally valuable insight in the results presented

here. For instance, many problems with nonlocal, pseudo-differential operators can be cast in the form (1.3),

after possibly preconditioning the equation with the resolvent of a leading-order part.

Summary of main results. We now state our main result in a somewhat informal way. We study

T u+ F(u) = 0, T u = u+K ∗ u, (1.5)

• Exponential Localization: the interaction kernel K and its derivative K′ are exponentially localized (see

Section 2.1, Hypothesis (H1));

• Smoothness and Invariance: the nonlinear operator F is assumed to be sufficiently smooth and trans-

lation invariant F(u(·+ξ))(·) = F(u(·))(·+ξ), with F(0) = 0, DuF(0) = 0 (see Section 2.1 Hypothesis

(H2)).

Using Fourier transform, one can readily find the finite-dimensional space ker T of solutions to T u = 0 with

at most algebraic growth and construct a bounded projection Q onto this set, in a space of functions allowing

for slow exponential growth.

Theorem 1. Assume that the interaction kernel K and the nonlinear operator F satisfy Hypotheses (H1)-

(H2). Then, there exists δ > 0 and a map Ψ ∈ C k(ker T , kerQ) with Ψ(0) = 0, DuΨ(0) = 0, such that the

manifold

M0 := {u0 + Ψ(u0) | u0 ∈ ker T }

contains the set of all bounded solutions of (1.5) with supx∈R |u(x)| ≤ δ.

We refer toM0 as a (global) center manifold for (1.5). Note however that points onM0 consist of trajectories,

that is, of solutions u(x), x ∈ R, rather than of initial values to solutions, in the more common view of center

manifolds. Also note that, according to the theorem, M0 only contains the set of bounded solutions, not

all elements of M0 are necessarily bounded solutions. As is well known from the classical center manifold

theorem, the set of bounded solutions may well be trivial, consisting of the point u ≡ 0, only, rather than

being diffeomorphic to a finite-dimensional ball. It is therefore necessary to study the elements of M0 in

more detail.

We will see in the proof that, as is common in the construction of center manifolds, we modify the nonlinearity

F to Fε outside of a small ε-neighborhood, supx |u(x)| ≤ ε, in the construction of M0. Therefore, all

elements of M0 are in fact solutions, with possibly mild exponential growth, and to the modified equation

T u+Fε(u) = 0. The set of solutions to this equation is translation invariant and parameterized over ker T .

The action of the shift on this set of solutions can therefore be pulled back to ker T , where it induces a flow

with associated vector field as stated in the following result; see Section 3.3 and the diagrams there for more

details on this idea, and our application in Section 4.1 for a constructive approach, computing Taylor jets.

Corollary 1. Under the assumptions (H1)-(H2) of Theorem 1, any element u = u0 + Ψ(u0) of M0, corre-

sponds to a unique solution of a differential equation

du0

dx
= f(u0) :=

d

dx
Q (u0(·+ x) + Ψ(u0(·+ x))) |x=0, (1.6)

on the linear vector space u0 ∈ ker T . The Taylor jet of f can be computed from properties of T and F ,

solving linear equations, only.
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Note that the differentiation in (1.6) does not refer to differentiation of u0, which of course is a function of

x when viewed as an element of the kernel. We rather view ker T as an abstract vector space on which we

study the differential equation (1.6). Note also that we do not claim that every solution to (1.6) is a solution

to (1.5) — this is true only for small solutions.

We will explain below how to actually compute the Taylor jet of f . Having access to (1.6) as a means of

describing elements ofM0, the abstract reduction Theorem 1 becomes very valuable: one simply studies the

differential equation (1.6), or, to start with, the equation obtained from the leading order Taylor approxi-

mation, using traditional dynamical systems methods. Small bounded solutions obtained in this fashion will

then correspond to solutions of the original nonlocal problem (1.5).

Outline. We state a precise version of our main theorem on the existence of a center manifold for systems

of nonlocal equations, mention extensions, and provide basic tools necessary for the application in Section

2. Proofs are given in Section 3, applications to neural field equations in Section 4.

2 Existence of center manifolds — main result and extensions

We introduce the functional analytic framework, and state the main hypotheses on linear and nonlinear parts

of the equation in Section 2.1. We then state the main theorem of this paper, Section 2.2, and extensions,

Section 2.3. Sections 2.4–2.6 provide basic tools that allow one to apply the main result, showing how to

verify assumptions on the nonlinearity, Section 2.4, how to construct projections Q, Section 2.5, and how to

compute Taylor jets of the reduced vector field, Section 2.6.

2.1 Functional-analytic setup and main assumptions

We introduce function spaces and state our main hypotheses, (H1) and (H2).

Function spaces. For η ∈ R, 1 ≤ p ≤ ∞, we define the weighted space Lpη(R,Rn), or simply Lpη, when

n = 1, through

Lpη(R,Rn) := {u ∈ Lploc(R,Rn) : ωηu ∈ Lp (R,Rn)} ,

where ωη is a C∞ function defined as

ωη(x) =

{
eηx for x ≥ 1,

e−ηx for x ≤ −1
, ωη > 0 on [−1, 1].

We also use the standard Sobolev spaces W k,p(R,Rn), or simply W k,p when n = 1, for k ≥ 0 and 1 ≤ p ≤ ∞:

W k,p(R,Rn) := {u ∈ Lp (R,Rn) : ∂αx u ∈ Lp (R,Rn) , 1 ≤ α ≤ k} ,

with norm

‖u‖Wk,p(R,Rn) =


(∑

α≤k ‖∂αx u‖
p
Lp(R,Rn)

) 1
p

, 1 ≤ p <∞
max
α≤k
‖∂αx u‖L∞(R,Rn), p =∞.

We denote by Hk(R,Rn) the Sobolev space W k,2(R,Rn) and use the weighted spaces W k,p
η (R,Rn) and

Hk
η (R,Rn) the weighted Sobolev spaces defined through

W k,p
η (R,Rn) := {u ∈ Lploc (R,Rn) : ωη∂

α
x u ∈ Lp (R,Rn) , 0 ≤ α ≤ k} ,
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with norm

‖u‖Wk,p
η (R,Rn) =


(∑

α≤k ‖ωη∂αx u‖
p
Lp(R,Rn)

) 1
p

, 1 ≤ p <∞
max
α≤k
‖ωη∂αx u‖L∞(R,Rn), p =∞,

and Hk
η (R,Rn) := W k,2

η (R,Rn).

Assumptions on the linear part. We require that the convolution kernel is exponentially localized and

smooth in the following sense.

Hypothesis (H1) We assume that there exists η0 > 0 such that Ki,j ∈W 1,1
η0 (R) for all 1 ≤ i, j ≤ n.

We define the complex Fourier transform K̂(ν) of K as

K̂(ν) =

∫
R
K(x)e−νxdx, (2.1)

for all ν ∈ C where the above integral is well-defined. Note that because each component of the matrix

kernel K belongs to L1
η0 , the Fourier transform K̂(ν) is analytic in the strip Sη0 := {ν ∈ C | |<(ν)| < η0}.

Pure exponential solutions of the linearized equation can be detected as roots of the characteristic equation

d(ν) := det
(
In + K̂(ν)

)
= 0, (2.2)

where the left-hand side d(ν) is an analytic function in the strip Sη0 and has isolated roots on the imaginary

axis, when counted with multiplicity. Moreover, sinceK′ ∈ L1
η0 (component-wise), we have |K̂(i`+η)| −→

`→±∞
0,

for |η| < η0, such that the number of roots of d on the imaginary axis, counted with multiplicity, is finite.

Throughout, we will assume that the number of roots is not zero, in which case our results would be trivial.

We consider T as a bounded operator on H1
−η(R,Rn), 0 < η < η0, slightly abusing notation and not making

the dependence of T on η explicit. With the natural bounded inclusion ιη,η
′
, η < η′, one finds T ιη,η′ = ιη,η

′T .

Now, by finiteness of the number of roots of d, we can choose η1 > 0, small, such that d(ν) does not vanish

in 0 < |=ν| ≤ η1. We will then find that the kernel E0 of T is independent of η for 0 < η < η1 in the sense

that ιη,η
′

provides isomorphisms between kernels for η and η′, 0 < η < η′ < η1. The dimension of E0 is

given by the sum of multiplicities of roots ν ∈ iR of d(ν), with a basis of the form p(x)eνx, p a vector-valued

polynomial of degree at most m− 1 when ν is a root of d of order m; see Lemma 3.2, below. We also need

a bounded projection

Q : H1
−η(R,Rn)→ H1

−η(R,Rn), Q2 = Q, rg (Q) = E0 = ker T , (2.3)

with a continuous extension to L2
−η(R,Rn). Again, we require Qιη,η′ = ιη,η

′Q, a possible choice being the

L2
η1(R,Rn)-orthonormal projection. We discuss this in more detail in Section 2.5, including computationally

advantageous choices of projections.

Assumptions on the nonlinear part. A common approach to the construction of center manifolds is to

modify the nonlinearity outside of a small neighborhood of the origin. We therefore first define a pointwise,

smooth cut-off function χ̄ : Rn → R, with

χ̄(u) =

{
1 for ‖u‖ ≤ 1

0 for ‖u‖ ≥ 2
, χ̄(u) ∈ [0, 1],

and then a cut-off operator χε, mapping measurable functions u : R→ Rn into L∞(R,Rn),

χε(u)(x) = χ̄(u(x)/ε) · u(x).

5



Lastly, formally define the family of translation operators τξ, ξ ∈ R,

(τξ · u)(x) := u(x− ξ),

the canonical representation of the group R on functions over R. Slightly abusing notation, we will use the

same symbol τξ for the action on various function spaces. Note that τξ will be bounded for ξ fixed on all

spaces introduced above. We define the modified nonlinearities

Fε := F ◦ χε. (2.4)

Hypothesis (H2) We assume that there exists k ≥ 2 and η0 > 0 such that for all ε > 0, sufficiently small,

the following properties hold.

(i) F ∈ C k(V,W 1,∞(R,Rn), for some small neighborhood 0 ∈ V ⊂ W 1,∞(R,Rn), and F(0) = 0,

DuF(0) = 0;

(ii) F commutes with translations, F ◦ τξ = τξ ◦ F for all ξ ∈ R;

(iii) Fε : H1
−ζ(R,Rn) −→ H1

−η(R,Rn) is C k for all nonnegative pairs (ζ, η) such that 0 < kζ < η < η0,

DjFε(u) : (H1
−ζ(R,Rn))j −→ H1

−η(R,Rn) is bounded for 0 < jζ ≤ η < η0, 0 ≤ j ≤ k and Lipschitz in

u for 1 ≤ j ≤ k − 1.

Note that Fε commutes with τξ since F and χε do. The first condition is the common condition, guaranteeing

that T is actually the linearization at an equilibrium u ≡ 0, that is, at a solution invariant under translations

τξ. The second condition puts us in the scenario of an autonomous dynamical system. The last condition on

the modified nonlinearity is a technical condition, known from the proofs of smoothness of center manifolds

in ODEs [24], that will imply smoothness of our center-manifold.

2.2 Main result — precise statement.

We are now in a position to state a precise version of Theorem 1 and Corollary 1. We are interested in

system (1.5) and its modified variant,

T u+ F(u) = 0, (2.5)

T u+ Fε(u) = 0. (2.6)

Theorem 2 (Center manifolds and reduced vector fields). Consider equations (2.5) and (2.6) with assump-

tions (H1) on the linear convolution operator K and (H2) on the nonlinearity F . Recall the definitions of the

kernel E0 and the projection Q on H1
−η(R,Rn), (2.3). Then there exists a cut-off radius ε, a weight δ > 0,

and a map

Ψ : ker T ⊂ H1
−δ(R,Rn)→ kerQ ⊂ H1

−δ(R,Rn),

with graph

M0 := {u0 + Ψ(u0) | u0 ∈ ker T } ⊂ H1
−δ(R,Rn),

such that the following properties hold:

(i) (smoothness) Ψ ∈ C k, with k specified in (H2);

(ii) (tangency) Ψ(0) = 0, DuΨ(0) = 0;

(iii) (global reduction)M0 consists precisely of the solutions u ∈ H1
−δ(R,Rn) of the modified equation (2.6);

(iv) (local reduction) any solution u ∈ H1
−δ(R,Rn) of the original equation (2.5) with supx∈R |u(x)| ≤ ε is

contained in M0;
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(v) (translation invariance) the shift τξ, ξ ∈ R acts on M0 and induces a flow Φξ : E0 → E0 through

Φξ = Q ◦ τξ ◦Ψ;

(vi) (reduced vector field) the reduced flow Φξ(u0) is of class C k in u0, ξ and generated by a reduced vector

field f of class C k−1 on the finite-dimensional vector space E0.

In particular, small solutions on t ∈ R to v′ = f(v) on E0 are in one-to-one correspondence with small

bounded solutions of (2.5).

Higher regularity. Completely analogous formulations of our main result are possible in spaces with

higher regularity, Hm
η (R,Rn), changing simply the assumptions on the nonlinearity, which will typically

require higher regularity of pointwise nonlinearities, as we shall see in Section 2.4. Moreover, one then

concludes that small bounded solutions are in fact smooth in x, which one can, however, also conclude after

using bootstrap arguments in the equation.

2.3 Extensions — parameters, symmetries, and pseudo-differential operators

Parameters. In the context of bifurcation theory, one usually deals with parameter dependent problems.

One then hopes to find center manifolds and reduced equations that depend smoothly on parameters. We

therefore consider

u+K ∗ u+ F(u, µ) = 0, (2.7)

for u : R → Rn, n ≥ 1, µ ∈ Rd, d ≥ 1, and the nonlinear operator F is defined in a neighborhood of

(u, µ) = (0, 0). Again, we can define Fε = F ◦ (χε, id), cutting off in the u−variable, only, leading to

u+K ∗ u+ Fε(u, µ) = 0, (2.8)

We then require a µ-dependent version of Hypothesis (H2).

Hypothesis (H2µ) We assume that there exists k ≥ 2 and η0 > 0 such that for all ε > 0, sufficiently

small, the following properties hold.

(i) F ∈ C k(Vu × Vµ,W 1,∞(R,Rn), for some small neighborhoods 0 ∈ Vu ⊂ W 1,∞(R,Rn), 0 ∈ Vµ ⊂ Rd,

and F(0, 0) = 0, DuF(0, 0) = 0;

(ii) F commutes with translations for all µ, F ◦ τξ = τξ ◦ F for all ξ ∈ R;

(iii) Fε : H1
−ζ(R,Rn)×Vµ −→ H1

−η(R,Rn) is C k for all nonnegative pairs (ζ, η) such that 0 < kζ < η < η0,

DjFε(u, µ) : (H1
−ζ(R,Rn))j −→ H1

−η(R,Rn) is bounded for 0 < jζ ≤ η < η0, 0 ≤ j ≤ k and Lipschitz

in u for 1 ≤ j ≤ k − 1, uniformly in µ ∈ Vµ.

The analogue of the center manifold Theorem 1 for the parameter-dependent nonlocal equation (2.7) is the

following result.

Theorem 3 (Parameter-Dependent Center Manifold). Consider equations (2.7) and (2.8) with assumptions

(H1) on the linear convolution operator K and with assumption (H2µ) on the nonlinearity F . Recall the

definition of kernel E0 and projection Q on H1
−η(R,Rn), (2.3). Then, possibly shrinking the neighborhood

Vµ, there exist a cut-off radius ε, a weight δ > 0, and a map

Ψ : ker T × Vµ ⊂ H1
−δ(R,Rn)× Rd → kerQ ⊂ H1

−δ(R,Rn),

with graph

M0 := {(u0 + Ψ(u0, µ), µ) | u0 ∈ ker T , µ ∈ Vµ} ⊂ H1
−δ(R,Rn),

such that the following properties hold:
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(i) (smoothness) Ψ ∈ C k, with k specified in (H2µ);

(ii) (tangency) Ψ(0, 0) = 0, DuΨ(0, 0) = 0;

(iii) (global reduction) M0 consists precisely of the pairs (u, µ), such that u ∈ H1
−δ(R,Rn) is a solution of

the modified equation (2.8) for this value of µ;

(iv) (local reduction) any pair (u, µ) such that u is a solution u ∈ H1
−δ(R,Rn) of the original equation (2.7)

with supx∈R |u(x)| ≤ ε for this value of µ is contained in M0;

(v) (translation invariance) the shift τξ, ξ ∈ R acts on the u-component of M0 and induces a µ-dependent

flow Φξ : E0 → E0 through Φξ = Q ◦ τξ ◦Ψ;

(vi) (reduced vector field) the reduced flow Φξ(u0;µ) is of class C k in u0, ξ, µ and generated by a reduced

parameter-dependent vector field f of class C k−1 on the finite-dimensional vector space E0.

In particular, small solutions on t ∈ R to v′ = f(v;µ) on E0 are in one-to-one correspondence with small

bounded solutions of (2.7).

Symmetries and reversibility In this subsection, we discuss the cases of equations possessing symmetries

in addition to translation invariance. The aim is to show that such symmetries are inherited by the reduced

equation. Generally speaking, we have an action of the direct product G = O(n) × (R × Z2) on spaces of

functions over the real line with values in Rn, where O(n) is the group of orthogonal n × n-matrices, and

the action is defined through

((ρ, τξ, κ) · u)(x) = ρ · u(κ(x− ξ)).

Here, κx = −x when κ is the nontrivial element of Z2. Note that χε commutes with the action of the full

group O(n)× (R× Z2).

Hypothesis (S) There is a subgroup Γ ⊂ G that contains the pure translations, id×R× id ⊂ Γ, such that

(1.5) is invariant under Γ, that is,

γ ◦ T = T γ, γ ◦ F = Fγ, for all γ ∈ Γ.

We say the equation is reversible if Γ 6⊂ O(n) × R × id, that is, if the group of symmetries contains a

reflection. We call Γe := Γ ∩ (O(n)×R× id) the equivariant part and Γr := Γ \ Γe the reversible part of the

symmetries Γ.

We remark that the equivariance properties of Q are concerned with symmetries in O(n)× ({0}×Z2), since

the action of the shift on the kernel is induced through the projection itself, hence automatically respects

the symmetry. We obtain the following result.

Theorem 4 (Equivariant Center Manifold). Assume that the above Hypotheses (H1), (H2), and (S) are

satisfied. Then reduced center manifold M0 = graph (Ψ) and vector field f from Theorem 2 respect the

symmetry, that is,

(i) E0 is invariant under Γ and Q can be chosen to commute with all γ ∈ Γ;

(ii) Ψ commutes with the action of Γ, M0 is invariant under the action of Γ;

(iii) f commutes with the equivariant part, f ◦ γ1 = γ1 ◦ f for γ = (γ1, τξ, id) ∈ Γe, and anti-commutes with

the reversible part of the symmetries, f ◦ γ1 = −γ1 ◦ f for γ = (γ1, τξ, κ) ∈ Γr.

Analogous results hold for the parameter-dependent equation (2.7).
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Pseudo-differential operators. Beyond operators of the form id +K∗, one could consider more general

nonlocal pseudo-differential operators and equations of the form

Pu+ F(u) = 0, (2.9)

for u : R → Rn, n ≥ 1, where Pu is a pseudo-differential operator defined as follows. Let ν 7→ p(ν) be an

analytic function in Sη0 = {|<(ν)| ≤ η0} ⊂ C, and define

Pu(x) :=
1

2π

∫
R

ei`xp(i`)û(i`)d`, ∀x ∈ R,

with suitable assumptions on convergence of the integral, say, sufficient localization of û. A typical as-

sumption on p requires asymptotic growth with fixed order α > 0, |p(ν) − να| → 0 for |ν| → ∞, together

with derivatives. Assuming that (p(ν) −M)−1 is uniformly bounded in Ση0 for some M ∈ R, we can then

precondition the equation as

(M −P)−1 (Pu+ F(u)) = −u+M(M −P)−1u+ (M −P)−1F(u) = 0, (2.10)

which is of the form (2.5), with kernel given through K̂(ν) = M
M−p(ν) . Kernel smoothness therefore is

determined by the value of α. It is worth noticing that this perspective allows us to construct center

manifolds for higher-order differential equations without writing the equation as a first-order equation.

The common feature of all those examples is that the leading-order part in the linearization, from a regularity

point of view, is invertible, and the nonlinearity is bounded on the domain of the leading-order part. In those

cases, “preconditioning” with the resolvent of the leading-order part gives an equation of the type considered

here. From this perspective, forward-backward delay equation present an interesting extension, where the

principal part is of the form

(T u)(x) =
∑
j

Aju(x− ξj) + (K ∗ u)(x),

for matrices Aj and ξj ∈ R, and a convolution kernel K with assumptions as considered earlier. Note that

we do not include a derivative, as would be common for traveling-wave equations in lattices. Such forward-

backward functional equations arise naturally when studying traveling waves in space-time discretizations

of partial differential equations. Of course, in some cases (in particular, when the ξj are linearly dependent

over Q), the equation reduces to an equation over a lattice. Our approach can be applied whenever the

characteristic equation of the principal symbol

d0(ν) = det

∑
j

Aje
νξj

 ,

is invertible with uniform bounds on a complex strip Sη0 .

2.4 Applying the result — nonlinearities

Our goal here is to provide examples of nonlinearities that satisfy Hypothesis (H2) and more generally provide

some basic tools that may help verifying (H2) in specific examples. We start with pointwise nonlinearities,

then discuss nonlocal operators, and conclude with more general composition of operators.

Pointwise nonlinearities. We first consider classical superposition operators, defined by pointwise eval-

uation of the composition. Let g ∈ C k+1(Rn) for some k ≥ 2 and define the superposition operator F
as

F(u)[x] = g(u(x)), ∀x ∈ R, ∀u ∈W 1,∞(R,Rn), with g(0) = 0, Dug(0) = 0.

9



The properties listed in Hypothesis (H2) then are precisely the properties established in [24, Lemma 3 &

5], with the small caveat that spaces C 0
−η(R,Rn) instead of H1

−η(R,Rn) we considered there. Adapting the

arguments is not difficult; we outline the key steps in Appendix A for the convenience of the reader.

One can also push these arguments to spaces Hm
−η(R,Rn), requiring g ∈ C k+m(Rn), thus allowing us to

construct center manifolds in spaces Hm
−η(R,Rn); see the remark after Theorem 2. We omit the details of

this straightforward adaptation.

Convolution operators. A class of linear operators that satisfies (H2), of course with the exception of

DF(0) = 0, are convolutions with convolution kernel as in (H1). One can in fact generalize slightly, and

consider convolutions K ∗ u with kernel K, an exponentially localized Borel measure, K = K0 +
∑
j ajδξj ,

with K0 ∈ L1
η0(R,Rn) and

∑
j |aj |eη0|ξj | <∞.

Composition. Slightly generalizing Hypothesis (H2), we can consider maps F mapping Rn-valued func-

tions to Rq-valued functions, keeping all other properties from (H2). We claim that the composition of

two such functions satisfying (H2) then also satisfies (H2), possibly with a smaller η0. This can be readily

obtained as follows. Consider the composition F ◦ G with derivative F ′(G(u)) · G′(u) · v. We need to show

that

‖F(G(u+ v))−F(G(u))−F ′(G(u)) · G′(u) · v‖H1
−η−δ(R,Rn) = o(‖v‖H1

−η(R,Rn)).

For this, decompose as in the proof of the chain rule,

F(G(u+ v))−F(G(u))−F ′(G(u)) · G′(u) · v = {(F(G(u+ v))−F(G(u))−F ′(G(u)) · (G(u+ v)− G(u))}
+ {F ′(G(u)) · (G(u+ v)− G(u)− G′(u) · v)}

=: I + II.

Now,

‖I‖H1
−η−δ

= o(‖G(u+ v)− G(u)‖H1
−η(R,Rn)) = o(‖v‖H1

−η(R,Rn)),

by differentiability of F , and Lipschitz continuity of G. Next,

‖II‖H1
−η−δ(R,Rn) = o(‖v‖H1

−η(R,Rn)),

by differentiability of G and boundedness of F ′. Boundedness of derivatives of the composition and Lipschitz

continuity are readily checked form the chain rule formula. Higher derivatives are obtained in an analogous

fashion; see also Appendix A for similar arguments.

As a consequence, we can treat nonlinearities of the form K1 ∗ f(K2 ∗ u,K3 ∗ u, . . . ,K` ∗ u), say.

Multilinear convolutions. Slightly more general are multilinear convolution operators of the form

G · [u1, . . . , u`](x) =

∫
. . .

∫
G(x1 − y1, . . . , x` − y`)u(y1, . . . , u(y`)dy1 . . . dy`,

with each components of G being in W 1,1
η0 (R`). One readily verifies that G is bounded as a multilinear

operator on H1
−η(R,Rn). Again, convolution kernels generally in the nonlinearity need not be smooth and

may contain Dirac deltas.

2.5 Applying the result — projections

The projection on the kernel clearly plays an important role in the actual computation of the reduced vector

field f . We emphasize again that this projection cannot be canonically chosen as a spectral projection, as

10



it acts on trajectories rather than a phase space. Abstractly speaking, projections on finite-dimensional

subspaces always exist by Hahn-Banach’s theorem. In that respect, particular choices of projections could

be favored over others mostly because they simplify computations: first, one would like to simplify the

computation of the reduced vector field, and second, one would like to find good coordinates in which to

analyze the reduced vector field.

Since we are working in a Hilbert space H1
−δ(R,Rn), one can of course simply use orthogonal projections on

the kernel. In fact, since as we shall see later the kernel consists of smooth functions with at most polynomial

growth, one can use a variety of weighted scalar products, and we shall briefly explore some choices below.

On the other hand, we found it convenient in practical applications to use pointwise evaluations of functions

and their derivatives as the arguably most easily computable projection.

In order to simplify the algebra, we work in the complexified spaces, H1
−δ(R,Cn), say, with complexified

kernel EC0 . Projections on real subspaces are then obtained in a canonical way by restriciting to the real

subspace.

To start with, we recall that a projection Q on a kernel ker (T ) = span (e1, . . . , eM ) can be identified with

a collection of functionals f∗1 , . . . , f
∗
M such that the Gram matrix A with entries Akl = 〈el, f∗k 〉 is invertible,

by setting

Qu :=

M∑
j=1

〈u, f∗j 〉ej , Qu := A−1Qu. (2.11)

In order to give specific examples, we need the following characterization of the kernel of T . Recall the

definition of the linear operator and its Fourier transform T̂ (ν) := In + K̂(ν), a matrix pencil defined and

holomorphic on Sη0 = {ν ∈ C | |<(ν)| < η0}. As a consequence, d(ν) = det(T̂ (ν)) has finitely many roots,

counted with multiplicity on the imaginary axis. Possibly reducing η0, we assume that d does not vanish off

the imaginary axis and refer to roots as characteristic values. We label those characteristic values νj = i`j ,

1 ≤ j ≤ m, and denote by rj the dimension of ker T̂ (νj), referred to in the sequel as geometric multiplicity

of the characteristic value νj . Now let ej,k ∈ Cn, 1 ≤ k ≤ rj , be a basis of the kernel,

T̂ (νj)ej,k = 0. (2.12)

Then there exist nj,k ≥ rj such that we can construct a maximal chain of root vectors
(
epj,k

)
0≤p≤nj,k−1

which satisfy

p∑
q=0

(
p

q

)
T̂ (q)(νj)e

p−q
j,k = 0, 0 ≤ p ≤ nj,k − 1, T̂ (q)(νj)u :=

dq

dνq

(
T̂ (ν)u

)
|ν=νj

, (2.13)

where e0
j,k := ej,k. The sum αj = nj,1 + · · · + nj,rj is called the algebraic multiplicity of the characteristic

value νj .

Lemma 2.1. The maximal chain of root vectors is always finite and the algebraic multiplicity αj coincides

with the order of the root νj of d(ν). Let M ≥ 1 be defined as M := α1 + · · ·+ αm. Then the (complexified)

kernel of T is isomorphic to CM , given explicitly through

EC0 = kerC T =

m⊕
j=1

(
rj⊕
k=1

Span {ϕj,k,p(x), 0 ≤ p ≤ nj,k − 1}

)
, ϕj,k,p(x) =

(
p∑
q=0

(
p

q

)
xqep−qj,k

)
ei`jx.

Proof. The existence of Jordan chains as listed in (2.13) is a standard result for analytic matrix pencils and

can be proved readily using Lyapunov-Schmidt reduction on the eigenvalue problem; see for instance [2, 10]

or [15, Lem. 3.3]. Now, taking the Fourier transform (in the sense of distributions) of T ϕj,k,p(x) = 0, we

readily find (2.13), thus showing that u0(x) indeed belongs to the kernel. Comparing dimensions, we find

that the sums of the lengths of Jordan chains equals the multiplicity of the root of the determinant, again by

standard theory for matrix pencils, we conclude that the elements ϕj,k,p indeed form a basis of the kernel.
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Now every element of the kernel can be expressed as a linear combination of the basis vectors, yielding a

representation of elements in the kernel in the form

u0(x) =

m∑
j=1

(
rj∑
k=1

(nj,k∑
p=0

Aj,k,p

(
p∑
q=0

(
p

q

)
xqep−qj,k

)
ei`jx

))
∈ EC0 , (2.14)

and hence a canonical map ι : EC0 → CM through

ι(u0) = {Aj,k,p ∈ C for 1 ≤ j ≤ m, 1 ≤ k ≤ rj , 0 ≤ p ≤ nj,k} .

It is not difficult (but rather cumbersome in high-dimensional examples) to construct projections. We outline

two possible choices. First, let ω(x) be a suitable weight function and define

(Qu)(x) :=

m∑
j=1

rj∑
k=1

nj,k∑
p=0

(∫
R
u(y)ϕj,k,p(y)ω(y)dy

)
ϕj,k,p(x), Q = A−1Q,

with A as in (2.11). The entries of the Gram matrix Akl reduce to integrals of the form
∫
R x

qei`xω(x)dx which

are explicitly given through derivatives of Gaussians and hyperbolic secants when ω(x) = e−x
2

or ω(x) =

sech(x), respectively. Note that, these projections, as the L2
−η(R,Cn)-orthogonal projections, naturally

extend to Hm
−η′(R,Cn) for all η′ > 0, small enough, m ≥ 0.

Second, in a different spirit, notice that the matrix B = (bm,p)1≤m,p≤n with

bm,p :=

〈
e0, (∂x − i`)

(m)
∣∣∣
x=0

(
p∑
q=0

(
p

q

)
xqep−qei`x

)〉
=

{
m!|e0|2, m = p

0, m > p,

is lower triangular with positive diagonal entries, hence invertible, thus yielding a canonical projection in the

case of a simple root i`j on sufficiently smooth functions u ∈ HN (R,Cn), N sufficiently large. Generalizing

to multiple roots is tedious but straightforward, taking additional derivatives when basis vectors e0
j,k and

e0
j′,k′ are linearly dependent. While these projections are not defined on H1

−η(R,Cn) or even L2
−η(R,Cn),

they can be used in computations whenever solutions are in fact smooth, typically because the nonlinearity

maps into Hm(R,Rn), locally.

We note that the projections constructed here are defined for spaces H1
−η(R,Cn), say, for all weights η > 0.

Moreover, they commute with the natural embedding between those spaces.

2.6 Applying the result — Taylor jets

We will apply our main result later on but want to give a fairly trivial example of how to compute Taylor

jets in practice, here. In fact, the procedure of deriving the reduced system (1.6) involves algebra that is

somewhat different from the more commonly known algebra associated with Taylor jets in phase space and

ordinary center manifolds. We consider a scalar nonlocal equation of the form,

u+K ∗ u− u2 = 0, (2.15)

where we suppose that K satisfies Hypothesis (H1) for a given η0 > 0 together with the assumptions that∫
R
K(x)dx = −1,

∫
R
xK(x)dx = −α−1 6= 0, and d(i`) = 1 + K̂(i`) 6= 0 for all ` ∈ R \ {0}.

As a consequence, E0 = ker T = {1}, the constant functions. A natural candidate for the projection onto

the kernel is (Qu)(x) ≡ u(0) ∈ E0, clearly defining a bounded projection on H1
−η onto E0 for any 0 < η < η0.

Furthermore, the nonlinear operator F(u) = −u2 is a Nemytskii operator and satisfies Hypothesis (H2) as

12



discussed above. Our main result, Theorem 1, then implies existence of a center manifold M0, and any

small bounded solutions of (2.15) can be written as

u = u0 + Ψ(u0),

where u0 := A · 1 ∈ E0. As the map Ψ is C k for any k ≥ 2, we can look for its Taylor expansion near 0, and

using the properties Ψ(0) = DuΨ(0) = 0, we obtain

Ψ(u0) = A2Ψ2 +A3Ψ3 +O(A4).

Inserting this ansatz into the nonlocal equation (2.15) and identifying terms of order A2, we obtain that Ψ2

should satisfy

T Ψ2 = 1, with Q(Ψ2) = 0.

Using that
∫
xK(x)dx 6= 0, we obtain that Ψ2(x) = αx, for all x ∈ R. At cubic order, we find that

T Ψ3 = 2Ψ2, with Q(Ψ3) = 0.

We look for solution Ψ3 that can be written as Ψ3(x) = β2x
2 + β1x, which leads to the compatibility

conditions

β2

∫
R
K(y)y2dy +

β1

α
= 0,

2
β2

α
= 2α,

such that β2 = α2 and β1 := −κ2α
3, where κ2 :=

∫
RK(y)y2dy.

Finally, we construct the reduced vector field as stated in Corollary 1; see the proof in Section 3.3 and

diagrams there for details on the abstract concepts. Invariance of the set of bounded solutions by translations

constitutes an action of the group R. Using our parameterization of the set of bounded solutions over the

kernel, this action can be pulled back to an action of the shift on the kernel. With the Taylor expansion of

the representation of our bounded solutions over the kernel,

u(x) = A+ αxA2 + (α2x2 − κ2α
3x)A3 +Ox(A4), (2.16)

we obtain the Taylor expansion of the action of the shift on the kernel, parameterized by A ∈ R. We therefore

shift u(x) from (2.16), and then invert id + Ψ explicitly as (id + Ψ)−1 = Q, to find

ϕx(A) = Q
[
A+ α(·+ x)A2 +

(
α2(·+ x)2 − κ2α

3(·+ x)
)
A3 +O(·+x)(A

4)
]

= A+ αxA2 +
(
α2x2 − κ2α

3x
)
A3 +Ox(A4).

Differentiating this action of the shift, that is, computing the derivative of a flow at time x = 0, we obtain

the vector field that generates the flow as stated in (1.6),

dϕx
dx
|x=0 = αA2 − κ2α

3A3 +O(A4),

thus giving the Taylor expansion of the reduced differential equation up to third order through

dA

dx
= αA2 − κ2α

3A3 +O(A4).

Note that, absent further parameters, the reduced differential equation, here, does not possess any non-

trivial bounded solutions. In other words, the center manifold here yields a uniqueness result for small

bounded solutions, in a class of sufficiently smooth functions. Adding parameters, one would find the typical

heteroclinic trajectories in a saddle-node bifurcation.
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3 Proofs of the main results

In this section, we give proofs of our main results. We start with the characterization of the kernel and the

analysis of the linearization in exponentially weighted spaces in Section 3.1. We prove existence and regularity

of the center manifold in Section 3.2, following very much the standard approach via contraction mapping

principles on scales of Banach spaces. Section 3.3 establishes smoothness of the flow on the kernel induced

by translations of bounded solutions via bootstraps and thereby establishes existence of a reduced vector

field governing the set of bounded solutions. Finally, Section 3.5 outlines modifications and adaptations in

the cases with additional symmetries.

3.1 Properties of the linearization

We give characterizations of bounded solutions of the linear part of our equation and establish bounded

invertibility of a suitably bordered equation.

Consider therefore the linearization

T : H1
−η(R,Rn) −→ H1

−η(R,Rn), T u = u+K ∗ u, 0 < η � 1, (3.1)

with associated characteristic equation d(ν) := det(T̂ (ν)).

Lemma 3.1. The operator T defined in (3.1) is Fredholm of index M and onto, where M is the sum of the

multiplicities of roots of d(ν) on ν ∈ iR.

Proof. This result is a direct consequence of [7], in particular Theorem 3 and Lemma 5.1 from this

reference. Since in this reference, we considered matrix operators of the form d
dx +A+K∗, we first convert

our operator into this form, writing T = D−1 (DT ), where D : H1
−η(R,Rn) −→ L2

−η(R,Rn), u 7→ du
dx + ρu

is an isomorphism provided ρ > η0, thus reducing the problem to establishing Fredholm properties of DT ,

which is of the form DT := d
dx +N , where N (u) := (K′ + ρK + ρδ0) ∗ u and δ0 is the Dirac delta function.

Fredholm properties of operators such as DT have been studied in [7] where it was shown that DT :

H1
−η(R,Rn) −→ L2

−η(R,Rn) is a Fredholm operator [7, Theorem 2] with index dim E0 [7, Corollary 4.9].

Roughly speaking, one conjugates the operator with the multiplier cosh(ηx) to find an x-dependent convo-

lution operator of the form considered in this reference.

Theorem 3 and Corollary 4.9 of [7] state that the Fredholm index is given by the spectral flow, in this case,

the number of roots of the characteristic equation on the imaginary axis, counted with multiplicity. Since

the characteristic equation associated to DT is given by

(ν + ρ)n det
(
In + K̂(ν)

)
= 0,

roots on the imaginary axis stem from roots of d(ν), only, which proofs the result.

We now augment equation (1.1) with the “initial condition”, Q(u) = u0, for a given parameter u0 ∈ E0,

which leads us to consider the “bordered” operator

T̃ : H1
−η(R,Rn) −→ H1

−η(R,Rn)× E0
u 7−→ (T (u),Q(u)) .

(3.2)

Lemma 3.2. For any 0 < η < η0, T̃ defined in (3.2) is invertible with bounded inverse,

‖T̃ −1‖H1
−η(R,Rn)→H1

−η(R,Rn)×E0 ≤ C(η), (3.3)

with C(η) <∞ continuous for 0 < η < η0.
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Proof. Since we are adding finitely many dimensions to the range, Fredholm bordering implies that T̃ is

Fredholm, of index 0. Whenever T̃ u = 0, we conclude that T u = 0 from the first component, hence u ∈ E0.

The second component implies that Q(u) = 0, which for u ∈ E0 implies u = 0.

3.2 Lipshitz and smooth center manifolds

We now rewrite equations (1.1) together with (3.2), using the modified nonlinearity Fε instead of F , into a

more compact form

T̃ (u) + F̃ε(u;u0) = 0, (3.4)

where

F̃ε(u;u0) = (Fε(u),−u0).

Applying T̃ −1 to equation (3.4), we obtain an equation of the form

u = −T̃ −1
(
F̃ε(u;u0)

)
:= Sε(u;u0), (3.5)

for any u0 ∈ E0. We view (3.5) as a fixed point equation with parameter u0 and establish that that Sε(·;u0)

is a contraction map on H1
−η(R,Rn). From the definition of Fε and the fact that Fε(0) = DFε(0) = 0 with

Fε of class C k for k ≥ 2 on W 1,∞(R,Rn), one obtains the following estimates as ε→ 0,

δ0(ε) := sup
u∈H1

−η(R,Rn)

‖Fε(u)‖H1
−η(R,Rn) = O(ε2), (3.6a)

δ1(ε) := LipH1
−η(R,Rn)(Fε) = O(ε). (3.6b)

Indeed, by definition, we have Fε(u)(x) = F(u)(x) whenever ‖u(x)‖ ≤ ε and Fε(u)(x) = 0 whenever

‖u(x)‖ ≥ 2ε. Using the fact that H1 functions are also continuous functions, we obtain the desired estimates

by further noticing that Fε(u) is superlinear near u = 0. In turn, these estimates imply

‖Sε(u;u0)‖H1
−η(R,Rn) ≤ C(η)

(
δ0(ε) + ‖u0‖H1

−η(R,Rn)

)
,

‖Sε(u;u0)− Sε(v;u0)‖H1
−η(R,Rn) ≤ C(η)δ1(ε)‖u− v‖H1

−η(R,Rn),

for all u, v ∈ H1
−η(R,Rn) and u0 ∈ E0. Let η̄ ∈ (0, η0) and η̃ ∈ (0, η̄/k), then, for sufficiently small ε, we have

C(η)δ1(ε) < 1, ∀η ∈ [η̃, η̄].

As a consequence, there exists a unique fixed point u = Φ(u0) ∈ H1
−η(R,Rn). From Lipshitz continuity of

the fixed point iteration, we conclude that Φ is a Lipschitz map, and Φ(0) = 0 by uniqueness of the fixed

point. For each η ∈ [η̃, η̄], this defines a continuous map Ψ : E0 → kerQ ⊂ H1
−η(R,Rn) so that

u = Φ(u0) := u0 + Ψ(u0).

Lemma 3.3. Under the Hypotheses (H1)-(H2) we have for each p with 1 ≤ p ≤ k and for each η ∈ (pη̃, η̄]

that Ψ : E0 → H1
−η(R,Rn) is of class C p.

Proof. First, notice that Φ shares the same properties as Ψ so that it is enough to prove the Lemma for

the map Φ. We also recall that the modified nonlinearity Fε is C k from H1
−ζ(R,Rn) to H1

−η(R,Rn) for any

ζ and η satisfying 0 < kζ < η < η0. Furthermore, we have that DjFε(u) : (H1
−ζ(R,Rn))j −→ H1

−η(R,Rn)

is bounded for 0 < jζ ≤ η < η0, 0 ≤ j ≤ k and Lipschitz in u for 1 ≤ j ≤ k − 1. The regularity properties

of Fε are automatically inherited by Sε by boundedness of the map T̃ −1. The conclusion of the lemma is

then an application of the contraction mapping theorem on scales of Banach spaces as presented in [24]. The

adaptations are straightforward; the main steps are outlined in Appendix B.
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3.3 Smoothness of the reduced flow and reduced vector fields

In this subsection, we establish that the flow on the center manifold is smooth such that we can obtain the

reduced ordinary differential equation (1.6) simply through differentiating the flow at time zero. Consider

the action of the shift operator on functions, defined through

R×H1
−η(R,Rn) −→ H1

−η(R,Rn)

(x, u) 7−→ φ(x, u) := u(·+ x),
(3.7)

for any 0 < η < η0. We briefly write φx := φ(x, ·) : H1
−η(R,Rn) −→ L2

−η(R,Rn). Clearly, φx is bounded

linear. Therefore, and by translation invariance of the original equation, φx maps bounded solutions to

bounded solutions. The following commutative diagram shows how this action of the shift induces a flow on

the kernel E0,

E0
id+Ψ //

�ϕx

��

H1
−η(R,Rn)

φx

��
E0

id+Ψ //
H1
−η(R,Rn)

Q
oo

E0
id+Ψ //

�ϕx

��

H1
−η(R,Rn)

ι ◦ φx

��
E0

ι◦(id+Ψ) //
L2
−η(R,Rn)

Q̃
oo

E0
ι◦(id+Ψ) //

�ϕx

��

L2
−η(R,Rn)

ι ◦ φx ◦ ι−1

��
E0

ι◦(id+Ψ) //
L2
−η(R,Rn)

Q̃
oo

The left diagram, id + Ψ denotes the parameterization of bounded solutions over the kernel. On the right,

φx denotes the shift which is pulled back to the kernel via the projection Q, the inverse of id + Ψ. The right

diagram views the bounded solutions as elements of L2
−η(R,Rn), by composing the parameterization id + Ψ

with the embedding ι : H1
−η(R,Rn) → L2

−η(R,Rn). The inverse of the parameterization is the extension

of the projection Q to L2
−η(R,Rn). The induced flow on the kernel E0 is naturally the same as in the left

diagram. In the center diagram, we view the shift as a map from H1
−η(R,Rn) into L2

−η(R,Rn). Clearly,

ι ◦ Φx is continuously differentiable in x, with derivative given by the bounded linear map dy
dx . Since Q̃ is a

bounded projection on L2
−η(R,Rn), we find that

ϕx := Q̃φx ◦ (id + Ψ),

is continuously differentiable in x. From Theorem 1 we know that Ψ is a C k map from E0 to H1
−η(R,Rn).

Therefore, the map x 7→ ϕx inherits the regularity properties of φ, from which we deduce that dϕx
dx |x=0 is a

C k vector field on E0,
dϕx
dx
|x=0 =: f(u0). (3.8)

Conversely, solutions to du
dx = f(u), u(0) = u0 yield trajectories ϕx(u0) and solutions to the nonlocal equation

(id + Ψ)(ϕx(u0)).

3.4 Proof of Theorem 2

We conclude the proof of Theorem 2. We established in Section 3.2 the existence of the map Ψ and the

associated smooth manifold M0. By uniqueness, and since F(0) = 0 implies that u(x) ≡ 0 is a solution,

Ψ(0) = 0. Differentiating the equation (2.6) at u = u0 + Ψ(u0) with respect to u0 at u0 = 0 gives that

DuΨ(0) = 0 viewed as an operator from H1
−η(R,Rn) to H1

−η−δ(R,Rn) for any δ > 0, which implies that

the derivative as a map from H1
−η(R,Rn) into itself also vanishes, which establishes (ii). Global reduction

16



(iii) is a consequence of the construction as a contraction mapping, ensuring a unique fixed point for any

u0 ∈ E0. Translation invariance and the existence of a reduced vector field, properties (v) and (vi), were

discussed in Section 3.3. Local reduction, property (iv), follows since the nonlinearity is identical to the

modified nonlinearity on the ball of size ε. It remains to show that small solutions to the reduced differential

equation yield solutions to the original problem. To see this, notice that smallness of the trajectory in E0
implies, by construction of the flow and continuity of the map Ψ, smallness of all translates of the solution

u(x) in H1
−δ(R,Rn), which readily establishes smallness in L∞ and concludes the proof of Theorem 2.

3.5 Symmetries and parameters — proofs

We conclude the proofs of our main results by addressing the extensions in Theorem 3 and 4.

Proof of Theorem 3. We cast the parameter-dependent system (2.7) as a particular case of (1.1), in the

form,

u + J ∗ u +R(u) = 0, (3.9)

by setting u := (u, µ), and

B :=

(
In DµF(0, 0)

01,n 1

)
,

J := B−1

(
K 0n,1

01,n I

)
,

R(u) := B−1(F(u, µ)−DµF(0, 0)µ, 0),

where I := −
(

1 + d
dx −

d2

dx2

)−1

. Indeed, we first use the fact that µ is a parameter such that

−µ+ µ+
dµ

dx
− d2µ

dx2
= 0.

Applying the convolution operator (1 + d
dx −

d2

dx2 )−1, we obtain

µ−
(

1 +
d

dx
− d2

dx2

)−1

µ = 0,

which can be cast as the nonlocal equation

µ+ I ∗ µ = 0.

One readily finds that I(x) ∈ W 1,1
α for |α| < (

√
5− 1)/2). As consequence, Hypothesis (H1) is satisfied for

J . Furthermore, it is clear that Hypothesis (H2µ) for F in (2.7) implies that Hypothesis (H2) is satisfied

for R. Since all solutions necessarily have µ(x) constant in x, this proves the theorem.

Proof of Theorem 4. First notice that the cut-off, performed with respect to the norm in Rn which

is invariant under the action of the orthogonal group, preserves equivariance as stated in Hypothesis (S).

The uniqueness of the fixed point of the equation (3.5) in the proof of Theorem (1) implies that the corre-

sponding center manifold is invariant under S, provided that equation (3.5) is equivariant under S. Since

the convolution part of T is equivariant with respect to S so will be T and the projection Q, and thus T̃ is

also equivariant. The properties of f follow from differentiation of the properties of the flow.
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4 Applications

We describe two applications of our center-manifold result to questions of existence of coherent structures

in neural field equations. We construct stationary solutions and traveling waves as examples in Sections 4.1

and 4.2, respectively. The emphasis here is on illustrating the feasibility of the reduction and the mechanics

of the computation rather than motivation for the problems or techniques to analyze reduced equations.

4.1 Stationary solutions of neural field equations – mode interactions

We study small bounded solutions of neural field equations (1.2), which take the form:

0 = −u+W ∗ S(u, µ), (4.1)

for some bifurcation parameter µ > 0. Such problems have been investigated in the literature either nu-

merically or for very specific kernels with rational Fourier transform; see [6] and references therein. In the

above equation, u : R → R is a scalar unknown, the kernel function W and the nonlinearity S satisfy the

hypotheses below, reflecting simple modeling assumptions. We refrain from exploring minimal regularity

assumptions on the nonlinearity and work with smooth functions. Also, to avoid overly involved computa-

tions, we restrict ourselves to odd nonlinearities, in particular precluding quadratic terms in the Taylor jet

of the center manifold. We also restrict to the most relevant class of symmetric kernels.

Hypothesis 4.1. We suppose that the nonlinear function S satisfies the following properties:

(i) (u, µ) 7→ S(u, µ) is smooth on R2 with |S(u, µ)| ≤ sm and 0 ≤ DuS(u, µ) ≤ µsm for all (u, µ) ∈
R× (0,+∞) for some sm > 0;

(ii) u 7→ S(u, µ) is an odd function, and

S(u, µ) = µu− u3

3
+O(|u|5), as u→ 0,

for all µ > 0.

Hypothesis 4.2. Let η0 > 0. We suppose that W ∈ W 1,1
η0 (R) is symmetric. Furthermore, we assume that

the characteristic equation d(ν, µ) = −1 + µŴ(ν) satisfies:

(i) d(ν, µ) =
[
−
(
ν2 + `2c

)2
+ µ− µc

]
d̃(ν, µ) for a unique (`c, µc) ∈ (0,+∞)2 such that µcŴ(i`c) = 1;

(ii) the function ν 7→ d̃(ν, µ) does not have any roots on the imaginary axis and is analytic in the strip

S := {ν ∈ C | |<(ν)| < η0} for all µ > 0.

Notation. For any (m1,m2) ∈ N× Z, we denote

κm1,m2
:=

∫
R
xm1W(x)e−m2i`cxdx. (4.2)

From our condition on the characteristic equation, we have that κ0,±1 = 1/µc and κ1,±1 = 0. From the

symmetry of the kernel W, we have that if m1 ∈ N is even, then κm1,m2
= κm1,−m2

= κm1,m2 ∈ R, and if

m1 ∈ N is odd, then κm1,m2
= −κm1,−m2

= −κ̄m1,m2
∈ iR.

With these hypotheses in hand, we define two usual operators

T u := −u+ µcW ∗ u,
F(u, λ) :=W ∗ [S(u, λ+ µc)− µcu] ,

such that equation (4.1) can be written as

0 = T u+ F(u, µ− µc). (4.3)
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Symmetries. It is important to notice that, in addition to the translation equivariance, equation (4.3)

possesses two other symmetries, that we denote by S1 and S2 respectively, acting on functions via

S1u(x) := u(−x), and S2u(x) := −u(x), ∀x ∈ R.

The first symmetry is a consequence of the fact that the kernel K is a symmetric function, whereas the

second symmetry results from the odd symmetry of the nonlinearity S with respect to its first argument.

Finally, let us remark that the conditions on the dispersion relation ensures that the kernel E0 of T is given

by

E0 = Span
{

e±i`cx, xe±i`cx
}
⊂ H1

−η(R),

for all 0 < η < η0. In the following, we shall denote ζ0(x) := ei`cx and ζ1(x) := xei`cx, with ζ̄0 and ζ̄1 their

respective complex conjugate. As a consequence, any functions u0 ∈ E0, can be decomposed as

u0 = Aζ0 +Aζ0 +Bζ1 +Bζ1 ∈ E0, (4.4)

for (A,B) ∈ C2. We remark that the actions of S1,2 on u0 are given by

S1u0 = Aζ0 +Aζ0 − Bζ1 −Bζ1,
S2u0 = −Aζ0 −Aζ0 −Bζ1 −Bζ1.

We identify the action of S1,2 on the quadruplet (A,A,B,B) as

S1 · (A,A,B,B) = (A,A,−B,−B),

S2 · (A,A,B,B) = (−A,−A,−B −B).

Projection Q. We now define the projection Q from H4
−η → E0. Note that by Sobolev embedding we have

H4(R) ⊂ C 3(R), and thus we can take linear combinations of uk(0) for any k = 0, . . . , 3. For any u0 ∈ E0
that can be written as in (4.4), we obtain

u0(0) = A+A,

u′0(0) = i`c(A−A) +B +B,

u′′0(0) = −`2c(A+A) + 2i`c(B −B),

u′′′0 (0) = −i`3c(A−A)− 3`2c(B +B),

from which we get a matrix passage from the quadruplet (A,A,B,B) to (u0(0), u′0(0), u′′0(0), u′′′0 (0))

M =


1 1 0 0

i`c −i`c 1 1

−`2c −`2c 2i`c −2i`c
−i`3c i`3c −3`2c −3`2c

 .

One verifies that det M = −16`4c 6= 0 and computes

M−1 =


1
2 − 3i

4`c
0 − i

4`3c
1
2

3i
4`c

0 i
4`3c

− i`c
4 − 1

4 − i
4`c

− 1
4`2c

i`c
4 − 1

4
i

4`c
− 1

4`2c

 .

Let us introduce the map q : C4 → H4
−η defined as q(z1, z2, z3, z4) = z1ζ0 + z2ζ0 + z3ζ1 + z4ζ1. We can then

define the projection Q : H4
−η → E0 as

Q(u) = q
[
M−1 (u(0), u′(0), u′′(0), u′′′0))

T
]
. (4.5)
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Let us remark that the above definition gives

Q(u) =

(
u(0)

2
− 3iu′(0)

4`c
− iu′′′(0)

4`3c

)
ζ0 +

(
− i`cu(0)

4
− u′(0)

4
− iu′′(0)

4`c
− u′′′(0)

4`2c

)
ζ1 + c.c.,

where c.c. stands for complex conjugate.

Center manifold theorem. We can easily check that Hypothesis (H2µ) is satisfied as F is the composi-

tion of a pointwise operator and a convolution operator with exponential localization, where the pointwise

operator is defined through the function S which we suppose to be analytic in both arguments. As a con-

sequence, we can apply the parameter-dependent center manifold with symmetries, to obtain the existence

of neighborhoods Uu, Uµc of (0, µc) in E0 × (0,+∞) and a map Ψ ∈ C k(Uu × Uµc , kerQ) with Ψ(0, 0) = 0,

DuΨ(0, 0) = 0, which commutes with S1,2, and such that for all µ ∈ Uµc the manifold

M0(µ− µc) := {u0 + Ψ(u0, µ− µc) | u0 ∈ Uu}

contains the set of all bounded solutions of (4.3). From now on, we denote λ := µ− µc and write,

Ψ(u0, λ) = Ψ(A,A,B,B, λ), for u0 = Aζ0 +Aζ0 +Bζ1 +Bζ1.

The fact that Ψ should commute with S2 implies that

S2Ψ(A,A,B,B, λ) = Ψ(S2 · (A,A,B,B), λ),

which yields

−Ψ(A,A,B,B, λ) = Ψ(−A,−A,−B −B, λ).

Thus, there will not be any quadratic term in the Taylor expansion of Ψ. From now on, we write

Ψ(A,A,B,B, λ) =
∑

l1,l2,p1,p2,r≥0
l1+l2+p1+p2+r>1

Al1A
l2
Bp1B

p2
λrΨl1,l2,p1,p2,r,

the Taylor expansion of Ψ. Our next objective is to compute the lower order terms of this expansion.

Terms of order O(λA), O(λB), O(λA) and O(λB). We start by computing the leading order terms in

λ in the above Taylor expansion of Ψ. For example, the function Ψ1,0,0,0,1 is solution of the equation

T Ψ1,0,0,0,1 +W ∗ ζ0 = 0, with Ψ1,0,0,0,1 ∈ kerQ

We first note that W ∗ ζ0 = κ0,1ζ0, such that one should look for solutions of the form

Ψ1,0,0,0,1(x) = α0x
2ζ0(x) + ψ1,0,0,0,1(x), with ψ1,0,0,0,1 ∈ E0.

We then find that α0 should satisfy

α0µcκ2,1 + κ0,1 = 0, and α0 = −
κ2

0,1

κ2,1
.

Recall, that Ψ1,0,0,0,1 ∈ kerQ and so Q (Ψ1,0,0,0,1) = 0. We then write ψ1,0,0,0,1 = a0ζ0 + a1ζ0 + b0ζ1 + b1ζ1
where the complex coefficients (a0, a1, b0, b1) solve

α0Q(x2ζ0(x)) + a0ζ0(x) + a1ζ0(x) + b0ζ1(x) + b1ζ1(x) = 0,

as Q(ψ1,0,0,0,1) = ψ1,0,0,0,1. We find a set a four equations(
α0

3

2`2c
+ a0,−α0

3

2`2c
+ a1,−α0

2i

`c
+ b0,−α0

i

`c
+ b1

)
= (0, 0, 0, 0),
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where we used the fact that

Q(x2ζ0(x)) =
3

2`2c
ζ0(x)− 3

2`2c
ζ0(x)− 2i

`c
ζ1(x)− i

`c
ζ1(x).

As a consequence, we obtain

Ψ1,0,0,0,1(x) = α0

[(
x2 +

2i

`c
x− 3

2`2c

)
ei`cx +

(
i

`c
x+

3

2`2c

)
e−i`cx

]
, ∀x ∈ R. (4.6)

Using the reflection symmetry S1, we directly have that Ψ0,1,0,0,1 = S1Ψ1,0,0,0,1.

Let us now compute the function Ψ0,0,1,0,1, associated to terms of the form λB. It solves the equation

T Ψ0,0,1,0,1 +W ∗ ζ1 = 0, with Ψ0,0,1,0,1 ∈ kerQ.

We first remark that W ∗ ζ1 = κ0,1ζ1, so that we look for a solution of the form

Ψ0,0,1,0,1(x) = (α2x
2 + α1x)ζ1(x) + ψ0,0,1,0,1(x), with ψ0,0,1,0,1 ∈ E0,

to get

−2µcα2κ2,1 + κ0,1 = 0,

µcα1κ2,1 − µcα2κ3,1 = 0.

From this, we deduce

α2 =
κ2

0,1

2κ2,1
, and α1 =

κ3,1κ
2
0,1

2κ2
2,1

.

Similarly, we recall that Ψ0,0,1,0,1 ∈ kerQ and so Q (Ψ0,0,1,0,1) = 0. We then write ψ0,0,1,0,1 = a0ζ0 + a1ζ0 +

b0ζ1 + b1ζ1 where the complex coefficients (a0, a1, b0, b1) solve

Q
((
α1x

2 + α2x
3
)
ζ0(x)

)
+ a0ζ0(x) + a1ζ0(x) + b0ζ1(x) + b1ζ1(x) = 0.

We find that

a0 =
3i

2`3c
(α2 + i`cα1),

a1 = − 3i

2`3c
(α2 + i`cα1),

b0 =
1

2`2c
(4i`cα1 + 3α2) ,

b1 =
1

2`2c
(2i`cα1 + 3α2) .

As a consequence, we have for all x ∈ R

Ψ0,0,1,0,1(x) =

(
α2x

3 + α1x
2 +

4i`cα1 + 3α2

2`2c
x+

3iα2 − 3`cα1

2`3c

)
ei`cx

+

(
2i`cα1 + 3α2

2`2c
x− 3iα2 − 3`cα1

2`3c

)
e−i`cx. (4.7)

Using the reflection symmetry S1, we directly have that Ψ0,0,0,1,1 = −S1Ψ0,0,1,0,1. We next compute cubic

coefficients in the Taylor expansion of Ψ.
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Terms of order O(A2A) and O(A
2
A). Using once more the symmetry S1, we have that if Ψ2,1,0,0,0 is

known, then we have Ψ1,2,0,0,0 = S1Ψ2,1,0,0,0. We easily check that Ψ2,1,0,0,0 solves

0 = T Ψ2,1,0,0,0 +W ∗ ζ0, with Ψ2,1,0,0,0 ∈ kerQ,

which gives

Ψ2,1,0,0,0(x) = −α0x
2ζ0(x) + ψ2,1,0,0,0(x), with ψ2,1,0,0,0 ∈ E0,

where α0 = −κ2
0,1/κ2,1. Computations similar to the ones for the term O(λA) lead to

Ψ2,1,0,0,0(x) = −α0

[(
x2 +

2i

`c
x− 3

2`2c

)
ei`cx +

(
i

`c
x+

3

2`2c

)
e−i`cx

]
, ∀x ∈ R. (4.8)

The reduced vector field. The reduced vector field will be of the form

dA

dx
= f1(A,A,B,B, λ), (4.9a)

dB

dx
= f2(A,A,B,B, λ), (4.9b)

together with the equations for the complex conjugates. Recall, that f1 and f2 are obtained by computing

d

dx
Q (Φ(u0(·+ x))) |x=0 = (f1, f1, f2, f2).

Note that, slightly abusing notation, we identify elements in E0 with their representation in the basis{
ζ0, ζ0, ζ1, ζ1

}
. We also remark that Φ(u0) = u0 + Ψ(u0, λ), such that Q (Φ(u0(·+ x))) = Q (u0(·+ x)) +

Q (Ψ(u0(·+ x), λ) where

d

dx
Q (u0(·+ x)) |x=0 = (i`cA+B,−i`cA+B, i`cB,−i`cB).

As a consequence, it remains to compute d
dxQ (Ψ(u0(·+ x))) |x=0 only. On can check for example that, from

the expression of Ψ1,0,0,0,1 and Ψ2,1,0,0,0 in (4.6) and (4.7) respectively that

d

dx
Q (Ψ1,0,0,0,1(·+ x)) |x=0 = 2α0

(
i

`c
,− i

`c
, 1, 1

)
, for terms of order O(λA),

d

dx
Q (Ψ0,0,1,0,1(·+ x)) |x=0 = 2

`cα1 − 3iα2

`2c

(
i

`c
,− i

`c
, 1, 1

)
, for terms of order O(λB).

We then find that the linear part of system (4.9) is given by

dA

dx
= i`cA+B +

2iα0

`c
λ
(
A+A

)
+

2a0

`c
λ
(
B −B

)
, (4.10a)

dB

dx
= i`cB + 2α0λ

(
A+A

)
− 2ia0λ

(
B −B

)
, (4.10b)

where we set a0 := (3α2+i`cα1)/`2c ∈ R. Following [22, Lemma 2.4], we know that there exists a smooth linear

map L(λ) such that for sufficiently small λ, the linear change of variables (A,A,B,B)T = L(λ)(C,C,D,D)T

transforms the linear system (4.10) into the normal form

dC

dx
= i`(λ)C +D, (4.11a)

dD

dx
= α(λ)C + i`(λ)D, (4.11b)
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with complex conjugates, where we have set

`(λ) :=
i

2

√
2`2c − 4`ca0λ+ 2`c

√
−4`ca0λ+ `2c + 8α0λ,

α(λ) := `ca0λ−
`2c
2

+
`c
2

√
−4`ca0λ+ `2c + 8α0λ.

Note that we have the expansions

`(λ) = `c + (α0 − a0)λ+ o(λ), and α(λ) = 2α0λ+ o(λ).

We are now going to apply a cubic transformation to our full system (4.9) for λ = 0, that is to

dA

dx
= i`cA+B + g1(A,A,B,B), (4.12a)

dB

dx
= i`cB + g2(A,A,B,B), (4.12b)

where we have set

g1,2(A,A,B,B) =
∑

n1+n2+n3+n4=3

An1A
n2
Bn3B

n4
g1,2
n1,n2,n3,n4

.

First, we obtain the following expression for terms of order O(A|A|2) which is given by computing

d

dx
Q (Ψ2,1,0,0,0(·+ x)) |x=0 = −2α0

(
i

`c
,− i

`c
, 1, 1

)
.

Once again, following the strategy developed in [22, Lemma 2.6], one can find homogeneous polynomials of

degree 3 denoted (N1,N2) in the complex variables (E,F,E, F ), such that the change of variables

A = E +N1(E,F,E, F ),

B = F +N2(E,F,E, F ),

is well-defined in a neighborhood of the origin and transforms the system (4.12) into the normal form

dE

dx
= i`cE + F +O

(
(|E|+ |F |)5

)
, (4.13a)

dF

dx
= i`cF − 2α0E|E|2 + h1F |E|2 + h2E

(
EF − EF

)
+O

(
(|E|+ |F |)5

)
, (4.13b)

for two complex constants (h1, h2) ∈ C. As a consequence, applying our two change of variables and denoting

with (Ã, Ã, B̃, B̃) the new variables, we obtain the following system into normal form to leading order

dÃ

dx
= i`(λ)Ã+ B̃, (4.14a)

dB̃

dx
= α(λ)Ã+ i`(λ)B̃ − 2α0Ã|Ã|2 + h1B̃|Ã|2 + h2Ã

(
ÃB̃ − ÃB̃

)
. (4.14b)

The higher order terms in the normal form are of order

|λ|
(
|Ã|+ |B̃|

)3

+
(
|Ã|+ |B̃|

)5

.

Next, we pass to corotating frame with respect to the normal form symmetry,

Ã(x) = ei`(λ)xÂ(x) and B̃(x) = ei`(λ)xB̂(x),
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to get at leading order

dÂ

dx
= B̂,

dB̂

dx
= α(λ)Â− 2α0Â|Â|2 + h1B̂|Â|2 + h2Â

(
ÂB̂ − ÂB̂

)
.

We finally scale the equation, exhibiting leading order terms:

x̂ = |λ|1/2x, Â = |λ|1/2A, B̂ = |λ|B,

which leads the new system

dA

dx̂
= B +O

(
|λ|1/2

)
, (4.15a)

dB

dx̂
= 2α0A

(
sign(λ)− |A|2

)
+O

(
|λ|1/2

)
. (4.15b)

From now on, we assume that λ > 0 and α0 > 0 which is equivalent to κ2,1 < 0. In that case, we follow

the perturbative analysis of [14] (see also [6]) and find a pair of reversible homoclinic orbits to the origin,

solutions to (4.1), which can be approximated to leading order by

u(x) = 2
√
λsech

(
x
√

2α0λ
)

cos(x+ ϑ) +O(λ), x ∈ R,

with ϑ ∈ {0, π} and λ =
√
µ− µc for µ > µc.

Remark 4.3. The example illustrates the somewhat novel (when compared to computations for local differ-

ential equations) algebra involved with computing Taylor jets of the reduced vector field. We computed only

the relevant cubic terms, that is, terms that give leading order expansions after scaling. Since the computa-

tion of those terms is somewhat simplified to a general computation of a reduced vector field, we include in

the Appendix C a computation of the vector field up to order 3.

4.2 Slowly varying traveling waves in neural field equations

Our second example is concerned with traveling waves rather than stationary solutions, in a system of n

coupled neural field equations,

∂tu(t, x) = −Du(t, x) +

∫
R

K (x− y)F (u(t, y), µ)dy, (t, x) ∈ (0,∞)× R, (4.16)

for u : R → Rn, n ≥ 1, and µ ≥ 0, where D = diag(dj) is a diagonal matrix with positives entries dj > 0

for all j = 1 · · ·n. Throughout the sequel, we will assume that K is a Gaussian matrix kernel in the sense

that for all 1 ≤ i, j ≤ n, there exists ai,j > 0, such that Ki,j(x) = exp(−ai,jx2) for all x ∈ R, and thus

K satisfies Hypothesis (H1) for all η0 > 0. We also suppose that the nonlinear operator u 7→ K ∗ F (u, µ)

verifies Hypothesis (H2µ) and that u 7→ F (u, µ) is odd. Although this last assumption on the oddness of the

nonlinearity is not required for the analysis and could be removed, it simplifies the subsequent computations

of the reduced vector field on the center manifold.

Spatially homogeneous states of (4.16) are solutions of the kinetic equation on Rn

du

dt
= −Du + K0F (u, µ), (4.17)
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where the matrix K0 is defined through K0 :=
∫
R K (x)dx. In a neighborhood of (u, µ) = (0, 0), we assume

that the dynamics of (4.17) can be reduced to a one-dimensional center manifold with a vector field

dz

dt
= g(z, µ), z ∈ R.

We suppose that the resulting bifurcation is a supercritical pitchfork bifurcation.

Hypothesis 4.4 (Supercritical pitchfork bifurcation). The reduced vector field on the one-dimensional center

manifold is odd in z for all µ close to zero and

g(z, µ) = z
(
αµ− βz2

)
+O

(
|z|
(
|µ|+ z2

)2)
, as (z, µ)→ (0, 0)

with α > 0 and β > 0.

Traveling wave solutions of (4.16) are stationary solutions of the following system of equations

∂tu = c∂ξu−Du + K ∗ F (u, µ), (4.18)

where ξ = x− ct for some constant c ∈ R. Steady states of (4.18) are thus solutions of the following nonlocal

system

0 = u + Gc ∗ F (u, µ), (4.19)

where we set Gc =
(
c d

dξ In −D
)−1

K . It is important to note that c 7→ Gc is a smooth operator from

W 1,∞(R,Rn) to itself because of the Gaussian nature of K . From now on, we will assume that there is a

dependence between c and µ by imposing that c = εc∗, µ = ε2 for ε ≥ 0 and some c∗ ∈ R independent of ε.

Such a scaling is motivated by an analogous study [18] for systems of reaction-diffusion equations. It is also

useful to note that in the limit c→ 0, we have G0 = −D−1K .

The linearization of (4.19) about the trivial state u = 0 leads to the linear operator

Tεu := u + Gεc∗ ∗DuF
(
0, ε2

)
.

We define the linear characteristic equation d(ν, ε) as

d(ν, ε) := det
(
T̂ε(ν)

)
= det

(
In + Ĝεc∗(ν)DuF

(
0, ε2

))
, for (ν, ε) ∈ C× R+.

We make the following hypotheses on the characteristic equation.

Hypothesis 4.5 (Homogeneous instability). We assume that the characteristic equation d(ν, ε) satisfies:

• d(0, 0) = ∂νd(0, 0) = 0 with ∂ννd(0, 0) 6= 0;

• d(i`, 0) 6= 0 for all ` 6= 0.

Notation. As d(0, 0) = 0, there exists e0, e
∗
0 ∈ Rn such that

T̂0(0)e0 = e0 + Ĝ0(0)DuF (0, 0)e0 = 0,

T̂0(0)Te∗0 = e∗0 + DuF (0, 0)TĜ0(0)Te∗0 = 0,

〈e0, e
∗
0〉 = 1,

where 〈·, ·〉 denotes the standard inner product on Rn given by

〈u,v〉 =

n∑
k=1

ukvk, for any u = (uk)nk=1 ∈ Rn and v = (vk)nk=1 ∈ Rn.
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Note that Ĝ0(0) = −D−1K0, together with

α = 〈K0Du,µF (0, 0)e0, e
∗
0〉 > 0,

β = −1

6
〈K0Du,u,uF (0, 0) [e0, e0, e0] , e∗0〉 > 0,

where α and β are the coefficients appearing in the Taylor expansion of g(z, µ).

Symmetries. As in the previous section, in addition to the translation equivariance, equation (4.19)

possesses two other symmetries, that we denote S1 and S2 respectively and act on functions as

S1u(ξ) := u(−ξ), and S2u(ξ) := −u(ξ), ∀ξ ∈ R.

The first symmetry is a consequence of the fact that each element of the matrix kernel K is a symmetric

function, whereas the second symmetry results from the odd symmetry of the nonlinear operator F with

respect to its first argument. Finally, let us remark that the conditions on the dispersion relation ensures

that the kernel E0 of T0 is given by

E0 = Span {e0, ξe0} ⊂ H1
−η(R,Rn),

for all 0 < η < η0 and any fixed η0 > 0. As a consequence, any functions u0 ∈ E0, can be decomposed as

u0 = Ae0 +Be1, (4.20)

for (A,B) ∈ R2 and e1(ξ) := ξe0. We remark that the actions of S1,2 on u0 are given by

S1u0 = Ae0 −Be1,

S2u0 = −Ae0 −Be1.

We identify the action of S1,2 on the couple (A,B) as

S1 · (A,B) = (A,−B),

S2 · (A,B) = (−A,−B).

Projection Q. We now define the projection Q from H2
−η(R,Rn)→ E0. Note that by Sobolev embedding

we have H2(R,Rn) ⊂ C 1(R,Rn), and thus we can take linear combinations of u(0) and u′(0). We define the

projection Q : H2
−η(R,Rn)→ E0 through

Q(u) := (u(0), e∗0) e0 + (u′(0), e∗0) e1. (4.21)

Center manifold theorem. We apply the parameter-dependent center manifold theorem with symmetries

to system (4.19), to obtain the existence of neighborhoods Uu, U0 of (0, 0) in E0 × (0,+∞) and a map

Ψ ∈ C k(Uu × U0, kerQ) with Ψ(0, 0) = 0, DuΨ(0, 0) = 0, which commutes with S1,2, and such that for all

ε ∈ U0 the manifold

M0(ε) := {u0 + Ψ(u0, ε) | u0 ∈ Uu}

contains the set of all bounded solutions of (4.19). From now on, we write

Ψ(u0, ε) = Ψ(A,B, ε), for u0 = Ae0 +Be1.

The fact that Ψ should commute with S2 implies that

S2Ψ(A,B, ε) = Ψ(S2 · (A,B), ε),
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which yields

−Ψ(A,B, ε) = Ψ(−A,−B, ε).

Thus, there will not be any quadratic term in the Taylor expansion of Ψ. From now on, we write

Ψ(A,B, ε) =
∑

l1,l2,r≥0
l1+l2+r>1

Al1Bl1εrΨl1,l2,r,

the Taylor expansion of Ψ. Our next task is to compute the lower order terms of this expansion.

Terms of order O(εA) and O(εB). We first start by computing the linear leading order terms in ε in the

above Taylor expansion of Ψ. The function Ψ1,0,1 is the solution to the equation

T0Ψ1,0,1 − c∗D−2 d

dξ
[K ∗ (DuF (0, 0)e0)] = 0, with Ψ1,0,1 ∈ kerQ.

A trivial computation shows that d
dξ [K ∗ (DuF (0, 0)e0)] = 0, such that Ψ1,0,1 ∈ kerQ∩ ker T0 and thus

Ψ1,0,1 = 0.

On the other hand, we have that Ψ0,1,1 is the solution to the equation

T0Ψ0,1,1 − c∗D−2 d

dξ
[K ∗ (DuF (0, 0)e1)] = 0, with Ψ0,1,1 ∈ kerQ.

First we note that, d
dξ [K ∗ (DuF (0, 0)e1)] = K0DuF (0, 0)e0 and we look for solutions of the form

Ψ0,1,1(ξ) = γ0ξ
2e0 + ψ0,1,1, with ψ0,1,1 ∈ E0.

We then find that

−γ0D
−1

∫
R
y2K (y)DuF (0, 0)e0dy − c∗D−2K0DuF (0, 0)e0 = 0,

such that

γ0 = − c∗
κ2
, κ2 :=

∫
R
y2〈K (y)DuF (0, 0)e0, e

∗
0〉dy;

here, we used the fact that e0 = D−1K0DuF (0, 0)e0 and 〈e0, e
∗
0〉 = 1. Note that κ2 6= 0 as ∂ννd(0, 0) 6= 0

from our hypothesis on the characteristic equation. Finally, as Q(Ψ0,1,1) = ψ0,1,1 and Ψ0,1,1 ∈ kerQ, we

necessarily have ψ0,1,1 = 0.

Terms of order O(A3). The function Ψ3,0,0 solves

T0Ψ3,0,0 −D−1K ∗
(

1

6
Du,u,uF (0, 0)[e0, e0, e0]

)
= 0, with Ψ3,0,0 ∈ kerQ.

We find that

Ψ3,0,0(ξ) = β0ξ
2e0,

where β0 is given by

β0 = −1

6

〈K0Du,u,uF (0, 0)[e0, e0, e0], e∗0〉
κ2

=
β

κ2
.
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Terms of order O(ε2A). The function Ψ1,0,2 is solution of the equation

T0Ψ1,0,2 −D−1K ∗ (Du,µF (0, 0)e0) = 0, with Ψ1,0,2 ∈ kerQ.

We find

Ψ1,0,2(ξ) = α0ξ
2e0,

where α0 is given by

α0 = −〈K0Du,µ(0, 0)e0, e
∗
0〉

κ2
= − α

κ2
.

The reduced vector field. The reduced vector field will be of the form

dA

dξ
= f(A,B, ε), (4.22a)

dB

dξ
= g(A,B, ε), (4.22b)

where f and g are obtained by computing

d

dξ
Q (Φ(u0(·+ ξ))) |ξ=0 = (f, g).

Note that we slightly abused notation as we identify elements in E0 with their components on the ba-

sis {e0, e1}. We also remark that Φ(u0) = u0 + Ψ(u0, ε), such that Q (Φ(u0(·+ ξ))) = Q (u0(·+ ξ)) +

Q (Ψ(u0(·+ ξ), ε) where
d

dξ
Q (u0(·+ ξ)) |ξ=0 = (B, 0).

Furthermore, we also have that
d

dξ
Q
(
(·+ ξ)2e0

)
|ξ=0 = (0, 2).

Collecting all terms, we obtain the system

dA

dξ
= B +O

(
ε(|A|+ |B|) + (|A|+ |B|)3

)
, (4.23a)

dB

dξ
= 2εγ0B + 2α0ε

2A+ 2β0A
3 +O

(
|B|(ε2 + |B|2 + |A|2)

)
. (4.23b)

We now rescale space with ζ = εξ, and the amplitudes A = εÂ, B = ε2B̂ to obtain a new system

dÂ

dζ
= B̂ +O (ε) , (4.24a)

dB̂

dζ
=

2

κ2

(
−c∗B̂ − Â

[
α− βÂ2

])
+O (ε) . (4.24b)

From now on we suppose that

κ :=
κ2

2
=

1

2

∫
R
y2〈K (y)DuF (0, 0)e0, e

∗
0〉dy > 0,

and formally set ε = 0 in (4.24) to obtain the second order ordinary differential equation

κ
d2Â

dζ2
+ c∗

dÂ

dζ
+ Â

[
α− βÂ2

]
= 0. (4.25)
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We know that such an equation admits monotone front solutions for any |c∗| ≥ 2
√
κα connecting the

state Â = 0 to the state Â =
√
α/β (see [9, 19]). Note that for ε > 0, there exists a unique saddle-

point a(ε) := (
√
α/β + O(ε), 0). Then it follows from perturbative arguments [4, 18] that system (4.24)

has front solutions connecting (0, 0) with a(ε). Monotonicity in the tails can be established for speeds

|c∗| > 2
√
κα + O(ε). We denote by u∗ the front solution of equation (4.25) connecting 0 to

√
α/β, In our

initial problem, we thus have thus shown the existence of slowly varying front solutions of (4.16) of the form

u(t, x) = εu∗(ε(x− εc∗t))e0 +O(ε2),

for all t, x ∈ R, with monotone tails for |c∗| ≥ 2
√
κα+O(ε) and u∗ solution of (4.25).

5 Discussion

We established the existence of finite-dimensional center manifolds for nonlocal equations on the real line

possessing a continuous translation symmetry. Rather than constructing a phase space, we use Lyapunov-

Schmidt reduction on the set of trajectories to reduce to a finite-dimensional kernel, on which we construct a

reduced flow with associated vector field through the shift induced by the action of translations on bounded

solutions. There are clearly numerous generalizations possible, but also some apparent limitations to our

approach, and we comment on a few of those here.

Nonautonomous systems. One can clearly allow for nonlinearities to depend on time explicitly F =

F(u(·), ·). The reduction procedure remains literally unchanged. The explicit time dependence would how-

ever break the translation symmetry. One inherits an action of the shift mapping solutions u(·) 7→ u(·+ τ)

combined with a shift in the time variable of the nonlinearity, F(u, ·) 7→ F(u, ·+ τ). The reduced equations

will inherit an equivalent action of the translation group, given by a non-autonomous vector field with similar

time-dependence, for instance, periodic, quasi-periodic, heteroclinic, etc. In this light, our approach can be

viewed as an analysis similar to the constructions of trajectory attractors in non-autonomous or ill-posed

evolution equations; see for instance [3, 23].

Infinite-dimensional systems. We studied nonlocal equations where u(x) ∈ Rn. It would be interesting

and quite useful to generalize to equations where u(x) ∈ X , a Hilbert space or even a Banach space. The

main obstacle at this point is the fact that the results in [7] are limited to finite-dimensional ranges. It is

conceivable that those results could be generalized with suitable compactness assumptions on lower-order

terms.

Semilinear equations only. Another limitation of our results, again owed to the limitations in [7], is

the fact that we require our equations to be semilinear in the sense that the principal part in the sense of

regularity is invertible, chosen as the identity, here, and other terms are of lower order, somewhat regular

convolution kernels. Results in [1] motivate that significantly different phenomena can be expected when

such hypotheses are violated. In particular, one may find non-smooth solutions, precluding the possibility of

a differentiable action of the translation group. Examples are in particular kernels containing Dirac-masses,

such as kernels mimicking lattice differential equations K(·) =
∑
ajδ(· − ξj).

Exponentially localized kernels only. We rely on exponential localization of the kernel when invoking

[7], and also when formulating our contraction-mapping theorem in spaces of exponentially growing functions.

It is not clear how to weaken those assumptions significantly. It is conceivable to formulate assumptions

on multiplicities of roots of the characteristic equation d(ν) on the imaginary axis given sufficient algebraic
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localization, such that moments of K are well defined and sufficiently high moments do not vanish, but

Fredholm properties of the linear part as well as the nonlinear arguments will likely require different choices

of function spaces and possibly additional assumptions on the nonlinearity. In this direction, establishing

Fredholm properties and henceforth existence of center manifolds in exponentially weighted spaces of con-

tinuous functions, as used in [24], would yield sharper results since nonlinearities f ∈ C k yield superposition

operators F of class C k.

Center-manifolds versus asymptotic methods. Without reviewing the general merits of center man-

ifolds, we would like to point out that center manifold methods have inherent advantages compared to more

direct matched asymptotics or scaling arguments. One could for instance try to find solutions on the center

manifold directly, using formally derived leading-order approximations, and control errors in a subsequent

step, locally near a specific solution. While such approaches may be more robust, for instance in the case of

algebraic localization of the kernel, they give weaker results; see for instance [8]. In particular, uniqueness

statements are restricted to neighborhoods of particular ansatz solutions. Statements such as a Poincaré-

Bendixson theorem, immediate for two-dimensional kernels, seem elusive without the construction of an

actual flow.

Nonlocal equations versus local ODEs. Inspecting the calculations of the reduced vector field, one

realizes that only finitely many generalized moments (4.2) enter the computation of Taylor jets at any fixed

order. One can therefore formally replace the nonlocal convolution kernel with a differential equations that

reflects the Taylor jet of the Fourier transform of the convolution kernel at roots of the characteristic equation

d(ν) = 0, and find the exact same reduced differential equation. Since higher orders of the Taylor jet invoke

higher generalized moment, there may however not be one differential equation that yields the vector field

associated with a fixed given nonlocal equation. Computationally, this observation does however provide

an alternative strategy towards computing the reduced vector field, relying on an approximating differential

equation and the more tradition computation of center manifolds in the associated phase space. It would be

interesting to formulate a priori conditions for sufficiently high orders of approximation.

A Superposition operators on exponentially weighted spaces

We show how to adapt [24, Lemma 3 & 5] in order to show that Hypothesis (H2) holds in the case of a

nonlinearity

F(u)[x] = g(u(x)), ∀x ∈ R, ∀u ∈W 1,∞(R,Rn),

with g ∈ C k+1 and g(0) = 0, Dug(0) = 0. For convenience of the presentation, we simply denote H1
−η

instead of H1
−η(R,Rn) throughout this section.

Let us first suppose first that g ∈ C 1
b (Rn), the set of C 1 bounded functions, and write g0 = sup |g|,

g1 = sup |g′|. For η ≥ ζ > 0 let us show that F : H1
−ζ → H1

−η is continuous. For this, let u, v ∈ H1
−ζ , and

decompose

‖F(u)−F(v)‖2H1
−ζ

= ‖ω−η (F(u)−F(v)) ‖2L2 + ‖ω−η∂x(F(u)−F(v))‖2L2 .

We estimate the first integral as

‖ω−η (F(u)−F(v)) ‖2L2 ≤ 2g2
0

∫
|x|≥ρ

ω2
−η(x)dx+ sup

|x|≤ρ
|g(u(x))− g(v(x))|2‖ω−η‖2L2 .

Now, fix ε > 0 such that one can find some ρ > 0 so that

2g2
0

∫
|x|≥ρ

ω2
−η(x)dx ≤ ε2

4
,
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Furthermore, since ω−ηu ∈ H1, by Morrey’s inequality, we have that ω−ηu ∈ C 0,1/2, which in turn implies

that the set Ω := {u(x) | |x| ≤ ρ} is compact. As a consequence, since g is continuous, there exists δ > 0

such that

|g(y + z)− g(y)| < ε

2‖ω−η‖L2

, if y ∈ Ω, and |z| < δ1.

Let δ > 0, to be chosen later, and u, v ∈ H1
−ζ with ‖u− v‖H1

−ζ
≤ δ. Then, again by Morrey’s inequality, we

have that for some constant C > 0,

‖ω−ζ(u− v)‖C 0,1/2 ≤ C‖u− v‖H1
−ζ
≤ Cδ.

Thus, for all |x| ≤ ρ,

|u(x)− v(x)| ≤ Cδ sup
|x|≤ρ

ω−ζ(x)−1.

As a consequence, we choose δ :=

(
C sup
|x|≤ρ

ω−ζ(x)−1

)−1

, and obtain

sup
|x|≤ρ
|g(u(x))− g(v(x))|2‖ω−η‖2L2 ≤

ε2

4
,

and then

‖ω−η (F(u)−F(v)) ‖2L2 ≤
ε2

2
.

Finally, we remark that

‖ω−η∂x(F(u)−F(v))‖2L2 ≤
∫
R
ω2
−η(x)|u′(x)−v′(x)|2|g′(u(x))|2dx+

∫
R
ω2
−η(x)|v′(x)|2|g′(u(x))−g′(v(x))|2dx.

Note that the first integral is controlled by∫
R
ω2
−η(x)|u′(x)− v′(x)|2|g′(u(x))|2dx ≤ g2

1‖u− v‖H1
−ζ
.

The second integral can be evaluated similarly, using the fact that g′ is continuous and ω−ζv
′ ∈ L2, such

that we also get

‖ω−η∂x(F(u)−F(v))‖2L2 ≤
ε2

2
.

We now turn to differentiability of the superposition operator. Let g ∈ C k+1
b (Rn), and let η > kζ > 0 for

k ≥ 1, then F : H1
−ζ → H1

−η is C k. First, define for each 1 ≤ p ≤ k a mapping F (p) by F (p)(u)(x) :=

Dpg(u(x)) for any x ∈ R and u ∈W 1,∞. We consider F (p) as a p-linear operator given through

F (p)(u) · (u1, . . . , up)(x) := Dpg(u(x)) · (u1(x), . . . , up(x)), ∀x ∈ R,∀u1, . . . , up ∈W 1,∞.

It is easy to check that F (p)(u) ∈ L (p)(H1
−ζ × · · · ×H1

−ζ , H
1
−η). Indeed, from its definition, we have that

‖F (p)(u) · (u1, . . . , up)‖H1
−η
≤ ‖F (p)(u)‖H1

−η+pζ
‖u1‖H1

−ζ
· · · ‖up‖H1

−ζ
,

and, as consequence, we also have that F (p) is continuous from H1
−ζ into L (p)(H1

−ζ × · · · × H1
−ζ , H

1
−η).

Furthermore, for any u, v ∈ H1
−ζ , we have

‖F(u+ v)−F(u)−F (1)(u) · v‖H1
−η

=

∥∥∥∥∫ 1

0

(
F (1)(u+ sv)−F (1)(u)

)
· vds

∥∥∥∥
H1
−η

≤ sup
s∈[0,1]

‖F (1)(u+ sv)−F (1)(u)‖H1
−η+pζ

‖v‖H1
−ζ
.
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Since, in particular, F (1) is continuous, we have for each ε > 0 the existence of δ > 0 such that

sup
s∈[0,1]

‖F (1)(u+ sv)−F (1)(u)‖H1
−η+pζ

≤ ε, if ‖v‖H1
−ζ
≤ δ.

Thus, F is differentiable at u ∈ H1
−ζ , and one can prove in the same fashion that F is C p for each p = 1, . . . , k.

Finally, let g ∈ C k+1(Rn) and let χε be the cut-off operator introduced in the previous section, we define

gε(u) := g (χ̄(u/ε)u) ,

and, since χ̄ is chosen as a smooth cut-off, we have that gε ∈ C k+1
b (Rn) and thus Fε : H1

−ζ → H1
−η is C k.

B Contractions on scales of embedded Banach spaces

We give details on the proof of Lemma 3.3.

We first recall a result from [24] on contractions on embedded Banach spaces. Let X ,Y,Z and Λ be Banach

spaces with norms denoted respectively by ‖ · ‖X , ‖ · ‖Y , ‖ · ‖Z and ‖ · ‖Λ, with continuous embedding:

X J
↪→ Y G

↪→ Z.

Consider the fixed point equation

y = f(y, λ), (B.1)

where f : Y × Λ −→ Y satisfies the following conditions:

(C1) Gf : Y × Λ −→ Z has continuous partial derivative Dy(Gf) : Y × Λ −→ L(Y,Z) with

Dy(Gf)(y, λ) = Gf (1)(y, λ) = f
(1)
1 (y, λ)G, ∀(y, λ) ∈ Y × Λ,

for some f (1) : Y × Λ −→ L(Y) and f
(1)
1 : Y × Λ −→ L(Z).

(C2) f0 : X × Λ −→ Y, (y0, λ) 7−→ f0(y0, λ) = f(J y0, λ) has continuous partial derivative Dλf0 : X × Λ −→
L(Λ,Y).

(C3) There exists κ ∈ [0, 1) such that

‖f(y, λ)− f(ỹ, λ)‖Y ≤ ‖y − ỹ‖Y , ∀y, ỹ ∈ Y, ∀λ ∈ Λ,

and

‖f (1)(y, λ)‖Y ≤ κ, ‖f (1)
1 (y, λ)‖Z ≤ κ, ∀(y, λ) ∈ Y × Λ.

(C4) Let y = ỹ(λ) ∈ Y be the unique solution of (B.1) for λ ∈ Λ. Suppose that ỹ(λ) = J ỹ0(λ) for some

continuous ỹ0 : Λ −→ X .

These conditions allow to consider the following equation in L(Λ,Y):

Θ = f (1)(ỹ(λ), λ)Θ +Dλf0(ỹ0(λ), λ), (B.2)

which has a unique solution Θ̃(λ) ∈ L(Λ,Y) for any λ ∈ Λ from condition (C3). The following Theorem is

proved in [24].

Theorem 5. Assume (C1)− (C4). Then the solution map ỹ : Λ→ Y of (B.1) is Lipschitz continuous, and

Gỹ : Λ→ Z is of class C 1, with

DλGỹ(λ) = GΘ̃(λ), ∀λ ∈ Λ. (B.3)

We now turn to the proof of Lemma 3.3, considering first the case p = 1 and then higher-order differentiability.

Once again, for convenience of the presentation, we simply denote H1
−η instead of H1

−η(R,Rn).
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Continuous differentiability of the fixed point, p = 1. We fix η ∈ (η̃, η̄] and apply Theorem 5 with

X = Y = H1
−η̃, Z = H1

−η, Λ = E0 and f(y, λ) := Sε(y;λ), where Sε : H1
−η̃ × E0 −→ H1

−η̃ is defined in (3.5).

Indeed, one can check that all assumptions (C1)-(C4) are met in that case, and we obtain that Φ : E0 → H1
−η

is of class C 1 with derivative Φ(1)(u0) := DΦ(u0) ∈ L (E0, H1
−η) being the unique solution of the equation

Θ = Dyf(Φ(u0), u0)Θ +Dλf(Φ(u0), u0) := F1(Θ, u0). (B.4)

Note that the mapping F1 : L (E0, H1
−η)× E0 → L (E0, H1

−η) is a uniform contraction for each η ∈ [η̃, η̄] by

the assumptions on Fε (recall that DFε(u) is assumed to be Lipschitz in u), and hence we have that its fixed

point Φ(1)(u0) belongs in fact to L (E0, H1
−η̃) by continuous embedding and thus Φ(1) : E0 → L (E0, H1

−η) is

continuous if η ∈ (η̃, η̄].

Higher smoothness, p ≥ 2. We now use induction on p. Let 1 ≤ p < k, and suppose that for all q with

1 ≤ q ≤ p and for all η ∈ (qη̃, η̄] the mapping Φ : E0 → H1
−η is of class C p, with Φ(q)(u0) := DqΦ(u0) ∈

L (q)(E0, H1
−qη̃) for each u0 ∈ E0 and Φ(q) : E0 → L (q)(E0, H1

−η) continuous if η ∈ (qη̃, η̄]. Suppose also that

Φ(p)(u0) is the unique solution of an equation that is of the form

Θ(p) = Dyf(Φ(u0), u0)Θ(p) +Gp(u0) := Fp(Θ
(p), u0), (B.5)

with G1(u0) = Dλf(Φ(u0), u0) and, for p ≥ 2, Gp(u0) is given as a finite sum of terms of the form

D(k)
y D

(q−k)
λ f(Φ(u0), u0) ·

(
D(r1)Φ(u0), . . . , D(rk)Φ(u0)

)
,

with 2 ≤ q ≤ p and k ≤ q with 1 ≤ ri < p for all i = 1, . . . , k that verify r1 + · · ·+rk = k. We remark that we

have Gp(u0) ∈ L (p)(E0, H1
−pη̃). As a consequence, the mapping Fp : L (p)(E0, H1

−η) × E0 → L (p)(E0, H1
−η)

is well defined and is a uniform contraction for all η ∈ [pη̃, η̄]. However, the term Dyf(Φ(u0), u0) is not

continuously differentiable and one needs to apply Theorem 5 using three different Banach spaces. Therefore,

fix some η ∈ ((p+1)η̃, η̄] and choose σ ∈ (η̃, η/(p+1)) and ζ ∈ ((p+1)σ, η). We now show that the hypotheses

of the theorem are satisfied with X = L (p)(E0, H1
−pσ), Y = L (p)(E0, H1

−ζ) and Z = L (p)(E0, H1
−η), Λ = E0

and f = Fp. Condition (C3) is met since C(η)δ1(ε) < 1 for all η ∈ [η̃, η̄], while (C4) follows from the

induction hypothesis and the fact that σ > η̃. One can then check that u0 7→ Dyf(Φ(u0), u0) is continuous

from E0 into L (H1
−ζ , H

1
−η) as η > ζ and that Φ : E0 → H1

−ζ is continuous. In fact, we further have that

u0 7→ Dyf(Φ(u0), u0) is C 1 from E0 into L (H1
−pσ, H

1
−ζ) which follows from the fact that ζ > (p + 1)σ and

that Φ : E0 → H1
−σ is of class C 1. Provided that Gp : E0 → H1

−ζ is of class C 1 we then conclude from

Theorem 5 that Φ(p) : E0 → L (p)(E0, H1
−η) is of class C 1 and hence Φ : E0 → H1

−η if of class C p+1 if

η ∈ ((p+ 1)η̃, η̄]. The proof of the fact that Gp : E0 → H1
−ζ is of class C 1 follows along similar lines as [24,

Lemma 7] and is omitted here.

C Computations of cubic order terms of the Taylor expansion

We compute expansions to order 3 of the reduction function Ψ and the reduced vector field for the example

from Section 4.1.

C.1 Expansion of the reduction function

We calculate the general cubic terms of Ψ.
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Terms of order O(A3) and O(A
3
). We first note that if Ψ3,0,0,0,0 is know, then we have Ψ0,3,0,0,0 =

S1Ψ3,0,0,0,0. collecting terms of order O(A3), we obtain the equation

0 = T Ψ3,0,0,0,0 −
1

3
W ∗ ζ3

0 , with Ψ3,0,0,0,0 ∈ kerQ.

By noting that W ∗ ζ3
0 = κ0,3ζ

3
0 , we obtain that

Ψ3,0,0,0,0(x) =
1

3

κ0,3

−1 + κ0,3/κ0,1
e3i`cx + ψ3,0,0,0,0(x) with ψ3,0,0,0,0 ∈ E0.

Then, one computes that Q(e3i`cx) = −4ζ0(x) + 5ζ0(x) + 8i`cζ1(x) + 4i`cζ1(x), such that we have

Ψ3,0,0,0,0(x) =
1

3

κ0,3

−1 + κ0,3/κ0,1

(
e3i`cx + (4− 8i`cx) ei`cx − (5 + 4i`cx)e−i`cx

)
, ∀x ∈ R. (C.1)

Terms of order O(B3) and O(B
3
). By symmetry we have that Ψ0,0,0,3,0 = −S1Ψ0,0,3,0,0 where Ψ0,0,3,0,0

solves

0 = T Ψ0,0,3,0,0 −
1

3
W ∗ ζ3

1 , with Ψ0,0,3,0,0 ∈ kerQ.

We first note that

W ∗ ζ3
1 (x) =

[
κ0,3x

3 − 2κ1,3x
2 − 2κ2,3x− κ3,3

]
e3i`cx.

As a consequence, we look for solutions of the form

Ψ0,0,3,0,0(x) =
(
β0 + β1x+ β2x

2 + β3x
3
)
e3i`cx + ψ0,0,3,0,0(x), with ψ0,0,3,0,0 ∈ E0.

Collecting terms of same order, we find a recursive system of equations for (βj)j=0,··· ,3

β3 (−1 + µcκ0,3)− κ0,3

3
= 0,

β2 (−1 + µcκ0,3) +

(
2

3
− 2µcβ3

)
κ1,3 = 0,

β1 (−1 + µcκ0,3) +

(
2

3
− 2µcβ3

)
κ2,3 − 2µcβ2κ1,3 = 0,

β0 (−1 + µcκ0,3) +

(
1

3
− µcβ3

)
κ3,3 + µcβ2κ2,3 − µcβ1κ1,3 = 0.

We find that

β3 =
1

3

κ0,3

−1 + κ0,3/κ0,1
, β2 =

2

3

κ1,3

(−1 + κ0,3/κ0,1)2
, β1 =

2

3

κ2,3

(−1 + κ0,3/κ0,1)2
+

4

3

κ2
1,3/κ0,1

(−1 + κ0,3/κ0,1)3
,

and

β0 =
1

3

κ3,3

(−1 + κ0,3/κ0,1)2
+

4

3

κ3
1,3/κ

2
0,1

(−1 + κ0,3/κ0,1)4
.

straightforward computations show that

ψ0,0,3,0,0 = −−8`3cβ0 + 9`cβ2 + i(12`2cβ1 − 3β3)

2`3c
ζ0 +

−10`3cβ0 + 9`cβ2 + i(12`2cβ1 − 3β3)

2`3c
ζ0

− 16`2cβ1 − 3β3 + i(16`3cβ0 − 10`cβ2)

2`2c
ζ1 −

10`2cβ1 − 3β3 + i(8`3cβ0 − 8`cβ2)

2`2c
ζ1.
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Terms of order O(B2B) and O(BB
2
). Once again, by symmetry we have that Ψ0,0,1,2,0 = −S1Ψ0,0,2,1,0

where Ψ0,0,2,1,0 solves

0 = T Ψ0,0,2,1,0 −W ∗
(
ζ2
1ζ1
)
, with Ψ0,0,2,1,0 ∈ kerQ.

We note that

W ∗
(
ζ2
1ζ1
)

(x) =
[
κ0,1x

3 − 2κ2,1x− κ3,1

]
ei`cx.

Here we used the fact that κ1,1 = 0. As a consequence, we look for solutions of the form

Ψ0,0,2,1,0(x) =
(
δ0 + δ1x+ δ2x

2 + δ3x
3
)
x2ei`cx + ψ0,0,2,1,0(x), with ψ0,0,2,1,0 ∈ E0.

And we find the system satisfied by (δj)j=0,··· ,3

10µcκ2,1δ3 − κ0,1 = 0,

−10δ3κ3,1 + 6δ2κ2,1 = 0,

5µcδ3κ4,1 − 4µcδ2κ3,1 + (2− 3µcδ1)κ2,1 = 0,

−µcδ3κ5,1 + µcδ2κ4,1 + (1− µcδ1)κ3,1 + µcδ0κ2,1 = 0,

which can be solved recursively

δ3 =
1

10

κ2
0,1

κ2,1
, δ2 =

1

6

κ3,1κ
2
0,1

κ2
2,1

, δ1 =
1

6

4κ0,1κ
3
2,1 − 8κ2

3,1κ
2
0,1 + κ4,1κ

2
0,1κ2,1

κ3
2,1

,

and

δ0 =
1

10

κ5,1κ
2
0,1

κ2
2,1

− 1

6

κ3,1κ0,1κ
3
2,1 + 8κ3

3,1κ
2
2,1

κ4
2,1

.

Once again, similar computations as above lead to

ψ0,0,2,1,0 =
3(−`cδ0 + iδ1)

2`3c

(
ζ0 − ζ0

)
+

4i`cδ0 + 3δ1
2`2c

ζ1 +
2i`cδ0 + 3δ1

2`2c
ζ1.

Terms of order O(A2B) and O(A
2
B). By symmetry we have that Ψ0,2,0,1,0 = −S1Ψ2,0,1,0,0 where

Ψ2,0,1,0,0 solves

0 = T Ψ2,0,1,0,0 −W ∗
(
ζ2
0ζ1
)
, with Ψ2,0,1,0,0 ∈ kerQ,

and

W ∗
(
ζ2
0ζ1
)

(x) = [κ0,3x− κ1,3] e3i`cx.

As a consequence, we look for solutions of the form

Ψ2,0,1,0,0(x) = (γ0 + γ1x) e3i`cx + ψ2,0,1,0,0(x), with ψ2,0,1,0,0 ∈ E0.

Collecting terms of same order, we find a recursive system of equations

γ1 (−1 + µcκ0,3)− κ0,3 = 0,

γ0 (−1 + µcκ0,3) + (1− µcγ1)κ1,3 = 0.

From which, we get

γ1 =
κ0,3

−1 + κ0,3/κ0,1
,

γ0 =
κ1,3

(−1 + κ0,3/κ0,1)
2 .

One can also check that

ψ2,0,1,0,0 =

(
4`cγ0 − 6iγ1

`c

)
ζ0 +

(
−5`cγ0 + 6iγ1

`c

)
ζ0 − (8γ1 + 8i`cγ0)ζ1 − (5γ1 + 4i`cγ0)ζ1.
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Terms of order O(A2B) and O(A
2
B). By symmetry we have that Ψ0,2,1,0,0 = −S1Ψ2,0,0,1,0 where

Ψ2,0,0,1,0 ∈ kerQ solves

0 = T Ψ2,0,0,1,0 −W ∗
(
ζ2
0ζ1
)
,

and W ∗
(
ζ2
0ζ1
)

= κ0,1ζ1, so that

Ψ2,0,0,1,0(x) = (α̃2x
2 + α̃1x)ζ1(x) + ψ2,0,0,1,0(x),

for some ψ2,0,0,1,0 ∈ E0, and we get

−2µcα̃2κ2,1 − κ0,1 = 0,

µcα̃1κ2,1 − µcα̃2κ3,1 = 0.

From which, we deduce

α̃2 = −
κ2

0,1

2κ2,1
, and α̃1 = −

κ3,1κ
2
0,1

2κ2
2,1

.

One also gets

ψ2,0,0,1,0 =
3iα̃2 − 3`cα̃1

2`3c

(
ζ0 − ζ0

)
+

4i`cα̃1 + 3α̃2

2`2c
ζ1 +

2i`cα̃1 + 3α̃2

2`2c
ζ1.

Terms of order O(AAB) and O(AAB). By symmetry we have that Ψ1,1,0,1,0 = −S1Ψ1,1,1,0,0 where

Ψ1,1,1,0,0 ∈ kerQ solves

0 = T Ψ1,1,1,0,0 − 2W ∗ (ζ1) ,

and W ∗ (ζ1) = κ0,1ζ1. Using the previous computations, we find that

Ψ1,1,1,0,0(x) = 2(α̃2x
2 + α̃1x)ζ1(x) + ψ1,1,1,0,0(x), with ψ1,1,1,0,0 ∈ E0

where

ψ1,1,1,0,0 = 2ψ2,0,0,1,0.

Terms of order O(ABB) and O(ABB). By symmetry we have that Ψ0,1,1,1,0 = S1Ψ1,0,1,1,0 where

Ψ1,0,1,1,0 solves

0 = T Ψ1,0,1,1,0 − 2W ∗
(
ζ0ζ1ζ1

)
, with Ψ1,0,1,1,0 ∈ kerQ,

and

W ∗
(
ζ0ζ1ζ1

)
(x) =

[
κ0,1x

2 + κ2,1

]
ei`cx,

so that

Ψ1,0,1,1,0(x) = (ω2x
2 + ω1x+ ω0)x2ζ0(x) + ψ1,0,1,1,0(x),

with ψ1,0,1,1,0 ∈ E0 and where (ωj)j=0,1,2 solves

6µcω2κ2,1 − 2κ0,1 = 0,

−4µcω2κ3,1 − 3µcκ2,1ω1 = 0,

µcω2κ4,1 − µcω1κ3,1 + (µcω0 − 2)κ2,1 = 0.

As a consequence, we have

ω2 =
1

3

κ2
0,1

κ2,1
, ω1 = −4

9

κ2
0,1κ3,1

κ2
2,1

, and ω0 = 2κ0,1 −
4

9

κ2
0,1κ

2
3,1

κ3
2,1

− 1

3

κ4,1κ
2
0,1

κ2
2,1

.

Finally, one can compute ψ1,0,1,1,0 and we have

ψ1,0,1,1,0 =
3i(ω1 + i`cω0)

2`3c
(ζ0 − ζ0) +

3ω1 + 4i`cω0

2`2c
ζ1 +

3ω1 + 2i`cω0

2`2c
ζ1.
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Terms of order O(AB2) and O(AB
2
). By symmetry we have that Ψ1,0,0,2,0 = S1Ψ0,1,2,0,0 where

Ψ0,1,2,0,0 ∈ kerQ solves

0 = T Ψ0,1,2,0,0 −W ∗
(
ζ0ζ

2
1

)
,

and

W ∗
(
ζ0ζ

2
1

)
(x) =

[
κ0,1x

2 + κ2,1

]
ei`cx,

so that Ψ0,1,2,0,0 = Ψ1,0,1,1,0.

Terms of order O(AB2) and O(AB
2
). By symmetry we have that Ψ0,1,0,2,0 = S1Ψ1,0,2,0,0 where Ψ1,0,2,0,0

solves

0 = T Ψ1,0,2,0,0 −W ∗
(
ζ0ζ

2
1

)
, with ∈ Ψ1,0,2,0,0 ∈ kerQ,

and

W ∗
(
ζ0ζ

2
1

)
(x) =

[
κ0,3x

2 − 2κ1,3x+ κ2,3

]
e3i`cx,

so that

Ψ1,0,2,0,0(x) = (ρ2x
2 + ρ1x+ ρ0)e3i`cx + ψ1,0,2,0,0(x),

where ψ1,0,2,0,0 ∈ E0 and

ρ2 (−1 + µcκ0,3)− κ0,3 = 0,

ρ1 (−1 + µcκ0,3)− 2µcρ2κ1,3 + 2κ1,3 = 0,

ρ0 (−1 + µcκ0,3) + µcρ2κ2,3 − µcρ1κ1,3 − κ2,3 = 0.

As a consequence, we get

ρ2 =
κ0,3

−1 + κ0,3/κ0,1
, ρ1 =

2κ1,3

(−1 + κ0,3/κ0,1)2
, and ρ0 = − κ2,3

(−1 + κ0,3/κ0,1)2
+

2κ2
1,3/κ0,1

(−1 + κ0,3/κ0,1)3
,

together with

ψ1,0,2,0,0 = −−8`2cρ0 + 9ρ2 + 12i`cρ1

`2c
ζ0 +

−10`2cρ0 + 9ρ2 + 12i`cρ1

`2c
ζ0

− 8i`2cρ0 − 5iρ2 + 8`cρ1

`c
ζ1 −

4i`2cρ0 − 4iρ2 + 5`cρ1

`c
ζ1.

C.2 Computations of reduced vector field at order 3

We compute d
dxQ (Ψ(u0(·+ x))) |x=0, the reduced vector field, induced by the reduction function Ψ.

We have that

d

dx
Q
(

(·+ x)2ei`c(·+x)
)
|x=0 =

(
3i

2`c
,− 3i

2`c
, 4, 1

)
,

d

dx
Q
(

(·+ x)3ei`c(·+x)
)
|x=0 =

(
6

`2c
,− 6

`2c
,−15i

2`c
,− 9i

2`c

)
,

d

dx
Q
(

(·+ x)4ei`c(·+x)
)
|x=0 =

(
− 6i

`3c
,

6i

`3c
,− 6

`2c
,− 6

`2c

)
,

d

dx
Q
(

(·+ x)5ei`c(·+x)
)
|x=0 = (0, 0, 0, 0),
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with

d

dx
Q
(

(·+ x)2e−i`c(·+x)
)
|x=0 =

(
3i

2`c
,− 3i

2`c
, 1, 4

)
,

d

dx
Q
(

(·+ x)3e−i`c(·+x)
)
|x=0 =

(
− 6

`2c
,

6

`2c
,

9i

2`c
,

15i

2`c

)
,

d

dx
Q
(

(·+ x)4e−i`c(·+x)
)
|x=0 =

(
− 6i

`3c
,

6i

`3c
,− 6

`2c
,− 6

`2c

)
,

d

dx
Q
(

(·+ x)5e−i`c(·+x)
)
|x=0 = (0, 0, 0, 0).

Furthermore, similar computations lead to

d

dx
Q
(

e3i`c(·+x)
)
|x=0 =

(
−12i`c, 15i`c,−24`2c ,−12`2c

)
,

d

dx
Q
(

(·+ x)e3i`c(·+x)
)
|x=0 = (−22, 23, 32i`c, 19i`c) ,

d

dx
Q
(

(·+ x)2e3i`c(·+x)
)
|x=0 =

(
51i

2`c
,−51i

2`c
, 31, 22

)
,

d

dx
Q
(

(·+ x)3e3i`c(·+x)
)
|x=0 =

(
18

`2c
,−18

`2c
,−39i

2`c
,

33i

2`c

)
.

with

d

dx
Q
(

e−3i`c(·+x)
)
|x=0 =

(
−15i`c, 12i`c,−12`2c ,−24`2c

)
,

d

dx
Q
(

(·+ x)e−3i`c(·+x)
)
|x=0 = (23,−22,−19i`c,−32i`c, ) ,

d

dx
Q
(

(·+ x)2e−3i`c(·+x)
)
|x=0 =

(
51i

2`c
,−51i

2`c
, 22, 31

)
,

d

dx
Q
(

(·+ x)3e−3i`c(·+x)
)
|x=0 =

(
(−18

`2c
,

18

`2c
,

33i

2`c
,

39i

2`c

)
.
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